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Abstract

Driven by the recent advances of next generation sequencing (NGS) technologies and an
urgent need to decode complex human diseases, a multitude of large-scale studies were
conducted recently that have resulted in an unprecedented volume of whol e transcriptome
sequencing (RNA-seq) data. While these data offer new opportunities to identify the
mechanisms underlying disease, the comparison of data from different sources poses a
great challenge, due to differencesin sample and data processing. Here, we present a
pipeline that processes and unifies RNA-seq data from different studies, which includes
uniform realignment and gene expression quantification as well as batch effect removal.
We find that uniform alignment and quantification is not sufficient when combining
RNA-seq data from different sources and that the removal of other batch effectsis
essential to facilitate data comparison. We have processed data from the Genotype Tissue
Expression project (GTEX) and The Cancer Genome Atlas (TCGA) and have successfully
corrected for study-specific biases, enabling comparative analysis across studies. The
normalized data are available for download via GitHub (at
https.//github.com/mskcc/RNAseqDB).
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Introduction

RNA sequencing (RNA-seq) is an important tool for understanding the genetic
mechanisms underlying human diseases. A multitude of large-scale studies have recently
generated an unprecedented volume of RNA-seq data. For example, The Cancer Genome
Atlas (TCGA) has quantified gene expression levels in >8000 samples from >30 cancer
types. On asimilar scale, the Genotype Tissue Expression (GTEX) project [1], [2], has
catalogued gene expression in >9,000 samples across 53 tissues from 544 healthy
individuals.

These resources offer a unique opportunity to gain better insight into complex human
diseases. However, the integrative anaysis of these data across studies poses great
challenges, due to differences in sample handling and processing, such as sequencing
platform and chemistry, personnel, detailsin the analysis pipeline, etc. For example, the
RNA-seq expression levels of the mgjority of genes quantified are in the range of 4-10
(log2 of normalized_count) for TCGA, and 0-4 (log2 of RPKM) for GTEx (Fig. S1A), a
consequence of the use of different analysis pipelines. This makes gene expression levels
from the two projects not directly comparable.

To facilitate research on abnormal gene expression in human diseases, a variety of
databases and pipelines have been devel oped to combine RNA-seq from different studies
[3]1[4][5][6][7][8][9][20]. However, these databases or pipelines either directly
incorporated expression data from the literature, retaining unwanted batch effectsin the
data[7][8], or only combined and reanalyzed samples from smaller studies, hence, not
taking advantage of the power provided by the recent large data sets [3][4][5][6][20]. A
recently published pipeline, Toil [10], attempts to unify RNA-seq data from different
sources by uniformly processing raw sequencing reads. However, Toil does not remove
batch effects that are introduced by sources other than the differences in read alignment
and quantification. To take full advantage of the large volume of available RNA-seq data,
an integrative RNA-seq resource is still urgently required.

Here, we present a pipeline for processing and unifying RNA-seq data from different
studies. By unifying data from GTEx and TCGA, we provide reference expression levels
across the human body for comparison with the expression levels found in human cancer.
Our method removes batch effects by uniformly reprocessing RNA-seq data.
Specifically, we used raw sequencing reads of the RNA-seq samples downloaded from
GTEx and TCGA, realigned them, re-quantified gene expression, and then removed
biases specific to each study.
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Results

Our analysis pipeline included realignment of raw reads, removal of degraded samples,
expression quantification, and batch effect processing (Fig. 1, see M ethods).

To allow proper batch bias correction, we processed only samples from tissues that were
studied by both GTEx and TCGA (Table 1). Tissues with no or insufficient numbers of
normal samples availablein TCGA (e.g., sarcoma, ovarian cancer, melanoma) were not
processed (Table S1).

We downloaded and processed raw paired-end RNA-seq data from 10,366 samples,
including 2,790 from GTEXx and 7,576 from the TCGA project (Table 1). 831 samples
(8%) exhibited 5’ degradation (as described previously [11]) and were excluded from
further analysis. We also discarded samples with low alignment rates and samples not
used in the final GTEX study, resulting in atotal of 9109 (89%) high-quality samples for
further analysis.

To correct for batch biases, we first created a sample-gene matrix for each tissue-tumor
pair by merging gene expression levels of the corresponding GTEx and TCGA samples.
Regardless of the actual batch that a sample belonged to in an RNA-seq experiment, we
treated all GTEx samples as one batch and TCGA samples as another. Then, we ran
ComBat in the R package SVAseq [12] to correct for non-biological variation accounting
for unwanted differences between GTEx and TCGA samples of a particular tissue type
(see Methods).

To examine how well our pipeline was able to correct study-specific batch effects, we
systematically compared the effects of uniform realignment, expression quantification,
and batch effect correction for three tissues: bladder, prostate and thyroid. When using
expression levels reported by the TCGA and GTEX projects, even after applying upper-
quartile normalization to bring expression levels into comparable ranges (Fig. S1B),
samples from the same study were more similar to each other than samples from the same
tissue, as shown by PCA analysis (Fig. 2A). This result indicates the necessity to
uniformly reprocess RNA-seq samples.

However, uniform realignment and expression quantification using our pipeline did not
fully resolve these differences; while the first principal component was now the tissue,
the second principal component was still defined by the source (Fig. 2B), indicating that
study-specific biases still accounted for significant variation in RNA-seq expression
levels within each tissue type. This result shows that consistent realignment and
expression quantification alone are not sufficient, and that further study-specific batch
effects need to be removed in order to be able to compare expression data from TCGA
and GTEXx.

To this end, we next added a batch-effect correction step to our pipeline, usng ComBat
[12] (see M ethods), which successfully corrected our example data and resulted in
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clustering by tissue type (Fig. 2C).

To determine whether uniform alignment and expression quantification was an essential
step, or whether batch effect removal via ComBat by itself was sufficient, we also applied
ComBat directly to the level 3 datafrom GTEx and TCGA (GTEXx-quantified datawas
rescaled using quantile normalization). We found that batch effect removal by itself is not
sufficient, and that the combination of uniform processing of sequencing reads followed
by additional batch effect removal is required to make data from the TCGA and GTEx
projects comparable (Fig. S2). We validated the expression similarities observed in the
principal component analysis through hierarchical clustering (Fig. 3).

Our results demonstrate that uniform realignment and expression quantification, together
with explicit correction for study-specific biases, are not only effective, but also
necessary for removing batch effects and making samples from different studies
comparable.

Finally, we examined the expression levels of three cancer driver genes, ERBB2, IGF2,
and TP53, in our batch-effect corrected data (Fig. 4). ERBB2 expression was
significantly higher in a subset of tumor samples, consistent with the frequent
amplifications observed in various tumor types. IGF2 showed a similar pattern, with a
subset of tumor samples expressing the gene at levels several orders of magnitude higher
than those in normal samples. TP53, on the other hand, is often affected by truncating
mutations in cancer, which leads to decreased levels of RNA due to nonsense-mediated
decay, an effect that isvisible in the normalized RNA data.

The data generated using our pipeline has been deposited into GitHub at
https:.//github.com/mskcc/RNAseqgDB.

Discussion

Recent large-scale studies, such as TCGA and GTEX, have resulted in an unprecedented
volume of RNA-seq data. While these data offer new opportunities to identify the
mechanisms underlying disease, the comparison of data from different sources poses a
great challenge, due to batch effects inherent in the data from these studies.

Here, we describe a pipeline for correcting and integrating RNA-seq data across studies.
Our pipeline starts with raw sequencing reads, performs uniform alignment and read
guantification, and then removes study-specific batch effects. We have applied our
pipeline to two of the largest studiesin the field: GTEx and TCGA, processing 2790
normal RNA-seq samples from GTEx as well as 7576 samples from TCGA. Our results
show that our pipelineis able to correct the biases specific to GTEx and TCGA, and,
thus, make the samples from the two projects comparable.
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Further efforts will be required to process samples for which there were not sufficient
normal samplesin the TCGA project, aswell as GTEX samples for which thereisno
corresponding tumor type in the TCGA project. Our approach currently relies on the

presence of normal samplesin both studies that need to be integrated.

The data created has been deposited to GitHub and will be made accessible through the
cBioPortal for Cancer Genomics [13], [14], so that investigators can conveniently mine
the data and conduct integrative analyses. The resulting resource will benefit the research
of cancer and other human diseases, as the pipeline can be used for the integration of
RNA-seq data from other sources.

Methods
RNA-seq data

Raw paired-end reads of the RNA-seq samples for the TCGA project were retrieved from
the Cancer Genomics Hub (CGHub, https.//cghub.ucsc.edu). When FASTQ files were
not available, e.g. for stomach adenocarcinoma, we downloaded aligned sequence reads
(in BAM format) and extracted reads from BAM files with the Java program ubu.jar
(https://github.com/mozack/ubu) before processing samples using our pipeline. GTEX
samples were downloaded from the Database of Genotypes and Phenotypes (dbGaP,
http://www.ncbi.nlm.nih.gov/gap), which hosts >9,000 RNA-seq samples (in SRA
format) for the GTEX study.

Analysispipeline

We employed STAR aligner [15], afast accurate alignment software used widely in the
NGS community, to map reads to UCSC human reference genome hgl9 and reference
transcriptome GENCODE (v19), using recommended parameters, e.g. ‘--outFilterType
BySJout’ and ‘--outFilterMultimapNmax 20’, etc., which are also standard options of the
ENCODE project for long RNA-seq pipdine. Samples with alignment rates less than
40% were excluded from further analysis. The detailed parameters we used to run STAR
and the codes of our pipeline are available at GitHub
(https://github.com/mskcc/RNAsegDB).

The software tools FastQC, Picard (http://picard.sourceforge.net/index.shtml), RseQC
[16], and mRIN [17] were used to evaluate sample quality. RNA degradation, as detected
by mRNA, was present in some GTEx and TCGA samples. Since degradation can bias
expression level measurements and cause data misinterpretation, we decided to exclude
samples with evidence for degradation. To determine an appropriate degradation cutoff
for mRIN, we used prostate cancer samples from the TCGA project, which had
undergone extensive pathological, analytical, and quality control review and which had
been shown to include a significant portion of degraded samples [11]. Fig. S3 compares
MRIN scores with RNA Integrity Numbers (RIN) calculated by TCGA for prostate
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samples[11]. It showsthat mRIN is negatively correlated with RIN (Pearson
correlation<-0.93). We used -0.11 as the degradation threshold (horizontal linein Fig.
S3) for mRIN, which corresponds roughly to the cutoff 7.0 used by TCGA for RIN.
Samples with mRIN<-0.11 were regarded as degraded and, thus, excluded from further
analysis.

To verify mRIN’ s performance on other tissues, we manually examined coverage
uniformity over gene bodies for other tissues using the tool RseQC [16] and compared it
with mRIN scores. We calculated the number of reads covering each nucleotide position
and the average coverage for all long genes (>4000nt). Fig. $4 shows the average
coverage for TCGA prostate and bladder samples, each curve representing gene body
coverage of asample. In Fig. S4A, the 4 samples with the most uneven coverage are the
ones deemed degraded in Fig. S3. We made similar observations in the other tissues
examined, e.g. bladder in Fig. $4B, where the samples with the most imbalanced gene
body coverage were the ones with the lowest mRIN scores. These results confirmed that
MRIN is capable of measuring degradation for other tissues.

When running STAR, we specified an option *--quantM ode TranscriptomeSAM’ to make
STAR output afile, Aligned.toTranscriptome.out.bam, which contains alignments
trandated into transcript coordinates. This file was then used with RSEM [18] to quantify
gene expression. The program “rsem-calculate-expression” in the RSEM package
requires strand specificity of the RNA-seq sample, which is estimated using RseQC [16].

We also used another transcript quantification tool FeatureCountg19] to generate integer-
based read counts. Overall, the output from FeatureCounts was highly consistent with
that of RSEM (Spearman correlation > 0.95). However, for genes with multi-mapping
reads (i.e., reads mapped to multiple genes), FeatureCounts differs from RSEM and tends
to underestimate expression levelsin comparison with RSEM (because it discards multi-
mapping reads). For example, the transcript from the PGA3 gene, which encodes human
pepsinogen A enzyme that is highly abundant in the stomach, isidentical to the
transcripts of two other genes, PGA4 and PGAS. Its measurement in stomach by
FeatureCounts (in default settings) is generally lower than that by RSEM (see Fig. S5). In
our analysis below, we primarily used results by RSEM.

To ensure that TCGA normal samples remain comparable with TCGA tumors after
removing batch biases from the normals, we also included TCGA tumorsin our sample-
gene matrix, which were processed in the same way as the normals using our pipeline
from raw sequencing reads. In Table S2, we used bladder and lung as examples to show
the parameters we used to run ComBat. Asindicated in Table S2, we treated all TCGA
samples, both tumors and normals (of the same tissue type) as one batch. To prevent
ComBat from suppressing tumor-specific signals, we created a model to specify each
sample to be either ‘normal’ or ‘tumor’, with which to run ComBat (see configuration file
at https://github.com/mskcc/RNA seqD B/bl ob/master/configurati on/tissue-conf.txt).

Principal component analysis
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To perform principal components analysis, we firstly remove genes with invariant
expression levels and then log,-transform sample-gene matrix. Next, we utilizean R
function ‘prcomp’ (with the ‘ center’ option set to TRUE) to do principal components
analysis. The two-dimensional PCA plot is created using an R function ‘autoplot’.

Hierarchical clustering

For hierarchical clustering of expression data, we used the R function Heatmap.3 using
default parameters (e.g., distance: euclidean, hierarchical clustering method: ward, etc.)
aswell as thetop 1000 most variable genes in the data matrix.

Figure Captions

Figure 1. Uniform processing of RNA-seq data from GTEx and TCGA.

Figure 2. Effect of uniform processing and batch effect removal on expression levelsin
GTEx and TCGA. Two-dimensional plots are shown of principal components calculated
by performing PCA of the gene expression values of bladder, prostate, and thyroid
samples from GTEx and TCGA. (a) PCA of thelevel 3 data, i.e. the expression datafrom
GTEx and TCGA. GTEX expression data was quantile normalized (see Fig. S1B). (b)
PCA of the expression data after uniform processing through our pipeline, before batch
bias correction. (c) PCA of the expression data after uniform processing through our
pipeline, after batch bias correction.

Figure 3. Hierarchical clustering of GTEx and TCGA bladder, prostate, and thyroid data
shows the effect of uniform processing and batch effect correction. (a) level 3 expression
datafrom GTEx and TCGA; (b) gene expression calculated using our pipeline prior to
batch bias correction; (c) our expression data after batch bias correction.

Figure 4. Normalized expression across tissue and cancer types for three known cancer
genes: (a) ERBBZ2; (b) IGF2; (c) TP53.

Figure S1. (a) Ranges of GTEx and TCGA RNA-seq gene expression levels in bladder
normal samples. (b) Gene expression levelsin GTEx samples were scaled using quantile
normalization.

Figure S2. PCA plot after applying quantile normalization and ComBat to the level 3
data of the 3 tissues, bladder, prostate, and thyroid, from GTEx and TCGA

Figure S3. Comparing mRIN with RNA Integrity Number (RIN) calculated by TCGA
for prostate cancer samples. The horizontal line at -0.11 is our cutoff. A sample with
MRIN < -0.11 is deemed degraded. TCGA prostate cancer group used 7.0 (vertical line)
as cutoff.

Figure $4. Gene body coverage of the TCGA prostate and bladder samples. Each curve
in the figure represents average coverage of genes (from 5’ to 3') inasample. To ease
visual examination, only long genes (>4000nt) were used in the calculation of the
coverage and only the normal samples were plotted.

Figure S5. Expression of gene PGA3 in six tissues. Gene expression in (a) and (b) were
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quantified using FeatureCounts and RSEM, respectively. The same set of GTEx and
TCGA (both tumor and normal) samples was used to compare FeatureCounts and RSEM
for each tissue type.

Table 1. GTEx and TCGA RNA-seq samples processed by our pipeline. Only paired-end
RNA-seq samples were included.

GTEXx tissue / TCGA cancer type GTEx TCGA normal TCGA tumor Total

bladder / blca 11 19 411 441
breast / brca 218 114 1112 1444
cervix / cesc 11 3 304 318
uterus / ucec 90 24 180 294
uterus / ucs 0 57 57
colon-sigmoid / read 173 10 94 277
colon-transverse / coad 203 41 295 539
liver / lihc 136 50 371 557
Salivary Gland / hnsc 70 44 520 634
esophageal / esca 790 11 185 986
prostate / prad 119 52 497 668
stomach / stad 204 35 415 654
thyroid / thca 355 59 505 919
lung / luad 374 59 528 961
lung / lusc 51 504 555
kidney cortex / kirc 36 72 541 649
kidney cortex / kirp 32 290 322
kidney cortex / kich 25 66 91
Total 2790 701 6875 10366

Table S1. Samples with no or insufficient numbers of normal samples availablein TCGA

or GTEx.

GTEx tissue / TCGA cancer type  |GTEx TCGA normal [TCGA tumor Total
adipose / sarc 621 2 259 882
blood / laml 456 0 0 456
none / chol 0 9 36 45
none / dlbc 0 48 48
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adrenal gland / acc 159 0 79 238
adrenal gland / pcpg 3 179 182
brain / gbm 1403 0 156 1559
brain / Igg 0 516 516
ovary / ov 108 0 294 402
pancreatic / paad 197 4 178 379
skin / skem 974 1 103 1078
small intestine / none 104 0 0 104
testis / tgct 203 0 150 353
none / thym 2 120 122
none / meso 0 87 87
none / uvm 0 80 80
Total 4225 21 2285 6531

Table S2. ComBat parameters for: (a) bladder, (b) lung. TCGA lung cancer has two
subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We
designated LUSC in same batch as LUAD.

(a) Parameters of ComBat for bladder

GTEx bladder | TCGA BLCA TCGA BLCA
nor mal tumor
Batch 1 2 2

Variable of inter est normal normal tumor

(b) ComBat parameters for lung

GTEX TCGA LUAD | TCGA TCGA LUSC | TCGA
lung nor mal LUAD tumor | normal LUSC tumor
1 2 2 2 2

Batch

Variable of normal normal tumor normal tumor
interest
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