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ABSTRACT

Although there are numerous algorithms that have been developed to identify structural variation (SVs)
in genomic sequences, there is a dearth of approaches that can be used to evaluate their results. The
emergence of new sequencing technologies that generate longer sequence reads can, in theory, provide
direct evidence for all types of SVs regardless of the length of region through which it spans. However,
current efforts to use these data in this manner require the use of large computational resources to
assemble these sequences as well as manual inspection of each region. Here, we present VaPoR, a
highly efficient algorithm that autonomously validates large SV sets using long read sequencing data.
We assess of the performance of VaPoR on both simulated and real SVs and report a high-fiddity rate
for various features including overall accuracy, sensitivity of breakpoint precision, and predicted

genotype.
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INTRODUCTION

Structural variants (SVs) are one of the major forms of genetic variation in humans and have been
revealed to play important roles in various diseases including cancers and neurological disorders (1,2).
Various approaches have been developed and applied to paired-end sequencing to detect SVs in whole
genomes (3-5), however individual algorithms often exhibit complementary strengths that sometimes
lead to disagreements as to the underlying variant. The emergence of long read sequencing technology,
eg. Single Molecule Real-Time (SMRT) sequencing from Pacific Biosciences (PacBio), can provide
direct evidence for the presence of an SV. Current strategies make use of de novo assembly to create
large contigs that can be cross-referenced with a putative SV using manual inspection of the subsequent
recurrence (dot) plot (6). These types of dot plots have been used for decades to examine the specific
features of sequence alignments (7), however they require manual curation and, coupled with the
computational costs of sequence assembly, are time-consuming and inefficient at scale for the high
throughput validation of large sets of SVs.

Here, we present a high-speed long read based assessment tool, VaPoR, that scores each SV
prediction by autonomously analyzing the recurrence of windows within a local read against the
reference genome in both their original and rearranged format per the prediction. A positive score of
each read on the altered reference, normalized againgt the score of the read on the original reference,
supports the predicted structure. A baseline model is constructed as well by interrogating the reference
sequence against itself at the query location. We show that our approach can quickly and accurately
digtinguish true from false positive predictions of both simple and complex SVs as well as ther

underlying genotypes and is also able to assess the breakpoint accuracy of individual algorithms.
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MATERIALSAND METHODS

VaPoR Wor kflow

VaPoR takes in aligned sequence reads in BAM format and predicted SVs (>50bp) in various formats
including VCF and BED. Evaluation of an SV is performed by comparing long reads that go through the
event against reference sequences in two formats. (a) the original human reference to which the sample
isaligned and (b) amodified reference sequence altered to match the predicted structural rearrangement.
A recurrence matrix is then derived by dliding a fixed-size window with 1bp step through each read to
mark positions where the read sequence and reference are identical. The matching patterns are then
assessed as to the validity of the SV as described below and a validation score is reported. Given the
large variance of SVs lengths, each SV is stratified into one of two groups: smaller SVs that can be
completely encompassed within multiple (>10 by default) long sequences and larger events that are
rarely covered by individual long reads, with different statistical model applied. The VaPoR workflow is

briefly summarized in Figure 1.

Small Variants Assessment:

For an SV k in sample s that is covered by n reads, the recurrence matrix between each read and the
reference sequences in original (R,) and altered (R,) format is calculated. The vertical distance between
each record (Xiksra Yiksre) 1N mMatrix x and the diagonal (Xiksrx, Xiksrx) line is calculated as diksrx =
abs(Xiksrx - Viksrx), and the average distance of al records would be exported as the score of each
matrix:

m
SCOTek,s,Rx = Z di,k,s,Rx /m!

i=1
where mis the total number of records in the matrix. Sequences that share higher identity with the read

shall have alower Scorex srx, such that the score of each read is normalized as:
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Scoreysp = Scoreggr [ Scoregsp, — 1,
where a positive Scorecsr represents the superiority of the predicted structure versus the original and
vise versa for negative Scorecsg, With one exceptional case where there exists a duplicated structure in
the predicted SV such that the predicted structure would show higher Scorecsg due to the multi-
alignment of duplicated segments. To correct for duplications, VaPoR adopts the directed distance
diksrx = Xiksrx - Yiksrx INstead such that the distance contributed by centrosymmetric duplicated

segments would offset each other.

Large Variants Assessment:
For larger SVs where there are few, if any, long reads that can transverse the predicted SV, VaPoR

assesses the quality of each predicted junction instead using:

Zm ] = {11 lf abs(xi,k,s,Rx - yi,k,s,Rx) <0.15 = xi,k,s,Rx
i

=1 .
0, otherwise
Scorey ¢ px = ,
i m

where a larger Scorexsrx represents higher similarity between the read and the reference sequence. The
normalized scores of each read is then defined as:

Scoreysr = Scoregsr, [ Scoregsp — 1,

VaPoR Score Calculation:
With a score assigned to each read spanning through the predicted structural variants, the VaPoR score
(Scorey, ;) is summarized as:

n _{1, if Scorepsp >0

k=177 0, otherwise
n

Scorey ¢ =

to represent the proportion of long reads supporting predicted structure.
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The highest supportive score (max(Scorey s z)) is aso reported as a reference for users to meet the

specific requirement of their study design, for which we recommend 0.1 asthe cutoff.

Flexible window size:

By default, VaPoR uses a window size of 10bp and requires an exact match between sequences, though
these can be changed to user-defined parameters. However, many regions of the genome contain
repetitive sequences resulting in an abundance of spurious matches in the recurrence matrix, thus
introducing bias to the assessment. To address this, VaPoR adopts a quality control step by iteratively
assessing the reference sequence against itself and tabulating the proportion of matches along the
diagonal. The window size initially starts at 10bp and iteratively increases by 10bp until either (a) the
proportion of matches on the diagonal exceeds 40% and the current window size is kept or (b) the
window size exceeds 40bp whereby the event will be labeled as ‘ non-assessable’ and excluded from the

evaluation.

VaPoR Accuracy Assessment

Smulated Data:

Non-overlapping simple deletions, inversions, insertions and duplications as well as complex structural
variants as previousy categorized (3) were independently incorporated into GRCh38 in both
heterozygous and homozygous states, excluding regions of known difficult regions of the genome as
described from the ENCODE project (8). Detailed descriptions of each smulated SV types simulated
are summarized in Supplementary Tables 1- 3. We applied PBSIM (9) to smulate the modified

reference sequences to different read depth ranging from 2X to 70X with parameters difference-ratio
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5:75:20. length-mean 12000, accuracy-mean 0.85 and model_gc model_gc clr. Simulated data can be

obtained from https://umich.box.com/v/vapor.

Real Data

We also applied VaPoR to a set of diverse samples (HG00513 from CHS, HG00731 and HG00732 from
PUR, NA19238 and NA19239 from YRI) that were initially sequenced by the 1000 Genomes Project
(1KGP) and for which a high quality set of SVs were reported in the final phase of the project (10).
These samples were recently re-sequenced using PacBio and therefore provides a platform for assessing
VaPoR on known data. The 1000 Genomes Project Phase 3 data were obtained from ftp:/ftp-

trace.nchi.nih.gov/1000genomes/ftp/phase3/integrated sv map/ and lifted over to GRCh38. PacBio

seguence data were obtained from

http://ftp.1000genomes.ebi.ac.uk/vol I/ftp/data collections’hgsv sv discovery!/.

RESULTS

We assessed the performance of VaPoR on both simulated sequences and real genomes from the 1000
Genomes Project to assess the following characteristics: sensitivity and false discovery rate on
validating structural variants in simple and complex structures; sensitivity of VaPoR on validating
different levels of predicted breakpoint efficacy; stratification of VaPoR scores by genotype; and time

and computational cost of VaPoR.

VaPoR on Smulated Data
We applied VaPoR to simulated ssimple deletions, inversions, insertions and duplications as well as

complex structural variants and first assessed the proportion of SVs that VaPoR is capable of
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interrogating (i.e. passed VaPoR QC). We found that VaPoR can successfully evaluate >80% of
insertions, >85% deletion-duplications and >90% SVsin al other categories when the read depth is 10X
or higher. We then assessed the sensitivity and false discovery rate (FRR) at different VaPoR score
cutoffs and found that when considering different types of SV's across various read depths of, most of
the SV types can achieve a sensitivity >90% with false discovery rate <10% at a VaPoR score cutoff of
0.15 (Supplemental Figures 1-2). We further observed that there were no significant changes of
sensitivity or false discovery rate once the read depth was a or above 20X and is consistent across

different SV types (Figure 2, Supplemental Tables 1-3).

VaPoR on 1000 Genomes Project Samples

We next examined SVs reported on chrl of 5 individuals from the 1000 Genomes Project (11) to assess
the sengitivity of VaPoR on real genomes (Table 1). We first observed that >95% of deletions and
insertions could be successfully evaluated by VaPoR. For inversions, there were a limited number of
events reported but at maximum only 1 event failed the VaPoR quality control per individual. A
sensitivity of >90% was achieved for deletions (Figure 3a) and >80% for insertions (Figure 3b). To
examine the false validation rate of VaPoR, we modified reported events on chr2 to appear at the same
coordinates on chrl and assessed them as though they were real events using the same sequence data set.
VaPoR validated very few deletions or inversion and <10% of insertions.

We next assessed the performance of VaPoR to validate SV's with varying degrees of breakpoint
accuracy. Real coordinates were artificially shifted each direction by -1000 to 1000 base pairs and re-
assessed with VaPoR for both simulated and real samples. In both cases, VaPoR exhibited a robust
validation score up to approximately 200bp overall, with some slight differences observed between

different SV types (Figure 3c,d).
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Discrimination of SV types and genotypes

We identified a small number of SVs in the high quality 1000 Genomes set that did not validate with
VaPoR. Previous studies have shown that complex rearrangements are often misclassfied as smple
structural changes (3,12), and indeed upon manual inspection these appeared to consist of multiple
connected rearrangements. For example, we observed a reported inversion in HG00513 and NA19239
on chromosome 1 (chr1:239952707-239953529) that was invalidated by VaPoR; an investigation into
the long-reads aligned in the region showed the signature of an inverted duplication (Figure 4a) which,
when incorporated into a modified reference that location, matched amost exactly with the read
sequence (Figure 4b).

We further explored the distribution of VaPoR scores for this region and others across the
sample set and observed clear delineations between allelic copy number when fit with a Gaussian
mixture modd allowing for the generation of genotype likelihoods for each site (Figure 4c). These
tracked with our expected genotypes for the inverted duplication on chrl across the 5 individuals
gueried while showing no support for the originally predicted inversion (Figure 4d). This shows that
VaPoR is not only able to accurately genotype variants but can also distinguish between similar but

distinct SV predictionsin the same region.

Runtime and efficiency

The computation runtime of VaPoR was assessed using 2 Intel Xeon Intel Xeon E7-4860 processors
with 4GB RAM each on both smulated and real genomes. The runtime of simulated event was observed
to increase linearly with read depth (Supplemental Figure 7). For events sequenced up to 20X, VaPoR

takes ~3 seconds to assess a simple SV and ~5s for a complex event. The assessment of real samples
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sequenced at 20X required ~1.4 seconds to assess a ssimple deletion or insertion and ~6 seconds for an

inversion (Supplemental Table 4).

DISCUSSION

Here we present an automated assessment approach, named VaPoR, for exploring various features of
predicted genomic structural variants using long read sequencing data. VaPoR directly compares the
input reads with the reference sequences with relatively straightforward computational metrics, thus
achieving high efficiency in both run time and computing cost. VaPoR exhibits high sengtivity and
specificity in both ssmulated and real genomes, with the capability of discriminating partially resolved
SVs either consisting of similar but incorrect SV types at the same location or correct SVs with offset
breakpoints. Furthermore, we show that VaPoR performs well at low read depths (5-10X), thus

providing the option of systematically assessing large-scale SV's with alower sequencing cost.
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Table 1. Sensitivity and false discovery rate of different SV types

deletion
Sample SensFDR
HG00513 0.96/0.00 (0.94%)
HG00731 0.92/0.00 (0.96)
HG00732 0.92/0.00 (0.98)
NA19238 0.89/0.00 (0.94)
NA19239 0.85/0.00 (0.95)

Proportion of SV's passed VaPoR QC, as listed in brackets are
counted for events on chrl and chr2 together.
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Figure Legends:

Figure 1. Flowchart describing the VaPoR algorithm. As input, the algorithm requires a set of
structural variants in either VCF or BED format, a series of long reads and/or sequence contigsin BAM
format, and the corresponding reference sequence. VaPoR then interrogates each variant individually at

its corresponding reference location, assesses the quality of the region and assigns a score.

Figure 2. Accuracy of VaPoR on smulated heter ozygous and homozygous SVs at varying degr ees
of sequence coverage and VaPoR score cut-offs. Receiver operator curves (ROC) are shown for
simple deletions, duplications and inversions (a,b) as well as complex rearrangements including inverted

duplications and deletion-inversion rearrangements (c,d).

Figure 3. Validation rate and breakpoint accuracy of VaPoR on the 1000 Genomes Proj ects phase
3 calls. VaPoR was applied on 5 individuals with reported SVs as a truth set: HG00513, HG00731,
HG00732, NA19238, NA19239. The validation rate of deletions (a) and insertions (b) are shown here
across different cutoff scores for VaPoR. Robustness to breakpoint accuracy was assessed by deviating

breakpoints from their actual positions across varying distances for deletions (c) and insertions (d).

Figure 4. Validation and genotyping of assessed regions using VaPoR. (a) Recurrence plot of
reference genome (GRCh38) to an aligned long read in NA19239
(m150208 160301 42225 ¢100732022550000001823141405141504 sl p0/3831/0_12148) for a
reported inversion at position chrl:239952707-239953529. The signature is consistent with an inverted
duplication structure. (b) Recurrence plot of a different read

(m150216_ 212941 42225 c100729442550000001823151505141565 s1_p0/106403/0_13205) against
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the same location, consistent with a non-variant (reference) structure. (c) Distribution of VaPoR scores
on all reported SVs on chrl in samples HG00513, HG00731, HG00732, NA19238, NA19239, dratified
by color (solid) and modeled with a Guassian mixture model (dashed). (d) VaPoR scores of SV above
now stratified by color as indicated in (c) for both reported inversion (red) and predicted inverted

duplication (blue).

Availability and Requirements

Project name: VaPoR

Project home page: https://github.com/mills-lab/vapor

Operating systems: Linux, OS X

Programming languages. Python, R

Other requirements. Python v2.7.8+, rpy2, HTSeq, samtools v0.19+, pyfasta v0.5.2+, and pysam

0.9.1.4+.
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