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Abstract 

Machine-learning techniques have helped solve a broad range of prediction problems, yet 

are not widely used to build polygenic risk scores for the prediction of complex traits. We 

propose a novel heuristic based on machine-learning techniques (GraBLD) to boost the 

predictive performance of polygenic risk scores. Gradient boosted regression trees were 

first used to optimize the weights of SNPs included in the score, followed by a novel 

regional adjustment for linkage disequilibrium. A calibration set with sample size of 

~200 individuals was sufficient for optimal performance. GraBLD yielded prediction R2 

of 0.239 and 0.082 using GIANT summary association statistics for height and BMI in 

the UK Biobank study (N=130K; 1.98M SNPs), explaining 46.9% and 32.7% of the 

overall polygenic variance, respectively. For diabetes status, the area under the receiver 

operating characteristic curve was 0.602 in the UK Biobank study using summary-level 

association statistics from the DIAGRAM consortium. GraBLD outperformed other 

polygenic score heuristics for the prediction of height (p<2.2x10-16) and BMI (p<1.57x10-

4), and was equivalent to LDpred for diabetes. Results were independently validated in 

the Health and Retirement Study (N=8,292; 688,398 SNPs). Our report demonstrates the 

use of machine-learning techniques, coupled with summary-level data from large 

genome-wide meta-analyses to improve the prediction of polygenic traits. 
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Introduction 

The advent of precision medicine depends in large part on the availability of accurate and 

highly predictive polygenic risk scores. While progress has been made identifying genetic 

determinants of polygenic traits, the amount of phenotypic variance explained by 

polygenic risk scores derived from genome-wide significant associations remains modest. 

On the other hand, moderate to high narrow-sense heritability has been established for 

many human traits. It has been proposed that weak, yet undetected, associations underlie 

polygenic trait heritability1. Consistent with this hypothesis, polygenic risk scores that 

include both strongly and weakly associated variants are vastly superior than those 

including only genome-wide significant variants. For example, a recent study by 

Abraham et al. showed that a polygenic risk score incorporating 49,310 variants had a 

discrimination ability that was similar and complementary to the widely used clinical 

Framingham risk score for the prediction of coronary artery disease (CAD)2. Thus, there 

is a need for polygenic risk score methods that can integrate a large number of genetic 

variants. 

 

The most popular heuristic for polygenic risk score is based on linkage 

disequilibrium (LD) pruning of SNPs, prioritizing the most significant associations up to 

an empirically determined p-value threshold, and pruning the remaining SNPs based on 

LD3. This “pruning and thresholding” (P+T) approach has the advantage of being simple 

and computationally efficient, but discards some information because of LD pruning. To 

remediate this issue, a novel method, LDpred, which uses LD information from an 

external reference panel, was recently proposed to infer the mean causal effect size using 
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a Bayesian approach4. While the latter method has been shown to improve prediction R2, 

it depends on estimates of polygenic heritability and causal fraction, and can be sensitive 

to the misspecification of LD. We hypothesized that a further gain in prediction R2 could 

be made by tuning the weights of SNPs included in polygenic risk scores using principles 

of machine-learning. 

 

Machine-learning encompasses a wide-ranging class of algorithms widely used to 

solve complex prediction problems. It has proven particularly useful when prediction is 

dependent on the integration of a large number of predictors, including higher-order 

interactions, and when sizeable training datasets are available for model fitting. In 

particular, gradient boosted regression trees are powerful and versatile methods for 

continuous outcome prediction5, and thus, are ideal for updating the SNP weights in 

polygenic risk scores. Tree-based models partition the predictor space according to 

simple rules by identifying regions having the most homogeneous responses to predictors 

and fitting the mean response for observations in that region. Gradient boosting6 is an 

efficient algorithm that sequentially combines a large number of weakly predictive 

models to optimize performance.  

 

We propose to leverage the large number of SNPs and the available summary-

level statistics from genome-wide association studies (GWAS) to calibrate the weights of 

SNPs contributing to the polygenic risk score, adjusting for LD instead of pruning. Our 

heuristic, gradient boosted and LD adjusted (GraBLD; 

https://github.com/GMELab/GraBLD), involves two steps and uses the univariate 
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regression coefficients from external meta-analysis7-9 summary association statistics as 

the starting point (see Figure 1 and Methods). First, the external univariate regression 

coefficients were updated with respect to a target population by the gradient boosted 

regression tree models. Second, the updated weights were corrected for LD to produce 

the final polygenic risk score.   

 

Results 

We applied our machine-learning heuristic for height predictions using a calibration set 

of 10,000 participants, as well as an independent validation set of 130,215, both from the 

UK Biobank (UKB). The inputs for the gradient boosted regression trees were obtained 

from the Genetic Investigation of Anthropometric Traits (GIANT) consortium summary 

association statistics10,11 of 1.98M SNPs. Since the UKB is not part of the GIANT 

consortium, the initial weights were assumed to be independent of the target population. 

As recently proposed12, principal components were added to the model and included in 

the prediction R2. The prediction R2 of our GraBLD polygenic risk score that included all 

SNPs was 0.239, corresponding to 46.9% of the total polygenic genetic variance 

estimated at 0.509 in the UKB using variance component models13. This compared 

advantageously to the optimal prediction R2 obtained with P+T (0.220; 177K SNPs), 

LDpred (0.207), or an unadjusted polygenic risk score (0.165) (p<2.2x10-16 for all 

pairwise comparisons with GraBLD; Figures 2 and 3).  

 

We also tested the performance of GraBLD for the prediction of body mass index 

(BMI) and diabetes in the UKB using summary association statistics from the GIANT 
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consortium for BMI, and the DIAbetes Genetics Replication And Meta-analysis 

(DIAGRAM) consortium14 for diabetes, respectively. The resulting score for BMI had a 

prediction R2 of 0.082, outperforming the prediction R2 of the unadjusted polygenic risk 

score (0.069), P+T (0.069), and LDpred (0.074) (p<1.6x10-4 for all pairwise comparisons 

with GraBLD; Figure 2). The GraBLD polygenic risk score accounted for 32.7% of the 

total polygenic variance, which was estimated at 0.251 for BMI in the UKB using 

variance component models. For diabetes, the area under the receiver operator curve 

(AUC) was 0.602, which was not statistically different from LDpred (0.613; p=0.06), and 

compared favorably to the unadjusted polygenic risk score (0.583), as well as P+T 

(0.576) (p<10-5 for comparisons with GraBLD; Figures 2 and 3). For sensitivity analyses, 

we tested the influence of the number of folds used to fit SNP weights, the number of 

SNPs used for LD adjustments, and the interaction depth on polygenic score performance 

(Supplementary Figure S2). We also illustrated the relationship between weights updated 

by gradient boosted regression trees and the external regression coefficients from 

consortia (Supplementary Figure S3). 

 

Calibration, or the ability of a gene score to accurately predict real observations, 

is as important as predictiveness when gene scores are used to infer unobserved traits. To 

evaluate calibration, we calculated the average absolute difference between the predicted 

trait and the actual trait for height and BMI in the validation set. For all methods, 

polygenic risk scores were first calibrated in the training set through the use of a linear 

regression model (along with the top principal components). The average absolute 

difference was the smallest for GraBLD for height (0.690 SD) and BMI (0.742 SD), 
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compared to other polygenic scores (p<10-52 for all pairwise comparisons with GraBLD). 

We tested for calibration for diabetes using the Hosmer-Lemeshow test15, partitioning the 

UKB validation set by deciles of the predicted trait (Figure 4). There was no evidence of 

mismatch between the predicted and observed event rates (p>0.05).  

 

The set of participants used to calibrate GraBLD can theoretically be the test set 

since the univariate regression coefficient of each SNP in the target population is not used 

to tune its own polygenic score weight. However, doing so presents practical challenges 

when one wants to predict a trait unobserved in the target population. In such cases, a 

smaller training sample size is advantageous. Therefore, we explored the effect of the 

size of the calibration set on GraBLD performance by sub-sampling an increasing 

proportion of our calibration set for tuning. We determined that a calibration set as small 

as 200 was adequate to provide a high prediction R2 for height and BMI (Figure 5). For 

diabetes, we selected an increasing number of case-control pairs, and 100 pairs were 

sufficient for adequate performance.  

 

For any given SNP, the regression coefficient observed in the UKB was not used 

to determine its own weight in the polygenic risk score. Nonetheless, regression 

coefficients of other SNPs in the UKB were used, raising the issue of transferability to 

other populations. Hence, we tested GraBLD derived from the UKB in Health and 

Retirement Study (HRS) participants of European descent (N=8,292). Only directly 

genotyped SNPs were used for this analysis and 683K SNPs overlapped with both the 

UKB and consortia associations. For each method, the optimal GraBLD derived in the 
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UKB calibration set was tested in the HRS without any further fitting or adjustment. 

Consistent with the UKB results, our machine-learning heuristic produced superior 

polygenic risk scores for height and BMI, compared to all others methods, and was a 

close second to LDpred for diabetes (Figures 2 and 3).  

 

Discussion 

Our proposed machine-learning heuristic led to significant improvements of polygenic 

risk scores in prediction R2, compared to existing methods. Furthermore, we showed that 

GraBLD risk scores were well calibrated, requiring only a small “tuning” set sample size 

(N~200) to achieve satisfactory performance. This latter characteristic makes our method 

advantageous for the prediction of unobserved traits, and stems from the fact that our 

heuristic leverages the large number of genetic variants reported in GWAS to train 

gradient boosted regression tree models through genome partitioning. Overall, our results 

demonstrate that machine-learning techniques coupled with summary-level data from 

large genome-wide meta-analysis improve the prediction of polygenic traits. 

 

The regression trees approach we used can capture nonlinear effects and higher-

order interactions, while the gradient boosting algorithm combines individually weak 

predictors to produce a strong classifier that enables a better prediction of genetic effects. 

The gradient boosted regression trees adaptively reweight the contribution of each SNP in 

order to maximize the prediction R2 in a target population. Summary association statistics 

obtained from large external meta-analyses are implicitly assumed to provide the best 

initial estimates and regression trees “adapt” them to the regression coefficients observed 
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in the target population. To avoid over-fitting, SNPs were divided into five distinct 

contiguous sets (thus circumventing potential LD spillover) and the weights of SNPs in 

each set were calculated using the prediction models trained on the remaining four sets. 

For example, the first set comprised SNPs from chromosomes 1, 2, and part of 3 such 

that SNPs from the remaining part of chromosome 3, as well as those on chromosomes 4 

to 22 were used to derive prediction models for SNPs in the first set. Thus, the observed 

regression coefficients of any single SNP in the target population was never used directly 

or indirectly to derive its own weight in the polygenic score. In addition, we used a small 

learning rate for the boosting algorithm to reduce the risk of overfitting as it has been 

suggested that boosting is quite robust to overfit16. We also explored alternative machine-

learning techniques to tune the SNP weights, with bagging being a close second to 

gradient boosted regression trees in terms of prediction R2 (0.229 for height and 0.080 for 

BMI) as it is based on a similar principle of subsampling. Neural net produced inferior 

results and slower computation. Support vector machine and random forest proved to be 

computationally prohibitive with run times exceeding 7 days for the same analyses done 

in 8.25 hours by GraBLD.    

 

It is advantageous to correct the derived weights for LD when including multiple 

SNPs in a score, unless SNPs were first LD pruned. The novel correction we propose is 

based on the sum of pairwise LD r2 of each SNP over neighboring SNPs. The polygenic 

risk score weights of each SNP were divided by the corresponding sum of r2. To illustrate 

with a simple example, if five SNPs are in perfect LD (r2=1) with each other, but in 

linkage equilibrium with all other SNPs (r2=0), then the polygenic score weights of those 
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five SNPs would be divided by five. Since all five SNPs are included in the score and the 

effect of all five SNPs are summed, the corrected weight contributions are equivalent to 

including a single SNP without correction. Thus, it is necessary to apply the LD 

correction only after adjusting SNP weights with gradient boosted regression trees as 

otherwise important information on the strength of association of individual SNPs would 

be lost. 

 

LD is only summed over SNPs included in the polygenic risk score such that our 

correction is specific to the set of SNPs included in a given score. When the genetic 

effects were strictly additive (i.e., no haplotype or interaction effect), the resulting 

polygenic score provided an unbiased estimate of the underlying genetic variance 

although at a tradeoff of increased polygenic score variance as compared to the “true” 

unobserved genetic model (see Methods). It can be shown that the variance explained by 

the polygenic risk score �� � �true
�  in simple cases where the pairwise r2 LD is either 0 or 

1 and the summary association statistics are derived from an asymptotically large sample. 

In more common scenarios with partial LD, the variance explained by �� � �true
�  reflects 

the loss of information when, for example, two SNPs are in partial LD and have true 

genetic effects with opposite directions. Using simulations, we estimated this loss of 

information at ~12% as the prediction R2 explained ~88% of the true genetic variance, on 

average (see Methods). 

 

A few limitations are worth mentioning. First, our method was based on the 

premise that SNPs contribute additively to genetic variance. While empirical evidence 
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suggests this holds true in most cases, our method is not expected to perform well in 

genomic regions where strong genetic interactions are present (e.g. HLA). In such 

situations, alternative methods such as LDpred might be better suited4. Second, there is a 

possibility that the polygenic risk scores derived using our method are inherently 

population-specific. However, with the exception of unadjusted polygenic risk scores, all 

methods require a determination of parameters in the target population and ours is no 

exception. Furthermore, if the genetic architecture varies between populations, then no 

polygenic risk score will perform universally well and it will be beneficial to tailor gene 

scores to each population. The observation that our heuristic performed equally well in 

the HRS, compared to other methods, suggests this might not be the case. Moreover, the 

small calibration sample size required by GraBLD is an advantage over other gene score 

methods. Third, our correction for LD yielded advantageous results yet is expected to 

lead to some loss of information when truly associated SNPs are in partial LD. 

Nonetheless, our method has several benefits over other methods, including its simplicity, 

use of summary association statistics, and intrinsic robustness to minor misspecification 

of LD or association strength. 

 

In summary, we propose a novel heuristic based on machine-learning concepts to 

improve the prediction of polygenic traits using gene scores. Our results show that for the 

classic polygenic traits, height and BMI, 46.9% and 32.7% of the estimated polygenic 

genetic variance was captured by our GraBLD gene scores. These results demonstrate the 

potential of machine-learning methods to harness the considerable amount of information 

available from local GWAS and external genome-wide meta-analyses. This is made 
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possible through partitioning of the genome, enabling training of regression trees over 

large numbers of observations. Indeed, a small training sample size (~200) was sufficient 

to greatly improve the predictiveness of polygenic risk scores. As with other prediction 

problems involving machine-learning techniques, incremental improvements are to be 

expected with increased sample size, the inclusion of additional predictors, and the 

availability of more precise summary association statistics. 
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Methods  

 

Datasets 

 

Summary association statistics were used to tune the weight of SNPs in polygenic risk 

scores according to the target population. Univariate regression coefficients for height 

and body mass index (BMI) were downloaded from the Genetic Investigation of 

Anthropometric Traits (GIANT) consortium4,10,11,17 at 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_f

iles. Univariate coefficients for diabetes were obtained from DIAbetes Genetics 

Replication And Meta-analysis (DIAGRAM) consortium14 at www.diagram-

consortium.org/. 

 

The UK Biobank18 (UKB) is a large population-based study from the United 

Kingdom. A total of 152,249 participants were genotyped using either the UK BiLEVE 

or the UK Biobank Affymetrix Axiom arrays, and a subset of 140,215 participants of 

European (British and Irish) Caucasian ancestry were used in the analyses. Genotypes 

were imputed using the UK10K reference panel using IMPUTE2, resulting in ~72M 

SNPs. Height and BMI were adjusted for age and sex in all analyses. To mitigate the 

effects of outliers, values outside the 1st and 99th percentile were removed. All analyses 

were adjusted for the first 15 genetic principal components unless stated otherwise. The 

final sample size for height and BMI was 130,215. The UKB is not part of the GIANT 

meta-analysis of height and BMI19,20, nor of the DIAGRAM consortium for diabetes14. 
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There are 6,746 individuals with prevalent diabetes in the subset of the UKB included in 

the current report. We randomly selected 6,746 individuals without diabetes as paired 

controls on a 1:1 ratio. We then randomly sampled 1,000 case-control pairs as the 

calibration set, with the remaining 5,746 pairs forming the validation set.  

 

The Health and Retirement Study (HRS) is a longitudinal study conducted on 

Americans over age 50. We downloaded publicly available genome-wide data that are 

part of the HRS (dbGaP Study Accession: phs000428.v1.p1) and were generated using 

the Illumina Human Omni2.5-Quad BeadChip. The following HRS quality control 

criteria were used to filter genotype and phenotype data: (1) SNPs and individuals with 

missingness higher than 2% were excluded, (2) related individuals were excluded, (3) 

only participants with self-reported European ancestry and genetically confirmed by 

principal component analysis were included, (4) individuals for whom the reported sex 

does not match their genetic sex were excluded, (5) SNPs with Hardy-Weinberg 

equilibrium p < 1x10-6 were excluded, and (6) SNPs with minor allele frequencies lower 

than 0.02 were removed. The final dataset included 8,292 European participants 

genotyped for 688,398 SNPs. Height and BMI was adjusted for age and sex in all 

analyses, and to mitigate the effect of outliers, values outside the 1st and 99th percentile 

range were removed. All analyses were adjusted for the first 20 genetic principal 

components unless stated otherwise. The final sample sizes for height and BMI were 

8,291 and 8,262, respectively. There were 1,815 individuals with diabetes and 6,477 

controls. HRS was not part of the GIANT meta-analysis of height and BMI19,20, nor of 

the DIAGRAM consortium for diabetes14.   
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Polygenic risk scores 

The genotypes for n individuals at m SNPs in the target population are given by a matrix  

���� � ��� �� …  ��	�, 

with each column vector ��, ��, … , ��  representing the coded genotypes for an 

individual. Without loss of generality, we assume each column of � (i.e., genotypes for a 

single SNP) to be standardized to have mean 0 and variance 1. For a standardized 

quantitative trait � with mean 0 and variance 1, the underlying linear model can be 

expressed as: 

� � �� 
 �  (eq.1), 

where � is a vector of true genetic effects that are fixed across individuals, but random 

across SNPs, with mean 0 and covariance matrix ��� such that the total expected genetic 

variance is: 

�true
� � E�������� � tr������� � ���  (eq.2) 

and � the error term with mean 0 and covariance �1 � �����, so that the covariance of � 

is I . Given ��, the genotypes of m SNPs for the ith individual, the gradient boosted and 

LD adjusted (GraBLD) polygenic risk score ����� is defined as: 

����� � ∑ x	,�
��


�
� � ��

���  (eq.3), 

where � is an m-dimensional vector of boosted weights and � is an � � �  diagonal 

matrix with entries � �


�
, 

�


�
, … , �


�
�  adjusting for LD. For quantitative traits, the 

performance of the polygenic risk score was measured by the coefficient of determination 

(i.e., the prediction R2), and for binary traits, performance was measured using the area 

under the receiver operator characteristic (ROC) curve.  
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Gradient boosted regression trees  

Gradient boosted regression trees are powerful and versatile methods that combine 

otherwise weak classifiers to produce a strong learner for continuous outcome 

prediction5. They are ideally suited for improving SNP weights (�) in the polygenic risk 

score, without requiring individual-level genotypes since they can be used to predict 

continuous outcomes and can model non-linear relationships without feature selection. 

We also tested support vector machine (SVM), bagging, neural net, and random forest. 

SVM (“e1071” R package) and random forest (“randomForest” R package) took an 

inordinate amount of time to complete and were deemed impractical. Gradient boosted 

regression trees gave the best results when compared to bagging (“caret” R package) and 

neural net (“nnet” R package) using default parameters. Thus, all analyses were 

performed using gradient boosted regression trees. The fitted ��  gave the contribution of 

individual SNPs to the final polygenic risk score. The weights used in gene scores (��� 

were defined by the following: 

�� �  �ext � !"#sign��ext� (eq.4), 

where �ext  refers to the univariate regression coefficients obtained as summary-level 

association statistics from the external consortium (assumed to have been standardized 

for reference allele frequency), and !"  is derived to reflect the amount of deviation 

towards the null hypothesis of no association in the target population (�obs) with respect 

to the externally derived estimates of summary association statistics (�ext). When ! � $ 

then �obs � �ext, implicitly assuming regression coefficients from large meta-analyses 

provide the best initial weights. While some information is lost because of this construct, 
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the fitted weights are more robust and expected to improve the overall performance of 

polygenic risk scores.  

 

The dependent variable used in gradient boosted regression trees is constructed 

as: 

! � ��obs � �ext�sign��ext� (eq.5), 

and the fitted deviation !" can be found by minimizing the squared-error loss function 

% !, &�'�# � ∑ �(� �  & '�#���
���  (eq.6), 

where & is a regression function of trees with input variables ' � �)�, )�, … )��. The 

gradient boost algorithm aims to iteratively minimize the expected square error loss, with 

respect to & , on weighted versions of the training data (Z, d). While multiple SNP 

annotations could be included as inputs (i.e. )�, )�, … )�), we only included the absolute 

value of the SNP regression coefficient for the target trait from the external consortium to 

reflect the strength of association, irrespective of the direction of effect. Importantly, 

SNPs were divided into 5 distinct sets of contiguous SNPs (to avoid LD spillover), and 

the fitted !" derived using the regression trees models trained on the remaining 4 sets was 

used to calculate the actual polygenic risk scores. The observed regression coefficient 

(�obs) of an individual SNP is therefore, never used directly or indirectly to derive its 

own weight. Furthermore, the SNP annotations used in the regression trees model should 

be independent of the population in which the polygenic risk score is applied.  

 

Gradient boosted regression trees models were fitted using the “GBM” R package 

(https://CRAN.R-project.org/package=gbm) with a squared error loss function. A total 
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of 2,000 trees were fitted with an interaction depth of 5, a shrinkage parameter of 0.001, 

and a bag fraction of 0.5. The final number of trees used for modeling was selected as per 

GBM package instructions. All other parameters were set to their default values. The run 

time for each of the 5 folds was 8.25 hours when performed on a single 3 GHz core. 

 

 

LD Adjustment for SNP weights 

We propose a simple method to correct weights for LD in such a way that all SNPs can 

be included in a gene score, irrespective of LD. Let r2
j,k  denote the pairwise linkage 

disequilibrium (r2) between the jth and kth SNPs. The LD adjustment (ηj) for the jth SNP is 

defined by the sum of r2 between the jth SNP and the 100 SNPs upstream and 

downstream: 

*� � ∑ +�,�
��������

�������   (eq.7), 

with a distance of 100 SNPs assumed sufficient to ensure linkage equilibrium (other 

values may be used). Including only SNPs that are part of the polygenic risk score in the 

calculation of ηj, the LD-corrected weights are given by: 

�,� � ��


�
 (eq.8), 

where ��is the weight for the jth SNP.  

 

Prediction R2 of polygenic risk score 

The prediction R2 of the gene score in the target population is expressed as:  

R
� � Cov���X�,���

Var���X��Var���
   (eq.9), 
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and the expected value can be approximated by: 

E���	 � E - Cov���X�,���

Var���X��Var���
. � E -Cov���X�,���

Var���X��
. ~ ��Cov���X�,����

��Var���X���
~ ��Cov���X�,����

��Var���X���
   (eq.10), 

and further simplified to 

E���	~ ��Cov���X�,����

E[Var���X���
� ��true

� ��

E[Var���X���
� �true

�    (eq.11) 

by deriving the following relations: (1) E�Cov���X�,��	 � �true
� , implying the covariance 

between the gene score and the trait is an unbiased estimator of the true genetic variance, 

and (2) E[Var���X��	 0 �true
� ; thus, 1���	 � �true

� , implying the expected prediction R2  

must be bounded above by the true genetic variance. We derive these two relations in the 

following subsections and further verify with simulations (Supplementary Figure S1).  

 

(1) An Unbiased Estimator of the True Genetic Variance 

The sample covariance of the gene score with the observed � in the target sample is given 

by: 

Cov���X�,�� � 1
2 3 ��x��4	

 

	��
 

� �

 
�X�5!�"��� 
 6�  

� �

 #
�X���!��! ��"��� 
 6�  

� 1
27 �X���!��! ��"��� 
 6� 

� �

 #
(���!��!����� 
 6!��!��!���6 
 ���!��!���6 
 6!��!��!������    

(eq.12), 

where 6!  and 6  are the residual error in the unobserved population used to derive 

summary association statistics and the target population, respectively. The reported 5! in 
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GWAS meta-analyses are constructed to estimate the univariate regression coefficients 

from the otherwise unobserved genotype matrix �!
$��, and quantitative trait �!: 

5!~ %��� 

#
� %���%�'�(�� 

#
� %��%�

#
� 
 %��(� 

#
   (eq.13) 

Assuming the target population is independent of the meta-analysis (i.e., 6! and 6 are 

independent), we establish the expected value of the quadratic forms in (eq.12): 

E[Cov���X�,��	 
� 1

27 E8(���!��!����� 
 6!��!��!���6 
 ���!��!���6 
 6!��!��!������9 

� 1
27 E����!��!�����	 

� tr :�� �!��!

7 � ���
n �< 

� ��tr :�!��!

7 � ���
n < 

� ��� � �true
�  (eq.14) 

This equality holds for all positive definite matrices of the form 
%��%�

#
= %�%

)
, assuming the 

LD structure in the two populations is identical. Thus, Cov���X�,��  is an unbiased 

estimator of the true genetic variance.  

 

(2) Variance of the polygenic risk score 

The denominator in (eq.11), E[Var���X��	, can be shown to be greater than �true
� :  

�true
� =E[Cov���X�, ��	 � E[Cov���X�, ���	, 

while 

E[Cov���X�, ���	 > E[?Var���X��Var����	 � E[@Var���X���true
� 	 
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And thus: 

�true
� >  E[?Var���X���true

� 	 and ?�true
� >  E[?Var���X��	, 

which leads to 

E�Var ����#	 A E�?Var������	� A �true
�  (eq.15) 

 

From the above inequality, we can conclude that E[Var���X��	 is biased and will always 

be greater than or equal to the true genetic variance. 

 

All analyses were conducted in R statistical software, the scripts for gradient boosted 

regression trees and LD adjustments can be found at 

https://github.com/GMELab/GraBLD. 

 

Simulations to assess the effect of LD adjustment on polygenic risk score bias and 

variance 

We performed simulations to confirm the effect of LD adjustment on bias and polygenic 

risk score variance. A total of 5,000 individuals were simulated for 450 contiguous SNPs 

using phased haplotypes from the 1000 Genomes Project [19]. The genetic effect of each 

SNP was randomly selected from a normal distribution according to a pre-defined, 

unobserved, true regional genetic variance that assumed genome-wide heritability 

varying from 0 to 0.5. For each genetic variance set-point, 1,000 simulations were 

completed and a polygenic risk score incorporating LD correction was derived. The 

average (±SD) gene score prediction R2, and the gene score variance and covariance 

between the gene score and the true (unobserved) genetic effect was calculated 
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(Supplementary Figure S3). Based on these simulations, we confirmed that (1) LD-

corrected gene scores were unbiased estimators of true genetic variance (i.e. 

E�Cov���X�,��	 � �true
� ), and (2) the variance of the gene score was indeed higher than 

the true genetic variance. We further estimated the loss of information at ~12%, or in 

other words, the polygenic risk score prediction, R2, explained ~88% of the true genetic 

effect variance, on average. 

 

Pruning and thresholding polygenic risk score, LDpred and other methods 

Pruning and thresholding (P+T) polygenic scores were derived using the “clump” 

function of PLINK21 with an LD r2 threshold of 0.2 and testing p-value thresholds in a 

continuous manner from the most to the least significant association. LDpred adjusts 

GWAS summary statistics for the effects of linkage disequilibrium, providing re-

weighted effect estimates that are then used in polygenic risk scores4. LDpred was run as 

recommended by the authors, and included data synchronization and LDpred steps. 

LDpred requires a specification for the fraction of SNPs assumed to be causal. For each 

model, we tested causal fractions of 1 (infinitesimal), 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 

0.0003, and 0.0001, as recommended. The results are presented using the causal fraction 

of the best results. A heritability estimate was also required by the algorithm and was 

estimated from the summary association statistics from LDpred. As a sensitivity analysis, 

we additionally used heritability estimates given by the variance component models in 

the UKB. The results were consistent and only the default option is shown. Polygenic 

genetic variance (i.e., narrow sense heritability) was estimated for height and BMI in the 

UKB using the variance components implemented in GCTA13. All LD measures or 
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related estimates used throughout the manuscript were derived from the UKB calibration 

set genotypes. 
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Figure Legends 

 

Figure 1: An overview of the proposed machine-learning heuristic to boost polygenic 

risk scores and study design. 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/107409doi: bioRxiv preprint 

https://doi.org/10.1101/107409
http://creativecommons.org/licenses/by-nd/4.0/


27 

 

Figure 2: Prediction R2 using polygenic risk scores as a function of increasing proportion 

of SNPs for height, BMI, and diabetes.  

 

The prediction R2 of polygenic risk scores, as a proportion of the top SNPs from the 

GIANT consortium for height (a) and BMI (c) in the UKB validation set (N=130,215), 

with 95% confidence bands. A total of 1.98M SNPs were considered and ordered from 

the most to the least significant, according to GIANT summary association statistics. 

LPpred requires a determination of the fraction of causal SNPs, and illustrates only the 

best scores by setting the causal fractions to 0.3 and 0.01 for height and BMI, 

respectively. The prediction R2 of the UKB polygenic risk scores in HRS is similarly 

illustrated for (b) height (N=8,291) and (d) BMI (N=8,269). The UKB polygenic risk 

scores were tested in HRS without additional fitting or adjustment. The area under the 

curve is illustrated for diabetes as a function of the proportion of top SNPs from the 

DIAGRAM consortium in the UKB validation set (e) and HRS (f) with 95% confidence 

bands. The LDpred causal fraction of 0.003 was determined in the UKB calibration set 

for diabetes.  
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Figure 3: Relative improvement in discrimination for height, BMI, and diabetes, 

compared to unadjusted polygenic risk scores. 

 

The relative improvement in the prediction R2 of gene scores, compared to the unadjusted 

polygenic risk score, is illustrated for height and BMI in the UKB validation set and 

HRS. For diabetes, the relative improvement in the area under the curve (AUC) is 

illustrated. For all traits, the polygenic risk score weights were derived from the UKB 

calibration set and tested without additional fitting or adjustment. 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/107409doi: bioRxiv preprint 

https://doi.org/10.1101/107409
http://creativecommons.org/licenses/by-nd/4.0/


29 

 

 

Figure 4: Calibration of height, BMI, and diabetes polygenic risk scores. 

 

For each trait and method, the polygenic risk score values for the UKB validation set 

were divided into deciles. For each decile, the difference between the mean observed and 

predicted trait (95% confidence interval) is illustrated as a function of the mean predicted 

trait for that decile. The trait is expressed per SD unit for height (a) and BMI (b). A 

similar analysis was performed for diabetes, whereby the difference between the 

observed probability of diabetes and the predicted probability is illustrated as a function 

of the predicted probability for each decile. 
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Figure 5: GraBLD polygenic risk score discrimination as a function of calibration set 

sample size. 

 

The size of the UKB calibration set varied from 20 to 10,000 for height and BMI, and 

from 3 to 1,000 case-control pairs for diabetes. For each calibration sample size, 

discrimination of the corresponding polygenic risk score was calculated in the 

independent UKB validation set (N=130,215 for height and BMI; N=5,746 case-control 

pairs for diabetes). 
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