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Abstract 24 

Both gene expression levels and eQTLs (expression quantitative trait loci) are partially tissue-specific, 25 

complicating the detection of eQTLs in tissues with limited sample availability, such as the brain. 26 

However, eQTL overlap between tissues might be non-trivial, allowing for inference of eQTL 27 

functioning in the brain via eQTLs measured in readily accessible tissues, e.g. whole blood. Using 28 

Stratified Linkage Disequilibrium Score Regression (SLDSR), we quantify the enrichment in GWAS 29 

signal of blood and brain eQTLs in genome-wide association study (GWAS) on 11 complex traits 30 

(schizophrenia, BMI, educational attainment, Crohn’s disease, rheumatoid arthritis, ulcerative colitis, 31 

age at menarche, coronary artery disease, height, LDL levels, and smoking behavior). Our analyses 32 

established significant enrichment of blood and brain eQTLs in their effects across all traits. As we do 33 

not know the true number of causal eQTLs, it is difficult to determine the precise magnitude of 34 

enrichment. We found no evidence for tissue-specific enrichment in GWAS signal for either eQTLs 35 

uniquely seen in the brain or whole blood. To follow up on our findings, we tested tissue-specific 36 

enrichment of eQTLs discovered in 44 tissues by the Genotype-Tissue Expression (GTEx) consortium, 37 

and, again, found no tissue-specific eQTL effects. We further integrated the GTEx eQTLs with SNPs 38 

associated with tissue-specific histone modifiers, and interrogate its effect on rheumatoid arthritis 39 

and schizophrenia. We observed substantially enriched effects on schizophrenia, though again not 40 

tissue-specific. Finally, we extracted eQTLs in tissue-specific differentially expressed genes, and 41 

determined their effects on rheumatoid arthritis and schizophrenia. We conclude that, while eQTLs 42 

are strongly enriched in GWAS signal, the enrichment is not specific to the tissue used in eQTL 43 

discovery. Therefore, working with relatively accessible tissues, such as whole blood, as proxy for 44 

eQTL discovery is sensible; and restricting lookups for GWAS hits to a specific tissue might not be 45 

advisable.  46 

 47 
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 51 

Introduction 52 

The aim of genome-wide association studies (GWASs) is to detect statistically significant associations 53 

between genetic variants, such as single nucleotide polymorphisms (SNPs), and a trait of interest 54 

(Hirschhorn and Daly 2005). GWASs have identified many genetic variants and thereby provided 55 

insights into the genetic architecture of complex traits (Hirschhorn and Daly 2005; Visscher et al. 56 

2012). However, as a large number of variants identified through GWASs are located outside of 57 

coding regions and specific knowledge of regulatory elements is limited, uncovering a relationship 58 

between GWAS hits and biological function has proven to be complicated (Lowe and Reddy 2015). 59 

Expression quantitative trait loci (eQTLs) contain SNPs that influence gene expression, and are not 60 

necessarily located in coding regions. eQTLs may aid functional annotation of SNPs that have been 61 

identified in a GWAS and are located outside of coding regions (Morley et al. 2004; Lowe and Reddy 62 

2015). Previous work has found substantial enrichment of eQTLs among GWAS hits (Manolio et al. 63 

2009; Nicolae et al. 2010; Torres et al. 2014) and an enrichment in their genome-wide effect on 64 

complex traits (Davis et al. 2013). Therefore, eQTLs are viewed as an important tool in moving from 65 

genome-wide association to biological interpretation. 66 

As a result of difference in gene expression between cells originating from different tissues, 67 

eQTLs are potentially tissue-specific (Hernandez et al. 2012; GTEx Consortium 2015). Tissue-68 

specificity poses no problem if the tissue of interest is readily available for research, such as whole 69 

blood. However, discovery of eQTLs gets complicated when measurement of expression levels in a 70 

tissue is limited by ethical and practical considerations, for example in brain tissue. Several studies 71 

have shown that the overlap between eQTLs from different tissues might actually be larger than 72 

initially assumed (Ding et al. 2010; Nica et al. 2011). The Genotype-Tissue Expression (GTEx) 73 
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consortium identified eQTLs in a wide range of human tissues and showed that 54-90% of the eQTLs 74 

identified in one tissue are also designated as an eQTL in at least one other tissue (GTEx Consortium 75 

2015; Aguet et al. 2016). In another study, Liu et al (2016) found a high average pairwise genetic 76 

correlation (rg=0.738) of local gene expression between tissues. Nevertheless, small differences in 77 

terms of eQTL effect may be of considerable importance in terms of the effect an eQTL might have 78 

on complex traits related to specific tissues. It is, therefore, worthwhile to investigate the specific 79 

utility of tissue-specific eQTLs in their effect on complex traits, as studied in GWAS, as the discovery 80 

of eQTLs for tissues such as the brain might be advanced by eQTLs discovered in more accessible 81 

tissues, such as whole blood. The use of accessible tissues, though, depends on a substantial degree 82 

of similarity of eQTL effect across tissue, and to what extend eQTL differences between tissues are 83 

important in complex trait etiology. 84 

Stratified Linkage Disequilibrium Score Regression (SLDSR) is a technique that estimates the 85 

SNP-heritability (h2
SNP) of a trait based on GWAS summary statistics (Bulik-Sullivan et al. 2015; 86 

Finucane et al. 2015). By simultaneously analyzing multiple categories of SNPs (annotations), SLDSR 87 

can partition h2
SNP by annotation (h2

annot) and thereby provides a way to jointly quantify the 88 

enrichment in GWAS signal of several annotations. Here, we extend SLDSR by including annotations 89 

containing cis-eQTLs, i.e. eQTLs located closely to the gene with which they associate (Brem et al. 90 

2002; Ramasamy et al. 2014), discovered in multiple tissues. To this end, we perform analyses based 91 

on representative eQTL resources, and consider a variety of traits as outcomes.  92 

Firstly, we selected all eQTLs per gene discovered in large samples of RNA expression levels 93 

assessed in whole blood (N=4896)(Wright et al. 2014; Jansen et al. 2017) and in brain tissues (N=134) 94 

(Ramasamy et al. 2014), and quantified the contribution of these blood and brain eQTLs to the 95 

genetic variance in complex traits captured in GWAS. We then estimated tissue-specific eQTL effects 96 

on complex traits by quantifying the enrichments of eQTLs uniquely found in whole blood or 97 

uniquely found in brain, conditional on the enrichment of the complete blood eQTL annotation or 98 

complete brain eQTL annotation, respectively. We considered the effect of eQTLs on 11 complex 99 
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traits: schizophrenia, BMI, educational attainment, Crohn’s disease, rheumatoid arthritis, ulcerative 100 

colitis, age at menarche, coronary artery disease, height, LDL levels, and smoking behavior.  101 

Secondly, we retrieved all eQTLs identified in any of the 44 tissues from the GTEx consortium 102 

(N=70-361, median=126.5)(GTEx Consortium 2015; Aguet et al. 2016). We considered the 103 

enrichment in GWAS signal of the union of all GTEx eQTLs, and, additionally, the enrichment of 104 

tissue-specific eQTL effects on top of the union of all GTEx eQTLs. We expected to observe tissue-105 

specific enrichment of eQTLs in their effects on complex traits related to the tissue in question, e.g. 106 

eQTLs discovered in immune-related tissues are expected to show higher enrichments in their effect 107 

on immune-related traits compared to eQTLs found in skin tissue. We considered tissue-specific 108 

enrichment of cis-eQTLs in their effect on schizophrenia (a disorder where there is strong prior 109 

evidence for the involvement of processes in the brain) and rheumatoid arthritis (a disease with 110 

strong prior evidence for the involvement of processes in immune tissue) as GWAS for these traits 111 

are well powered for extended LD-score-based analyses. We further considered the enrichment of 112 

the intersection of cis-eQTLs discovered in any tissue, and histone modification in a specific tissue 113 

(i.e. tissue-specific epigenetically changed chromatin states in regulatory regions). Finally, we 114 

explored the enrichment in GWAS signal of eQTLs for tissue-specific differentially expressed genes. 115 

Our analyses were designed to elucidate the relation between eQTLs and complex traits, and 116 

to quantify the extent to which this relation is dependent on the tissue used in eQTL discovery. Our 117 

analysis further considered the enrichment of genomic regions related to gene expression and 118 

epigenetically modified in specific tissues.  119 

 120 

Material and Methods 121 

SLDSR method 122 

A measure of linkage disequilibrium (LD) for each SNP, called an “LD score”, can be computed by 123 

taking the sum of correlations between that SNP and all neighboring SNPs (Bulik-Sullivan et al. 2015; 124 

Finucane et al. 2015). Under a polygenic model, LD scores are expected to show a linear relationship 125 
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with GWAS test statistics of corresponding SNPs, where the slope is proportional to h2
SNP. For SLDSR, 126 

LD scores are based on only (functional) parts of the genome and used as predictors in a multiple 127 

linear regression (Finucane et al. 2015). In this manner, SLDSR is able to partition h2
SNP into parts that 128 

are explained by these parts of the genome (i.e. h2
annot), while accounting for influences of the 129 

remaining annotations in the model. The enrichment of an annotation is then obtained by taking the 130 

ratio of h2
annot over the proportion of SNPs that fall within that annotation. For eQTLs, the 131 

denominator, i.e. the number of SNPs in the annotation, is a complicated quantity: not all significant 132 

eQTLs are likely causal; whereas including only lead, or putative causal, eQTLs may result in very 133 

small annotations located near genes and other regulatory elements, which presents a risk of 134 

inflated estimates of the enrichment in GWAS signal. What constitutes an eQTL is sufficiently vague 135 

and open for interpretation for us to consider the effect of multiple inclusion rules for inclusion of a 136 

SNP into the eQTL annotation. Since eQTLs are essentially discovered in what amounts to a local 137 

GWAS, we expect the average LD score of eQTLs to be higher than that of an average SNP, which 138 

may influence the results of downstream SLDSR analysis. In order to break the relation between LD 139 

score and probability of inclusion, we consider eQTL annotations which are based on a sample of 140 

from all significant eQTLs for a given probe. First, we included the most strongly associated SNP, a 141 

SNP with a high expected LD score. Second, we included one SNP per probe with a median p-value. 142 

Third, we included one SNP per probe with a mean p-value. Fourth, we included the 10 most 143 

strongly associated SNPs per probe. Finally, we included all SNPs significantly associated with gene 144 

expression after FDR correction at α=0.05. We add each annotation separately to the baseline 145 

categories in an SLDSR model, and determined how the various p-value thresholds influence the 146 

SLDSR coefficient and its test statistic. For each annotation, we looked up the SNPs in the baseline 147 

category, and extracted their baseline LD scores and minor allele frequencies (MAF). We then 148 

compared the mean LD score, median LD score and mean MAF between the annotations and the 149 

entire baseline category. Based on the results (S1 Figure – S2 Figure, S3 Table), we consider all 150 
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significant cis-eQTLs as an annotation, and retain additional gene-centric and regulatory annotations 151 

ins the model.  152 

 153 

Target traits 154 

As outcome for SLDSR, we used summary statistics of GWASs on Crohn’s disease (Jostins et al. 2012), 155 

rheumatoid arthritis (Okada et al. 2014), ulcerative colitis (Jostins et al. 2012), BMI (EK et al. 2010), 156 

educational attainment (Rietveld et al. 2013), schizophrenia (Ripke et al. 2014), age at menarche 157 

(Perry et al. 2014), coronary artery disease (Schunkert et al. 2011), height (Allen et al. 2010), LDL 158 

levels (Teslovich et al. 2010), and smoking behavior (Furberg et al. 2010). The first three traits were 159 

chosen because they are related to the immune system and are therefore expected to reveal 160 

considerable enrichment of blood eQTL signal (Jostins et al. 2012; Okada et al. 2014). Similarly, brain 161 

eQTLs are expected to show substantial enriched effects due to previous reports on the involvement 162 

of the central nervous system (CNS) in schizophrenia (Ripke et al. 2014), educational attainment 163 

(Rietveld et al. 2013), and BMI (Vimaleswaran et al. 2012). Of course, these traits do not perfectly 164 

align with either tissue, e.g. the immune system has been implicated in the etiology of schizophrenia 165 

(Andreassen et al. 2015) and BMI (Karalis et al. 2009), and might therefore also be enriched in their 166 

effects for the other eQTL set. Enrichment of blood and brain eQTL effects on the remaining traits 167 

was calculated to contrast the results with traits for which we do not have a strong a priori 168 

expectation of the relationship between trait and tissue.  169 

 The discovery sample for detection of blood eQTLs  (Wright et al. 2014; Jansen et al. 2017) 170 

included participants from the Netherlands Twin Register (NTR)(Boomsma et al. 2008) and 171 

participants from the Netherlands Study of Depression and Anxiety (NESDA)(Penninx et al. 2008). 172 

These two cohorts did not participate in the GWAS for schizophrenia, Crohn’s disease, rheumatoid 173 

arthritis, ulcerative colitis, or coronary artery disease. However, participants from these two cohorts, 174 

not necessarily the same ones, did participate in the GWAS for height, BMI, LDL levels, smoking 175 

behavior, educational attainment, and age at menarche. For educational attainment and smoking 176 
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behavior, we were able to obtain summary statistics omitting subjects from NTR/NESDA. For both 177 

these traits, we looked at trait-specific enrichment of blood and brain eQTL effect in GWAS signal, 178 

comparing results from using publicly available datasets with using summary statistics based on the 179 

same sample without subjects from the NTR or NESDA. The results did not reveal appreciable 180 

differences between the respective datasets for educational attainment, but did show substantial 181 

differences for smoking behavior (S4 Figure). This latter finding could conceivably be a function of 182 

relatively strong effects of smoking behavior on gene-expression levels (Vink et al. 2015). Therefore, 183 

the remaining analyses for smoking behavior were performed using the summary statistics omitting 184 

the NTR and NESDA, whereas analyses for the remaining traits (height, BMI, LDL levels, and 185 

educational attainment) were run using publicly available summary statistics. This caveat only 186 

applies to eQTL annotations based on NTR/NESDA data (i.e. whole blood). We note that the issue of 187 

overlap also applies to other techniques where the error covariance is assumed to be zero (e.g. 188 

TWAS, mendelian randomization analysis, SMR, etc.). 189 

 190 

Blood and brain eQTL enrichment 191 

A catalog of whole blood cis-eQTLs was obtained from Jansen et al (2017; Wright et al. 2014), where 192 

all eQTLs significantly associated with gene expression in whole blood for each probe set were 193 

selected for inclusion in our whole blood eQTL annotation. A list of brain eQTLs was obtained from 194 

the UK brain expression consortium (UKBEC), for which the analyses are described in Ramasamy et al 195 

(2014). We based the brain eQTL annotation on SNPs that were significantly associated with the 196 

average gene expression across 12 brain regions. SLDSR annotations were constructed as per the 197 

instructions in Bulik-Sullivan et al. and Finucane et al. (2015). To guard against upward bias in the 198 

eQTL enrichment signal, two extra annotations containing SNPs within a 500 base pair (bp) and 199 

100bp window around any eQTL were constructed for each eQTL set (Finucane et al. 2015). To 200 

ensure that the enrichment of eQTL effects in GWAS signal was not in fact caused by their proximity 201 

to the genes they influence, an additional gene centric annotation was computed, which contained 202 
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all genes for which eQTLs were included. Finally, we performed an inverse-variance weighted meta-203 

analysis across the traits to determine the average effect of blood and brain eQTLs on complex traits 204 

in general. 205 

 206 

Tissue-specific eQTL enrichment 207 

To distinguish between the effects of blood- and brain-specific eQTLs, we split each annotation into 208 

two sets based on the overlap in genes that were tagged by eQTLs from both tissue. That is, the 209 

brain eQTL annotation was split into an annotation of brain eQTLs which regulate genes for which 210 

also at least one blood eQTL was found, and a second annotation of eQTLs that tagged genes for 211 

which only brain eQTLs were found. Likewise, the blood eQTL annotation was split into an 212 

annotation containing only eQTLs that tagged genes for which eQTLs from both tissue was found, 213 

and an annotation consisting of blood eQTLs that tagged genes for which only eQTLs have been 214 

found in blood. In doing so, we are saying that the effect of an eQTL is mediated via the gene it is 215 

associated with. Then, if two different SNPs are associated with the expression of the same gene, 216 

but in different tissues, this gene is likely the mechanism by which the SNP influences a trait. 217 

Contrary, when the same SNP affects different genes in different tissues, this SNP can be seen to 218 

have a tissue-specific mediation of its effect. We thus define eQTLs shared across tissue as eQTLs 219 

that influence a common gene in separate tissues.  220 

 221 

Enrichment of eQTLs from 44 tissues 222 

There are several limitations to above mentioned analyses of tissue-specific enrichments of eQTL 223 

effects in GWAS signal. The eQTLs are obtained from two different projects, which vary in terms of 224 

sample size and their definition of an eQTL. To mitigate the heterogeneity between studies, and to 225 

extend to additional tissues. We performed additional analyses using eQTLs obtained by a common 226 

pipeline from 44 tissues (see S5 Table) and based on a broader eQTL locus definition (GTEx 227 

Consortium 2015; Aguet et al. 2016). For each of the 44 tissues, we created annotations for analysis 228 
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in SLDSR following the previously described procedure. Analogous to the procedure of Finucane et al 229 

(2015) for cell-type-specific analysis using SLDSR, we did not specify windows for the individual GTEx 230 

annotations, but included an additional annotation that contained the union of all GTEx eQTLs, i.e. 231 

all SNPs that are designated as part of at least one of the 44 individual GTEx annotations, and added 232 

a 100bp and 500bp window around this union of GTEx eQTLs. SLDSR is essentially a multiple 233 

regression and, due to the high number of models and high number of predictors (i.e. annotations) 234 

in each model, has a high multiple testing burden. As such, it requires well-powered GWAS in order 235 

to accurately partition the heritability the various annotations  (Bulik-Sullivan et al. 2015; Finucane et 236 

al. 2015). Based on the Z-score of the SNP-heritability and previous reports of substantial influence 237 

of either tissue in the etiology of the traits (Okada et al. 2014; Ripke et al. 2014; Finucane et al. 2015; 238 

Finucane et al. 2017), we obtained two well-powered traits, one for which we assume there to be 239 

significant enrichment in signal for blood eQTLs (rheumatoid arthritis) and one for brain eQTLs 240 

(schizophrenia). For each of these two traits, we ran one SLDSR model containing only the baseline 241 

categories and the union of GTEx eQTLs, and 44 additional models with the two previous 242 

annotations and one of the individual GTEx annotations at a time.  243 

GTEx has relative small sample sizes for the brain eQTL discovery (mean=89 sample size, 244 

range=72-103) compared to other tissues (mean=160 sample size, range=70-361) (GTEx Consortium 245 

2015; Aguet et al. 2016). To investigate the effect of differences in sample size on estimates of 246 

enrichments in GWAS signal, we collapsed the union of individual brain eQTL annotations into a 247 

shared brain eQTL annotation (i.e. an eQTL found in at least one of the GTEx brain annotations was 248 

included in the shared brain eQTL annotation). This annotation was then analyzed as an additional 249 

GTEx eQTL annotation. We further tested the relationship between tissue sample size and tissue 250 

eQTL enrichment.  251 

 252 

Enrichment of the intersection between eQTLs and histone marks 253 
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The availability of annotations based on tissue-specific histone marks made it possible to create an 254 

annotation that represents the intersection between eQTLs and this type of epigenetic modification 255 

related to enhancers and promoters of actively transcribed genes. We obtained LD score 256 

annotations of SNPs in regions that bear histone marks in cells from the CNS or immune system from 257 

Finucane et al (2015). Out of the 220 cell-type-specific histone mark that were available, 101 were 258 

found in the CNS or immune tissues. For each of the 101 annotations of SNPs in cell-type-specific 259 

histone marks, we extracted its intersection with the union of GTEx eQTLs and made a new 260 

annotation of eQTLs which intersected with histone marks (i.e. SNPs found in both annotations). We 261 

then analyzed each of the intersection annotations individually in a model together with the baseline 262 

categories, the union of GTEx eQTLs, and the corresponding cell-type-specific histone marks. 263 

Enrichments in GWAS signal of the intersection should be interpreted as enrichment of genome-264 

wide SNP effects on a complex trait beyond the additive effects which work on all SNPs that are a 265 

cis-eQTL and histone mark in question. In fact, we test whether the interaction between tissue-266 

specific chromatin state and eQTLs are enriched in their genome-wide effect on complex traits.  267 

 268 

Intersection of GTEx eQTLs and tissue-specific differentially expressed genes 269 

Finucane et al ( 2017) looked at tissue-specific gene expression and determined that the top 10% of 270 

these differentially expressed genes are substantially enriched in their effects in GWAS signals for a 271 

wide range of traits. Here, we build on these findings by taking the top 10% most highly differentially 272 

expressed genes in the 44 GTEx tissues; obtaining the eQTLs for these specific genes, regardless of 273 

the discovery tissue; and added these separately as an annotation to an SLDSR model together with 274 

the baseline categories and union of all GTEx eQTLs. A significant increase in enrichment in GWAS 275 

signal in the eQTLs compared to the genes themselves, would indicate that eQTLs explain part of the 276 

enrichment seen by Finucane et al. 277 

 278 

Results 279 
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Effect of eQTL selection on regression parameter and test statistics 280 

We compare five annotations that included various SNPs based on the p-value of their associations 281 

with gene-expression levels (lead eQTL, median eQTL, mean eQTL, top 10 lead eQTLs, and all eQTLs). 282 

Supplementary table S3 shows various metrics of these annotations. Surprisingly, lead eQTLs had the 283 

lowest mean and median LD score amongst the annotations, indicating that the annotation contains 284 

less signal (S3 Table). However, it was still higher compared to the mean or median of all SNPs in the 285 

baseline annotation. Including all significant eQTLs in the annotation resulted in the highest mean 286 

and median LD score. All annotations had a mean MAF 0.27-0.28, whereas the mean MAF of the 287 

entire baseline category was 0.24. Smaller annotations had a higher enrichment in GWAS signal (S1 288 

Figure). However, the enrichment in GWAS signal did not differ between taking the lead eQTL, eQTLs 289 

with a mean p-value, or eQTLs with a median p-value. Finally, coefficient test statistics did not differ 290 

much between the annotations (S2 Figure). Based on the explorative analysis, we selected the 291 

annotation based on all significant eQTLs for further analysis. 292 

 293 

Blood and brain eQTL enrichment 294 

We fitted an SLDSR model containing the baseline categories; the complete annotation for both 295 

brain and blood eQTL tissues, their 100 and 500bp windows, and gene-centric annotations to all 296 

traits (Crohn’s disease, rheumatoid arthritis, ulcerative colitis, BMI, educational attainment, 297 

schizophrenia, age at menarche, coronary artery disease, height, LDL levels, and smoking behavior). 298 

We found significant effects of brain eQTLs on educational attainment, rheumatoid arthritis, 299 

smoking behavior, and schizophrenia, and significant effect of blood eQTLs on height and smoking 300 

behavior (see S6 Table). We then meta-analyzed the results for all annotations, both in the baseline 301 

model, and those associated with eQTLs across the 11 traits. Our analyses revealed significant effect 302 

of both blood (p < 0.001) and brain (p < 0.001) eQTL effects on all traits (Figure 1, S7 Table), 303 

exceeding, in terms of significance, all the baseline categories considered by Finucane et al (2015) 304 
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but conserved genomic regions. The gene-centric annotation for both blood and brain eQTLs showed 305 

no effect on any trait.  306 

We then separated the list of blood eQTLs into a list of unique and shared blood eQTLs 307 

based on the overlap in target genes with brain eQTLs, and modelled the baseline categories 308 

together with all blood eQTLs and the unique blood eQTLs. We did the same for brain eQTLs. We 309 

observed no evidence for depletion of blood-specific eQTLs (relative to all blood eQTLs) on brain-310 

related traits, nor do we find significant depletion of effect on immune-related traits of eQTLs 311 

associated with genes for which eQTLs were solely identified in brain tissue (Table I and Table II).  312 

 313 

Enrichment of eQTLs from 44 tissues in GTEx 314 

We interrogated the enrichment of the union of GTEx eQTLs and 44 individual GTEx annotations in 315 

their effect on schizophrenia and rheumatoid arthritis. Figure 2 shows the coefficient of the 45 GTEx 316 

annotations, sorted on their Z-scores for rheumatoid arthritis. In both cases, the union of GTEx 317 

eQTLs contributed significantly to explaining the polygenic signal(S8 Table), indicating that eQTLs 318 

were significantly enriched in their effects on complex traits. The individual annotations, however, 319 

performed notably worse and in some cases even suggested depletion of genome-wide effects of 320 

tissue-specific eQTLs on schizophrenia and rheumatoid arthritis. For rheumatoid arthritis, the 321 

coefficient Z-scores of the whole blood annotation reached nominal significance (Z=2.251), but failed 322 

correction for multiple testing. None of the other annotations reached nominal significance. The 323 

union of all GTEx brain annotations did not contribute significantly to explaining h2
SNP (Z=0.147, 324 

p=0.441). Sample size in the eQTL discovery phase appears to be a strong determinant of tissue-325 

specific enrichment in GWAS signal. The correlation coefficients between the coefficient Z-scores 326 

and sample sizes were 0.6453 (p=2.253*10-6) and 0.4247 (p=0.004) for schizophrenia and 327 

rheumatoid arthritis, respectively. 328 

 329 

Enrichment of the intersection between eQTLs and histone marks 330 
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We interrogated the intersection of eQTLs and histone marks found in specific CNS and immune cells, 331 

and estimated the enrichment of the intersection in its effect on rheumatoid arthritis and 332 

schizophrenia. We found significant enrichment in GWAS signal for eQTLs that intersect with 333 

histones that bear modification H3K4me1, a modification thought to be present in the enhancer of 334 

actively transcribed genes (Zhou et al. 2011; Allis and Jenuwein 2016), in CNS cells for schizophrenia 335 

(see Figure 3). There was some evidence for significant enrichment of eQTLs that intersected with 336 

genomic regions in immune cells baring the H3K4me1 mark in their effect on schizophrenia, but not 337 

on rheumatoid arthritis. Specifically, none of the intersecting annotations showed evidence of 338 

enrichment for rheumatoid arthritis. For the separate annotations, we found significant enrichment 339 

in GWAS signal across all histone marks found in CNS cells and three significant immune cell-types 340 

that bear the H3K4me3 modification, a modification associated with transcriptional start sites and 341 

promoters of actively transcribed genes (Zhou et al. 2011; Allis and Jenuwein 2016), for 342 

schizophrenia (S9 Figure). The opposite picture was seen for rheumatoid arthritis: a wide variety of 343 

immune-cell specific histone marks showed significant enrichments in GWAS signal, while all marks 344 

found in CNS cells were below zero. The union of GTEx eQTLs reached statistical significance for all 345 

models. 346 

 347 

Intersection of GTEx eQTLs and tissue-specific differentially expressed genes 348 

We extracted all eQTLs within the top 10% of tissue-specific differentially expressed genes in all 44 349 

GTEx tissues. We then compare the enrichment in GWAS signal for these eQTLs with the genes 350 

themselves. The correlation between the coefficients was 0.58 and 0.24 for schizophrenia and 351 

rheumatoid arthritis, respectively. For schizophrenia, we see that the eQTL annotation most brain 352 

tissues have the highest regression coefficient and Z-score, although none reached the significance 353 

threshold (S10 Table). Furthermore, the eQTLs showed larger coefficients compared to the whole 354 

genes, although the large standard errors made the difference non-significant. Interestingly, the top 355 

10% differentially expressed genes within the nucleus accumbens showed a significant coefficient 356 
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comparable to the other brain regions, although the eQTLs for these genes showed a non-significant 357 

depletion. For rheumatoid arthritis, whole blood showed the most significant coefficient, however, 358 

again failed correction for multiple testing (S11 Figure). Furthermore both the whole genes as the 359 

eQTLs for these genes showed a similar regression coefficient. 360 

 361 

Discussion 362 

Stratified Linkage Disequilibrium Score Regression provides a way to partition h2
SNP into parts 363 

explained by (functional) parts of the genome (Finucane et al. 2015). A “full baseline model” 364 

containing 24 non-cell-type-specific annotations of SNPs, such as SNPs located in promoters or 365 

coding regions, was developed previously for analysis using SLDSR. Here, we added annotations 366 

containing eQTLs derived from whole blood and brain tissue into the model, and showed that eQTLs 367 

were substantially stronger enriched in their effect on complex traits compared to all categories 368 

considered by Finucane et al (2015). The complete brain eQTL annotation was significantly enriched 369 

in GWAS signal for educational attainment, rheumatoid arthritis, smoking behavior, and 370 

schizophrenia. This finding is consistent with previous estimates of eQTL effect enrichment (Davis et 371 

al. 2013). Considerable enrichment for eQTLs, even for traits not apparently linked to the brain or 372 

immune system (e.g. smoking behavior), suggested that non-trivial eQTL overlap across tissues 373 

might be present. 374 

Inclusion of both brain and blood eQTLs into the SLDSR model did not separate the signal 375 

into tissue-specific effects. In general, we are not able to clearly identify tissue-specific eQTL signals 376 

using these datasets and SLDSR. Our second analysis of eQTL enrichment based on 44 tissue-specific 377 

cis-eQTL sets, obtained from the GTEx consortium (2015; Aguet et al. 2016), confirms the lack of 378 

tissue-specific eQTL enrichment. While an annotation containing all eQTLs identified in GTEx is 379 

significantly enriched in its effect on schizophrenia and rheumatoid arthritis (Z=5.501 and Z=3.802, 380 

respectively, both p<0.001), none of the analyzed brain tissues are enriched beyond all eQTLs in 381 

their effect on schizophrenia. Similarly, whole blood eQTLs are not significantly enriched beyond all 382 
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GTEx eQTLs taken together in their effect on rheumatoid arthritis. Again, these findings are not 383 

consistent with the hypothesis of abundant tissue-specific cis-eQTLs with effects on complex traits 384 

related to the specific tissue in question. Our findings are consistent with a lack of power to detect 385 

any tissue-specific eQTL effects. Especially, when contrasted with tissue-specific gene expression 386 

levels and tissue-specific histone modifications (Liu et al. 2016; Finucane et al. 2017), tissue-specific 387 

eQTLs are of limited value in relating complex traits to a tissue. In fact, considering eQTLs associated 388 

with genes expressed in a specific tissue improves our detection of tissue-specific effects. But, while 389 

the regression parameter subsets eQTLs for specifically expressed genes have larger effects than the 390 

rest of these genes, the significance of the enrichment is weak compared to the significance of the 391 

tissue-specific enrichment of the whole gene body plus a 100kb window.  392 

One of the limitations of the study presented here involves the substantial differences in 393 

discovery sample size between the tissues, which influences the power to detect eQTLs (Lonsdale et 394 

al. 2013). Even within the GTEx tissues, where differences in sample sizes are relatively small 395 

compared to eQTLs obtained from Jansen et al and Ramasamy et al, we still see a significant 396 

correlation between the discovery sample size and enrichment of eQTLs in GWAS signal. Several 397 

methods have been developed to capitalize on cross-tissue overlap in eQTLs to improve power to 398 

detect SNP effects on gene expression within tissue (Flutre et al. 2013; Li et al. 2013). The aim of this 399 

paper was to explore the possibilities of assessing the effects of eQTLs expressed in whole blood on 400 

presumably brain-related traits, and vice versa. In the analyses with eQTLs for differentially 401 

expressed genes, we show that enrichment in GWAS signal is stronger in these eQTLs compared to 402 

taking the all SNPs in the same genes. This indicates that eQTLs, irrespective of the tissue in which 403 

they were discovered, play an important role in the etiology of complex traits, and do so via the 404 

gene they are associated with. This, however, does not take away the need to increase sample sizes 405 

when performing tissue-specific discovery of (cis-)eQTLs. Tissue specificity, in the end, is a relative 406 

judgement best reached based on weighing multiple lines of evidence, among which are differential 407 

expression, epigenetic regulation, and eQTLs. For eQTLs to play a large role in determining the 408 
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tissue-specific effects on complex traits, a continued investment in resources like GTEx is required in 409 

order to increase sample sizes for detection, especially in rare tissues. 410 

Our conclusions are limited to cis-eQTLs and it is not unlikely that trans-eQTLs behave 411 

differently in terms of tissue-specificity. We do find evidence for possible enrichment for eQTLs that 412 

intersect with tissue-specific H3K4me1 histone marks in the brain, but also immune cells, in their 413 

effect on schizophrenia but not rheumatoid arthritis. This means that eQTLs in H3k4me1 marks are 414 

enriched in their effect on schizophrenia above the expected enrichment based on the fact that 415 

these SNPs are both eQTLs and located in H3K4me1 histone marks. What is of substantial interest is 416 

that the e 417 

nrichment in GWAS signal appears specific to H3K4me1 marks, and no other Histone marks, 418 

suggesting that these marks specifically can aid in prioritizing genomic regions in which tissue-419 

specific eQTLs may reside. Though, again, the totality of evidence is inconclusive on the relevance of 420 

tissue-specific eQTLs to variation in complex traits. 421 

Our results are consistent with, and complimentary to, a study investigating the genetic 422 

correlation between gene expression levels across 15 tissues (Liu et al. 2016). This study revealed 423 

substantial correlations between cis-genetic effects on gene expression across 15 tissues (Liu et al. 424 

2016). Our analyses confirmed the value of using whole blood as discovery tissue for detection of 425 

cis-eQTLs and further demonstrated the usefulness of techniques that use cis-eQTLs discovered in 426 

whole blood to study the etiology of complex traits related to different tissues (Gamazon et al. 2015; 427 

Gusev et al. 2016). The results presented here highlight the overlap of cis-eQTL effects across tissues 428 

on a genome-wide level. However, the effect of a cis-eQTL might vary substantially across tissues for 429 

individual genes (Grundberg et al. 2012). Our conclusions are based on genome-wide enrichments 430 

and therefore should not be interpreted as limited evidence for tissue-specific eQTL effects for 431 

individual genes. Therefore, eQTL discovery in the tissue most relevant to a specific trait or disorder 432 

remains important to further our understanding of the genetic regulation of tissue-specific gene 433 

expression. What is also clear is that to discover those tissue-specific eQTLs that are of relevance to 434 
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the interpretation of GWASs of complex traits, tissue-specific eQTL discovery needs to be refined. 435 

The practice of, as a post-hoc analysis to GWAS, performing eQTL lookup in a specific tissue linked to 436 

a trait, when larger dataset for other accessible tissues are available, may be suboptimal. In fact, one 437 

may prefer to perform a lookup in the overlap between histone modifications in a relevant tissue 438 

and eQTLs regardless of tissue. One can further consider utilizing eQTLs to link GWAS findings to a 439 

gene, and subsequently consider the differential expression of a gene to identify the tissue in which 440 

the gene is most likely to act in effecting the trait. Tissue-specific differential gene expression vastly 441 

outperforms eQTLs in tagging regions of the genome enriched in their effect on complex traits 442 

(Finucane et al. 2017).  443 

It is also evident that a limited dichotomous definition of eQTL/no-eQTL may be insufficient 444 

to identify tissue-specific eQTL effects. An evident improvement would be to compute the difference 445 

in eQTL effect on expression of the gene between tissues, and perform inference based on this 446 

difference in effect. eQTLs are strongly enriched SNPs, with clear biological function and utility for 447 

the translation of GWAS findings, though tissue-specific eQTL mechanisms remain elusive. The 448 

discovery of tissue-specific eQTL effects, which can aid in linking complex trait to tissue, may require 449 

novel research strategies. 450 
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Web Resources 474 

Age at menarche summary statistics, www.reprogen.org/data_download.html 475 

Blood eQTLs, https://eqtl.onderzoek.io/ 476 

Brain eQTLs, http://www.braineac.org/ 477 

Coronary artery disease summary statistics, www.cardiogramplusc4d.org/data-downloads/ 478 

Crohn’s disease and ulcerative colitis summary statistics, www.ibdgenetics.org/downloads.html 479 

Educational attainment summary statistics, http://www.thessgac.org/data 480 

Full baseline model LD scores, http://data.broadinstitute.org/alkesgroup/LDSCORE/ 481 

GTEx dataset, http://www.gtexportal.org/home/datasets 482 

Height and BMI summary statistics, 483 

www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files  484 
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LDL levels summary statistics, www.broadinstitute.org/mpg/pubs/lipids2010/ 485 

Rheumatoid arthritis summary statistics, http://plaza.umin.ac.jp/yokada/datasource/software.htm 486 

Schizophrenia and smoking behavior summary statistics, www.med.unc.edu/pgc/results-and-487 

downloads 488 

SLDSR software, https://github.com/bulik/ldsc/ 489 
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Figure Titles and Legends 595 

Figure 1. Average enrichment in GWAS signal of the 24 baseline annotations, 4 brain eQTL 596 

annotations and 4 blood eQTL annotations. 597 

Bar plot of the average enrichment in GWAS signal across all traits for the 24 main baseline 598 

annotations and 8 main eQTL annotations. Grey beans represent the baseline categories. Blue beans 599 

represent eQTLs. Black bars indicate average enrichment. Boxes show upper- and lower-bounds of 600 

the 95% confidence interval of the mean. Red dots show enrichments for immune-related traits. 601 

Horizontal red line indicates enrichment of 1, i.e. no enrichment.  602 

 603 

Figure 2. Coefficient Z-scores of the 45 GTEx annotations  604 

Barplot of coefficient z-scores for all GTEx annotations for schizophrenia (grey) and rheumatoid 605 

arthritis (red). Bars are sorted from highest to lowest based on the results from schizophrenia. 606 

Horizontal dotted line indicates Bonferroni threshold for 45 tests. Two asterisks indicate bars passing 607 

Bonferroni correction for multiple testing. 608 

 609 

Figure 3. Coefficient Z-score of intersection between union of GTEx eQTLs and cell-type-specific 610 

histone marks 611 

Top two graphs show coefficient Z-scores for schizophrenia. Bottom two graphs show the same for 612 

rheumatoid arthritis. Grey bars indicate histone marks found in cells from the central nervous 613 

system. Red bars represent histone marks found in cells from the immune system. From dark to light, 614 

shades of the bars indicate histone marks H3K27ac, H3K4me1, H3K4me3, and H3K9ac. Vertical 615 

dotted lines indicate separation between histone marks. One asterisk above the bars indicate 616 

annotations passing FDR correction for multiple testing. Two asterisks indicate bars passing 617 

Bonferroni correction for multiple testing. Horizontal dotted line indicates Bonferroni threshold for 618 

101 tests.  619 
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 621 

Tables 622 

Table I. (see attachments) 623 

 624 

Table II. (see attachments) 625 
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