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Abstract

Due to the complexity of genotype-phenotype relationships, s multaneous analyses of genomic
associations with multiple traits will be more powerful and more informative than a series of
univariate analyses. In most cases, however, studies of genotype-phenotype relationships have
analyzed only onetrait at atime, even asthe rapid advances in molecular tools have expanded
our view of the genotype to include whole genomes. Here, we report the results of afully
integrated multivariate genome-wide association analysis of the shape of the Drosophila
melanogaster wing in the Drosophila Genetic Reference Panel. Genotypic effects on wing shape
were highly correlated between two different labs. We found 2,396 significant SNPs using a 5%
FDR cutoff in the multivariate analyses, but just 4 significant SNPsin univariate analyses of
scores on the first 20 principal component axes. A key advantage of multivariate analysisis that
the direction of the estimated phenotypic effect is much more informative than a univariate one.
Exploiting this feature, we show that the directions of effects were on average replicable in an
unrelated pand of inbred lines. Effects of knockdowns of genes implicated in theinitial screen
were on average more similar than expected under anull model. Association studies that take a
phenomic approach in considering many traits simultaneously are an important complement to
the power of genomics. Multivariate analyses of such data are more powerful, more informative,

and allow the unbiased study of pleiotropy.

Introduction

Forward genetic analyses are generally built on a single measurable quantity, such as size, color,

or the presence/absence of a distinctive organismal feature. The rise of phenomics, with its
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emphasis on high-throughput measurement of high-dimensional traits, is beginning to allow us to
address the genetics of more complex traits that no single measurement can capture (Houle 2010;
Houle et al. 2010). For instance, any one measurement of the wing of afly, such asthe length,
incompletely captures wing size and shape (Mezey and Houle 2005; Houle and Fierst 2013;
Pitchers et al. 2013).

Despite the growing enthusiasm for a more comprehensive approach to the phenotype,
the vast mgjority of genome-wide association studies (GWAYS) that include more than one trait
have undertaken multiple univariate analyses for each site, rather than a single multivariate
analysis (e.g., Teslovich et al. 2010; Battle et al. 2014). Statisticians have long appreciated the
value of genuinely multivariate approaches to association studies (Lange et al. 2003; Shriner
2012), and this has led to a recent flowering of multivariate methods and software (O’ Reilly et
al. 2012; Stephens 2013; van der Sluis et al. 2013; Scutari et al. 2014; Zhou and Stephens 2014;
Schaid et al. 2016). While these methods are diverse, a consistent result is that multivariate
analyses increase the power to detect associations, and the biological usefulness of the results.
Given these advantages, it is unfortunate that just afew genuinely multivariate empirical
association studies have been published (e.g., Anderson et al. 2011; Topp et al. 2013). The
majority of published multivariate analyses have been examples in the method devel opment
papers.

To better understand how a multivariate analysis can result in more biologically
interpretable results, consider atypica univariate GWAS in which a single nucleotide
polymorphism (SNP) is detected that affects a quantitative trait; for example, aminor alele that
increases the length of the Drosophila wing. Replicating this effect using an independent sample

isthe typical next step. However, if the sample size islarge enough, the statistical power to
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detect an effect may be high. Thus, verification will depend on whether the direction of the effect
isthe same, in this example whether the minor allele also increases wing size in the new sample.
There is a 50% chance that a significant effect will be in the same direction by chance alone,
making apparent confirmation relatively likely even in the absence of a genuine effect. With
multivariate data, however, the original analysis estimates a vector of effects on all the studied
traits simultaneously. Confirmation then requires that new estimates replicate the relative
magnitude of the effects, and therefore the direction of effects in phenotype space. If large
numbers of traits are measured, thisisvery unlikely to occur in the absence of a biological effect
in that direction.

Over the past forty years, evolutionary biologists and quantitative geneticists have
devel oped tools and theory constructing fundamentally multivariate approaches to assessing the
genetic basis of phenotypic variation, capturing both the shared and unique attributes of these
“traits’ (Lande 1979; Hansen and Houle 2008; McGuigan and Blows 2010). Such approaches
have proved particularly fruitful in addressing questions about evolutionary diversification
(Langerhans and DeWitt 2004), and the response to natural and artificial selection (Blows 2002;
McGuigan et al. 2005; Hunt et al. 2007; Hine et al. 2011). Similar advances have occurred in
the measurement of phenotypes. For example, the tools of geometric morphometrics and related
methods allow us to synthesize comprehensive measures of organismal form (Zelditch et al.
2004). Analyses of these data can then disentangle the influence of genotypic effects on size and
shape (Weber et al. 1999; Weber et al. 2001; Palsson et al. 2004; Weber et al. 2005; Dworkin
and Gibson 2006; Klingenberg 2010).

In this paper, we apply afully integrated multivariate analysis to a genome-wide

association datain Drosophila melanogaster, drawing on genotypes in the Drosophila Genome
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Reference Panel (DGRP) (Mackay et al. 2012). We analyze the genetic architecture of
segregating variation for a 58-dimensional representation of wing shapein (Figure 1A), amodel
complex trait. We then experimentally validate associations using both an independent panel of
inbred lines with targeted genotyping, and using RNAiI mediated gene knockdown to examine

the degree of replicability for direction of phenotypic effects.

Material and Methods

Drosophila strains

For the genome wide association study, we used the “ Drosophila Genome Reference Panel”
(DGRP), a set of inbred lines established from iso-female lines collected at a farmers market in
Raleigh, North Carolina (Mackay et al. 2012). We obtained phenotypic data from 184 lines

scored in Freeze 2 of the DGRP genotyping (Huang et al. 2014).

Rearing, handling of flies and imaging of wings
Wings of DGRP flies were phenotyped independently in both the Houle lab in Florida and
Dworkin lab in Michigan. In both labs, each line was reared in vials for at least one generation
in the experimental conditions prior to the start of the experiment.

In the Houle lab, flieswere reared in a series of 10 temporal blocks over a 14 month
period. Twenty-four lines were reared and measured in two or more blocks. Experimental flies
were reared in 6 dram vials on a corn meal-sucrose medium preserved with propionic acid, no

live yeast added, at 25°C and 55% relative humidity. Each vial was initiated with four parental
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males and females per vial, who were allowed to lay eggs for three to four days until visual
inspection suggested that a sufficient number of larvae had been obtained. The parents were
discarded, and the experimental progeny were transferred to new vials of no more than 20 adults
to avoid wing damage due to overcrowding. The dorsal surface of the left wings of live flies
were imaged using the “Wingmachine system (Houle et al. 2003) using Optem macroscopes
with an integrated camera. Annotation, scale information, images as grey-scale TIFF files and
guide landmarks were recorded using Image-Pro Plus software (Versions 4, 5 and 6). We sought
to obtain images from at |least 40 flies per line (20 of each sex). After excluding damaged wings
and unsplinable images, data was obtained for atotal of 7878 wings from 182 lines, for a mean
of 43.3 wings per line. We obtained data from fewer than 40 wingsin 23 lines, and from less
than 30 wings for only four lines.

In the Dworkin lab, flies were reared in an incomplete balanced block design.
Experimental flies were reared in bottles on a cornmeal-molasses-yeast-based medium with
carageenan as a gelling agent and propionic acid and methyl paraben as preservatives. Blocks
consisted of two replicate bottles of each line reared using food made from the same batch. Each
block contained lines that had been reared previously for comparison. Media was physically
scored and live yeast was added prior to introducing adult flies to promote egg-laying. Flies were
reared separately at 24°C, 60% relative humidity at low density (10 pairs of adult flies per bottle)
in aPercival incubator. After 3-5 days (depending on egg density) adults were transferred to new
bottles. While eggs were not counted, density was controlled for qualitatively, by removing
adults once the desired low egg density was approximately achieved. For those lines with low
fecundity, adults were |eft afew days longer (up to 7 days). After 3-5 days in the second bottle,

adult flies were discarded. Water, yeast and paper towel were added to bottles as needed to
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provide an optimal environment for the larvae. After eclosion and hardening of the cuticle, flies
were stored in 70% ethanol at room temperature prior to dissection. Bottles were checked daily
as needed until a sufficient number of flies was collected. We dissected between 20-24 wings
(left wing of each fly) for each replicate/sex/line.

Wings were imaged at 40X magnification usng an Olympus DP30BW camera mounted
on an Olympus BX51 microscope and controlled with DP controller software V3.1.1. Images
were saved in greyscale as TIFF files. We used the program ‘tpsDig2’ (Rohlf 2011) to record
annotation and the guide landmarks. After excluding damaged wings or unsplinable images, data
was obtained for atotal of 16,272 wings from 165 lines, for a mean number of wings/line of
98.6. We obtained data from fewer than 40 wingsin 9 lines, and from less than 30 wings for
only four lines.

In total, we obtained phenotypic data from 24,672 wings from 184 DGRP lines, with an
average sample size of 134.1 wings/line. One-hundred and sixty-three lines were measured in

both labs. We obtained atotal of less than 40 measurements (minimum 15) for only four lines.

Morphometric data

To capture landmark and semi-landmark data from the recorded images, we followed a modified
protocol from (Houle et al. 2003). Splining and error correction was accomplished in the Java
program Wings 3.72 (Van der Linde 2004-2014). Wings fits nine cubic B-spline functionsto the
veins and margins of wingsin the saved TIFF images (Figure 1A), using the locations of the two
starting guide pointsto initiate fitting. Images with outlier splines were reexamined in Wings

3.72, and corrected using a visual editing function if necessary.
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The program CPR (Marquez 2012-2014) was used to extract 14 landmark and 34 semi-
landmark positions from the fitted splines (as shown in Figure 1). The combined datafrom the
DGRP and validation data sets (a total of 66,890 wings, see below) was subjected to generalized
Procrustes superimposition (Rohlf and Slice 1990), which scales formsto the same size,
trandates their centroids to the same location, and rotates them to minimize the squared
deviations around each point. This separates the useful size and shape information from the
nuisance parameters introduced by the arbitrary location and rotation of the specimens within the
images. The positions of the semi-landmarks were slid along each wing vein (or margin)
segment to minimize deviation along the segment. To put numerical results on amore
convenient scale we multiplied shape (Procrustes) coordinates by 100.

The 96 superimposed x and y coordinates from the 48 points recorded generate less than
96 dimensional data, for two reasons. First, each semi-landmark isconstrained to lieonal
dimensional function, so contributes only 1 degree of freedom (df) to the data. Second,
Procrustes superimposition uses 3 df for rotation and tranglation, and transfers sizeto anew 1 df
variable, centroid size. A 58=2 X 48 — (4+34) dimensional space thus captures all shape
variation. The shape data was projected into a 58-dimensional space using principal components
analysis of the combined DGRP and validation data, with no adjustment for the fixed sex and lab
effects. Thus, PC1 has alarge contribution of variation due to the effects of sex. The scoreson
the first 58 eigenvectors, plus In centroid size were used for subsequent analyses.

Outliers for the superimposed data were detected in CPR, and then re-examined in Wings
3.72 to allow us to determine whether they represented an unusual wing, or mis-splined

specimens, which were corrected. Occasionally a very unusual wing was removed from the data
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set asan outlier. In all cases, these outlier wings were more than 4 S.D. in Mahalanobis distance
from the multivariate mean.

Univariate residuals for shape were generally heavy-tailed (average kurtosis=2.7,
defining the kurtosis of anormal distribution as 0). Residuals for principal components 1 and 2
were dightly right-skewed (skew 0.22 and 0.16 respectively), while the remaining shape
variables showed no notable skew. Log centroid size was heavy tailed (kurtosis=0.63) and | eft-
skewed (skew=-0.53) Testsfor normality of univariate residuals always rejected the normal
distribution, which is expected given the large sample size. Association analyses were done on
lab, sex and block means (see below), so these departures from normality should have no effect

on our results.

Genetic variation for wing shape

We estimated the genetic variance-covariance matrix due to DGRP line effects using restricted
maximum likelihood approach implemented in the mixed model program Wombat (Meyer 2007;
Meyer 2010-2015), which we also used to compare the fits of full (40-dimensional) and reduced-
rank model likelihoods (Kirkpatrick and Meyer 2004; Meyer and Kirkpatrick 2005; Meyer and
Kirkpatrick 2008). Wombat is limited to analysis of 40 variables, so we analyzed the first 39
PCs of shape, pluslog centroid size. We fit a pooled sex covariance matrix, treating lab, sex and
rearing block asfixed effects. The effect of line was fitted assuming that all lines are equally
related. Thisisan approximation, as0.05% (11) of all line pairs are more than 50% related

(Huang et al. 2014).

DGRP Genotype data

We used the publicly available freeze 2 scoring of line genotypes from February 2013 (Huang et

al. 2014) (ftp://ftp.hgsc.bcm.edu/DGRP/freeze2_Feb 2013/vcf_files/freeze?.vcf.gz).
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Coordinates are based on FlyBaseGenBank Release 5.  We used only calls of homozygous
genotypes, and treated others as missing data. We refer to all polymorphisms as SNPs, despite
the fact that some polymorphisms involve multiple nucleotides. If two or more SNPs were found
at the same site, we analyzed the one with the highest minor allele count, treating all rarer
variants as equivalent to the reference. We used only homozygous calls with genotypic phred
scores>20 at sites with exactly two alternative types. All other calls were treated as missing data.
Initial analyses to choose sites for validation in the Maine and North Carolina population were
carried out using Freeze 1 datafrom August 2010, available at

https://www.hgsc.bcm.edu/arthropods/drosophila-geneti c-reference-panel .

Linkage disequilibrium
Linkage (gametic) disequilibrium (LD) complicates the interpretation of significant associations
uncovered ina GWAS. We quantified LD as the squared gametic correlation between sites

2 D’
T —
.0, PG,

where p1, p2, 01, and g2 are the major and minor allele frequencies at the two sites, and

D = x, — p,g,, where xq1 isthe frequency of gametes carrying both the alleles indexed by the

frequencies allelesp; and g (Weir 1996). To help usinterpret our results, we calculated the
gametic correlation between all sites judged to be significant at a false discovery rate (FDR) of
5% (see below) and all other sites throughout the genome and retained alist of all those pairs
where the squared correlation r>>0.5. This cutoff was chosen based on simulations that show
that LD of r?<0.5 will infrequently generate false positives for a SNPin LD with a SNP that has
a phenotype effect size typical of those detected in this study in asimilar number of lines (Houle

and Méarquez 2015).
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For SNPs judged to be significant in our association tests, we carried out a second
analysis designed to separate clusters of SNPs that were highly correlated with many other SNPs
from those that were more or less independent. To find an initial set of clusters, we used the
SAS/FASTCLUS Procedure (SAS 9.3), which uses g vectors of SNP genotypes as seeds to
group input SNPsinto up to k clusters with aradial spread equal to R, where k and R are user-
defined parameters. In our clustering algorithm, we first assign adeliberately large value to k
(=2000), and let FASTCLUS compute optimal seeds. In this step, we also let FASTCLUS
automatically impute missing genotype data. In a second run, we submit the previously imputed
datato FASTCLUS, and save the output as seeds for subsequent iterations of the same
algorithm. We then iterate this step until both the number of clusters and aleast squares
optimization criterion plateaus. We chose the radius R for our clusters to match the r>>0.5

cutoff. From the law of cosines, the distance, d, between two SNP vectorsisrelated to their
correlation by d = ,/2(1-r), leading to R=0.7654.

The above algorithm does not ensure that the clusters identified are discrete. To
compensate for this we carried out a second, refinement phase. This phase consists of three
steps: first, we scan each non-singleton cluster to determine whether any of its members do not
conform to the clustering criterion (i.e., its squared correlation with every other member of the
cluster does not equal or exceed 0.5). SNPs that violate the criterion are marked as singletons for
subsequent processing; second, squared correlations between singleton and all other SNPs are
computed to allow for orphan SNPsto join established clusters, or for pairs of singletonsto
cluster when ther? > 0.5 criterion ismet. If a SNP is correlated with more than one cluster, it is
allowed to join the cluster with the most members; finally, the last step merges clusters with

highly correlated SNPs. Specifically, two clusters are combined into a single cluster when the
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minimum of the maximum squared correlations computed between all pairs of members of
different clusters exceeds 0.5. All of these steps were iterated until convergence. The result from
our algorithm is a series of clusters comprising SNPs each satisfying the correlation criteriar?>
0.5 with every other SNP within the cluster, and r? < 0.5 with every SNP that does not belong in

the same cluster.

Impact of chromosomal inversions
Previous inversion karyotyping of the DGRP lines (Corbett-Detig and Hartl 2012; Langley et al.
2012; Huang et al. 2014) yielded inconsistencies for three inversions that are present in at least
seven of the DGRP lines, (In(2L)t, In(2R)NS, In(3R)Mo). Houle and Méarquez (2015) found that
aprincipal component analysis on the set of genotypes that had disequilibrium r?>0.5 with at
least 200 other SNPs more than 100kb distant from the focal SNP correctly diagnosed the
inversion-type of all but one chromosome arm for which the previous analyses were consi stent.
Consequently, we used high PC1 genotypic scores as our indicator of karyotype, as detailed in
Houle and Marquez (2015).

In lines that were inferred to carry a heterozygous or homozygous alternate karyotype on
the basis of the above analysis, we treated all genotype calls as missing in regionsin high LD
with genotypes typical of the three common alternate karyotypes. For In(2R)NS and In(2L)t
thisincluded sites between the breakpoints inferred by Corbett-Detig et al. (2012), plus 20kb
either side. Corbett-Detig and Hartl (2012) and our own additional analyses suggest that
In(BR)Moisin strong LD with the entire distal part of arm 3R from approximately 16Mb to the
digtal tip at 32Mb, although the breakpoints of that inversion are approximately 17.2 and 24.9
Mb. Consequently, we masked all sites with coordinates greater than 16Mb in lines inferred to

carry an In(SR)Mo genotype.
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Detecting phenotypic associations
The phenotypic data consisted of 58 wing shape variables computed as described above, plusthe
natural log of centroid size. We thus analyzed wing form in size-shape space (Bookstein 1986;
Mardia and Dryden 1989). The data for analysis was mean wing form for each combination of
line, lab and sex. We treated genotypes between inversion breakpointsin lines carrying the
aternate karyotypes as missing. Our analysis included SNPs where the minor allele was
homozygous in at least five lines and where the number of lines called was at least 120 of the
184 freeze2 DGRP lines for which we obtained phenotypic data. Thisleft uswith 2,517,547
polymorphic sites.

Effects of SNPs on morphometric variation were quantified usng a multivariate linear
model taking into account the effects of lab, sex, SNP and line

Y =0 +B, +v, +ab; +ay, +By, +0t(L)hi +(1(L)Bhi,- +a (L) 7y +& (1)
where a, B, and y represent vectors of fixed effects of thei™ SNP, j" sex, and k™ lab,
respectively, a(L) represents the random effect of the " inbred line nested within SNP, ¢ isthe
residual vector, and higher order terms represent interactions between these factors. To compare
the results of multivariate and univariate analyses, we also calculated univariate tests using the
model in equation (1).

The above model could not befit asamixed model. We approximated the mixed model
tests and estimation using the following multi-step procedure. We first estimated the sum of
sguares and cross-products (SSCP) matrices using aleast squares method in SAS Proc GLM,
designating terms involving line nested in SNP as random with variates weighted by their sasmple
sizes. Because sample sizes over labs and sexes were always unbalanced, the denominators of

within-group SSCP matrices, W, were assembled as weighted averages of the SSCP matrices
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obtained in thisfirst analysis. The weights were obtained from the coefficients of the expected
mean squares calculated in a univariate analysis of the same SNP in SAS Proc GLM using the
Random/Test option. We assessed the statistical significance of mode terms using an F-
distributed statistic based on Wilks' A (Rao 1973), computed as A = 1/det (I + W™!B), where
B isthe between-group SSCP matrix.

L east-squares estimates of SNP effect vectors, were obtained from a ssmpler model

neglecting interactions of SNP effects with sex and lab,

Yiik =0 +B; +v, +ab; +Py, ‘Hl(l—)hi &y -

Effect sizeisthe length (norm) of this vector of effects, |a,]|. The amount of variance explained
is p(1-p)|le; ||2 , where p is minor alele frequency (MAF).

These analyses were written in SAS macros and were run at the High Performance
Computing facility at North Carolina State University, the Research Computing Center at Florida
State University, and a standalone Linux server at the Biological Science Department at Florida
State University.

To control the FDR we applied the Storey and Tibshirani (2003) approach as

implemented in the R package fdrtools (Strimmer 2008).

Gene Ontology Analysis

For each SNP significant at a FDR of 5%, we downloaded the full gene ontology information for
the nearest genes upstream and downstream on both the negative and positive strands. We
identified the closest coding region to each of these SNPs and used WebGestalt (Wang et al.

2013) to test for enrichment of Gene ontology categories using a Benjamini-Hochberg (1995)
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correction after testing against the null expected distribution of all genes assuming a hyper-

geometric distribution.

Evaluating the influence of correlated SNPs

Whileit isuseful to know that a SNP genotype is significantly associated with a phenotypic
effect somewhere in the genome, we also want to determine whether the phenotypic effect is
likely to be due to that SNP, or to variants in LD with the SNP. We refer to SNPs (QTNS) that
affect the phenotype as causal. To determine which SNPsimplicated in the MANOVA analysis
were most likely to be causal, we implemented a stepwise multivariate regression algorithm. The
goal of thisanalysis was not to arrive at a best model for SNP effects, but to determine, for each
significant focal SNP, how other SNPs in the data set altered the statistical signal from the focal
SNP, and to determine where those competitor SNPs map. SNPs whose conditional effects
remain significant in models that include other variants are more likely to be causal. SNPs whose
conditional significanceis diminished by closely linked SNPs, but not by distant variants, may
reliably signal the presence of aneighboring QTN.

For each of the significant SNPs we assembled afamily of variants to be checked for
their influence on the significance of the focal SNP. This family comprised three sets of
variants. Thefirst group consists of al significant SNPs that were annotated as being closest to,
or within 2kb of the transcript of a gene that the focal SNP is either in, closest to or within 2kb of
thefocal SNP The second group consists of all SNPs anywhere in the genome that have LD
r?>0.5 with any of the first group of significant SNPs, regardless of whether they are significant
when analyzed separately. For SNPs outside the breakpoints of the blocks of LD associated
with the three common inversions, we also considered the three common inversion karyotypes

(In(2L)t, IN(2R)NS, In(3R)M0). For SNPs between these breakpoints, we performed the
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multiple regressions for just those lines without evidence of the non-Standard karyotype, as
above. Within this universe of possible competitor variants, we screened for SNPswith LD
r>>0.9, then dropped the SNP with the lowest number of genotype calls in each such pair, while
recording the existence of ahighly correlated SNP. If the focal SNP mapped between the
breakpoints of the blocks of LD associated with the three common inversions, potential
competitor SNPs with less than four copies of the minor allele in genotypes scored asthe
Standard karyotype for that region were dropped from the analysis. The result of thisisafamily
of t variants to be examined for their influence on the statistical results for focal SNPf. To
enable the simultaneous analysis of multiple SNPs, we assigned the common allele to missing
callsin all t non-focal SNPs and ignored genotypes for lines with missing calls at SNPf.

The data for the multivariate regression were the vectors of |east-squares means for the

shape and size variables from alinear model with lab, sex and DGRP line as main effects, \_(h.

The first step was to fit the regression model Y, = &, +¢, , where oy is the vector of effects for

the focal significant SNP being tested, and record the value of Wilk’s A and the associated P-

value as a baseline for evaluating the change in significance of the focal SNP when additional
predictors are used. Next, models of theform Y, =a, +a, +¢, , including the focal SNP f and

one additional SNP, i, werefit, yielding t round 1 estimates of the significance of SNP f when
considered in models of with an additional variant. A SNP was listed as a competitor if it was
either perfectly correlated with the focal SNP, or reduced the F ratio for the test of the
significance by 10% or more, and the ratio of the P value after addition to the P value before
addition of the competitor SNP multiplied by the P value from the MANOVA islessthan

0.0001.
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Finally, we performed up to six stepwise additions of SNPsto thismodel. If at least one
of thet variants at round j had a P-value<0.001, the variant with the minimum P was added to
the model. This process was repeated for up to five additional steps, so the final model could
have from one (the focal SNP) to seven variantsin it. We did not delete SNPs from the model
once they entered. We used the results of the round 1 tests to indicate how many variants
compete with the focal SNP, and the result from the final model to indicate the overall
robustness of theinitial MANOVA result. A focal SNP was listed as non-significant in the
multiple regression analysis when theratio of the P value for the final modd to the P value
before addition of any competitor SNPs multiplied by the P value from the MANOVA isless
than 0.0001.

Multivariate regressions were calculated in SAS Proc Reg, using the MTEST statement.

Quantitative knockdowns of gene activity for validation

We knocked down expression of genes of interest using the Geneswitch Gal4 construct (GS,
Roman et al. 2001) engineered to be under the regulation of a ubiquitous tubulin driver (Tub-5
GS) generously furnished by Scott Pletcher. GSisa chimeric protein that combines yeast Gal4
with amammalian progesterone receptor. The resulting protein is activated in the presence of a
progesterone analog in the diet, which we furnish as the drug mifepristone. Thereis, however,
residual Gal4 activity in the absence of Mifepristone. We backcrossed the Tub-5 GS construct
into awild-type Oregon R (OreR+) background before these experiments. GS was used to drive
expression of interfering RNA for a gene of interest (UAS-[GOI] RNAI) constructs obtained
from the TRIP project (Ni et al. 2008; in ayv background) and the Bloomington Drosophila

Stock Center or the Vienna Drosophila RNAI Center (Dietzl et al. 2007; in aw1118
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background). The list of RNAI stocksislisted in File S3 3. All knockdown experiments were
conducted in the Houle lab.

To carry out a knockdown experiment, we crossed reciprocally crossed Tub-5GS and
UAS-[GOI] RNAI stocks, and allowed these flies to lay eggs on media containing at least four
different concentrations of mifepristone. We used mifepristone concentrations of 0, 0.3, 0.9, and
2.7 uM in all experiments. Initial experiments include afifth concentration (0.1 puM), but in most
cases there were no phenotypic differences between 0 and 0.1 uM treatments. For each
concentration of mifepristone four replicate vials were set up; afifth replicate was set up for 2.7
MM due to low survivorship in many experiments. We placed ten virgin females with five males
in each vial.

Three different control crosses with their respective reciprocals were also set up: Tub-
5GS x the appropriate RNAi background (either yv or w'**%), UAS[GOI]RNAI x OreR+, and
RNAi background (either yv or w***®) x OreR+. Reciprocal and control crosses were set up at the
same time on medium from the same batch. After six days, all the parents were moved to fresh
vials with the appropriate mifepristone concentration, and then discarded after an additional six
days. Offspring were moved to vials with fresh, normal food, sorted by sex, and their wings were
imaged at least two days after eclosion. We imaged wings from 20 F; females and males from
each treatment in each reciprocal cross.

The distribution of within reciprocal, sex and treatment data was frequently
heteroscedastic; higher mifepristone RNAI treatments generally had higher variance, often
showing outliers along the major axis of RNAI effects. Consequently, we analyzed the within-
sex-treatment-reciprocal medians. Further analyses (in prep.) of control and experimental data

suggests that mifepristone has background-specific effects on wing shape across UAS-
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[GOIIRNAI crosses, and data were adjusted for these effects before further analyses. Finally, we
calculated the linear effect of mifepristone on the 58 shape dimensionsin alinear model with sex
and reciprocal as categorical effects and mifepristone as a continuous predictor. In some cases,
the reciprocals differed significantly in their effects, and were analyzed separately. These are
designated by the sex of the Tub-5 GS parent in File S3. The parameters of the multivariate

regression of mifepristone were retained as the effect vector of the manipulated gene of interest.

Comparing knockdown vectors to SNP vectors

The correlation of column vectorsx andy is

Xy

r =
[y

where " indicates transpose and ||| denotes the length (2-norm) of vector x. Likeall

correlations, —1<r <1. Inthiswork, the sign of the correlation is arbitrary, because we could
take either the magjor or the minor alele as the reference, so we report the absolute value of
vector correlations. The arc cosine of r isthe angle between the two vectors. A correlation of 1
means that the vectors point in the same direction, while r=0 means that the two vectors are
orthogonal (at 90 degrees).

We tested the statistical significance of vector correlations between the knockdown
vectors and SNP vectors by comparing the observed correlations to the distribution of
correlations under the null hypothesis of no relationship. Even if the SNPs have no real effects,
the inferred vectors will tend to fall in the more variable regions of phenotype space, so to ensure
that the random vectors were appropriately sampled we took two approaches. First, we assumed
that the estimated directions of effects in the overall sample of 2.5 million SNPs were

representative of the random distribution of effect directions. Second, we randomly sampled
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vectors from a multivariate normal distribution with mean 0 and covariance equal to the
estimated among-line genetic covariance matrix. These two approaches yielded similar, but not
identical, results. We report the results using the random sample of inferred vectors, but both
approaches agreed in all the specific cases discussed.

The second major challengeisthat many of the significant SNPs arein LD with other
SNPs, so ther effects will be shared among correlated SNPs. To compensate for these correl ated
effects, and to minimize the overall number of tests, we computed the average SNP effect over
all members of the 862 linkage disequilibrium clusters identified above, weighted by the product
of minor and major alele frequencies. Only the 792 clusters where SNPs were less than 5kb
apart and where all SNPs were closest to a single gene were tested, as clusters including more
distant SNPs are much less likely to implicate the focal gene.

To test for significant correlations, we compared quantiles of vector correlations between
the knockdown vector and 10,000 random vectors. When the SNPs nearest one gene werein k>1
LD clusters, we generated k random correlations in each of the 10,000 replicates and calculated
guantiles of these maximal correlation against which to judge the significance of that
knockdown.

To judge whether the entire sample of correlations between knockdown and SNP vectors
is higher than expected, we calculated samples of 10,000 sets random correlations and cal culated
the quantiles of the difference in the magnitude of the mean real and random sets of correlations.

To compute an experiment-wise cutoff for which knockdown effects are smilar to
effects of the 792 single-gene SNP LD, we first calculated 1,000 sets of k=792 correlations of
random SNP effects with each knockdown vector. The quantiles of the maximum of the 792

correlations were calculated and compared to the observed vector correlations. These quantiles
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differ consderably with the direction of the knockdown effect; vectors close to the principal axis
of genetic variation (PC1) are much more common in the estimated set of vectors, and so have
guantiles considerably larger than those in less-common directions. In File S3 we report both
guantiles and the vector correlations of each knockdown vector with the first five PCs of the

among-line variance matrix.

Maine and North Carolina (ME-NC) populations for validation

Flies

Female D. melanogaster were collected in the summer of 2004 at a Peach Orchard in West End,
North Carolina (NC2), and in ablueberry field in Cherryfield Maine (ME), by Marty Kreitman
(Goering et al. 2009; Reed et al. 2010). All lines were full-sib inbred for 15-20 generations. In
total 190 lines were used (~50% from each population). Flies were reared in the Dworkin lab at
25°Cinal12:12 light/dark cycle at constant 50% humidity, similar to previously described
experiments (Dworkin and Gibson 2006). We dissected approximately 20 wings/replicate/line
for atotal of 7968 male and 7781 female wings from 153 lines. Collectively we refer to thisas

the ME-NC panel.

Choice of SNPs to validate

SNPs were chosen for inclusion in the validation panel based on the findings of an analysis using
Freezel genotypic data. We began by compiling alist of SNPs with the smallest associated P-
values, removing those where the SNPs effect was unstable (LogRatio of P within 1.5 S.D. of 0)

and ranking the remainder by effect size.


https://doi.org/10.1101/108308
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108308; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Pitchers et al. - 22
We then excluded SNPs whose minor allele was present in fewer than 9 DGRP lines,
making the assumption that more common SNPs would be more likely to be found in the other
populations. SNPs whose associated effect was highly correlated with other SNP effects were
also removed from the list to avoid attempting to validate effects associated with SNPs that were
in LD with the QTN itself, since patterns of LD may differ among populations. Finally, we

retained the 350 SNPs that were closest to the transcript of a gene.

Genotyping
The genotyping for our validation SNP set was carried out by KBiosciences (Now LGC
Genomics) using ‘Kompetitive Allele-Specific PCR’ assays (KASP). Thisisafluorescence-
based genotyping technology that uses allele-specific primers, making it generally more accurate
for smaller jobs than high-throughput methods. We designed primers based on 100 base pairs of
the D. melanogaster reference genome from Flybase (version 5.41) on either side of each SNP.
We submitted these sequence snippets, along with samples of genomic DNA extracted from 15
flies from each of the MENC lines to KBiosciences. Several duplicated control samples (same

genotype, but independently labeled) were included to assess any technical variation in

genotyping.

Analysis

For the MENC validation analysis, we used the same pipeline and analysis framework as
described above for the DGRP, but excluding the effects of lab and sex (as only males were
phenotyped). To determine if the average vector correlation of the true DGRP SNPs with the

MENC SNPs was greater than expected by chance, we repeatedly computed the vector
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correlations between random subsets of DGRP SNPs (350 at atime) with the MENC SNPs, and

estimated the average across the set. This process was repeated 1000 times.

Results

High repeatability for wing shape across labs

We obtained independent measurements from 163 DGRP lines in both the Dworkin and Houle
labs, out of atotal of 184 lines phenotyped. The eigenvectors used to score the data and the
means and standard deviations of the variables by sex and lab are shown in File S1. Wing shape
shows considerable variation among lines (Figure 1B, Figure 2A). As described in the Methods,
each lab reared flies dightly differently. The factors that differed include rearing temperature,
food, and measurement hardware, aswell as unknown aspects of lab routine. Despite these
environmental differences, line effects on wing shape have a high degree of inter-lab
repeatability with respect to both effect sizes (Figure 2A) and directions (Figure S1A). Wing
size was, however, weakly correlated across labs (Figure 2B). Thisislikely to be dueto
genotype-environment interactions with lab rearing practices, rather than measurement error, as
repeatability of wing size within lab ishigh (Figure S1B). A MANOVA on line-sex-lab means
shows that the effects of lab (Wilk’s1=0.0026, F=3014.6, df=(59,460), sex (Wilk’s »=0.027,
F=275.9) and lab by sex interactions (Wilk’ s A=0.35, F=14.2) are adl highly significant

(P<0.0001), reflecting subtle differences in means across labs.

Genetic variance in wing shape in the DGRP

To verify the presence of genetic variance in wing size and shape, we estimated the variance-

covariance matrices in wing size and shape. Due to software limitations, we could test for
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genetic variance in only 40 dimensions (out of 59 possible), so we chose to fit the first 39
principal component (PC) scores for wing shape, pluslog:o centroid size. A model with genetic
variancein all 40 possible dimensionsfit better than models with 39 dimensions by 1,466
penalized log-likelihood (AICC) units. Thisis strong evidence that at least 40 independent

aspects of wing shape are affected by genotypic variation in the DGRP sample.

Chromosomal inversions influence wing shape, but Wolbachia does not

Three inversion karyotypes (In(2L)t, In(2R)NS, and In(3R)Mo) were found in more than four of
the DGRP lines that we phenotyped (Huang et al. 2014; Houle and Méarquez 2015).
Approximately 50% of the lines carried the intracellular parasite Wolbachia (Huang et al. 2014).
We conducted MANOV As on the effects of inversion genotypes and Wolbachia status, with the
results shown in Table 1. Each of the three inversions has a highly significant effect on wing

shape-size, but Wolbachia infection status has no significant effect.

Basic GWAS analysis

After excluding callsin inverted regionsin lines identified as carrying one of the three common
inversion karyotypes, we were left with 2,517,547 polymorphisms with minor allele count > 5.
For convenience, we refer to all polymorphisms as single nucleotide polymorphisms (SNPs),
despite the fact that some involved indel variation or multiple nucleotides. We carried out
individual MANQOV As of the effect of genotype on wing shape for each SNP. To pick out SNPs
for additional analyses, we used the false discovery rate (FDR) algorithm of Storey and
Tibshirani (2003), bearing in mind that all such methods assume independence of each analysis.
A total of 2,396 sites had significant effects usng a 5% FDR cutoff (g-value < 0.05). This

analysis estimated that the P-values can be explained by mixture of np =71.5% SNPswith no
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phenotypic effect, with the remainder having some effect. Figure 3A shows a Manhattan plot of
the multivariate results. A list of the significant sites, test statistics, effect sizes, variance
explained, plus information about genes implicated are given in File S2.

We calculated the genetic variance in shape-size explained by each of the significant
SNPs as a proportion of the trace of the among-line genetic variance-covariance matrix.
Estimated effect sizes are modest, and no single SNP is estimated to explain more than 3.6% of
the variance. In addition, the estimated effect sizes are clearly too large on average, as the mean
percentage of variance explained is 1.4% (median is 1.3%). These results are consistent whether
considering the shape-only data or shape and size simultaneously, which are aimost perfectly
correlated (0.99). There are two known causes for the upwards bias in effect size. First,
sampling variation causes effect for SNPs judged to be significant to be overestimated (Beavis
1994; Beavis 1998; Xu 2003). Second, these analyses do not compensate for the effects of
linkage disequilibrium, which we return to below.

A gquantile-quantile plot of the P valuesis shown in Figure 4. For sites with minor allele
frequency (MAF)<0.15, the distribution shows clear evidence of substantial deviation from the
expected uniform distribution throughout the range of P values. We interpret this as largely due
to the spreading signal of true effectsto the large number of sitesin LD with rare alleles (see
below). The P values are much closer to the null distribution at siteswith MAF>0.15. This
distribution is also consistent with a very large number of sites each having small phenotypic

effects. We return to these issues below.

Comparing multivariate and univariate analyses
To understand the relative power of the multivariate analysis, we also carried out univariate

analyses of each SNP on the scores on PC1 through PC20 of the entire data set. When we
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applied the Storey and Tibshirani (2003) FDR algorithm independently to each of the twenty
sets of P values, there were 4 significant SNPs on PC1 (shown as green dots in Figure 4) and
none on the other 19 axes at a FDR of 5%. Just one of these sitesis also significant at the FDR
5% level in the multivariate analysis (3L:17980378).

To further compare the multivariate and univariate results, we also applied the same
critical P-value identified as the FDR 5% cutoff in the multivariate analysis (P=0.00007) to all of
the univariate analyses. A total of 6,990 SNPs were identified as significant at P<0.00007 in at
least one univariate analysis. Only 139 of these were also significant in the multivariate analysis.
In addition, only 24 sites were identified as significant in two different univariate analyses.
Figure 4B shows the genomic locations of the 565 sites significant at P=0.00007 on PC1.

To understand the nature of the differencesin power between the multivariate and
univariate analyses, we plotted measures of both univariate and multivariate effect sizein Figure
5, classified by whether they were significant in the corresponding univariate analysis at
P<0.00007. SNPsidentified as significant in the univariate analyses have much larger than
average effects on the PC that they are significant for (red squares) compared to the average
effect of all other SNPs on that PC (blue circles). For SNPs significant on low-ranked PCs, the
multivariate vectors are close to the average vector length of all SNPs. In contrast, the average
score of a SNP that is significant in the multivariate analysis (green diamonds) is modestly
higher than average across the full range of PCs. These comparisons suggest that the univariate
analyses identify SNPs whose effects are unusually concentrated on just that PC, but are

otherwise unremarkable.
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Correcting for the effects of linkage disequilibrium
Despite the relative lack of population structure in the DGRP population (Mackay et al. 2012),
there is nevertheless substantial linkage disequilibrium (LD) (Huang et al. 2014; Houle and
Mérquez 2015; Pool 2015). The average number of highly correlated SNPs (r? > 0.5) with each
significant SNPis very large at low MAF, but still substantial at high MAF, as shown in Figure
S2. The probability is greater than 0.5 that at least one other SNP in the genome is highly
correlated with each significant SNP at all MAF, as shown in Figure S3. More striking isthe
fact that SNPs with low MAF have a substantial probability of being correlated with SNPs more
than 100kb distant. We interpret this as being dueto ‘rarity disequilibrium’ (Houle and Mérquez
2015) due to the large number of low MAF SNPs, and the relatively few combinations of line
genotypes that can generate alow MAF as opposed to ahigh MAF. Twenty-five percent of the
SNPs that we analyzed have MAF<0.06, and 50% have MAF<0.137. While thereisadifference
in the mean number of correlated SNPs between regions inside and outside of inversions, the
probability that there is at least one such correlation is affected very little by inversions (Houle
and Marquez 2015).

These results suggest that the statistical signal from afocal SNP will very often be
confounded with effects of other correlated SNPs, and more importantly, that those correlated
SNPs will often be so distant from the focal SNP that incorrect inferences are likely to be drawn
about genes implicated by a significant association. Furthermore, methods for adjusting the
FDR all assume that the tests are themsealves independent, which isviolated for correlated SNPs.
The simple MANOV A results presented above are thus likely to be misleading in many cases.
We implemented several additional analyses to help judge the likelihood that a SNP with a

significant test result in the MANOVA was a causal SNP, or likely to be close to a causal SNP.
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A practical challenge to analyses with more predictor variables is the number of missing
callsin the DGRP. The sample of lines that can be used falls rapidly when analyses are confined
to genotypes at which all predictors have been called. Furthermore, imputation involves
assumptions that may affect the results. In our analyses, we focused on one significant SNP at a
time, and then considered the family of potential “competitor” SNPs that consists of each
significant SNP that is also closest to the same gene, and all the SNPs that are highly correlated
with any of these significant SNPs, including the focal SNP, plus the three common inversions.
Missing data for the focal SNP were not imputed, but missing data for competitor SNPs were
imputed to the common SNP.

In our first analysis, we evaluated the continued significance of each of the significant
SNPs in pairwise multivariate multiple regressions with each of the possible competitor SNPs.
We then counted the number of SNPs that reduced the probability that the focal SNPis
significant, and determined how far they are from the focal SNP. Of the 2396 significant SNPs
at FDR 5%, 96 had no other SNPs that affected the significance of the focal SNP, while an
additional 249 were not affected by any SNPs mapping more than 5kb away.

In the second analysis, we carried out a stepwise multivariate multiple regression to
evaluate whether the focal SNP remains significant when other predictors are included in the
model. Starting with amodel with just the focal SNP, we allowed up to six stepwise additions of
other predictors, as described in the Methods section. Of the 2396 focal SNPs, 1577 retained
significancein thisanaysis. These two analyses are complementary, as the first asks whether
the causal signal from each SNP disappears due to “competitor” SNPs, while the second asks
whether the SNP retains explanatory power in a combined analysis with other explanatory SNPs.

Putting these two sets of results together, we consider the gene implicated by the SNP to be
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interpretableif it remains significant in the multivariate multiple regression and is not more than
5kb from the farthest SNP that causesit to lose significance. After thisfiltering, there were 239
SNPs which implicated small genomic regions as very likely to have effects.

Finally, we performed a cluster analysis to group SNPs according to their LD. We
identified atotal of 862 “clusters,” including 659 singleton clusters which correspond to
significant SNPs uncorrelated (at r>>0.5) with any other significant SNP. We treated these SNPs
as asubset of gtatistically independent sitesto investigate functional associations of genotypic
variation, as described below. At the other extreme, two large clusters contain 236 and 644
SNPs, respectively, including correlations between both short- and long-distance (>1 Mb or in

different chromosomes) SNPs.

Appendage development implicated by GO analysis

We performed gene ontology analysis for the closest genes to the associated SNPs. The 1577
SNPs that implicated specific genomic regions were near 1188 different genes, while the 239
filtered SNPsimplicated 196 genes. For both sets of genes, the GO categories anatomical

devel opment and morphogenesis (organ development and organ morphogenesis in both) and
neurogenesis (generation of neurons and neuron differentiation) show evidence of being
overrepresented (Figure $4) relative to the complete set of Drosophila protein coding genes. The
genes implicated include many components of the planar cell polarity pathways known to
influence final wing form (i.e. fat, dachsous, scribbler, grunge) and signaling molecules crucial
to wing developmental and vein specification (i.e. vein, apterous, Egfr, sulfateless, doc2). The

neuronal development genes over-represented include many genes expressed at the wing margin.
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Validation of SNP effects by phenotypic effects of expression knockdowns

As one validation of putative causal SNPs, we utilized quantitative knockdowns of gene
expression at 97 different genes using RNAI with a gene-switch (mifepristone-dependent)
tubulin-GAL4 line (see Methods, experimentslisted in File S3). Figure 6A shows the effects of
knockdowns at Egfr on wing shape at four different levels of mifepristone. To summarize these
results we performed a multivariate regression of size and shape on mifepristone levels to obtain
asingle summary vector. The Egfr regression vector is shown in the left wing in Figure. 7B.
We call the set of phenotypic alterations observed on knockdown a dictionary of genetic effects.
We note that dictionary knockdowns reduce gene expression throughout the body during the
entire duration of wing development. The effects of the knockdowns may be different from
those of SNPs, even if the regionsimplicated in our analyses have phenotypic effects mediated
by changes in gene expression,

We compared dictionary effects to the effects of LD clusters in the DGRP. We excluded
clusters containing SNPs more than 5kb apart and those with SNPs closest to the coding regions
of more than one gene, which left atotal of 792 LD clusters. Twenty-five of the genesin the
dictionary matched the closest gene to an LD cluster containing significant SNPs, and were
substantially expressed in the wing disc (Table 2). Eight of these genes matched two LD
clusters, and one matched three LD clusters, giving atotal of 35 dictionary genes that match
interpretable LD clusters. When more than one SNP in a cluster was significant, we averaged
their effects weighted by the allele frequency, p, as p(1-p).

We compared the directions of effects in the entire phenotype space as the absolute value

of the vector correlations between cluster and dictionary effects. Vector correlations are only
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influenced by the direction of effects, and not by their magnitudes. Our estimates of SNP effect
direction, however, have high sampling variance when the magnitude of an effect issmall.

We evaluated whether these dictionary and LD cluster effects were significantly
correlated at several different levels. First, we compared the entire set of correlationsto seeif
they were higher than expected based on comparison with randomly selected vectors drawn from
the analysis of the entire set of SNPs (see Methods for details). The average correlation was 0.09
units higher than expected, which was significantly different from 0 at P<0.02. Thisinference
of correlation is reinforced because the vector lengths of both the dictionary and the SNP effect
have significant Spearman correlations with their vector correlations (dictionary rs=0.37,
P=0.026; clustersr=0.34, P=0.041).

Table 2 gives the results of tests for greater than expected vector correlations at the gene
and LD cluster level. We examined whether any of the genes had at least one LD cluster more
highly correlated with the dictionary effect than expected, given the number of LD clusters that
correspond to that gene. Two genes (CG12934 and Egfr) were significantly correlated at
P<0.05; and four had P values between 0.1 and 0.05. At the level of the LD cluster, there were
three significant matches — one of the two CG12934 clusters at P<0.01, one of two clusters at
luna, and the single cluster at Egfr at P<0.05; an additional 7 clusters yielded P-values between
0.1 and 0.05. LD cluster and dictionary effects at Egfr and CG12934 are shown in Figure 6B-C.
These results are consistent with the finding of a bias towards high correlations, and shared

directions of genotypic effects.

Vector correlations between gene knockdowns and other SNP effects

In addition, we examined the vector correlations between each of the dictionary (gene

knockdown) vectors and the effects of each of the 792 LD clusters of significant DGRP SNPs
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that included SNPs less than 5kb apart. Given the large number of non-independent tests,
significance of the vector correlations was evaluated using a structured randomi zation test that
controlled the knockdown-wise error rate (see methods). Vectors correlations r>0.5 arelisted in
File $4. Examination of the significant vector correlations revealed several clusters of highly
correlated effects that implicate particular pathways in the production of phenotypic variation.
SNPsin ds had significant correlations with the knockdowns in nemo (r=0.84), ex (r=0.78), wts
(r=0.71) and suggestive correlations with knockdowns of dsitself (Figure S5). Thisis
particularly interesting as these are in the fat-hippo pathways that influence both growth and
planar cell polarity, and strongly influence final wing shape and size (Rogulja et al. 2008; Zecca
and Struhl 2010; Schwank et al. 2011; Irvine 2012). We a so note the significant phenotypic
vector correlations between SNPs in the Dorsocross2 gene with RNAI knockdown of the
Ultrabithorax gene (r=0.87), which reflects arecently identified set of functional associations
with respect to wing and haltere development (Sui et al. 2012; Ibrahim et al. 2013; Simon and
Guerrero 2015). In addition, there are numerous other associations with SNPs in genes not

currently annotated for their influence on wing devel opment.

Validation in the Maine and NC populations

Of the 321 SNPs that we had selected for validation testing from our GWAS based on DGRP
Freeze 1 genotype data, 284 were found with a high enough MAF in Freeze 2 to enable
validations of the association analysis of the DGRP results. Of these, only 49 were still highly
implicated in our multiple multivariate regression results using the freeze 2 genotype data. We
first investigated whether, as a set, these SNPs chosen for validation showed a greater similarity
of direction of SNP effects across the two data sets compared with 1000 random partitions of the

data (with 284 SNPsin each partition). Over the random 1000 subsets, the average vector
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correlation was ~0.224. For the full set of 284 SNPs chosen for validation, the vector correlation
was ~0.23, but was not outside of the range of expected values based on the random subsets.
However, when we only examine the subset of 49 SNPs which showed some evidence of
association in our final analysis, the vector correlation increased (~0.24) and exceeded the 95%
intervals. Similarly, when we investigated the correlation among effect sizes for the significant
DGRP SNPs with the validation set, the Pearson correlation was 0.67, and exceeded the
correlations produced with all of the 1000 random subsets.

Despite, this, at the level of individual SNP validations, we observed little evidence of
replication, with 28 of the SNPs showing validation in the MENC data set, with an alpha set at a

nominal value of 0.05, and only 3 with P-values below 0.001.

Discussion

The results of our fully multivariate genome-wide association analysis have implications for the
study of inheritance and evolution of the Drosophila melanogaster wing, for the genetic
architecture of quantitative traits, for the study of the genotype-phenotype map and for the

usefulness of multivariate association analyses. We discuss each of these in turn.

Inheritance of Drosophila wing shape

The Drosophila wing is a single structure, consisting of veins connected by wing blade tissue.
The integration enforced by the physical connection between each part of the wing, and the
continuity of these structures throughout development makes it a natural subject for a
multivariate genetic analysis. Any change during development that affects one aspect of the
wing, such asthe length of a particular vein, must also affect adjacent areas of thewing. The

processes most likely to affect wing shape and size are the pattern of growth of the wing tissue,
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the differentiation of veins from non-vein tissue, and the rearrangement and planar polarization
of cells during pupariation (Matamoro-Vidal et al. 2015). The known candidate genetic pathways
that affect these key developmental events have effects across broad regions of the wing, rather
than being confined to one small area. These considerations suggest that it isimpossible to
choose a genetically independent set of wing traits to measure.

A second layer of dependency among measurements of the wing is introduced by the
geometric morphometric analysis we used (Zelditch et al. 2004). There is no one reference
structure on a complex integrated morphological structure like awing that can be used asa
standard to compare with the locations of other structures. One can only interpret the relative
locations of all measured structures to one another, giving one more reason why it will not be
possible to define a set of traits that can be measured independently. Both of these features
suggest that pleiotropy is an absolutely unavoidable feature of variation in continuous
morphological structures, such asthe fly wing. Consequently, the pattern of effects on all
measured phenotypes in the wing will be more useful than any subset of measured variables.

The multivariate analysis of variance (MANOVA) that we used in this study can be
thought of as consisting of two steps — first, identifying the direction in phenotype space that best
differentiates the two genotypes at a particular genomic site, and second determining whether the
magnitude of the difference in that direction is sufficiently large to warrant our attention. The
first step defines atrait — the direction in phenotype space that maximizes the distinctness of the
means of the two genotypes. Second, statistical significance is estimated based on how unlikely
that difference is under the null hypothesis. In the more typical series of univariate analysis,
traits are chosen from afinite set of possible measurements that cannot capture the entirety of

phenotypic effects, except in the unrealistic case of uncorrelated traits. The multivariate analysis
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uses the data to decide which of the infinite combinations of the finite measurements best shows
the difference between genotypes. Thisiswhy multivariate analyses are more powerful than
univariate ones.

In addition, this aspect of MANOVA corresponds to our intuition about what variant
genotypes that actually affect the integrated wing phenotype should do: in principle, every site
affecting wing development could do so in a slightly different way, and each of those changes
will have pleiotropic effects that extend across the wing. The plots of wing shape changein
Figure 6B-C and Figure S5 represent estimates of those directions of some of our significant
SNPs.

For our data, the gain in power in the multivariate analysis was very dramatic. At afalse-
discovery rate of 5%, 2,396 SNPs were identified as potentially significant in the fully
multivariate analysis. In comparison the univariate analyses of principal component (PC) scores
identified just four significant variants on PC1, and none on the next 19 PCs when using the
same FDR algorithm on each axis. When we utilized the P-value estimated from the FDR from
the multivariate analysis (P=0.00007), almost 7,000 SNPs were nominally significant, but just 24
of those had significant effects on two or more PC axes. It is particularly notable that just 139
SNPs had significant effects in both the multivariate and at least one univariate analysis. We
interpret thisto mean that the false discovery rate of the more liberal (P=0.00007) univariate
criterion isquite high. The univariate analyses detect sites with effects that are unusually
concentrated along one PC axis, but look unremarkable in the entire phenotype space.

Previous association studies on aspects of wing shapein D. melanogaster have also
detected relatively large numbers of QTLS, given the number of markers employed. Weber et al.

(1999; 2001) generated recombinant inbred lines (RILS) between populations selected for high-
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and low-values of a univariate wing shape index, and found at least 20 sites over the two largest
chromosomes with uniformly small effects. Zimmerman et al. (2000) found evidence for a
dozen QTLsfor several aspects of wing shapein each of two small mapping populations, each
founded by crossing two inbred lines. Mezey et a. (2005) mapped at least 21 QTLs for the first
seven principal components of wing shapein a set of RILs derived from the cross of asingle pair
of wild-collected flies.

The large numbers of sitesimplicated in both the present and previous studies, strongly
suggests that the inheritance of wing size and shape is highly polygenic, with many genetic
variants of small phenotypic effect segregating in natural populations of D. melanogaster. In this
study, effect sizes are relatively uniform and no large effects were detected; the median
proportion of variance explained by a statistically significant SNP, averaged within LD cluster, is
1.1%, while the maximum is just 3.6%. This pattern isreminiscent of the genetic architecture of
human height, where a large number of sites with individually small effects are responsible for
the standing variation (Lango Allen et al. 2010; Yang et al. 2010; Wood €t al. 2014). The
magnitude of the effect sizesis certainly overestimated, asis the proportion of variance
explained. There are two well-known causes for this overestimation that our analysis does not
correct for. First, we report effect sizes at Sitesthat are individually statistically significant. This
will enrich for sites where effects are overestimated, rather than underestimated, causing the
Beavis effect (Beavis 1994; Beavis 1998; Xu 2003). Second, there is substantial linkage
disequilibrium involving many of our significant sites, and our analyses and, in particular, the
false discovery rate calculations assume that all sites are independent. It islikely that some of
our LD clusters may contain multiple causal sites, and their effects become confounded in the

estimates of effect size.
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We have carried out an extensive series of ssmulations of data sets smilar to ours

(Marquez and Houle 2015) that show the power of our experimentsis quite modest for sites that
explain just 1% of the variation, as our median significant sites are estimated to do — perhaps just
20%. Such low power means that we will detect only a minority of all the variants with an effect
on the phenotype. This ensures a substantial Beavis effect. It also suggests that correlations
among predictors could inflate the false discovery rate above the nominal 5% rate that we strove
to achieve. Conversdly, if many siteswith small effects are in fact responsible for the genetic
variation in wing shape, the modest departures from the null distribution of P-valuesrevealed in
the qg-plot in Figure 3 are expected. These considerations suggest that we can have considerable
confidence in the overall genetic signal, but low confidence in individual sites.

Our estimates of effects on all shape traits simultaneously allows us to undertake
validation experiments that test whether validation effects are in directions more similar using
the angle between the observed vectors, and not just whether phenotypic effects can be detected
at onetrait. We performed two such sets of validation experiments, and their results are both
consistent with the highly polygenic architecture with small effect sizes. The phenotypic effects
of knockdowns of genesimplicated in theinitial GWAS, the dictionary experiment, provided
good evidence that SNP effects are more similar to these than expected under the null hypothesis
of no similarity. In several cases the effects of particular SNP-knockdown pairs are individually
more similar than random vectors (Figure 6).

Validation of SNPsin a second panel of lines from natural populations from Maine and
North Carolina (ME-NC) again suggested that overall the direction of effectsis more similar to
random SNP subsets than expected by chance. The evidence for validation for individual DGRP

SNPs was relatively poor, and no individual sites were strongly validated. The precision with
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which phenotypic effects are estimated is positively correlated with effect sizes. This suggests
that the direction of the many small effects we detected isimprecisely estimated, which will tend
to increase the angles between effects. This effect should be particularly large comparing both
the DGRP and ME-NC vectors, which are both small in magnitude, and likely overestimated in
the DGRP analysis, as discussed above. In contrast, the directions of the dictionary knockdowns
are larger and more precisely estimated. This may account for the stronger validation in the
dictionary experiment.

Despite the difficultiesin identifying particular candidate SNPs, the additional filtering
step we performed using the multivariate multiple regression with “competitor” SNPsin LD with
the focal SNP helped usidentify a smaller set of genes more likely to be responsible for genetic
variation. Indeed, both the full set of 1188 genes implicated by the full set of significant SNPs,
and the filtered set of 196 genes implicated by the SNPs that showed evidence of over-
representation of Drosophila limb development genes (Figure S2). Furthermore the high vector
correlations of dictionary effects with SNP effects for individual genes such as Egfr (Figure 6)
suggest that meaningful candidates can be identified for further verification and study. Egfr has
previously been implicated in QTL and candidate gene association mapping of Drosophila wing
shape (Palsson and Gibson 2000; Zimmerman et al. 2000; Palsson and Gibson 2004; Palsson et
al. 2004; Dworkin et al. 2005). Other genes such as dachsous (ds Figure S5), have profound
effects on wing morphology including overall shape, and remain important candidates for future
work.

While we have demonstrated the power and prospect of afully phenomic approach to
association studies, there are important caveats to consider, as with all GWAS studies.

Population sub-structure and genetic relatedness among samples can confound the independent


https://doi.org/10.1101/108308
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108308; this version posted February 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Pitchers et al. - 39

estimation of genetic effects (Ziv and Burchard 2003; Tian et al. 2008). Indeed, while the DGRP
inbred lines have generally been considered to have little sub-structure, recent evidence suggests
that there has been some recent admixture with African populations (likely via the Caribbean)
(Duchen et al. 2013; Pool 2015). While LD due to spatial proximity between sites has been
recognized as an important concern for decades, the large number of rare allelesin natural
populations gives rise to random linkage disequilibrium in the sample, termed “rarity
disequilibrium” (Houle and Mérquez 2015). We considered and in part controlled for this by
using a second round of modd fitting that includes sitesin LD (both spatially proximal and
distant) as covariates. Recent analytical advances, such as the use of mixed models (Yang et al.
2010) or regularization schemes (Peng et al. 2010; Wang et al. 2015), that minimize the
overfitting engendered by simultaneous consideration of huge numbers of predictors are
promising solutions to such problems. Unfortunately, their application to multivariate problems
isnot yet mature.

Overal, we are confident that our list of significant SNPsis enriched for causal QTNs
and sites correlated with QTNSs, but remain uncertain of which sites are actually causing the

genetic variance we observe.

Why multivariate association studies?
The larger point that we wish to emphasize is that multivariate analyses increase both the power
of association studies, and the interpretability of the results obtained over a series of univariate
analyses.

As discussed above, the power of our multivariate analysesis far greater than those of a
comparable set of univariate analyses; we detected 2,396 significant SNPs at an FDR of 5% in

the multivariate analyses, but just four in univariate analyses of scores on the 20 most variable
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principal component axes. The fact that this result has repeatedly been demonstrated in
simulation studies using a variety of statistical methodologies (O’ Rellly et al. 2012; Stephens
2013; van der Sluis et al. 2013; Zhou and Stephens 2014; Marquez and Houle 2015) suggests
that the expectation of increased power is general. Except in special cases, any multivariate
analysis will be more powerful than the corresponding set of univariate analyses.

A second important reason for multivariate analysesis that the multivariate effect vector
estimated is far more informative than a series of decisions about which traits are affected by
each SNP that results from standard univariate testing. We exploited thisin our analysesto
demonstrate that a series of gene knockdowns have effects that are more similar to our effects
than expected under arandom model, to pick out afew similarities that are particularly
significant and deserving of further study. Highly correlated effects suggest the potential for
some shared biological function.

A final critical justification for transitioning from univariate to multivariate association
studiesis to enable the study of the genotype-phenotype map, how genomic variation is
translated into phenotypic variation (Houle 2010; Houle et al. 2010). Everything that we know
about genetics and biology suggests that genomic variation will have pleiotropic effects. We
can’'t begin to study pleiotropy without studying multiple traits. Every phenotypic effect will
have a molecular origin, for example in gene expression, which then ramifies outwards to cells,
tissues and finally to the outward aspects of organismal form and function such as morphology
and behavior. Each such molecular change may have effects on many whole organism
phenotypes. For example, the study of even the simplest monogenic human genetic diseases,
such as sickle-cell anemia, inevitably reveals a host of disorders tracing back to the single

genetic cause. Decisions about how to treat genetic disease, the value of agenetic variant in
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plant or animal breeding, or whether an endangered population is likely to adapt to a changing
environment will be improved when we have information about all of the pleiotropic effects of
genetic variation, and not just the few that happen to have been studied.

The prevailing approach to the study of pleiotropy isto perform a series of univariate
analyses to count the numbers of traits that are significantly affected by a SNP. This biases the
GWAS results towards discovering just afew large effects, even if the underlying architectureis
highly pleiotropic, because most GWAS have modest power (Beavis 1998; Manolio et al. 2009;
Slate 2013). Our univariate analyses could be used to argue that there is low pleiotropy as only
PC1 was affected, and no SNP had a significant effect on two PC scores, while our multivariate
analyses reveal that the directions of significant effects are quite variable (Figure 8). A striking
example of the biasthis causesisarecent GWAS of brain regions in mice that concluded that
amost all QTLs affected only a single brain region, implying no constraints on the evolution of
brain shape (Hager et al. 2012). The results were based on a panel of 100 recombinant inbred
lines, so that the power to detect effects was small. Not a single pleiotropic effect was detected
based on the failure of any QTL to reach statistical significance for more than one brain region.
In reality, we know that body size is affected by hundreds of segregating variantsin large
populations (Wood et al. 2014), and some of these should also affect brain size as awhole
(Lande 1979). This methodology is unfortunately ubiquitousin studies of pleiotropy. A
rigorous testing approach is appropriate to the goal of finding the candidate genes for further
investigation, but not to the goal of estimating the pattern of pleiotropy. Inthe univariate case
the use of statistical testing creates the problem of ‘missing heritability’ (Yang et al. 2010). In

the multi-trait case, univariate testing introduces ‘ missing pleotropy.’
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One popular alternative to a fully multivariate approach is to apply dimenson-reduction

techniques that redefine traits as combinations of the measured traits, such as principal
components analysis and linear discriminant analysis, then analyze a small number of these
linear combinations using univariate satistics (e.g., Zimmerman et al. 2000; Mezey et al. 2005).
The main justification for this approach isto ensure that the traits analyzed are independent from
each other. While this does provide valuable information, such analyses are still a series of
univariate analyses that will be less powerful than afully multivariate analysis, as discussed
above. If, in addition, the variables analyzed do not capture all the phenotypic variation, some of

the information in the original sampleis not utilized.

Dimensionality as a blessing rather than a curse

With all these advantages to multivariate association analyses, why are they still rare? In some
cases, there are substantial statistical barriersto a fully multivariate analysis. For example, itis
challenging to combine binomial and normal variates in the same analysis, although solutions
have been proposed (e.g., O’ Rellly et al. 2012). Many multivariate data sets have incomplete
phenotypic data, and restricting the analysis to just those individuals with complete data may
reduce sample size too much for reasonable inference. Multivariate methods are unfamiliar to
many researchers, posing arelatively ssmple hurdle to their adoption.

We suspect that afinal factor interfering with the widespread adoption of multivariate
methods is summed up in the phrase “curse of dimensionality.” This phrase was originally
coined by Richard Bellman (1957) and has since become a meme useful for causing unease
about multivariate analyses, even when the nature of the curse remainsimplicit. It generally

denotes the notion that the hypervolume of sample space increases rapidly with the number of
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dimensions measured, while the sample size remains fixed, resulting in datathat is ever sparser
as dimension increases. Zimek et al. (2012) identify eight separate challenges that increase with
dimensionality of the data set just in the realm of distance-based analyses (such as detecting
neighbors, hubs, outliers, etc.). They also note that many of these are problematic only in the
limiting case where all variables are independently and identically distributed; biological data are
always correlated and often clustered. Our argument that the relationship between vectors of
effectsis more informative in ahigh dimensional data space is essentially the flip side of the
standard sparsity argument. Effects become more informative because a finite set of real effects
must be sparser in alarger space, and therefore both similarities and differences become more
informative.

Another challenge frequently posited is that alarge proportion of the measurementsin a
high dimensional data set may beirrelevant. Indeed, our simulations show that power of an
association study declines when traits without any genetic basis are measured (M arquez and
Houle 2015). Given that the current standard approach to GWAS includes just afew traits, we
are confident that the number of traits can usually be greatly increased without reaching this
limit. Biological measurements are expensive and time-consuming to make, ensuring that
considerable thought will be expended on what to measure. Furthermore, the appropriate
dimension for analysis can be estimated from data on related individuals (Kirkpatrick and Meyer
2004; Meyer and Kirkpatrick 2005; Meyer and Kirkpatrick 2008). In general, principal
components analysis can reveal how much new information is added when another trait is
measured, and a cutoff that seems likely to capture most genetic variation chosen.

The best answer to the concern that dimensionality can be a curse are analyses of

simulated data sets that show that the power of multivariate analyses is higher, sometimes much
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higher, than univariate analyses. It is especially notable that, many independent simulation
studies that make different assumptions, and apply a wide variety of well-established or
experimental multivariate analyses al obtain thisresult. Most of these studies also analyze real
data sets and invariably find more associations in multivariate than univariate analyses (O’ Rellly
et al. 2012; Stephens 2013; Scutari et al. 2014; Zhou and Stephens 2014). Our results are
consistent with this pattern.

We believe that researchers should invoke the blessings of dimensionality, rather than its
potential to be a curse. Multivariate analyses will generally be more powerful. The ability to
estimate the direction of effects becomes more salient with the dimension of the space studied.
The phenomenon of pleiotropy simply cannot be studied unless multiple traits are studied
together. The prevailing estimates of pleiotropy based on sequential univariate analyses will
greatly underestimate the degree of pleiotropy. Those interested in the inheritance of complex
traits and the genotype-phenotype map should adopt multivariate approaches whenever it is

feasible to do so.
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Table 1. Summary statisticsfor MANOVAsfor the effects of the three common inversions

and Wolbachia infection status on wing shape-size.

numerator denominator
Predictor  df df Wilk'sh P
In(2L)t 128 94.7 0364  2.08x 107
IN(2R)NS 128 93.4 0475  270x10°
In(BR)Mo 128 93.8 0.327 453x 10
Wolbachia 59 124.7 0.660 0.34
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Table 2. Comparison of knockdown (Dictionary) effects on genes with significant SNPs close to the coding region.

Vector length
Number  Location from
Genellevd LD Vector Cluster- level of SNPs trandated regiont

Gene signif. clustert  correlation signif. SNPs Dictionary in cluster
ap 305 0.013 041 0.39 1 Intron
aret 214 0.336 107 047 1 Intron
bun 215 0.197 066 0.78 1 Intron
Bx 99 0.284 189 120 1 Intron
CG12934 * 326 0.568 ** 111 192 6 +0.2to +2.1kbp

327 0.320 110 192 2 +1.9to +2.2kbp
CG8654 405 0.397 143 041 1 3 UTR
dally 588 0.020 044 0.90 1 +2.1kbp

589 0.422 093 0.90 1 Intron
dip 662 0.542 059 1.00 1 Intron
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+ P<0.1; * P<0.05; ** P<0.01.

T Cross-referenced to specific SNP locations in Supplemental File S2.

¥ + indicates downstream of transcribed region, [1 upstream.
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Figure 1. Capturing wing shape with a spline model. Closed circles are landmarks formed by
the intersection of splined veins, open circles semi-landmarks used to represent the locations of
veins. (A) Splinesfit to atypical Drosophila melanogaster wing. Colored lines are the splines.

(B) Blue overlay represents the range of shape variation among DGRP lines.

Figure 2. Inter-lab repeatability. A) High repeatability of line effect sizes across labs.

B) Low repeatability of size across labs, despite high intra-lab repeatability (S1B Figure).

Figure 3. Manhattan plots of thelogo inverse P-valuesfrom (A) multivariate analysis and
(B) aunivariate analysis of PC1. Solid red line is P=0.00007, the cutoff for a 5% FDR using
the Storey and Tibshirani analysis of the multivariate data. Green points are the four SNPs that

reach the 5% FDR cutoff from analysis of just the PC1 P-values.

Figure 4. Quantile-quantile plot of observed vs. expected P-values genome wide. Black: all

SNPs; red: SNPswith MAF < 0.15; blue: SNPs with MAF>0.15.

Figure 5. Mean measures of multivariate and univariate effect sizefor SNPs categorized
by significance of the univariate test on each PC using P=0.00007 as a cutoff. Grey sguares.
total multivariate effect size for SNPs significant in the corresponding univariate analysis; Red
squares: univariate effect size for SNPs significant in the corresponding univariate analysis (also

shown in Figure 5B); Green diamonds: univariate effect size score for SNPs significant in the
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multivariate analysis; Blue circles: univariate effect size score for all SNPs. Horizontal reference
lines show the mean multivariate effect size for all SNPs and for all SNPs significant in the

multivariate analysis.

Figure 6. Wing shape defor mationsinferred for gene knockdowns and SNP effects.

(A) Effects of different levels of Egfr knockdown on wing shape. (B) Comparison of
knockdown( left) and SNP vectors (right) for Egfr. The Egfr knockdown is the regression of the
shape changes shown in (A) on the level of mifepristone applied. (C) Comparison of knockdown

(left) and SNP LD cluster vectors (right) for CG12934.
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Supplemental Information

Submitted separately.

Figure S1. Inter and intra-lab repeatability: A) Vector correlations of deviations of line
means from the grand mean. The vast majority of estimates are highly correlated. Estimates with
large angles are those with small effect sizes. B) Estimates of wing size in experimental

replicates in the Dworkin lab.

Figure S2. Mean and median number SNPs correlated at r%>0.5 with significant SNPs, asa

function of distance between sitesand M AF.

Figure S3. Probability that a significant SNP iscorrelated at r%>0.5 with at least one other

sitein the genome as a function of MAF.
Figure $4. Gene Ontology analysis of L D-filtered genesfrom Web Gestalt.

Figure Sb. Effects of variants near the dachsous (ds) gene and knockdown vector s
significantly correlated with them. Two LD clusters of SNPs near ds contained SNPswith
significant phenotypic effects, cluster 114 and cluster 116. These vectors are themselves
correlated at r=0.67, and have suggestive correlations with the ds knockdown phenotype (lower
left; r=0.75. P<0.1 LD114; r=0.70, ns LD116), suggesting a general effect of ds expression. The
effect of cluster 114 is significantly correlated with knockdown of expanded (ex) (r=0.78,

P<0.01; r=0.71, P<0.1 with LD116). The effect of cluster 116 is significantly correlated with
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knockdowns of nemo (r=0.84, P<0.001; r=0.63, nswith LD114) and warts (wts, r=0.71,

P<0.001; r=0.49, nswith LD114).

File S1. Meansand S.D. of PC scores by lab and sex of fly, eigenvector s of the combined
data set, and the estimated among-line genetic variance-covariance matrix in a 40-

dimensional and phenotypic (97-dimensional) spaces.

File S2. Significant SNPsfrom the multivariate analysis and theresults of two analysesto

determine whether the SNP islikely to have a causal effect.

File S3. List of RNAIi knockdown experiments, the quantiles of correlationsunder the null
hypothesis of no relationship, and the angles between effect vectorsand thefirst 5 PCS of

the combined data set.

File SA. Vector correlationswith r>0.5 between knockdown experiments and average
effects of LD clusters. Only LD clusters with sites <5kb apart and whose members are all

closest to a single gene are included.
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