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Abstract 

In the classic gain/loss framing effect, describing a gamble as a potential gain or loss 

biases people to make risk-averse or risk-seeking decisions, respectively. The 

canonical explanation for this effect is that frames differentially modulate emotional 

processes – which in turn leads to irrational choice behavior. Here, we evaluate the 

source of framing biases by integrating functional magnetic resonance imaging (fMRI) 

data from 143 human participants performing a gain/loss framing task with meta-

analytic data from over 8000 neuroimaging studies. We found that activation during 

choices consistent with the framing effect were most correlated with activation 

associated with the resting or default brain, while activation during choices inconsistent 

with the framing effect most correlated with the task-engaged brain. Our findings argue 

against the common interpretation of gain/loss framing as a competition between 

emotion and control. Instead, our study indicates that this effect results from differential 

cognitive engagement across decision frames. 

 

Significance Statement 

The biases frequently exhibited by human decision-makers have often been attributed 

to the presence of emotion. Using a large fMRI sample and analysis of whole-brain 

networks defined with the meta-analytic tool Neurosynth, we find that neural activity 

during frame-biased decisions are more significantly associated with default behaviors 

(and the absence of executive control) than with emotion. These findings point to a role 

for neuroscience in shaping longstanding psychological theories in decision science.    
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Introduction 

 Psychologists have long described human experience as two dueling modes of 

thought: one process of quick emotion-laden association and another of reasoned 

analysis (James, 1890). More recently, a strand of research in behavioral economics 

has adopted a dual-process approach that contrasts automatic and low-effort Type 1 

decisions against analytic and effortful Type 2 decisions (Kahneman, 2011). Efforts to 

identify the neural signatures of Type 1 and Type 2 decision-making (Greene et al., 

2001; Sanfey et al., 2003; McClure et al., 2004; Sokol-Hessner et al., 2012) have often 

focused on the framing effect, in which altering how a decision is described (or 

“framed”) leads to systematic biases in choice (Gonzalez et al., 2005; De Martino et al., 

2006; Roiser et al., 2009; Wright et al., 2012, 2013). 

 The canonical example of the framing effect is gain/loss framing, in which people 

are typically risk-averse when financial outcomes are presented as gains but risk-

seeking when equivalent outcomes are presented as losses (Tversky and Kahneman, 

1981). Previous studies of the neural basis of the framing effect (De Martino et al., 

2006; Roiser et al., 2009; Xu et al., 2013) found amygdala activity during frame-

consistent choices (i.e., risk-seeking for losses and risk-avoidance for gains) and dorsal 

anterior cingulate cortex (dACC) activity during frame-inconsistent choices (i.e., risk-

avoidance for losses and risk-seeking for gains). Because the amygdala has been 

historically associated with fear and anxiety (Davis, 1992), and dACC is often 

associated with effortful control and conflict monitoring (MacDonald et al., 2000; 

Botvinick, 2007), these results have been seen as evidence for a rapid emotional brain 

response (Type 1) that can be overridden by effortful control (Type 2). Under this 
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perspective, the behavioral inconsistencies observed in the framing effect result from an 

intrusive emotional bias (De Martino et al., 2006; Roiser et al., 2009; Xu et al., 2013).  

Yet, other evidence points to an alternative to the standard “reason vs. emotion” 

model, namely that framing effect arises when people adopt behavioral strategies that 

involve low cognitive effort. Simon’s 1955 treatise noted that “limits on computational 

capacity” may be the main constraint imposed upon human decision makers (Simon, 

1955), and heuristic-based models of decision making emphasize that heuristics save 

cognitive effort (Gigerenzer and Gaissmaier, 2011; Mega et al., 2015). Emotional 

processing does not enter such models; decisions biases can arise, it is argued, in the 

absence of any emotional response. Collectively, such work provides an intriguing 

potential counterpoint to the standard dual-process view of the framing effect: frame-

biased choices are best characterized not by high emotion but by low cognitive 

engagement.  

In this study, we distinguished the emotion- and engagement-based explanations 

of the framing effect by integrating large-sample empirical functional neuroimaging data 

with independent maps of brain networks derived from meta-analytic tools. We analyzed 

functional magnetic resonance imaging (fMRI) data from a final sample of 143 

participants who performed a risky decision-making task that evoked a behavioral 

framing effect. The resulting neural activation during frame-consistent and frame-

inconsistent choices was then compared to independent meta-analytic maps from the 

Neurosynth database (Yarkoni et al., 2011; www.neurosynth.org). We found that neural 

activation during frame-consistent choices does include the amygdala but in fact better 

matches a network associated with the resting or default brain; conversely, neural 
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activation during frame-inconsistent choices best matches a task-engaged neural 

network. Furthermore, we found that trial-by-trial neural similarity to resting or default 

networks significantly predicted frame-consistent choices, whereas trial-by-trial neural 

similarity to emotion-related neural networks did not. Thus, both Type 1 decisions and 

Type 2 decisions in gain/loss framing are best characterized along a continuum of 

engagement, such that Type 1 decisions reflect relative disengagement compared to 

Type 2 decisions. 

 

Materials & Methods 

 

Participants 

Our analysis sample consisted of 143 participants (mean age 21.9 years; range 

18 to 31 years; 78 female) with normal or corrected-to-normal vision and no prior history 

of psychiatric or neurological illness. These participants were drawn from a larger 

sample of 232 participants (see Inclusion criteria below). All participants gave written 

informed consent as part of a protocol approved by the Institutional Review Board of 

Duke University Medical Center. We note that this is much larger than most imaging 

studies, allowing us ample statistical power to detect effects (Button et al., 2013). 

 

Stimuli and task 

 Participants performed 126 trials of a risky decision-making task (Figure 1) 

adapted from previous studies of the neural basis of framing effects (De Martino et al., 

2006), split across three runs by short breaks. On each trial, participants were shown a 
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starting amount that varied uniformly from $8 to $42. Participants were then asked to 

choose between “safe” and “gamble” options with a button press. Left and right 

positions of the safe and gamble options were randomized across trials. Safe options 

were framed such that participants could keep (gain frame) or lose (loss frame) a subset 

of the starting amount for sure. The gamble option did not differ according to frame and 

was represented by a pie chart reflecting probabilities to “Keep All” or “Lose All” of the 

original starting amount (20%-80%, 25%-75%, 33%-67%, 50%-50%, 67%-33%, or 75%-

25%). The expected value varied between the safe and gamble options (safe:gamble 

EV ranged from 0.24 to 3.08). On half of the trials, participants played for themselves, 

and on the other half of the trials, they played for a charity of their choice (Animal 

Protection Society of Durham, Durham Literacy Center, Easter Seals UCP North 

Carolina, or American Red Cross: The Central North Carolina Chapter). Nearly all trials 

(92%) were matched with an identical trial in the opposite frame.   

Stimuli were projected onto a screen at the back of the scanner bore, and 

participants viewed the stimuli through mirrored goggles. Tasks were programmed 

using the Psychophysics Toolbox version 2.54 (Brainard, 1997). At the end of the 

experiment, one trial was randomly selected to be carried out for potential payment in 

order to ensure incentive compatibility across all trials. Participants also completed two 

additional fMRI tasks and a resting state scan (described in Utevsky et al., 2014) that 

were not analyzed for this manuscript. 

 

Behavioral analysis 
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 The behavioral framing effect was calculated using a standard metric: the 

difference between the percentage of gamble choices in the loss frame relative to the 

percentage of gamble choices in the gain frame (De Martino et al., 2006). Trials in 

which no choice was made were excluded from the calculation of this metric. 

 For response time analyses, choices were classified as either frame-consistent 

or frame-inconsistent. Frame-consistent choices were safe decisions in the gain frame 

(Gainsafe) and gamble decisions in the loss frame (Lossgamble). Frame-inconsistent 

choices were gamble decisions in the gain frame (Gaingamble) and safe decisions in the 

loss frame (Losssafe). 

 

Image acquisition 

 Functional MRI data were collected using a General Electric MR750 3.0 Tesla 

scanner equipped with an 8-channel parallel imaging system. Images sensitive to blood-

oxygenation-level-dependent (BOLD) contrast were acquired using a T2*-weighted 

spiral-in sensitivity encoding sequence (acceleration factor = 2), with slices parallel to 

the axial plane connecting the anterior and posterior commissures [repetition time (TR): 

1580 ms; echo time (TE): 30 ms; matrix: 64 x 64; field of view (FOV): 243 mm; voxel 

size: 3.8 x 3.8 x 3.8 mm; 37 axial slices acquired in an ascending interleaved fashion; 

flip angle: 70°]. We chose these sequences to ameliorate susceptibility artifacts in 

ventral frontal regions (Pruessmann et al., 2001; Truong and Song, 2008). Prior to 

preprocessing these functional data, we discarded the first eight volumes of each run to 

allow for magnetic stabilization. To facilitate coregistration and normalization of these 

functional data, we also acquired whole-brain high-resolution anatomical scans (T1-
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weighted FSPGR sequence; TR: 7.58 ms; TE: 2.93 ms; voxel size: 1 x 1 x 1 mm; 

matrix: 256 x 256; FOV: 256 mm; 206 axial slices; flip angle: 12°). 

 

Preprocessing 

Our preprocessing employed tools from the FMRIB Software Library (FSL 

Version 4.1.8; http://www.fmrib.ox.ac.uk/fsl/; RRID: SCR_002823) package (Smith et 

al., 2004; Woolrich et al., 2009). We first corrected for head motion by realigning the 

time series to the middle time point (Jenkinson et al., 2002). We then removed non-

brain material using the brain extraction tool (Smith, 2002). Next, intravolume slice-

timing differences were corrected using Fourier-space phase shifting, aligning to the 

middle slice (Sladky et al., 2011). Images were then spatially smoothed with a 6 mm 

full-width-half-maximum Gaussian kernel. To remove low-frequency drift in the temporal 

signal, we then subjected the functional data to a high-pass temporal filter with a 150 

second cutoff (Gaussian-weighted least-squares straight line fitting, with sigma = 50 s). 

Finally, each 4-dimensional dataset was grand-mean intensity normalized using a single 

multiplicative factor. Prior to group analyses, functional data were spatially normalized 

to the MNI avg152 T1-weighted template (2 mm isotropic resolution) using a 12-

parameter affine transformation implemented in FLIRT (Jenkinson and Smith, 2001); 

these transformations were later applied to the statistical images before cross-run and 

cross-participant analyses. 

 

fMRI analysis 
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Neuroimaging analyses were conducted using FEAT (FMRI Expert Analysis 

Tool) Version 5.98 (Smith et al., 2004; Woolrich et al., 2009). Our first-level analyses 

(i.e., within-run) utilized a general linear model with local autocorrelation correction 

(Woolrich et al., 2001) consisting of four regressors modeling each frame and 

participant choice (Gainsafe, Gaingamble, Losssafe, Lossgamble). We defined the duration of 

each regressor as the period of time from the presentation of the cue to the time of 

choice. This procedure controls for confounding effects related to response time 

(Grinband et al., 2011a, 2011b). In this first-level model, we also included two 0-second 

impulse regressors to account for the presence of the initial cue and for the value of that 

cue, and we included nuisance regressors to account for missed responses, head 

motion, and outlier volumes. Except for the head motion and outlier volume nuisance 

regressors, all regressors were convolved with a canonical hemodynamic response 

function. We combined data across runs, for each participant, using a fixed-effects 

model, and combined data across participants using a mixed-effects model (Beckmann 

et al., 2003; Woolrich et al., 2004). 

Our group-level analyses included two contrasts of interest (De Martino et al., 

2006; Roiser et al., 2009; Xu et al., 2013). Neural activity associated with the framing 

effect was modeled by contrasting frame-consistent choices over frame-inconsistent 

choices (see Equation 1a). Frame-inconsistent neural activity was modeled by the 

reversed contrast (frame-inconsistent choices contrasted over frame-consistent choices; 

see Equation 1b).  

 

Equation 1a: (Gainsafe + Lossgamble) – (Gaingamble + Losssafe) 
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Equation 1b: (Gaingamble + Losssafe) – (Gainsafe + Lossgamble)  

 

Statistical significance was assessed using Monte Carlo permutation-based 

statistical testing with 10,000 permutations (Nichols and Holmes, 2002; Winkler et al., 

2014). Additionally, we used threshold-free cluster enhancement to estimate clusters of 

activation that survived a corrected family-wise-error-rate of 5% (Smith and Nichols, 

2009). Statistical overlay images were created using MRIcron and MRIcroGL (Rorden 

and Brett, 2000). All coordinates are reported in MNI space. 

 

Inclusion criteria 

Given our sample size, we adopted stringent a priori criteria for data quality to 

determine inclusion/exclusion of participants. First, we estimated the average signal-to-

fluctuation-noise ratio (SFNR) for each run (Friedman et al., 2006). Second, we 

computed the average volume-to-volume motion for each run. Third, we identified 

outlier volumes in our functional data. We considered a volume an outlier if its root-

mean-square (RMS) amplitude exceeded the value of 150% of the interquartile range of 

RMS for all volumes in a run. Using these three metrics, we excluded runs in which any 

measure metric was extreme relative to the other runs (i.e., SFNR < 5th percentile of the 

distribution of SFNR values; outlier volumes > 95th percentile the distribution of outlier 

volumes; average volume-to-volume motion > 95th percentile). Runs with an excessive 

number of missed behavioral responses (>97.5th percentile all runs, or >26.2% of trials 

with no responses) were also excluded from analyses. Data from two additional 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/109819doi: bioRxiv preprint 

https://doi.org/10.1101/109819
http://creativecommons.org/licenses/by/4.0/


p. 11 

 

participants were excluded due to poor registration to the template brain. This resulted 

in the exclusion of 28 participants. 

After excluding runs based on the above criteria, our final analyses excluded all 

participants who had fewer than two runs that each had at least two trials of each 

regressor type (i.e.: Gainsafe, Lossgamble,Gaingamble, Losssafe). As examples, participants 

who always chose the safe option or always chose the gamble option were not included 

in the analyses, since no contrast could be constructed between their choices. This 

resulted in the exclusion of an additional 61 participants, resulting in a final model that 

included 143 participants, each with multiple runs of high-quality data and behavior 

mixed between frame-consistent and frame-inconsistent choices. 

 

Neural similarity analysis 

 We used the fMRI meta-analysis software package Neurosynth (Yarkoni et al., 

2011; version 0.3; RRID: SCR_006798) to construct metrics of neural similarity between 

our empirical fMRI data and reverse-inference maps drawn from prior studies (i.e., the 

8,000+ published, peer-reviewed studies included in the Neurosynth database at the 

time of our analyses).  

We calculated Pearson correlation coefficients between the unthresholded Z-

statistic map of our framing effect contrast (referred to as Framing Contrast; see 

Equation 1a) and each of Neurosynth’s 2,592 term-based reverse-inference Z-statistic 

maps (referred to as Neural Profiles) for all voxels within our group-level brain mask 

using the Neurosynth Decode tool (Yarkoni et al., 2011).  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/109819doi: bioRxiv preprint 

https://doi.org/10.1101/109819
http://creativecommons.org/licenses/by/4.0/


p. 12 

 

Using the Pearson correlation coefficients between our Framing Contrast and the 

Neurosynth term-based maps, we identified the 10 most positively correlated and 10 

most negatively correlated Neural Profiles (referred to as NP+ and NP-, respectively, 

and NP± when referring to both sets of maps), as well as 6 emotion-related Neural 

Profile (the Neurosynth maps for “emotions”, “feelings”, “emotion”, “emotionally”, 

“amygdala”, and “feeling”; hereafter referred to as NPe). We then used partial 

correlation analyses to compare the shared variance between our empirical results and 

the maps drawn from Neurosynth (Figure 2).  

For each NP±, we quantified its unique neural similarity to the Framing Contrast 

as its partial correlation coefficient with our Framing Contrast after controlling for the 

NPe, or r(framing to NP±)•NPe. We then subtracted this partial correlation coefficient from the 

correlation coefficient between our Framing Contrast and each NP± (r(framing to NP±) – 

r(framing to NP±)•NPe). This absolute difference, or Δr(NPe), is the neural similarity between 

our Framing Contrast and each NP± that is accounted for by each NPe.  

Similarly, for each NPe, we quantified its unique neural similarity to the Framing 

Contrast as its partial correlation coefficient with our Framing Contrast map after 

controlling for each NP±, or r(framing to NPe)•NP±. We then subtracted each partial correlation 

coefficient from the correlation coefficient between our Framing Contrast and each NPe 

(r(framing to NPe) – r(framing to NPe)•NP±). This absolute difference, or Δr(NP±), is the neural 

similarity between our Framing Contrast and each NPe that is accounted for by each 

NP±.  

 

Trial-by-trial analysis 
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 We estimated an additional first-level trial-by-trial general linear model with a 

separate regressor for each trial (42 trials per run) and the same impulse and nuisance 

regressors of our Framing Contrast first-level model (excepting the missed response 

trial nuisance regressors). This approach allowed us to capture variance tied to each 

individual trial and characterize trial-specific processes (e.g., frame-consistent or -

inconsistent choices). For each trial, we obtained a whole-brain z-score map. These 

trial-level z-score maps were correlated with each NP± and NPe map to derive trial-by-

trial fluctuations in neural similarity. We averaged the Pearson correlation coefficients 

for terms within each NP+, NP-, and NPe group, thus yielding a single neural similarity 

score for each NP group.  

 We then used these trial-level neural similarity scores as regressors in two 

logistic regression models predicting frame-consistent decisions. Our Basic Model used 

response time and neural similarity scores for the NP+, NP-, and NPe as regressors. 

Our Interaction Model used response time, neural similarity scores for the NP+, NP-, 

and NPe, and the interaction of mean-centered NP+ and NPe as regressors. Thus, for 

each participant, we obtained regression coefficients summarizing the degree to which 

neural similarity to the NP+, the NP-, the NPe, the interaction of NP+ and NPe, and 

response time predicted frame-consistent decisions at the trial-by-trial level. 

 

Data Availability 

 Our group-level unthresholded Framing Contrast is deposited in Neurovault 

(Gorgolewski et al., 2015): http://neurovault.org/collections/ECNKKIIS/ 
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Results 

 

Decision frames alter response time and gambling behavior 

We examined response times as functions of decision target (self and charity) 

and frame type (gain and loss) and as functions of decision target and choice (frame-

consistent and frame-inconsistent) using 2x2 repeated measures ANOVAs. We found 

that participants were slower to respond in loss frames (mean = 1.87s, SEM = 0.04s) 

compared to gain frames (mean = 1.72s, SEM = 0.03s; F(1,142) = 175.55, p < 0.001; 

Figure 3A). Participants were also slower to make frame-inconsistent choices 

(Gaingamble and Losssafe; mean = 1.92s, SEM = 0.04s) than frame-consistent choices 

(Gainsafe and Lossgamble; mean = 1.75s, SEM = 0.03s; F(1,142) = 180.54, p < 0.001). In 

contrast, decision target did not significantly modulate response times (self mean = 

1.81s, SEM = 0.03s; charity mean = 1.78s, SEM = 0.04s; F(1,142) = 3.40, p = 0.0673). 

Our analyses also indicated that decision target did not significantly interact with frame 

type (F(1,142) = 2.63, p = 0.1072).  

Participants exhibited a behavioral framing effect and increased their gambling 

behavior in loss frames (mean = 54.98%, SEM = 1.60%) relative to gain frames (mean 

= 36.62%, SEM = 1.35%; F(1,142) = 180.95, p < 0.001; Figure 3B). Though the task was 

originally designed so that we could evaluate potential differences in the framing effect 

depending on the target of decisions (i.e. self vs. charity), participants showed no 

differences in overall gambling behavior between the self (mean = 45.56%, SEM = 

1.42%) and charity (mean = 46.04%, SEM = 1.40%) decision targets (F(1,142) = 0.21, p = 

0.6454), nor was there a target-by-frame interaction (F(1,142) = 0.30, p = 0.5820). In 
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addition, although participants varied substantially in their responses to the framing 

manipulation, we found that the extent to which the framing manipulation biased a 

participant’s choices was largely consistent across self and charity decision targets 

(r(141) = 0.59, p < 0.001; Figure 3C). Taken together, these results confirm that our 

participants exhibited the hallmarks of a framing effect – increased risk aversion for the 

gain frame and slower decisions for frame-inconsistent choices – and that framing 

effects were consistent across the two decision targets. Because our behavioral 

analyses indicated that framing effect did not depend on decision target, we collapsed 

across decision target in our neuroimaging analyses. This provides increased power by 

doubling the number of trials in each condition.  

 

Decision frames change brain networks associated with cognitive engagement 

Our Framing Contrast (frame-consistent choices > frame-inconsistent choices) 

found activation during frame-consistent choices that replicated the significant amygdala 

activation found in previous studies (De Martino et al., 2006), some of which used 

region-of-interest analyses (Roiser et al., 2009; Xu et al., 2013). In our model, this 

amygdala activation was bilateral and significant after whole-brain correction (MNI 

coordinates: [26, 0, -22] and [-22, 6, 18]; Figure 4A). We also found, however, 

significant and widespread activation during frame-consistent choices throughout the 

brain after whole-brain correction, including but not limited to bilateral insula, posterior 

cingulate cortex (PCC), and dorsal medial prefrontal cortex (dmPFC; Figure 5A).  

Using the reverse of the Framing Contrast (frame-inconsistent choices > frame-

consistent choices) to identify neural activity associated with frame-inconsistent choices, 
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we replicated previous findings of significant activation in dACC (De Martino et al., 

2006; Roiser et al., 2009; Murch and Krawczyk, 2013; Xu et al., 2013; MNI coordinates: 

[-4, 12, 46]; Figure 4C). We also found significant activation in left inferior frontal gyrus 

during frame inconsistent choices (Figure 5A).  

Our neural similarity analyses found that our Framing Contrast was more 

correlated with Neural Profiles associated with the default or resting brain (e.g. state, 

default, resting, mode, PCC) than with Neural Profiles associated with emotion (e.g. 

emotions, feeling, amygdala). Conversely, the reverse of the Framing Contrast was 

most correlated with Neural Profiles associated with effortful processing (e.g. working, 

task, executive, frontal, maintenance, load; Figure 5B).  

Additionally, our partial correlation analyses found that for each NPe, the neural 

similarity accounted for by the NP±, or Δr(NP±), was significantly greater than the neural 

similarity accounted for by each NPe, or Δr(NPe) (for all NP±, mean = 0.043, SEM = 

0.003; for all NPe, mean = 0.022, SEM = 0.001; 2-sided paired t-test t(238) = 6.323, p < 

0.001). Thus, the variance shared by our Framing Contrast with the NPe and NP± is 

better accounted for by the NP± than by the NPe (Figure 6). 

We additionally examined whether positive and negative emotion-related terms 

were differentially associated with the framing contrast map. We found that positive (or 

approach-related) Neural Profiles exhibited low neural similarity scores: affect (0.078), 

affective (0.167), anticipation (-0.061), approach (0.107), arousal (0.076), gain (-0.115), 

and happy (0.157). We also found that negative (or avoidance-related) Neural Profiles 

exhibited similarly low neural similarity scores: anger (0.172), angry (0.094), anxiety 

(0.065), avoid (0.098), disgust (0.172), fear (0.141), fearful (0.147), loss (0.109), and 
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pain (0.02). [We note that other relevant terms (joy, trust, surprise) are not contained in 

the Neurosynth database.] These results provide further support for the claim that 

neither emotion nor emotional valence are robust predictors of the patterns of brain 

responses associated with the framing effect.  

 

Trial-by-trial cognitive disengagement predicts frame-consistent choices  

We used trial-by-trial fluctuations in neural similarity to the NP+, NP-, and NPe to 

test whether trial-level neural similarity to cognitive disengagement (or cognitive 

engagement) predicts choices that are frame-consistent (or frame-inconsistent). Our 

Basic Model found that frame-consistent choices were significantly predicted by trial-

level neural similarity to the NP+ (terms associated with the disengaged brain) and 

response time (NP+: mean beta = 2.51, SEM = 0.55, t(142) = 4.54, p < 0.001; RT: mean 

beta = -0.60, SEM = 0.05, t(142) = -11.09, p < 0.001) but not by trial-level neural 

similarity to the NP- or NPe (terms associated with the engaged brain or emotion; NP-: 

mean = -0.49, SEM = 0.40, t(142) = -1.21, p = 0.23; NPe: mean = -1.00, SEM = 0.62, 

t(142) = -1.62, p = 0.11; Figure 7).  

To test whether the relationship between trial-level neural similarity to NP+ and 

NPe significantly predicted frame-consistent choice, we conducted an additional logistic 

regression analysis that added the interaction of NP+ and NPe to the Basic Model. In 

this Interaction Model, response time and trial-level neural similarity to NP+ still 

significantly predicted frame-consistent choices (NP+: mean beta = 2.53, SEM = 0.57, 

t(142) = 4.41, p < 0.001; RT: mean beta = -0.61, SEM = 0.05, t(142) = -11.24, p < 

0.001), while trial-level neural similarity to NP-, NPe, and the interaction of NP+ and 
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NPe did not (NP-: mean beta = -0.57, SEM = 0.41, t(142) = -1.40, p = 0.16; NPe: mean 

beta = -1.06, SEM = 0.65, t(142) = -1.64, p = 0.10; NP+*NPe: mean beta = 9.11, SEM = 

5.91, t(142) = 1.54, p = 0.13), Furthermore, average AIC and BIC were significantly 

lower for the Basic Model (mean AIC = 149.97, mean BIC = 163.43) compared to the 

Interaction Model (mean AIC = 150.79, mean BIC = 166.94; AIC paired t(142) = -6.34, p 

< 0.001; BIC paired t(142) = -27.11, p < 0.001), indicating that the Basic Model had a 

better fit compared to the Interaction Model. 

We further investigated whether trial-level neural similarity to cognitive 

disengagement was predictive of frame-consistent choices within only the subset of 

gain-framed trials or only the subset of loss-framed trials. Basic Model results within 

gain- and loss-framed subsets were qualitatively identical to the results for all trials. That 

is, for both gain- and loss-framed trials, frame-consistent choices were significantly 

predicted by trial-level neural similarity to the NP+ and response time, but not by trial-

level neural similarity to the NP- or NPe (see Table 1). We note that these results 

indicate that neural similarity to NP+ predicts opposing choices in the different frames: 

in gain-framed trials, it predicts safe choices, while in loss-framed trials, it predicts 

gamble choices. 

We also investigated whether trial-level neural similarity to cognitive 

disengagement was predictive of frame-consistent choices within only the subset of 

self-target trials or only the subset of charity-target trials. Basic Model results within self- 

and charity-target subsets were qualitatively identical to the results for all trials. That is, 

for both self-target and charity-target trials, frame-consistent choices were significantly 
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predicted by trial-level neural similarity to the NP+ and response time, but not by trial-

level neural similarity to the NP- or NPe (see Table 1). 

 

Discussion 

We show that choices consistent with a typical framing effect best match Neural 

Profiles associated with the default mode network – not with emotion – while choices 

inconsistent with the framing effect best match Neural Profiles associated with the task-

engaged brain. By combining a large-scale empirical dataset with independent Neural 

Profiles drawn from meta-analysis, we not only replicated patterns of activations found 

in previous studies but also systematically tested the relationships of those patterns to 

cognitive and emotional networks. This approach allowed us to conduct a rigorous 

neural test of dual-process models of the framing effect. 

Our conclusion follows the observation of significant neural activation in PCC and 

dmPFC for frame-consistent choices, regions associated with the default mode network 

that are active when the brain is not engaged in performing a task (Gusnard and 

Raichle, 2001; Hayden et al., 2009). This suggests that frame-consistent choices 

require limited neural effort and engagement. Note that while we replicate previous 

findings of amygdala activation during frame-consistent choices (De Martino et al., 

2006; Roiser et al., 2009; Xu et al., 2013), we show that neural activity underlying the 

framing effect extends markedly beyond the amygdala. Furthermore, we note that our 

Framing Contrast more strongly resembles the Neural Profile of a task-disengaged 

brain than the Neural Profile of emotional processes, even after accounting for shared 

variance between Neural Profiles. Finally, we note that at the trial-level, neural similarity 
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to the task-disengaged brain significantly predicts a frame-consistent choice, whereas 

neural similarity to emotional processes and the interaction of neural similarity to 

disengagement and emotion do not significantly predict choice.  

Our results, coupled with a previous finding that patients with complete bilateral 

amygdala lesions still exhibit a robust behavioral framing effect (Talmi et al., 2010), 

indicate that the neural basis of the framing effect is neither specific to the amygdala nor 

wholly attributable to emotion. While emotions may contribute to the biases seen in the 

framing effect, our results indicate that susceptibility to the framing effect best reflects 

varying levels of cognitive engagement during value-based decision-making and does 

not depend on an interaction between engagement and emotion.  

The claim that decision frames drive processes of cognitive engagement is 

consistent with the observed response time data: choices made during loss frames took 

longer than choices made during the gain frame, and frame-inconsistent choices took 

longer than frame-consistent choices. Increased reaction time is often taken as a sign of 

increased cognitive effort, and though such a reverse inference has been shown to be 

problematic (Krajbich et al., 2015), our study draws upon additional Neural Profile 

analyses to substantiate our interpretation. While we cannot rule out non-specific 

attentional effects (e.g., time-on-task) upon the observed activation in control-related 

regions (Yarkoni et al., 2009; Brown, 2011; Grinband et al., 2011a, 2011b; Yeung et al., 

2011), we note that our fMRI analyses modeled response-time effects by basing the 

duration of the regressors of interest upon each trial’s response time (Grinband et al., 

2011a, 2011b). In this way, we minimized any direct effects of response time upon the 

reported results and avoided modeling any “mind-wandering” that may occur after 
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participants have reported their choices. Furthermore, we note that our trial-by-trial 

analyses controlled for response times and still found neural similarity to Neural Profiles 

associated with the default mode network to significantly predict frame-consistent 

choices. Thus, neural signatures of cognitive disengagement predict biased choice even 

after accounting for the significant effect of response times. Finally, given that the 

degree to which brain activation patterns resemble cognitive disengagement 

significantly predicts choices within the subsets of gain-framed and loss framed-trials, 

we can rule out the alternative interpretation that frame itself explains both the brain and 

behavior pattern. 

Our conclusions are bolstered by our sample size (n = 143), which is significantly 

larger than those of most other neuroimaging studies, including prior studies of the 

gain/loss framing effect (n = 20 in De Martino et al., 2006; n = 30 in Roiser et al., 2009; 

n = 25 in Xu et al., 2013). Our large sample provides confidence in our ability to detect 

true results and making it unlikely that our null results are due to a lack of power (Button 

et al., 2013). Our conclusions are also strengthened by our use of the large-scale meta-

analytic Neurosynth engine (Yarkoni et al., 2011) and our derivation of inferences based 

on whole-brain networks, not selected clusters of activation (Leech et al., 2011; Gordon 

et al., 2012; Utevsky et al., 2014; Smith et al., 2015). These methods allowed us to 

replicate the specific findings of previous studies, to establish a principled test of two 

competing hypotheses within our new data, and to establish an alternative explanation 

for framing effects.  

We note that the Neural Profiles are created by an automated tool that calculates 

probabilistic associations rather than deterministic labels, and that they are subject to 
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the biases of how neural activation is interpreted and reported in the fMRI literature 

(Carter and Huettel, 2013; Chang et al., 2013). However, Neurosynth has been found to 

be comparable to manual meta-analyses (Yarkoni et al., 2011), and the reporting biases 

present in Neurosynth are also inherent to all meta-analytic approaches. Therefore we 

believe that the Neural Profiles of Neurosynth represent the current best synthesis of 

the fMRI literature’s interpretation of neural activation.  

Another limitation of our study involves the lack of simultaneous measurements 

of specific emotional processes. Though we did not directly measure participants’ self-

reported ratings of emotional valence, Neural Profiles for positive and negative 

emotions exhibited low neural similarity with our Framing Contrast. Future work could 

build on our findings by obtaining self-report ratings of emotional valence and arousal or 

trial-to-trial measures of physiological recordings (e.g., skin conductance response). 

These measures could provide additional insight into the extent to which emotional 

processes were engaged during (and predictive of) framing-consistent decisions. 

Given the overlap between the default mode network and social cognition 

(Whitfield-Gabrieli et al., 2011; Mars et al., 2012; Jack et al., 2013; Spreng and 

Andrews-Hanna, 2015), one open consideration is the extent to which our results are 

due to social cognition rather than minimal cognitive processing. Other studies have 

found differences in neural framing effects to depend on social context (e.g., receiving 

feedback from a friend compared to stranger (Sip et al., 2014). In addition, the effects of 

social feedback on the framing effect have been associated with both the executive 

control network and the default mode network (Smith et al., 2015). Given that we 

observed 1) no behavioral differences between our social and nonsocial (charity or self) 
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target conditions, 2) no interaction effects between our target conditions and our 

gain/loss frame conditions, 3) highly correlated behavioral framing effects between the 

two target conditions, and 4) trial-level neural similarity to cognitive disengagement to 

similarly predict choice within the subsets of only self-target and only charity-target 

trials, it is unlikely that our Framing Contrast results are due to an effect of the 

“socialness” of the decision target. Instead, it may be that frame-consistent choices and 

social cognition both evoke default neural networks because both are low-effort 

cognitive processes. 

Our results overturn the previous conceptualization of the framing effect as being 

solely mediated by emotional, amygdala-driven processes. We show that the framing 

effect is not uniquely linked to that single region of interest and therefore cannot be 

wholly attributed to emotional processes. Rather, the biases of the framing effect 

correspond with differences in neural network activation (e.g., within dACC) that more 

closely reflect differential levels of cognitive engagement. We note that this finding of 

differences in engagement does not necessarily imply that dACC and other regions 

were “disengaged” during the task; on the contrary, activation levels for both Frame-

Inconsistent and Frame-Consistent choices were still greater than the implicit baseline 

of task performance (i.e., the associated regressors had positive signs). Because our 

event-related task was not designed to cleanly model passive rest, conclusions about 

absolute levels of engagement cannot be drawn from these data. Future studies could 

build upon our results using paradigms with well-defined blocks of rest periods. 

Though our conclusions are specific to the gain/loss framing effect, future work 

should determine if they generalize to other supposed examples of Type 1 and Type 2 
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decision-making biases that have been extensively studied using fMRI, such as loss 

aversion (Tom et al., 2007; Sokol-Hessner et al., 2012) and impatience in temporal 

discounting (McClure et al., 2004; Kable and Glimcher, 2007).  

“Emotion” versus “reason” has been a popular way to describe the dueling 

components of Type 1 versus Type 2 decision-making (Kahneman, 2011). Many 

influential theories of decision-making, however, have accounted for Type 1 decisions 

without necessarily invoking emotional processes (Simon, 1955; Gigerenzer and 

Gaissmaier, 2011). Our study, using a large fMRI dataset and an even larger meta-

analytic database, suggests that “less cognitive effort” versus “more cognitive effort” is 

the more accurate characterization of decision-making processes. We show that data 

from neuroscience can provide novel insights into the processes that underlie well-

studied decision science phenomena (Levallois et al., 2012).   
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Figure 1: Experimental task. Participants engaged in a financial decision-making task. 
At the beginning of each trial, an initial endowment indicated the target of the decision 
(self or charity). Following this cue, participants had the opportunity to choose between 
an all-or-nothing gamble or a safe option with a guaranteed proportion of the initial 
endowment. The safe option was presented in two conditions: (A) a gain frame; and (B) 
a loss frame. Crucially, nearly all trials were matched to an identical trial in the opposite 
frame that only differed in the presentation of the safe option ("keep" or "lose"). After the 
choice, a fixation cross was presented for 2 to 6 seconds. At the end of the experiment, 
one trial chosen at random was resolved for payment. 
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Figure 2: Neural similarity analysis using Neurosynth’s meta-analytic database. 
Neural similarity measures were obtained by correlating our whole-brain Framing 
Contrast with Neurosynth’s reverse-inference term-based maps, or Neural Profiles (NP). 
Unique neural similarity was calculated using partial correlation analyses for a specific 
term while controlling for additional terms. The reduction in neural similarity following 
such partial correlation analyses was attributed to the controlling terms. See 
Experimental Procedures: Neural similarity analysis for details.   
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Figure 3: Decision frame (loss or gain) but not decision target (charity or self) 
significantly affected behavioral response time and choice (n = 143 participants). 
(A) Participants responded more slowly during the loss frame compared to the gain 
frame. This effect did not depend on whether the outcome of the decision was intended 
for the participant or the participant's charity. Standard boxplots are shown. (B) When 
decisions were framed as a potential loss (relative to a potential gain), participants 
gambled more, indicating a robust framing effect. Notably, the magnitude of the framing 
effect -- indexed by the proportion of gambles in the loss frame relative to the gain 
frame -- did not depend on whether the outcome of the decision was intended for the 
participant or the participant's charity. Standard boxplots are shown. (C) Individual 
differences in the magnitude of the framing effect (% lossgamble – % gaingamble) were 
consistent within participants for self and charity targets.  
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Figure 4: Neural framing effects in amygdala (frame-consistent choices) and 
dACC (frame-inconsistent choices). (A) We used an interaction contrast (see 
Experimental Procedures: Equation 1a) to identify regions with greater activation to 
frame-consistent choices than to frame-inconsistent choices. This analysis revealed 
widespread activation, including bilateral amygdala. (B) Within the amygdala, we found 
increased response to gamble choices relative to safe choices when the decision was 
framed as a potential loss. In contrast, when the decision was framed as a potential 
gain, we observed increased responses to safe choices relative to gamble choices. (C) 
We used an interaction contrast (see Experimental Procedures: Equation 1b) to identify 
regions with greater activation to frame-inconsistent choices than to frame-consistent 
choices. This analysis revealed activation within dorsal anterior cingulate cortex 
(dACC). (D) Within dACC, we found increased response to safe choices relative to 
gamble choices when the decision was framed as a potential loss. In contrast, when the 
decision was framed as a potential gain, we observed increased responses to gamble 
choices relative to safe choices. Reported activations are shown at p < 0.05 (corrected 
2-tailed t-test). Error bars reflect SEM. 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/109819doi: bioRxiv preprint 

https://doi.org/10.1101/109819
http://creativecommons.org/licenses/by/4.0/


p. 36 

 

Figure 5: Neural activity during frame-consistent choices resembles the default
brain, while neural activity during frame-inconsistent choices resembles the task-
engaged brain. Given the diffuse nature of our neural framing effects, we depict the
unthresholded statistical images across the whole brain for both contrasts. (A)
Activation associated with frame-consistent choices (hot colors; see Experimental
Procedures: Equation 1a) resembled the default-mode network. In contrast, activation
associated with frame-inconsistent choices (cool colors; see Experimental Procedures:
Equation 1b) resembled the executive control network. Images are unthresholded to
show whole-brain activity. (B) To systematically compare our activations with those of
over 8,000 previously reported studies, we computed spatial correlations between the
unthresholded Z-statistic map of our Framing Contrast and the reverse-inference Z-
statistic maps of each of the 2,592 terms in the Neurosynth database (Neural Profiles,
or NP). Pearson’s r-values for each paired correlation are shown in the histogram. The
10 most correlated (NP+) and anti-correlated (NP-) terms are highlighted in blue, and
emotion-related terms are highlighted in orange. 
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Figure 6: Shared variance between fMRI statistical maps for the Framing Contrast 
and Neurosynth term-based maps is better accounted for by Neural Profiles 
associated with the default and task-engaged brain (NP±) than by Neural Profiles 
associated with emotion-related terms (NPe). Orange bars show the neural similarity 
between the Framing Contrast and all NP± that is accounted for each NPe or |Δr(NPe)|. 
Blue bars show the neural similarity between the Framing Contrast and each NPe that 
is accounted for by all NP±, or |Δr(NP±)|.  
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Figure 7: Trial-by-trial neural similarity to Neural Profiles associated with the 
default brain (NP+) and response time significantly predict frame-consistent 
choices. We used logistic regression to predict whether a subject made a frame-
consistent or frame-inconsistent choice on each trial. Four regressors were entered into 
the model (see Methods): average similarity to Neural Profiles associated with the 
default brain (NP+), average similarity to Neural Profiles associated with the task-
engaged brain (NP-), average similarity to Neural Profiles associated with emotion-
related terms (NPe), and response time (RT). Greater neural similarity to NP+ (leftmost 
blue bar) and shorter response times (grey bar) significantly predicted frame-consistent 
choices. 
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Table 1: Results of Basic Model using subsets of trials to predict frame-
consistent choice from trial-level neural similarity and response time 

Trials subset Regressor Mean beta (SEM) t-statistic p-value 

Gain-framed NP+ 3.26 (0.96) 3.40 <0.001 

NP- -0.31 (0.90) -0.34 0.74 

NPe -1.30 (1.07) -1.22 0.22 

RT -1.05 (0.10) -10.40 <0.001 

Loss-framed NP+ 2.43 (1.05) 2.32 0.02 

NP- -1.70 (0.97) -1.75 0.08 

NPe -2.17 (1.32) -1.64 0.10 

RT -0.31 (0.09) -3.54 <0.001 

Self target NP+ 4.00 (0.82) 4.89 <0.001 

NP- -0.62 (0.67) -0.92 0.36 

NPe -0.98 (0.96) -1.01 0.31 

RT -0.70 (0.10) -6.97 <0.001 

Charity target NP+ 2.41 (0.96) 2.52 0.01 

NP- -0.26 (0.57) -0.45 0.65 

NPe -1.32 (0.96) -1.37 0.17 

RT -0.67 (0.08) -8.59 <0.001 

NP+: Average neural similarity to Neural Profiles associated with the default brain; NP-: 
Average neural similarity to Neural Profiles associated with the task-engaged brain; 
NPe: Average neural similarity to Neural Profiles associated with emotion-related terms; 
RT: Response time 
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