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Abstract 
Action observation can facilitate the acquisition of novel motor skills, however, there is 
considerable individual variability in the extent to which observation promotes motor learning. 
Here we tested the hypothesis that individual differences in brain function or structure can predict 
subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI 
scan and resting-state fMRI scans to assess pre-observation grey matter volume and pre-
observation resting-state functional connectivity (FC), respectively. On the following day, subjects 
observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects 
performed reaches in a force field as a behavioral assessment of gains in motor learning resulting 
from observation. We found that individual differences in resting-state FC, but not grey matter 
volume, predicted post-observation gains in motor learning. Pre-observation resting-state FC 
between left S1 and bilateral PMd, M1, S1 and left SPL was positively correlated with behavioral 
measures of post-observation motor learning. Sensory-motor resting-state FC can thus predict the 
extent to which observation will promote subsequent motor learning. 
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New & Noteworthy 
We show that individual differences in pre-observation brain function can predict subsequent 
observation-related gains in motor learning. Pre-observation resting-state functional connectivity 
within a sensory-motor network may be used as a biomarker for the extent to which observation 
promotes motor learning. This kind of information may be useful if observation is to be used as a 
way to boost neuroplasticity and sensory motor recovery for patients undergoing rehabilitation for 
diseases that impair movement such as stroke. 
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Introduction 
Recent work has shown that action observation can promote motor learning. For example, 
individuals can learn how to reach in novel robot-imposed force field (FF) environments by 
observing the movements of a tutor (Mattar and Gribble, 2005). Subjects observed a video of a 
tutor adapting his reaches to a novel robot-imposed FF applied. Subjects who later performed 
reaches in the same FF showed a benefit, performing better (straighter) reaches compared to 
control subjects who did not observe a tutor. Subjects who later performed reaches in the opposite 
FF performed worse (more curved) reaches than subjects who did not observe. While these results 
demonstrate that FFs can be partially learned from observation, there is considerable inter-
individual variability in the extent to which observation promotes motor learning. Little is known 
about why this may be. Some individuals may be more predisposed to learning from observation 
than others, whether from birth, from experience-dependent plasticity, or a combination of these 
or other individual differences. Here we test the idea that inter-individual differences in brain 
function or structure underlie the extent to which observation promotes subsequent motor learning. 

In a recent review article, Zatorre (2013) discusses findings showing how structural and functional 
neural connectivity patterns predict individual differences in musical training and speech learning. 
Other studies have shown similar predictability for a wide array of cognitive abilities including 
executive function (Barnes et al., 2014; Reineberg et al., 2015), reading (Koyama et al., 2011; 
Wang et al., 2013), second language acquisition (Chai et al., 2016), visual perceptual 
discrimination (Baldassarre et al., 2012) and memory recall (King et al., 2015). In the motor 
domain, Tomassini et al. (2011) demonstrated that individual differences in both functional and 
structural magnetic resonance imaging (MRI) measures correlate with the acquisition of a novel 
visuomotor tracking skill through active movement training. Task-based functional activation 
levels in a network involving prefrontal, premotor, and parietal cortices, as well as basal ganglia 
and the cerebellum were associated with behavioral measures of active motor learning. Structural 
differences within the premotor cortex, higher order visual areas, and the cerebellum were also 
positively correlated with learning abilities (Tomassini et al., 2011). Similarly, using dense-array 
electroencephalography (EEG), Wu et al. (2014) showed that resting-state functional connectivity 
(FC) between premotor, primary motor and parietal cortices predicts individual differences in the 
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subsequent learning of a visuomotor tracking task. Together, these studies suggest that functional 
and structural variations in motor learning-related brain networks can, in part, explain individual 
differences in the ability to learn novel motor tasks through active movement practice. The results 
of these studies raise the possibility that individual differences in brain structure or function may 
also be predictive of motor learning by observing. 

Here we tested the hypothesis that individual differences in brain function or structure can predict 
the extent to which individuals will learn to perform a novel sensory-motor task (FF reaching) 
from observation. Based on our previous work (McGregor and Gribble, 2015; McGregor et al., 
2016), we expected that individual differences in brain function and structure within visual and 
sensory-motor brain networks would be predictive of motor learning by observing. On day 1, 
subjects performed baseline (no FF) reaches using a robotic arm and then underwent pre-
observation anatomical and resting-state functional magnetic resonance imaging (fMRI) scans. 
Twenty-four hours later, subjects in a learning group observed a video of a tutor learning to reach 
in a novel FF. Subjects in a control group observed a video of a tutor performing reaches in an 
unlearnable FF. Following observation, all subjects performed reaches in a FF as a behavioral 
assessment of motor learning by observing. We found that, for the learning group, pre-observation 
(day 1) resting-state FC between bilateral dorsal premotor cortex (PMd), primary motor cortex 
(M1), primary somatosensory cortex (S1) and left superior parietal lobule (SPL) was reliably 
correlated with behavioral scores of motor learning by observing acquired on day 2. No such 
correlation between pre-observation FC and motor learning by observing scores was found for the 
control group. Moreover, we found that individual differences in grey matter volume could not 
predict subsequent motor learning by observing. Pre-observation sensory-motor resting-state FC 
can thus explain part of the between-subject variation in motor learning by observing. 

Materials and Methods 

Subjects 
Thirty healthy subjects participated in this study. Fifteen subjects were assigned to a learning group 
(6 males, mean age 22.87 ± 1.02 (SE) years) and 15 were assigned to a control group (6 males, 
mean age 22.53 ± 0.86 (SE) years). All subjects were right handed, had normal or corrected-to-
normal vision, were naïve to force fields, and reported no neurological or musculoskeletal 
disorders. Subjects provided written informed consent prior to participating. All experimental 
procedures were approved by the Research Ethics Board at the University of Western Ontario. 

Apparatus 
Subjects were seated in front of a custom tabletop and grasped the handle of a two degree of 
freedom robotic arm (IMT2, Interactive Motion Technologies) with the right hand (see Figure 1). 
The chair height was adjusted such that the subject's upper arm was abducted approximately 90o 
from the trunk. An air sled was secured beneath the subject's right arm to support the arm against 
gravity. A semi-silvered mirror, mounted horizontally just above the robotic arm, occluded the 
subject's vision of his or her own arm and the robotic arm. During the reaching task, a liquid crystal 
display television (LCD TV) projected visual feedback onto the semi-silvered mirror. Visual 
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feedback included a start position (20-mm blue circle), a single target (20-mm white circle), and a 
cursor representing hand position (12-mm pink circle). 

The reaching task involved guiding the handle of the robotic arm from the start position to the 
target, which was located 15 cm in front of the start position. Subjects were instructed to move as 
straight as possible. At the end of each reach, the target changed color to provide feedback about 
movement time: the target disappeared if the movement time was within the desired range (450-
550 ms duration), turned red if the movement was too fast (< 450 ms) or turned green if the 
movement was too slow (> 550 ms). Following each reach, the robotic arm returned the subject's 
hand to the start position. 

The robot applied a velocity-dependent force field during the reaching task according to Equation 
1: 

𝐹#
𝐹$

= 0 𝑑𝑘
−𝑑𝑘 0

𝑣#
𝑣$   (1) 

in which 𝑥 and 𝑦 are lateral and sagittal directions, 𝐹# and 𝐹$ are the applied robot forces, 𝑣# and 
𝑣$ are hand velocities, 𝑘=14 Ns/m, and 𝑑=0 (null field), +1 (right FF) or -1 (left FF). 

Reaching Video Stimuli 
Each video showed a top-down view of a tutor performing the reaching task described above using 
her right arm. The tutors in the videos were naïve to force fields. The learning video consisted of 
a series of 30-second clips showing a tutor adapting her reaches to a leftward force field (left FF). 
These clips showed the gradual progression from curved to straight movements that is indicative 
of motor learning. The control video consisted of a series of 30-second clips showing a tutor 
performing reaches in an unlearnable FF in which the direction of the FF varied randomly from 
trial to trial (left FF, right FF, or null field). These clips showed the tutor performing both high and 
low curvature movements, but lacked the progressive decrease in movement curvature depicted in 
the learning video. Therefore, the control video included similar movements to those shown in the 
learning video, but did not depict learning. The videos showed 200 reaches each and were 15 
minutes in duration (including regular breaks). Video screenshots are shown in Figures 1B and 
2A. Note that the dashed trajectories and superimposed labels have been included for 
demonstrative purposes here and were not shown to subjects in the experiment. 

Experimental Design 
The experimental design is shown in Figure 1B. All subjects (n=30) participated in three sessions. 
For each subject, the sessions were held at the same time on three consecutive days. On day 0, 
subjects were familiarized with the reaching task by performing 50 practice movements in a null 
field (no force applied by the robot). On day 1, subjects performed 200 baseline reaches in the null 
field and then walked to the imaging facility for a fMRI scan session. The scan session, described 
in detail below, began approximately 20 minutes following the completion of the reaching task 
and lasted 1 hour. Data collected during the day 1 scan session were used to estimate pre-
observation resting-state FC involving 10 visual and sensory-motor brain areas (see ROIs below) 
and to estimate whole-brain grey matter volume. On day 2, subjects performed the observational 
motor learning task. Subjects watched either the learning video or the control video while seated 
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in front of the robotic arm. The video was played on the LCD TV positioned above the robotic 
arm and was projected onto the semi-silvered mirror surface. To ensure subjects paid attention 
during the video, we instructed them to count the number of correctly-timed reaches in the video 
(indicated by the target disappearing upon the completion of a reach) and to report the final tally 
to the experimenter following the video. Reported tallies were analyzed to verify that subjects 
attended to the video, but these data were not incorporated into the behavioral or neuroimaging 
analyses. Note that subjects were not told to pay attention to any particular part of the movement 
trajectory or arm, nor were they told that the robot would be applying forces to the arm. 
Approximately 80 minutes after video observation, we assessed motor learning by observing by 
having subjects perform 100 reaches while the robotic arm applied a rightward FF (right FF). 

During the 80 minutes between video observation and the motor learning test on day 2, both groups 
underwent a second fMRI scan session identical to the day 1 fMRI scan session. Data from the 
second fMRI scan session were not used in any of the analyses presented here since the main 
objective of the current study was predicting motor learning by observing based on pre-observation 
(day 1) neuroimaging data. Using this same dataset, we have previously examined changes in 
resting-state FC from pre-observation (day 1 scan) to post-observation (day 2 scan). See McGregor 
and Gribble (2015) for details of FC changes from day 1 to day 2, and how they relate to 
observation-related gains in motor learning.  

We assessed motor learning behaviorally by having subjects perform reaches in a right FF, which 
was the opposite FF to what was depicted in the learning video. The more subjects learned about 
the observed left FF, the worse their performance would be in the right FF. The idea is that, during 
observation, subjects learn about the compensatory pattern of muscle forces (i.e., rightward 
compensation) that is required to counteract the left FF. Subjects use this learned pattern of muscle 
forces when they subsequently perform reaches, resulting in after-effects (e.g., Shadmehr and 
Mussa-Ivaldi, 1994). As is the case in this study, after-effects are especially large if the FF is 
changed such that it is the opposite of the learned environment. This is because the subject 
compensates rightward (persistence of the learned pattern of muscle forces) and the robotic arm 
also pushes the hand to the right. Therefore, we expected that those subjects who better learned 
about the observed left FF would perform more highly curved reaches when first exposed to the 
right FF (Cothros et al., 2006; Brown et al., 2009; McGregor and Gribble, 2015; McGregor et al., 
2016). We chose to use this interference paradigm to assess motor learning by observing because 
it tends to be a more sensitive measure compared to testing subjects in the same FF that they 
observed. 

Imaging Procedure 
Neuroimaging data were acquired by a 3-Tesla Siemens Magnetom Tim Trio imaging system 
using a 32-channel head coil. The fMRI scan session lasted 1 hour. The scan session began with 
two 8-minute resting-state runs during which subjects were instructed to relax with their eyes 
closed. The resting-state runs were separated by a 5-minute anatomical scan during which subjects 
were instructed to fixate their gaze on a crosshair projected onto a screen. Subjects then performed 
two 6-minute functional localizer tasks: an action observation network localizer task and a motor 
localizer task. We selected 10 a priori regions of interest (ROIs) known to be involved in action 
observation and/or motor learning (see below). The two localizer tasks allowed us to determine 
the coordinates of each ROI for use in the functional connectivity analysis described below. 
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For the the action observation network localizer task, subjects viewed intact and scrambled video 
clips of a tutor performing reaches while holding the robotic arm (ten 36-s interleaved blocks in 
total). Intact video clips showed a top-down view of a tutor performing straight reaching 
movements in a null field (no forces applied by the robot). For the baseline condition, subjects 
viewed scrambled versions of these video clips in which only the start and target positions 
remained in their original locations. Scrambling the videos allowed us to preserve the low-level 
motion features such as movement direction and velocity while removing such movement features 
as shoulder and elbow joint rotations and the hand path (Malfait et al., 2010). During the action 
observation network localizer task, subjects were instructed to count the number of correctly-timed 
movements the tutor performed and to report the final tally to the experimenter at the end of the 
video. This was done to verify that subjects attended to the video. Reported tallies were not 
incorporated into the behavioral or neuroimaging analyses. 

For the motor localizer task, subjects performed interleaved blocks of arm movement and rest (ten 
36-s blocks in total). During movement blocks, subjects slowly moved their right forearm along 
the frontal plane in a cyclic manner (90o elbow flexion). Color-coded visual cues were used to 
pace movements at a frequency of 0.1 Hz. 

Image Acquisition 
Whole-brain functional data were acquired with a T2-weighted EPI sequence (TR = 3,000 ms, TE 
= 30 ms, 90o flip angle, 3-mm isotropic voxels, 80x80x50 matrix, iPAT acceleration factor = 2). 
T1-weighted anatomical images were collected with a MPRAGE sequence (TR = 2,300 ms, TE = 
2.98 ms, 9o flip angle, 1-mm isotropic voxels, 192x240x256 matrix). For each subject, a field map 
was acquired at the beginning of the scan session using a gradient echo sequence (TR = 531 ms, 
TE = 4.92 ms/7.38 ms, 60o flip angle, 3-mm isotropic voxels, 80x80x50 matrix). 

Behavioral Data Analysis 
During the reaching task, the position and velocity of the robotic handle were sampled at 600 Hz 
and stored for offline analysis. Positional data were low-pass filtered offline at 40 Hz. The start 
and end of each trial were defined using a threshold of 5% of the peak tangential velocity of the 
hand. Movement curvature was quantified for each trial as the maximum perpendicular deviation 
(PD) of the hand from a straight line connecting the start and target locations (Mattar and Gribble, 
2005). 

We calculated a behavioral motor learning by observing score for each subject. The Motor learning 
by observing scores were calculated as the mean PD of the first 3 reaches in the right FF minus 
the mean PD of the last 50 reaches in the baseline null field. This approach allowed us to examine 
the extent to which observing the left FF interfered with subjects' initial performance in the right 
FF compared to control subjects who did not observe the tutor undergoing learning. As in our 
previous work (Cothros et al., 2006; Brown et al., 2009; McGregor et al., 2016), we expected that 
motor learning by observing would primarily affect initial performance in the right FF, after which 
motor learning through active movement in the right FF would occur for both groups. 
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Functional Connectivity Analysis 
We carried out a whole-brain seed-based correlation analysis to examine if inter-subject 
differences in resting-state FC on day 1 could predict the amount of motor learning by observing 
that subjects would achieve on the following day. Neuroimaging data analyses were performed 
using FSL version 5.04 (FMRIB's Software Library, https://www.fmrib.ox.ac.uk/fsl). Image 
preprocessing steps for the functional connectivity analysis included the removal of the first 2 
volumes in each functional run, slice-timing correction, motion correction, spatial smoothing using 
a 6-mm kernel, and high-pass temporal filtering (100 s). Field map distortion correction and affine 
coregistration of functional and anatomical images were performed using boundary-based 
registration (BBR) in FLIRT. Subjects' images were registered to MNI standard space (MNI's 152-
brain T1 template, 2-mm isotropic voxel size) using a 12-DOF affine registration. 

Following preprocessing, each resting-state run was bandpass filtered between 0.01 Hz and 0.1 Hz 
(Biswal et al., 1995; Damoiseaux et al., 2006). Mean-based intensity normalization was performed 
(mean value of 10,000) to remove global intensity differences between runs (Damoiseaux et al., 
2006). We then carried out our seed-based correlation analysis using FILM (FMRIB's Improved 
General Linear Model).  

We selected 10 a priori regions of interest (ROIs) known to be involved in action observation 
and/or motor learning. ROIs included left supplementary motor area (SMA), dorsal premotor 
cortex (PMd), ventral premotor cortex (PMv), primary motor cortex (M1), primary somatosensory 
cortex (S1), visual area V5/MT, superior parietal lobule (SPL), inferior parietal lobule (IPL), 
putamen, and right cerebellum. We determined the coordinates of each ROI based on the results 
of the block-design analyses of the action observation network localizer task and the motor 
localizer task. For each localizer, the task-induced response was assessed with a per-subject GLM. 
Data from all 30 subjects were then included in a mixed-effects analysis (Z > 2.3, p < 0.05, cluster-
based thresholding) for each localizer. These analyses yielded Z-score maps showing areas of the 
brain that were activated (on average across all 30 subjects) during arm movement or action 
observation, which we used to determine the coordinates of our ROIs. For each of our 10 ROIs, 
we found the peak activated voxel within that brain area and centered the ROI on that voxel. Each 
ROI consisted of all voxels within a 6-mm radius of the activation peak. Table 1 shows the 
coordinates of the activation peaks on which each ROI was centered. 

We then carried out a functional connectivity analysis to estimate FC between each ROI and the 
rest of the brain on day 1. For each ROI, we carried out a subject-level analysis on each resting-
state run in which the mean time series of the ROI was used as the predictor of interest. Nuisance 
regressors included the temporal derivative of the mean ROI time series, 6 rigid body motion 
parameters obtained from motion correction, mean global signal, mean white matter signal and 
mean CSF signal. The results of the subject-level analyses were then entered into a mixed-effects 
group-level analysis for each of the ROIs. A separate mixed-effects analysis was carried out for 
each group. In the group-level analysis, we also included a nuisance regressor modeling inter-
subject differences in baseline movement curvature in the null field. This nuisance regressor 
consisted of each subject’s average PD of the last 50 reaches in the null field. This was done 
because subjects had performed 200 reaches in the null field prior to the fMRI scan session on day 
1. Even though the robot did not apply forces to the hand during null field reaches, subjects likely 
underwent some degree of motor learning as they learned the inertial properties of the robotic arm. 
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We included the nuisance regressor modeling subjects' behavioral performance in the null field to 
account for variability in pre-observation resting-state FC that could be explained by differences 
in subjects’ movement curvature at baseline (in the null field condition). Group-level functional 
connectivity analyses were performed using both of the subjects’ resting-state runs together as well 
as separately (see Results).  

Group-level analysis results were thresholded based on Gaussian random field theory using a 
maximum height thresholding (Z >5.3) with a corrected significance level of p=0.005 (voxelwise 
thresholding, corrected for familywise error). We applied a Bonferroni correction for the number 
of ROIs used; therefore, our corrected significance threshold of p=0.005 reflects p=0.05/10 ROIs. 
These analyses resulted in 10 Z score maps per group (one per ROI) showing areas that, on 
average, exhibited FC with the seed region across subjects.  

For each of the 10 resulting Z score maps, FC was computed for each subject in the group as the 
temporal correlation (Fisher Z-transformed correlation coefficient) between the ROI time series 
and the average time series across all clusters in the identified network. This allowed us to estimate 
each subject’s day 1 FC between the ROI and all of the clusters in each of the identified networks. 
At the group-level, we computed the correlation (across subjects) between day 1 FC values and 
day 2 motor learning by observing scores for each of the identified networks. This was done to 
assess if individual differences in day 1 FC among brain areas in any of the identified networks 
was related to performance during the behavioral test of motor learning by observing on day 2. 
We again applied a Bonferroni correction for the number of ROIs used; therefore, we considered 
statistically significant only those correlations between day 1 FC and motor learning by observing 
scores for which p < 0.005 (i.e., p=0.05/10 ROIs). 

Voxel-Based Morphometry Analysis 
We carried out a whole-brain voxel-based morphometry (VBM) analysis to test for inter-subject 
differences in grey matter volume across the whole brain (measured on day 1) that could predict 
motor learning by observing scores on day 2. This analysis was carried out on the T1-weighted 
images using FSL-VBM v1.1. First, each subject's anatomical image was brain-extracted, grey-
matter segmented, and transformed to MNI space using a nonlinear registration. The resulting 
anatomical images were then averaged and flipped along the x-axis to generate a left-right 
symmetric, study-specific template. Each subject’s grey matter-segmented anatomical image was 
registered to the study-specific template and smoothed using a 3-mm Gaussian kernel. The VBM 
analysis was carried out using a voxelwise GLM model. The predictor of interest modeled the 
subjects' motor learning by observing scores (demeaned). Two nuisance regressors were also 
included in the GLM; one modeled the grey matter grand mean across all subjects and the second 
modeled each subject's unnormalized total brain volume. Each subject's total brain volume was 
estimated prior to standard space normalization using FSL's SIENAX tool. The voxelwise GLM 
model was applied using non-parametric permutation (50,000 iterations) to correct for multiple 
comparisons with a significance threshold of p=0.05. 
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Results 

Behavioral Results 
Figure 2A shows the behavioral data from the learning and control groups. It can be seen that, on 
day 1, reaches are straight in the baseline null field condition for both groups. Following video 
observation on day 2, we assessed motor learning by observing by instructing subjects to perform 
straight reaches while the robotic arm applied a right FF (the opposite FF to what had been 
observed in the learning video). The more subjects learned about the observed left FF, the worse 
their performance would be during their initial performance in the right FF. Indeed, we found that 
subjects who observed the tutor adapting to a left FF in the learning video exhibited greater PD 
during initial reaches in the right FF compared to control subjects who observed the tutor 
performing curved reaches in an unlearnable FF. As in previous work (Mattar and Gribble, 2005; 
Cothros et al., 2006; Brown et al., 2009; Williams and Gribble, 2012; Bernardi et al., 2013; 
McGregor et al., 2016), the effects of observation are most apparent early in the motor learning 
test (i.e., the first 10 reaches shown as blocks 1 and 2 in Fig 2A) and diminish as subjects in both 
the learning and control groups adapt to the right FF. Average motor learning by observing scores 
are shown in Figure 2B. Motor learning by observing scores reflect the PD of the first 3 reaches in 
the right FF relative to the subject's baseline PD in the null field. As shown in Figure 2B, subjects 
who observed the tutor undergoing left FF learning exhibited significantly higher motor learning 
by observing scores compared to control subjects who observed the tutor performing reaches in an 
unlearnable FF (t(28)=2.58, p < 0.01). 

Functional Connectivity Analysis 
We performed a functional connectivity analysis using the resting-state fMRI data acquired on day 
1 to test whether individual differences in pre-observation FC could predict motor learning by 
observing scores on the following day. Of the 10 ROIs used, only the analysis using the left S1 
ROI revealed a network in which pre-observation FC was reliably correlated with day 2 motor 
learning by observing scores for the learning group. As can be seen in Figure 3, day 1 FC between 
the left S1 ROI and the average FC across clusters in bilateral PMd, bilateral M1, bilateral S1 and 
left SPL was positively correlated with day 2 motor learning by observing scores (r=0.76, p=0.001) 
for the learning group. Subjects with greater pre-observation FC among these areas on day 1 went 
on to achieve higher motor learning by observing scores on the following day. Table 2 shows 
cluster activation peaks and statistics for the learning group. For the control group, the analysis 
using the left S1 ROI revealed a qualitatively similar network consisting of bilateral PMd, bilateral 
M1, bilateral S1 and left SPL. This is expected because subjects in the learning and control groups 
have had identical experiences as of the day 1 resting-state scan session. However, for the control 
group, day 1 FC within the identified network was not reliably correlated with day 2 behavioral 
motor learning by observing scores (r = -0.43, p = 0.67; Figure 5). 

Our computed motor learning by observing score took into account the average PD of a subject's 
first 3 reaches in the right FF relative to his or her baseline PD in the null field. To assess the 
sensitivity of the learning group’s correlation between pre-observation FC and motor learning by 
observing scores, we computed additional motor learning by observing scores to use in our 
analysis. Additional motor learning by observing scores reflected the average PD of the first 4, 5, 
6, 7, 8, 9 or 10 reaches in the right FF minus the average PD of the last 50 reaches in the null field. 
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The learning group’s correlation between day 1 FC and motor learning by observing scores 
remained statistically significant for all of the additional measures. 

The GLMs used for the group-level functional connectivity analyses included a nuisance regressor 
modeling each subject's baseline PD in the null field during the last 50 trials. This nuisance 
regressor was included to account for variability in pre-observation resting-state FC that could be 
explained by inter-subject differences in movement curvature at baseline. Our results were 
consistent whether the null field nuisance regressor reflected the average PD of the last 3, 5, 10 or 
50 null field reaches or the average PD of the first 3, 5, 10 or 50 null field reaches. 

It is possible that the correlation between pre-observation FC and the day 2 motor learning by 
observing scores is due to random chance (e.g., spurious correlations in the BOLD time series) 
and not due to stable individual differences in functional connectivity. To assess this, we repeated 
the functional connectivity analysis on each of the two resting-state runs separately. The resting-
state runs were independent, separated in time by a 5-minute anatomical scan. Again using the 
ROI in left S1, we found consistent spatial patterns of pre-observation (day 1) FC between left S1, 
bilateral PMd, M1, S1 and left SPL for both individual runs (see Figure 4). Moreover, for the 
learning group, the correlation between pre-observation (day 1) FC and day 2 motor learning by 
observing scores was statistically significant for both resting-state run 1 (r=0.75, p=0.001) and run 
2 (r=0.63, p=0.01). Therefore, when performed on the each of the two independent resting-state 
runs, our analysis yielded similar results both in terms of the spatial extent of the clusters and the 
correlations with day 2 motor learning by observing scores. It is therefore unlikely that our main 
result arises from a spurious correlation. For the control group, there was no statistically significant 
correlation between pre-observation FC during either run 1 or run 2 and motor learning by 
observing scores (r=-0.38, p=0.15 and r=-0.03, p=0.91, respectively; Figure 5). 

Voxel-Based Morphometry Analysis 
We carried out a whole-brain VBM analysis on the T1-weighted anatomical images. This was 
done to test if individual differences in grey matter volume could predict subsequent motor 
learning by observing scores. This analysis yielded no significant results. We tested the sensitivity 
of this null result to the chosen statistical threshold. For the learning group, no significant clusters 
survived statistical thresholding at the group level until the p-value threshold was raised to 0.27, 
at which level clusters survived in left frontal lobe (-32, 54, 12) and Broca's area (-50, 20, 12). 
When the p-value threshold was raised further to 0.37, a cluster survived which spanned right PMC 
(54, -8, 52), M1 (54, -10, 46), S1 (56, -14, 44) and IPL (64, -20, 40). However, since none of these 
clusters survived an appropriate statistical threshold, these results are not interpretable. In the 
context of the dataset here, individual differences in grey matter volume could not account for 
variability in the extent to which observation promotes motor learning. 

Discussion 
Here we examined if pre-observation measures of brain function or structure could account for 
individual differences in the extent to which observation facilitates motor learning. We acquired 
measures of resting-state FC and grey matter volume using MRI prior to an observational learning 
task on the following day. We found that, for the learning group, pre-observation (day 1) resting-
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state FC between bilateral PMd, bilateral M1, bilateral S1 and left SPL was reliably correlated 
with behavioral scores of motor learning by observing acquired on day 2. Those subjects in the 
learning group who exhibited greater resting-state FC on day 1 achieved greater motor learning by 
observing scores on day 2. No such correlation between pre-observation FC and motor learning 
by observing scores was found for the control group who observed a tutor performing reaches but 
not learning. Individual differences in grey matter volume could not predict subsequent motor 
learning by observing behavioral scores. Although the analyses presented here are correlational, 
the temporal order of events in the experimental design, namely the resting-state scans preceding 
the observational motor learning task by 24 hours, supports the idea that greater FC in a network 
linking S1, PMd, M1 and SPL predisposes individuals to learn more about a novel motor skill 
through visual observation. 

The finding that pre-observation resting-state FC between S1 and PMd, M1, and SPL predicts 
subsequent motor learning by observing is consistent with previous work demonstrating that M1 
and the somatosensory system play necessary roles in motor learning by observing. Brown et al. 
(2009) used repetitive transcranial magnetic stimulation (rTMS) to reduce cortical excitability in 
M1 immediately after subjects observed a FF learning video. A subsequent behavioral assessment 
showed that reducing M1 excitability following observation disrupted motor learning by 
observing. rTMS applied to M1 after observation of FF learning reduced the beneficial effect of 
observing congruent forces, and eliminated the detrimental effect of observing incongruent forces. 
These results suggest that M1 plays a key role in motor learning by observing. 

We have also recently demonstrated that the somatosensory system plays a necessary role in motor 
learning by observing (McGregor et al., 2016). We used median nerve stimulation to occupy the 
somatosensory system with unrelated afferent inputs while subjects observed a video of a tutor 
undergoing FF learning. During observation, subjects received median nerve stimulation either to 
the right arm (the same arm used by the tutor in the video), to the left arm (opposite the arm used 
by the tutor) or no stimulation. Stimulation disrupted motor learning by observing in a limb-
specific manner such that stimulation of the right arm (observed effector) interfered with learning, 
whereas stimulation applied to the opposite arm did not. This result demonstrated that the 
somatosensory representation of the observed effector is necessary and therefore must be 
unoccupied during observation for motor learning by observing to occur. In a follow-up EEG 
experiment, we showed that S1 cortical activity, as assessed using somatosensory evoked 
potentials, increased for subjects who observed learning by an amount that positively correlated 
with subsequent behavioral motor learning by observing scores. These results suggest that 
observation-induced functional changes in S1 support motor learning by observing (McGregor et 
al., 2016). 

The network identified in the current study overlaps with those identified in neuroimaging studies 
showing that sensory-motor networks support observational learning. We have previously shown 
that observing motor learning results in changes in resting-state FC between M1, S1, visual area 
V5/MT and the cerebellum. Functional connectivity changes within this network were correlated 
with behavioral measures of motor learning, assessed following the fMRI sessions (McGregor and 
Gribble, 2015). Cross et al. (2009) showed that observation of learned dance movement sequences 
recruits brain areas including premotor and parietal cortices. The authors reported greater 
activation in premotor and parietal regions when subjects observed movement sequences on which 
they had been trained (by observation) over the previous 5 days, compared to untrained movement 
sequences. These studies suggest that the neural substrates of motor learning by observing include 
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premotor cortex, M1, S1 and parietal cortex. This is consistent with the results of the current study 
in which subjects who exhibited greater pre-observation resting-state FC between S1 and PMd, 
M1, and SPL later showed the greatest observation-related facilitation of motor learning. 

More generally, the current study provides insight into the neural basis of motor learning. The 
network identified here closely corresponds to functional networks involved in active motor 
learning. For example, resting-state fMRI studies of active motor learning have found FC changes 
between M1, dorsal premotor cortex and the cerebellum following FF adaptation (Vahdat et al., 
2011) and FC changes within the fronto-parietal resting-state network following visuomotor 
adaptation (Albert et al., 2009). Several task-based neuroimaging studies have similarly suggested 
a role for PMd (e.g., Steele and Penhune 2010), M1 (e.g., Grafton et al., 1992; Steele and Penhune 
2010), S1, and SPL in motor learning through active movement (see Hardwick et al., 2013 for 
review).  

There are commonalities between the functional network identified in the current study and those 
functional networks that have been previously reported to predict aspects of motor learning 
through active movement training. Tomassini et al. (2011) showed that the task-based activation 
of premotor and parietal cortices (along with prefrontal cortex, basal ganglia and the cerebellum) 
is associated with higher behavioral measures of motor learning. Wu et al. (2014) have similarly 
shown that resting-state FC (as measured by high-density EEG) between M1, premotor cortex and 
parietal cortex can predict skill acquisition. The consistency between predictive functional 
networks for learning through active movement training and observational motor learning provides 
evidence in favor of similar neural substrates for these two forms of motor learning. 

There is evidence from the motor learning literature that individual differences in brain structure 
can predict learning through active practice. Tomassini et al. (2011) demonstrated that individual 
differences in grey matter volume within the cerebellum and higher order visual areas (V2, V3, 
V5/MT) can also predict behavioral measures of motor learning during a visuomotor tracking task. 
While there is evidence for structure-based predictability of active motor learning, in the current 
study we found that this was not the case for motor learning by observing; individual differences 
in grey matter volume could not account for variability in behavioral scores of motor learning by 
observing. The discrepancy between the results of the current study and that of Tomassini et al. 
(2011) may be due to methodological differences in terms of the T1-image acquisition parameters 
and VBM analysis procedures used, and/or the current study may have had insufficient statistical 
power. Future studies investigating grey matter volume correlates of motor learning by observing 
should have a larger sample size to increase statistical power. 

Here we tested if pre-observation measures of brain function or structure could predict subsequent 
motor learning by observing. We found that pre-observation resting-state FC between bilateral S1, 
PMd, M1, and left SPL predicted the extent to which observation would promote motor learning 
on the following day. Individual differences in grey matter volume could not predict behavioral 
scores of learning following observation. These results demonstrate that individual differences in 
resting-state FC among sensory-motor cortical brain areas can explain part of the individual 
variability in the extent to which observation facilitates motor learning. This finding is consistent 
with the idea that those individuals who have more 'primed' sensory-motor circuits are more 
predisposed to motor learning through observation. Pre-observation FC within the identified 
sensory-motor network may be used as a biomarker of the extent to which observation will 
promote motor learning. Predicting an individual's predisposition for motor learning by observing 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2017. ; https://doi.org/10.1101/110924doi: bioRxiv preprint 

https://doi.org/10.1101/110924
http://creativecommons.org/licenses/by-nd/4.0/


could be valuable in a clinical context for planning individualized rehabilitation strategies and 
improving prognostic accuracy (Stinear, 2010). 

The origin of individual variability in pre-observation sensory-motor FC is still unclear. In one 
scenario, it is possible that the observed individual differences in FC are a reflection of functional 
variability and not anatomical variability within this network. However, given the close 
correspondence between anatomical and functional connectivity (e.g., Fox et al., 2005), another 
scenario is that the observed differences in FC arise from individual differences in anatomical 
connectivity. For example, it could be the case that greater structural connectivity between these 
sensory-motor brain areas results in higher pre-observation sensory-motor FC which, in turn, 
promotes greater motor learning by observing. Since we did not acquire images for performing 
structural connectivity-based analyses (such as diffusion tensor images) in the current study, we 
cannot rule out the possibility that individual differences in structural connectivity among sensory-
motor brain areas underlies the effect seen here, whereby pre-observation FC predicts motor 
learning by observing. 

However, resting-state FC does not only reflect anatomical connectivity. Indeed, much work has 
shown that resting-state FC can be shaped by recent experiences. Such "stimulus-rest interactions" 
have been demonstrated across several domains. For example, exposure to visual stimuli (Lewis 
et al., 2009) or undergoing active motor learning (Albert et al., 2009) can change resting-state FC. 
Since resting-state FC is affected by both structure and function, it is likely the case that both of 
these factors contribute to individual differences in pre-observation sensory-motor FC. While we 
cannot further pursue this question using the current dataset, this would be an interesting avenue 
for future research. Since previous experiences can alter resting-state FC, it is likely that 
performance of null field reaches in the baseline condition ‘primed’ sensory-motor networks prior 
to the day 1 resting-state scans and perhaps increased the sensitivity of the current study. It would 
be of interest to examine if baseline measures (i.e., without prior null field reaches) of resting-state 
FC within the identified could also predict motor learning by observing. Another outstanding issue 
is the stability of these individual differences in pre-observation FC over time. Future research 
should examine the test-retest reliability of pre-observation FC over longer time periods (e.g., 
several days or weeks apart) to establish the long-term stability of the FC patterns within the 
network presented here. This would allow one to better distinguish between within-session patterns 
from those more permanent structural or functional patterns. 
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Figures 
	

 

Figure 1: Apparatus and Experimental Design. A. Subjects were seated in front of an InMotion2 
robotic arm and performed the reaching task in a horizontal plane using the right arm. B. On day 
1, all subjects performed reaches in a null field (no force applied by the robot). Subjects then 
underwent a pre-observation MRI scan session. The scan session consisted of 2 resting-state runs 
separated by an anatomical scan, followed by 2 functional localizer tasks. On day 2, subjects in 
the learning group (n=15) observed a learning video showing a tutor adapting her reaches to a 
left FF. A control group (n=15) observed a control video showing a tutor performing curved 
reaches in an unlearnable (randomly-varying) FF. Finally, all subjects performed reaches in a 
right FF as a behavioral test of motor learning by observing. FF, force field. 

 

 

Figure 2: Behavioral results. A. Experimental design showing the average PD of reaches for each 
group across trials in the null field on day 1 and in the right FF on day 2. Behavioral data from 
the learning and control group are shown in magenta and orange, respectively. Data are shown 
as 10-trial blocks except for the first 2 blocks in the right FF, which are shown as 5-trial blocks. 
Error bars represent SEM. B. Motor learning by observing scores for the learning group 
(magenta) and control group (orange), reflecting initial PD in the right FF relative to baseline 
PD in the null field. Error bars represent SEM. FF, force field; PD, perpendicular deviation. 
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Figure 3: Pre-observation FC predicted motor learning by observing scores for the learning 
group. This figure shows neuroimaging data from the learning group only. Pre-observation (day 
1) resting-state FC between the left S1 ROI (inset at left) and clusters in bilateral PMd, bilateral 
M1, bilateral S1 and left SPL are shown. FC values reflect the Fisher Z-transformed temporal 
correlation between the ROI time series and the average time series of all clusters in the identified 
network for each subject. Across subjects in the learning group, the average day 1 resting-state 
FC within this network was positively correlated with day 2 motor learning by observing scores. 
As shown in the scatterplot on the far right, subjects who exhibited stronger resting-state FC within 
this network on day 1 achieved greater motor learning by observing scores on the following day 
(r=0.76, p=0.001).  

 

 

Figure 4: Pre-observation FC in run 1 and run 2 both predicted motor learning by observing 
scores for the learning group. The figure shows neuroimaging data from the learning group only. 
Data from resting-state run 1 (shown in pink) and run 2 (shown in blue) were analyzed separately. 
For each run, the ROI in left S1 (inset at left) exhibited resting-state FC with clusters in bilateral 
PMd, bilateral M1, bilateral S1 and left SPL. FC values reflect the Fisher Z-transformed temporal 
correlation between the ROI time series and the average time series of all clusters in the identified 
network. For each of the runs, pre-observation (day 1) resting-state FC between bilateral PMd, 
M1, S1 and left SPL was reliably correlated with day 2 motor learning by observing scores across 
subjects in the learning group. As shown in the scatterplot on the far right, subjects who exhibited 
stronger FC within the network identified in each run on day 1 achieved greater motor learning 
by observing scores on day 2. 
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Figure 5: Pre-observation FC did not predict motor learning by observing scores for the control 
group. As was the case with the learning group, subjects in the control group exhibited pre-
observation (day 1) resting-state FC between the left S1 ROI and clusters in bilateral PMd, M1, 
S1 and left SPL (not shown). FC values reflect the Fisher Z-transformed temporal correlation 
between the ROI time series and the average time series of all clusters in the identified network. 
Across subjects in the control group, there was no correlation between day 1 resting-state FC 
within this network and day 2 motor learning by observing scores. This was the case when both 
runs were analyzed together (r=-0.38, p=0.15; shown in the scatterplot on the left) as well as when 
the runs were analyzed separately r=-0.03, p=0.91; shown in the scatterplot on the right). 
 

 

Tables 
Table 1: Region of Interest (ROI) coordinates used in functional connectivity analyses for both the 
learning and control groups. The ROI coordinates were determined on the basis of a block-design 
analysis of the action observation network localizer task and motor localizer task. The seed 
coordinates were chosen as the peak activated voxel within each of the 10 a priori selected brain 
regions listed in this table. L, left; R, right; SMA, supplementary motor area; PMd, dorsal 
premotor cortex; PMv, ventral premotor cortex; M1, primary motor cortex; S1, primary 
somatosensory cortex; V5/MT, middle temporal visual area; SPL, superior parietal lobule; IPL, 
inferior parietal lobule; BG, putamen; CB, cerebellum. ROI locations are given in the MNI 
coordinate frame. 

ROI x y z Z-score 
L SMA -4 -10 56 5.93 
L PMd -24 -22 66 6.02 
L PMv -42 -6 56 5.16 
L M1 -26 -30 64 6.41 
L S1 -30 -36 62 6.32 
L V5/MT -42 -76 2 5.70 
L SPL -22 -48 68 5.87 
L IPL -60 -44 22 4.01 
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L BG -28 -14 8 4.52 
R CB 26 -44 -26 5.22 

 

Table 2: The functional connectivity analysis using the ROI in left S1 (see Table 1), revealed a 
sensory-motor functional network in which pre-observation (day 1) FC predicted day 2 motor 
learning by observing scores for the learning group. Z score activation peaks, MNI coordinates 
and anatomical labels of the sensory-motor clusters in the identified functional network are shown 
here. ROI, region of interest; L, left; R, right; SMA, supplementary motor area; PMd, dorsal 
premotor cortex; M1, primary motor cortex; S1, primary somatosensory cortex; SPL, superior 
parietal lobule; FC, functional connectivity. 

Z-score x y z Label 
7.40 -26 -40 58 L S1 (BA2) 
6.75 -22 -20 66 L PMd (BA6) 
6.12 -16 -50 62 L SPL (BA5L) 
5.80 -34 -28 52 L M1 (BA4p) 
6.97 22 -42 60 R S1 (BA2) 
7.10 30 -32 56 R M1 (BA4p) 
6.36 26 -16 64 R PMd (BA6) 
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