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24  Abstract

25  Both gene expression levels and eQTLs (expression quantitative trait loci) are partially tissue-specific,
26  complicating the detection of eQTLs in tissues with limited sample availability, such as the brain.
27 However, eQTL overlap between tissues might be non-trivial, allowing for inference of eQTL
28  functioning in the brain via eQTLs measured in readily accessible tissues, e.g. whole blood. Using
29  Stratified Linkage Disequilibrium Score Regression (SLDSR), we quantify the enrichment in GWAS
30  signal of blood and brain eQTLs in genome-wide association study (GWAS) on 11 complex traits
31 (schizophrenia, BMI, educational attainment, Crohn’s disease, rheumatoid arthritis, ulcerative colitis,
32  age at menarche, coronary artery disease, height, LDL levels, and smoking behavior). Our analyses
33  established significant enrichment of blood and brain eQTLs in their effects across all traits. As we do
34  not know the true number of causal eQTLs, it is difficult to determine the precise magnitude of
35  enrichment. We found no evidence for tissue-specific enrichment in GWAS signal for either eQTLs
36 uniquely seen in the brain or whole blood. To follow up on our findings, we tested tissue-specific
37 enrichment of eQTLs discovered in 44 tissues by the Genotype-Tissue Expression (GTEx) consortium,
38 and, again, found no tissue-specific eQTL effects. We further integrated the GTEx eQTLs with SNPs
39  associated with tissue-specific histone modifiers, and interrogate its effect on rheumatoid arthritis
40  and schizophrenia. We observed substantially enriched effects on schizophrenia, though again not
41  tissue-specific. Finally, we extracted eQTLs in tissue-specific differentially expressed genes, and
42  determined their effects on rheumatoid arthritis and schizophrenia. We conclude that, while eQTLs
43  are strongly enriched in GWAS signal, the enrichment is not specific to the tissue used in eQTL
44  discovery. Therefore, working with relatively accessible tissues, such as whole blood, as proxy for
45  eQTL discovery is sensible; and restricting lookups for GWAS hits to a specific tissue might not be
46  advisable.

47
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51

52  Introduction

53  The aim of genome-wide association studies (GWASs) is to detect statistically significant associations
54 between genetic variants, such as single nucleotide polymorphisms (SNPs), and a trait of interest
55  (Hirschhorn and Daly 2005). GWASs have identified many genetic variants and thereby provided
56  insights into the genetic architecture of complex traits (Hirschhorn and Daly 2005; Visscher et al.
57  2012). However, as a large number of variants identified through GWASs are located outside of
58  coding regions and specific knowledge of regulatory elements is limited, uncovering a relationship
59  between GWAS hits and biological function has proven to be complicated (Lowe and Reddy 2015).
60  Expression quantitative trait loci (eQTLs) contain SNPs that influence gene expression, and are not
61  necessarily located in coding regions. eQTLs may aid functional annotation of SNPs that have been
62 identified in a GWAS and are located outside of coding regions (Morley et al. 2004; Lowe and Reddy
63  2015). Previous work has found substantial enrichment of eQTLs among GWAS hits (Manolio et al.
64 2009; Nicolae et al. 2010; Torres et al. 2014) and an enrichment in their genome-wide effect on
65  complex traits (Davis et al. 2013). Therefore, eQTLs are viewed as an important tool in moving from
66  genome-wide association to biological interpretation.

67 As a result of difference in gene expression between cells originating from different tissues,
68 eQTLs are potentially tissue-specific (Hernandez et al. 2012; GTEx Consortium 2015). Tissue-
69  specificity poses no problem if the tissue of interest is readily available for research, such as whole
70  blood. However, discovery of eQTLs gets complicated when measurement of expression levels in a
71  tissue is limited by ethical and practical considerations, for example in brain tissue. Several studies
72 have shown that the overlap between eQTLs from different tissues might actually be larger than

73 initially assumed (Ding et al. 2010; Nica et al. 2011). The Genotype-Tissue Expression (GTEx)
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74  consortium identified eQTLs in a wide range of human tissues and showed that 54-90% of the eQTLs
75 identified in one tissue are also designated as an eQTL in at least one other tissue (GTEx Consortium
76 2015; Aguet et al. 2016). In another study, Liu et a/ (2016) found a high average pairwise genetic
77  correlation (r,=0.738) of local gene expression between tissues. Nevertheless, small differences in
78  terms of eQTL effect may be of considerable importance in terms of the effect an eQTL might have
79 on complex traits related to specific tissues. It is, therefore, worthwhile to investigate the specific
80 utility of tissue-specific eQTLs in their effect on complex traits, as studied in GWAS, as the discovery
81 of eQTLs for tissues such as the brain might be advanced by eQTLs discovered in more accessible
82  tissues, such as whole blood. The use of accessible tissues, though, depends on a substantial degree
83  of similarity of eQTL effect across tissue, and to what extend eQTL differences between tissues are
84  important in complex trait etiology.

85 Stratified Linkage Disequilibrium Score Regression (SLDSR) is a technique that estimates the
86  SNP-heritability (h’up) of a trait based on GWAS summary statistics (Bulik-Sullivan et al. 2015;
87  Finucane et al. 2015). By simultaneously analyzing multiple categories of SNPs (annotations), SLDSR
88  can partition h’y by annotation (h%.n) and thereby provides a way to jointly quantify the
89  enrichment in GWAS signal of several annotations. Here, we extend SLDSR by including annotations
90  containing cis-eQTLs, i.e. eQTLs located closely to the gene with which they associate (Brem et al.
91  2002; Ramasamy et al. 2014), discovered in multiple tissues. To this end, we perform analyses based
92 on representative eQTL resources, and consider a variety of traits as outcomes.

93 Firstly, we selected all eQTLs per gene discovered in large samples of RNA expression levels
94  assessed in whole blood (N=4896)(Wright et al. 2014; Jansen et al. 2017) and in brain tissues (N=134)
95 (Ramasamy et al. 2014), and quantified the contribution of these blood and brain eQTLs to the
96 genetic variance in complex traits captured in GWAS. We then estimated tissue-specific eQTL effects
97  on complex traits by quantifying the enrichments of eQTLs uniquely found in whole blood or
98  uniquely found in brain, conditional on the enrichment of the complete blood eQTL annotation or

99 complete brain eQTL annotation, respectively. We considered the effect of eQTLs on 11 complex
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100 traits: schizophrenia, BMI, educational attainment, Crohn’s disease, rheumatoid arthritis, ulcerative
101  colitis, age at menarche, coronary artery disease, height, LDL levels, and smoking behavior.

102 Secondly, we retrieved all eQTLs identified in any of the 44 tissues from the GTEx consortium
103  (N=70-361, median=126.5)(GTEx Consortium 2015; Aguet et al. 2016). We considered the
104 enrichment in GWAS signal of the union of all GTEx eQTLs, and, additionally, the enrichment of
105 tissue-specific eQTL effects on top of the union of all GTEx eQTLs. We expected to observe tissue-
106  specific enrichment of eQTLs in their effects on complex traits related to the tissue in question, e.g.
107 eQTLs discovered in immune-related tissues are expected to show higher enrichments in their effect
108  on immune-related traits compared to eQTLs found in skin tissue. We considered tissue-specific
109  enrichment of cis-eQTLs in their effect on schizophrenia (a disorder where there is strong prior
110 evidence for the involvement of processes in the brain) and rheumatoid arthritis (a disease with
111  strong prior evidence for the involvement of processes in immune tissue) as GWAS for these traits
112 are well powered for extended LD-score-based analyses. We further considered the enrichment of
113 the intersection of cis-eQTLs discovered in any tissue, and histone modification in a specific tissue
114 (i.e. tissue-specific epigenetically changed chromatin states in regulatory regions). Finally, we
115  explored the enrichment in GWAS signal of eQTLs for tissue-specific differentially expressed genes.
116 Our analyses were designed to elucidate the relation between eQTLs and complex traits, and
117  to quantify the extent to which this relation is dependent on the tissue used in eQTL discovery. Our
118  analysis further considered the enrichment of genomic regions related to gene expression and
119  epigenetically modified in specific tissues.

120

121  Material and Methods

122  SLDSR method
123 A measure of linkage disequilibrium (LD) for each SNP, called an “LD score”, can be computed by
124  taking the sum of correlations between that SNP and all neighboring SNPs (Bulik-Sullivan et al. 2015;

125  Finucane et al. 2015). Under a polygenic model, LD scores are expected to show a linear relationship
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126 with GWAS test statistics of corresponding SNPs, where the slope is proportional to h’p. For SLDSR,
127 LD scores are based on only (functional) parts of the genome and used as predictors in a multiple
128 linear regression (Finucane et al. 2015). In this manner, SLDSR is able to partition hzsz into parts that
129  are explained by these parts of the genome (i.e. h%met), While accounting for influences of the
130 remaining annotations in the model. The enrichment of an annotation is then obtained by taking the
131 ratio of h%mt Over the proportion of SNPs that fall within that annotation. For eQTLs, the
132 denominator, i.e. the number of SNPs in the annotation, is a complicated quantity: not all significant
133 eQTLs are likely causal; whereas including only lead, or putative causal, eQTLs may result in very
134  small annotations located near genes and other regulatory elements, which presents a risk of
135 inflated estimates of the enrichment in GWAS signal. What constitutes an eQTL is sufficiently vague
136  and open for interpretation for us to consider the effect of multiple inclusion rules for inclusion of a
137  SNP into the eQTL annotation. Since eQTLs are essentially discovered in what amounts to a local
138  GWAS, we expect the average LD score of eQTLs to be higher than that of an average SNP, which
139  may influence the results of downstream SLDSR analysis. In order to break the relation between LD
140  score and probability of inclusion, we consider eQTL annotations which are based on a sample of
141 from all significant eQTLs for a given probe. First, we included the most strongly associated SNP, a
142  SNP with a high expected LD score. Second, we included one SNP per probe with a median p-value.
143  Third, we included one SNP per probe with a mean p-value. Fourth, we included the 10 most
144  strongly associated SNPs per probe. Finally, we included all SNPs significantly associated with gene
145  expression after FDR correction at a=0.05. We add each annotation separately to the baseline
146  categories in an SLDSR model, and determined how the various p-value thresholds influence the
147 SLDSR coefficient and its test statistic. For each annotation, we looked up the SNPs in the baseline
148  category, and extracted their baseline LD scores and minor allele frequencies (MAF). We then
149  compared the mean LD score, median LD score and mean MAF between the annotations and the

150 entire baseline category. Based on the results (S1 Figure — S2 Figure, S3 Table), we consider all


https://doi.org/10.1101/107482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/107482; this version posted October 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

151  significant cis-eQTLs as an annotation, and retain additional gene-centric and regulatory annotations
152  insthe model.

153

154  Target traits

155  As outcome for SLDSR, we used summary statistics of GWASs on Crohn’s disease (Jostins et al. 2012),
156 rheumatoid arthritis (Okada et al. 2014), ulcerative colitis (Jostins et al. 2012), BMI (EK et al. 2010),
157  educational attainment (Rietveld et al. 2013), schizophrenia (Ripke et al. 2014), age at menarche
158 (Perry et al. 2014), coronary artery disease (Schunkert et al. 2011), height (Allen et al. 2010), LDL
159  levels (Teslovich et al. 2010), and smoking behavior (Furberg et al. 2010). The first three traits were
160 chosen because they are related to the immune system and are therefore expected to reveal
161  considerable enrichment of blood eQTL signal (Jostins et al. 2012; Okada et al. 2014). Similarly, brain
162  eQTLs are expected to show substantial enriched effects due to previous reports on the involvement
163  of the central nervous system (CNS) in schizophrenia (Ripke et al. 2014), educational attainment
164  (Rietveld et al. 2013), and BMI (Vimaleswaran et al. 2012). Of course, these traits do not perfectly
165  align with either tissue, e.g. the immune system has been implicated in the etiology of schizophrenia
166  (Andreassen et al. 2015) and BMI (Karalis et al. 2009), and might therefore also be enriched in their
167  effects for the other eQTL set. Enrichment of blood and brain eQTL effects on the remaining traits
168  was calculated to contrast the results with traits for which we do not have a strong o priori
169  expectation of the relationship between trait and tissue.

170 The discovery sample for detection of blood eQTLs (Wright et al. 2014; Jansen et al. 2017)
171 included participants from the Netherlands Twin Register (NTR)(Boomsma et al. 2008) and
172 participants from the Netherlands Study of Depression and Anxiety (NESDA)(Penninx et al. 2008).
173  These two cohorts did not participate in the GWAS for schizophrenia, Crohn’s disease, rheumatoid
174  arthritis, ulcerative colitis, or coronary artery disease. However, participants from these two cohorts,
175 not necessarily the same ones, did participate in the GWAS for height, BMI, LDL levels, smoking

176  behavior, educational attainment, and age at menarche. For educational attainment and smoking
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177  behavior, we were able to obtain summary statistics omitting subjects from NTR/NESDA. For both
178 these traits, we looked at trait-specific enrichment of blood and brain eQTL effect in GWAS signal,
179  comparing results from using publicly available datasets with using summary statistics based on the
180 same sample without subjects from the NTR or NESDA. The results did not reveal appreciable
181 differences between the respective datasets for educational attainment, but did show substantial
182  differences for smoking behavior (S4 Figure). This latter finding could conceivably be a function of
183  relatively strong effects of smoking behavior on gene-expression levels (Vink et al. 2015). Therefore,
184  the remaining analyses for smoking behavior were performed using the summary statistics omitting
185 the NTR and NESDA, whereas analyses for the remaining traits (height, BMI, LDL levels, and
186  educational attainment) were run using publicly available summary statistics. This caveat only
187  applies to eQTL annotations based on NTR/NESDA data (i.e. whole blood). We note that the issue of
188  overlap also applies to other techniques where the error covariance is assumed to be zero (e.g.
189 TWAS, mendelian randomization analysis, SMR, etc.).

190

191  Blood and brain eQTL enrichment

192 A catalog of whole blood cis-eQTLs was obtained from Jansen et af (2017; Wright et al. 2014), where
193  all eQTLs significantly associated with gene expression in whole blood for each probe set were
194  selected for inclusion in our whole blood eQTL annotation. A list of brain eQTLs was obtained from
195  the UK brain expression consortium (UKBEC), for which the analyses are described in Ramasamy et a/
196  (2014). We based the brain eQTL annotation on SNPs that were significantly associated with the
197 average gene expression across 12 brain regions. SLDSR annotations were constructed as per the
198  instructions in Bulik-Sullivan et al. and Finucane et al. (2015). To guard against upward bias in the
199  eQTL enrichment signal, two extra annotations containing SNPs within a 500 base pair (bp) and
200  100bp window around any eQTL were constructed for each eQTL set (Finucane et al. 2015). To
201  ensure that the enrichment of eQTL effects in GWAS signal was not in fact caused by their proximity

202  to the genes they influence, an additional gene centric annotation was computed, which contained
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203  all genes for which eQTLs were included. Finally, we performed an inverse-variance weighted meta-
204 analysis across the traits to determine the average effect of blood and brain eQTLs on complex traits
205 ingeneral.

206

207  Tissue-specific eQTL enrichment

208  To distinguish between the effects of blood- and brain-specific eQTLs, we split each annotation into
209  two sets based on the overlap in genes that were tagged by eQTLs from both tissue. That is, the
210  brain eQTL annotation was split into an annotation of brain eQTLs which regulate genes for which
211  also at least one blood eQTL was found, and a second annotation of eQTLs that tagged genes for
212 which only brain eQTLs were found. Likewise, the blood eQTL annotation was split into an
213 annotation containing only eQTLs that tagged genes for which eQTLs from both tissue was found,
214  and an annotation consisting of blood eQTLs that tagged genes for which only eQTLs have been
215  found in blood. In doing so, we are saying that the effect of an eQTL is mediated via the gene it is
216  associated with. Then, if two different SNPs are associated with the expression of the same gene,
217  but in different tissues, this gene is likely the mechanism by which the SNP influences a trait.
218 Contrary, when the same SNP affects different genes in different tissues, this SNP can be seen to
219  have a tissue-specific mediation of its effect. We thus define eQTLs shared across tissue as eQTLs
220 that influence a common gene in separate tissues.

221

222  Enrichment of eQTLs from 44 tissues

223 There are several limitations to above mentioned analyses of tissue-specific enrichments of eQTL
224 effects in GWAS signal. The eQTLs are obtained from two different projects, which vary in terms of
225  sample size and their definition of an eQTL. To mitigate the heterogeneity between studies, and to
226  extend to additional tissues. We performed additional analyses using eQTLs obtained by a common
227  pipeline from 44 tissues (see S5 Table) and based on a broader eQTL locus definition (GTEx

228  Consortium 2015; Aguet et al. 2016). For each of the 44 tissues, we created annotations for analysis
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229  in SLDSR following the previously described procedure. Analogous to the procedure of Finucane et a/
230  (2015) for cell-type-specific analysis using SLDSR, we did not specify windows for the individual GTEx
231 annotations, but included an additional annotation that contained the union of all GTEx eQTLs, i.e.
232 all SNPs that are designated as part of at least one of the 44 individual GTEx annotations, and added
233  a 100bp and 500bp window around this union of GTEx eQTLs. SLDSR is essentially a multiple
234 regression and, due to the high number of models and high number of predictors (i.e. annotations)
235 in each model, has a high multiple testing burden. As such, it requires well-powered GWAS in order
236  to accurately partition the heritability the various annotations (Bulik-Sullivan et al. 2015; Finucane et
237  al. 2015). Based on the Z-score of the SNP-heritability and previous reports of substantial influence
238  of either tissue in the etiology of the traits (Okada et al. 2014; Ripke et al. 2014; Finucane et al. 2015;
239 Finucane et al. 2017), we obtained two well-powered traits, one for which we assume there to be
240  significant enrichment in signal for blood eQTLs (rheumatoid arthritis) and one for brain eQTLs
241  (schizophrenia). For each of these two traits, we ran one SLDSR model containing only the baseline
242 categories and the union of GTEx eQTLs, and 44 additional models with the two previous
243  annotations and one of the individual GTEx annotations at a time.

244 GTEx has relative small sample sizes for the brain eQTL discovery (mean=89 sample size,
245  range=72-103) compared to other tissues (mean=160 sample size, range=70-361) (GTEx Consortium
246 2015; Aguet et al. 2016). To investigate the effect of differences in sample size on estimates of
247  enrichments in GWAS signal, we collapsed the union of individual brain eQTL annotations into a
248  shared brain eQTL annotation (i.e. an eQTL found in at least one of the GTEx brain annotations was
249  included in the shared brain eQTL annotation). This annotation was then analyzed as an additional
250 GTEx eQTL annotation. We further tested the relationship between tissue sample size and tissue
251 eQTL enrichment.

252

253  Enrichment of the intersection between eQTLs and histone marks
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254 The availability of annotations based on tissue-specific histone marks made it possible to create an
255  annotation that represents the intersection between eQTLs and this type of epigenetic modification
256 related to enhancers and promoters of actively transcribed genes. We obtained LD score
257  annotations of SNPs in regions that bear histone marks in cells from the CNS or immune system from
258  Finucane et a/ (2015). Out of the 220 cell-type-specific histone mark that were available, 101 were
259  found in the CNS or immune tissues. For each of the 101 annotations of SNPs in cell-type-specific
260 histone marks, we extracted its intersection with the union of GTEx eQTLs and made a new
261  annotation of eQTLs which intersected with histone marks (i.e. SNPs found in both annotations). We
262  then analyzed each of the intersection annotations individually in a model together with the baseline
263  categories, the union of GTEx eQTLs, and the corresponding cell-type-specific histone marks.
264  Enrichments in GWAS signal of the intersection should be interpreted as enrichment of genome-
265  wide SNP effects on a complex trait beyond the additive effects which work on all SNPs that are a
266  cis-eQTL and histone mark in question. In fact, we test whether the interaction between tissue-
267  specific chromatin state and eQTLs are enriched in their genome-wide effect on complex traits.

268

269 Intersection of GTEx eQTLs and tissue-specific differentially expressed genes

270  Finucane et al ( 2017) looked at tissue-specific gene expression and determined that the top 10% of
271  these differentially expressed genes are substantially enriched in their effects in GWAS signals for a
272  wide range of traits. Here, we build on these findings by taking the top 10% most highly differentially
273 expressed genes in the 44 GTEx tissues; obtaining the eQTLs for these specific genes, regardless of
274  the discovery tissue; and added these separately as an annotation to an SLDSR model together with
275  the baseline categories and union of all GTEx eQTLs. A significant increase in enrichment in GWAS
276  signal in the eQTLs compared to the genes themselves, would indicate that eQTLs explain part of the
277  enrichment seen by Finucane et al.

278

279  Results
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280  Effect of eQTL selection on regression parameter and test statistics

281  We compare five annotations that included various SNPs based on the p-value of their associations
282 with gene-expression levels (lead eQTL, median eQTL, mean eQTL, top 10 lead eQTLs, and all eQTLs).
283  Supplementary table S3 shows various metrics of these annotations. Surprisingly, lead eQTLs had the
284 lowest mean and median LD score amongst the annotations, indicating that the annotation contains
285  less signal (S3 Table). However, it was still higher compared to the mean or median of all SNPs in the
286  baseline annotation. Including all significant eQTLs in the annotation resulted in the highest mean
287 and median LD score. All annotations had a mean MAF 0.27-0.28, whereas the mean MAF of the
288  entire baseline category was 0.24. Smaller annotations had a higher enrichment in GWAS signal (S1
289  Figure). However, the enrichment in GWAS signal did not differ between taking the lead eQTL, eQTLs
290  with a mean p-value, or eQTLs with a median p-value. Finally, coefficient test statistics did not differ
291  much between the annotations (52 Figure). Based on the explorative analysis, we selected the
292  annotation based on all significant eQTLs for further analysis.

293

294 Blood and brain eQTL enrichment

295  We fitted an SLDSR model containing the baseline categories; the complete annotation for both
296 brain and blood eQTL tissues, their 100 and 500bp windows, and gene-centric annotations to all
297 traits (Crohn’s disease, rheumatoid arthritis, ulcerative colitis, BMI, educational attainment,
298  schizophrenia, age at menarche, coronary artery disease, height, LDL levels, and smoking behavior).
299  We found significant effects of brain eQTLs on educational attainment, rheumatoid arthritis,
300 smoking behavior, and schizophrenia, and significant effect of blood eQTLs on height and smoking
301 behavior (see S6 Table). We then meta-analyzed the results for all annotations, both in the baseline
302 model, and those associated with eQTLs across the 11 traits. Our analyses revealed significant effect
303  of both blood (p < 0.001) and brain (p < 0.001) eQTL effects on all traits (Figure 1, S7 Table),

304  exceeding, in terms of significance, all the baseline categories considered by Finucane et a/ (2015)
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305  but conserved genomic regions. The gene-centric annotation for both blood and brain eQTLs showed
306 no effect on any trait.

307 We then separated the list of blood eQTLs into a list of unique and shared blood eQTLs
308 based on the overlap in target genes with brain eQTLs, and modelled the baseline categories
309 together with all blood eQTLs and the unique blood eQTLs. We did the same for brain eQTLs. We
310 observed no evidence for depletion of blood-specific eQTLs (relative to all blood eQTLs) on brain-
311  related traits, nor do we find significant depletion of effect on immune-related traits of eQTLs
312  associated with genes for which eQTLs were solely identified in brain tissue (Table | and Table I1).

313

314  Enrichment of eQTLs from 44 tissues in GTEx

315  We interrogated the enrichment of the union of GTEx eQTLs and 44 individual GTEx annotations in
316  their effect on schizophrenia and rheumatoid arthritis. Figure 2 shows the coefficient of the 45 GTEx
317 annotations, sorted on their Z-scores for rheumatoid arthritis. In both cases, the union of GTEx
318 eQTLs contributed significantly to explaining the polygenic signal(S8 Table), indicating that eQTLs
319  were significantly enriched in their effects on complex traits. The individual annotations, however,
320 performed notably worse and in some cases even suggested depletion of genome-wide effects of
321  tissue-specific eQTLs on schizophrenia and rheumatoid arthritis. For rheumatoid arthritis, the
322 coefficient Z-scores of the whole blood annotation reached nominal significance (Z=2.251), but failed
323 correction for multiple testing. None of the other annotations reached nominal significance. The
324 union of all GTEx brain annotations did not contribute significantly to explaining h’ye (2=0.147,
325  p=0.441). Sample size in the eQTL discovery phase appears to be a strong determinant of tissue-
326  specific enrichment in GWAS signal. The correlation coefficients between the coefficient Z-scores
327 and sample sizes were 0.6453 (p=2.253*10°) and 0.4247 (p=0.004) for schizophrenia and
328 rheumatoid arthritis, respectively.

329

330 Enrichment of the intersection between eQTLs and histone marks
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331  Weinterrogated the intersection of eQTLs and histone marks found in specific CNS and immune cells,
332  and estimated the enrichment of the intersection in its effect on rheumatoid arthritis and
333  schizophrenia. We found significant enrichment in GWAS signal for eQTLs that intersect with
334 histones that bear modification H3K4me1, a modification thought to be present in the enhancer of
335 actively transcribed genes (Zhou et al. 2011; Allis and Jenuwein 2016), in CNS cells for schizophrenia
336  (see Figure 3). There was some evidence for significant enrichment of eQTLs that intersected with
337  genomic regions in immune cells baring the H3K4mel mark in their effect on schizophrenia, but not
338 on rheumatoid arthritis. Specifically, none of the intersecting annotations showed evidence of
339  enrichment for rheumatoid arthritis. For the separate annotations, we found significant enrichment
340  in GWAS signal across all histone marks found in CNS cells and three significant immune cell-types
341  that bear the H3K4me3 modification, a modification associated with transcriptional start sites and
342  promoters of actively transcribed genes (Zhou et al. 2011; Allis and Jenuwein 2016), for
343  schizophrenia (S9 Figure). The opposite picture was seen for rheumatoid arthritis: a wide variety of
344  immune-cell specific histone marks showed significant enrichments in GWAS signal, while all marks
345  found in CNS cells were below zero. The union of GTEx eQTLs reached statistical significance for all
346  models.

347

348 Intersection of GTEx eQTLs and tissue-specific differentially expressed genes

349  We extracted all eQTLs within the top 10% of tissue-specific differentially expressed genes in all 44
350 GTEx tissues. We then compare the enrichment in GWAS signal for these eQTLs with the genes
351  themselves. The correlation between the coefficients was 0.58 and 0.24 for schizophrenia and
352  rheumatoid arthritis, respectively. For schizophrenia, we see that the eQTL annotation most brain
353  tissues have the highest regression coefficient and Z-score, although none reached the significance
354  threshold (S10 Table). Furthermore, the eQTLs showed larger coefficients compared to the whole
355  genes, although the large standard errors made the difference non-significant. Interestingly, the top

356  10% differentially expressed genes within the nucleus accumbens showed a significant coefficient
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357  comparable to the other brain regions, although the eQTLs for these genes showed a non-significant
358  depletion. For rheumatoid arthritis, whole blood showed the most significant coefficient, however,
359  again failed correction for multiple testing (S11 Figure). Furthermore both the whole genes as the
360 eQTLs for these genes showed a similar regression coefficient.

361

362 Discussion

363  Stratified Linkage Disequilibrium Score Regression provides a way to partition h’ye into parts
364  explained by (functional) parts of the genome (Finucane et al. 2015). A “full baseline model”
365  containing 24 non-cell-type-specific annotations of SNPs, such as SNPs located in promoters or
366  coding regions, was developed previously for analysis using SLDSR. Here, we added annotations
367 containing eQTLs derived from whole blood and brain tissue into the model, and showed that eQTLs
368  were substantially stronger enriched in their effect on complex traits compared to all categories
369 considered by Finucane et a/ (2015). The complete brain eQTL annotation was significantly enriched
370 in  GWAS signal for educational attainment, rheumatoid arthritis, smoking behavior, and
371  schizophrenia. This finding is consistent with previous estimates of eQTL effect enrichment (Davis et
372  al. 2013). Considerable enrichment for eQTLs, even for traits not apparently linked to the brain or
373  immune system (e.g. smoking behavior), suggested that non-trivial eQTL overlap across tissues
374  might be present.

375 Inclusion of both brain and blood eQTLs into the SLDSR model did not separate the signal
376  into tissue-specific effects. In general, we are not able to clearly identify tissue-specific eQTL signals
377  using these datasets and SLDSR. Our second analysis of eQTL enrichment based on 44 tissue-specific
378  cis-eQTL sets, obtained from the GTEx consortium (2015; Aguet et al. 2016), confirms the lack of
379  tissue-specific eQTL enrichment. While an annotation containing all eQTLs identified in GTEx is
380  significantly enriched in its effect on schizophrenia and rheumatoid arthritis (Z=5.501 and Z=3.802,
381  respectively, both p<0.001), none of the analyzed brain tissues are enriched beyond all eQTLs in

382  their effect on schizophrenia. Similarly, whole blood eQTLs are not significantly enriched beyond all
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383  GTEx eQTLs taken together in their effect on rheumatoid arthritis. Again, these findings are not
384  consistent with the hypothesis of abundant tissue-specific cis-eQTLs with effects on complex traits
385 related to the specific tissue in question. Our findings are consistent with a lack of power to detect
386 any tissue-specific eQTL effects. Especially, when contrasted with tissue-specific gene expression
387 levels and tissue-specific histone modifications (Liu et al. 2016; Finucane et al. 2017), tissue-specific
388 eQTLs are of limited value in relating complex traits to a tissue. In fact, considering eQTLs associated
389  with genes expressed in a specific tissue improves our detection of tissue-specific effects. But, while
390 the regression parameter subsets eQTLs for specifically expressed genes have larger effects than the
391 rest of these genes, the significance of the enrichment is weak compared to the significance of the
392  tissue-specific enrichment of the whole gene body plus a 100kb window.

393 One of the limitations of the study presented here involves the substantial differences in
394  discovery sample size between the tissues, which influences the power to detect eQTLs (Lonsdale et
395  al. 2013). Even within the GTEx tissues, where differences in sample sizes are relatively small
396 compared to eQTLs obtained from Jansen et al/ and Ramasamy et al, we still see a significant
397  correlation between the discovery sample size and enrichment of eQTLs in GWAS signal. Several
398 methods have been developed to capitalize on cross-tissue overlap in eQTLs to improve power to
399  detect SNP effects on gene expression within tissue (Flutre et al. 2013; Li et al. 2013). The aim of this
400  paper was to explore the possibilities of assessing the effects of eQTLs expressed in whole blood on
401  presumably brain-related traits, and vice versa. In the analyses with eQTLs for differentially
402  expressed genes, we show that enrichment in GWAS signal is stronger in these eQTLs compared to
403  taking the all SNPs in the same genes. This indicates that eQTLs, irrespective of the tissue in which
404  they were discovered, play an important role in the etiology of complex traits, and do so via the
405  gene they are associated with. This, however, does not take away the need to increase sample sizes
406  when performing tissue-specific discovery of (cis-)eQTLs. Tissue specificity, in the end, is a relative
407  judgement best reached based on weighing multiple lines of evidence, among which are differential

408  expression, epigenetic regulation, and eQTLs. For eQTLs to play a large role in determining the
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409 tissue-specific effects on complex traits, a continued investment in resources like GTEx is required in
410  order to increase sample sizes for detection, especially in rare tissues.

411 Our conclusions are limited to cis-eQTLs and it is not unlikely that trans-eQTLs behave
412  differently in terms of tissue-specificity. We do find evidence for possible enrichment for eQTLs that
413 intersect with tissue-specific H3K4mel histone marks in the brain, but also immune cells, in their
414 effect on schizophrenia but not rheumatoid arthritis. This means that eQTLs in H3k4mel marks are
415 enriched in their effect on schizophrenia above the expected enrichment based on the fact that
416  these SNPs are both eQTLs and located in H3K4mel histone marks. What is of substantial interest is
417  thatthee

418 nrichment in GWAS signal appears specific to H3K4mel marks, and no other Histone marks,
419  suggesting that these marks specifically can aid in prioritizing genomic regions in which tissue-
420  specific eQTLs may reside. Though, again, the totality of evidence is inconclusive on the relevance of
421  tissue-specific eQTLs to variation in complex traits.

422 Our results are consistent with, and complimentary to, a study investigating the genetic
423  correlation between gene expression levels across 15 tissues (Liu et al. 2016). This study revealed
424  substantial correlations between cis-genetic effects on gene expression across 15 tissues (Liu et al.
425  2016). Our analyses confirmed the value of using whole blood as discovery tissue for detection of
426  cis-eQTLs and further demonstrated the usefulness of techniques that use cis-eQTLs discovered in
427  whole blood to study the etiology of complex traits related to different tissues (Gamazon et al. 2015;
428  Gusev et al. 2016). The results presented here highlight the overlap of cis-eQTL effects across tissues
429  on agenome-wide level. However, the effect of a cis-eQTL might vary substantially across tissues for
430 individual genes (Grundberg et al. 2012). Our conclusions are based on genome-wide enrichments
431  and therefore should not be interpreted as limited evidence for tissue-specific eQTL effects for
432  individual genes. Therefore, eQTL discovery in the tissue most relevant to a specific trait or disorder
433  remains important to further our understanding of the genetic regulation of tissue-specific gene

434  expression. What is also clear is that to discover those tissue-specific eQTLs that are of relevance to
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435  the interpretation of GWASs of complex traits, tissue-specific eQTL discovery needs to be refined.
436  The practice of, as a post-hoc analysis to GWAS, performing eQTL lookup in a specific tissue linked to
437  atrait, when larger dataset for other accessible tissues are available, may be suboptimal. In fact, one
438 may prefer to perform a lookup in the overlap between histone modifications in a relevant tissue
439 and eQTLs regardless of tissue. One can further consider utilizing eQTLs to link GWAS findings to a
440 gene, and subsequently consider the differential expression of a gene to identify the tissue in which
441  the gene is most likely to act in effecting the trait. Tissue-specific differential gene expression vastly
442 outperforms eQTLs in tagging regions of the genome enriched in their effect on complex traits
443 (Finucane et al. 2017).

444 It is also evident that a limited dichotomous definition of eQTL/no-eQTL may be insufficient
445  to identify tissue-specific eQTL effects. An evident improvement would be to compute the difference
446  in eQTL effect on expression of the gene between tissues, and perform inference based on this
447  difference in effect. eQTLs are strongly enriched SNPs, with clear biological function and utility for
448  the translation of GWAS findings, though tissue-specific eQTL mechanisms remain elusive. The
449  discovery of tissue-specific eQTL effects, which can aid in linking complex trait to tissue, may require
450  novel research strategies.

451

452  Supplemental Data

453  Supplemental Data includes 4 figures and 7 tables
454
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Web Resources

Age at menarche summary statistics, www.reprogen.org/data_download.html

Blood eQTLs, https://eqtl.onderzoek.io/

Brain eQTLs, http://www.braineac.org/

Coronary artery disease summary statistics, www.cardiogramplusc4d.org/data-downloads/
Crohn’s disease and ulcerative colitis summary statistics, www.ibdgenetics.org/downloads.html
Educational attainment summary statistics, http://www.thessgac.org/data

Full baseline model LD scores, http://data.broadinstitute.org/alkesgroup/LDSCORE/

GTEx dataset, http://www.gtexportal.org/home/datasets

Height and BMI summary statistics,

www.broadinstitute.org/collaboration/giant/index.php/GIANT _consortium_data_files
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LDL levels summary statistics, www.broadinstitute.org/mpg/pubs/lipids2010/

Rheumatoid arthritis summary statistics, http://plaza.umin.ac.jp/yokada/datasource/software.htm

Schizophrenia and smoking behavior summary statistics, www.med.unc.edu/pgc/results-and-
downloads

SLDSR software, https://github.com/bulik/Idsc/
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Figure Titles and Legends

Figure 1. Average enrichment in GWAS signal of the 24 baseline annotations, 4 brain eQTL
annotations and 4 blood eQTL annotations.

Bar plot of the average enrichment in GWAS signal across all traits for the 24 main baseline
annotations and 8 main eQTL annotations. Grey beans represent the baseline categories. Blue beans
represent eQTLs. Black bars indicate average enrichment. Boxes show upper- and lower-bounds of
the 95% confidence interval of the mean. Red dots show enrichments for immune-related traits.

Horizontal red line indicates enrichment of 1, i.e. no enrichment.

Figure 2. Coefficient Z-scores of the 45 GTEx annotations

Barplot of coefficient z-scores for all GTEx annotations for schizophrenia (grey) and rheumatoid
arthritis (red). Bars are sorted from highest to lowest based on the results from schizophrenia.
Horizontal dotted line indicates Bonferroni threshold for 45 tests. Two asterisks indicate bars passing

Bonferroni correction for multiple testing.

Figure 3. Coefficient Z-score of intersection between union of GTEx eQTLs and cell-type-specific
histone marks

Top two graphs show coefficient Z-scores for schizophrenia. Bottom two graphs show the same for
rheumatoid arthritis. Grey bars indicate histone marks found in cells from the central nervous
system. Red bars represent histone marks found in cells from the immune system. From dark to light,
shades of the bars indicate histone marks H3K27ac, H3K4mel, H3K4me3, and H3K9ac. Vertical
dotted lines indicate separation between histone marks. One asterisk above the bars indicate
annotations passing FDR correction for multiple testing. Two asterisks indicate bars passing
Bonferroni correction for multiple testing. Horizontal dotted line indicates Bonferroni threshold for

101 tests.
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