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 2 

Abstract 1 

The emergence of very large cohorts in genomic research has facilitated a focus on 2 

genotype-imputation strategies to power rare variant association. Consequently, a new generation 3 

of genotyping arrays are being developed designed with tag single nucleotide polymorphisms 4 

(SNPs) to improve rare variant imputation.  Selection of these tag SNPs poses several challenges 5 

as rare variants tend to be continentally- or even population-specific and reflect fine-scale linkage 6 

disequilibrium (LD) structure impacted by recent demographic events. To explore the landscape of 7 

tag-able variation and guide design considerations for large-cohort and biobank arrays, we 8 

developed a novel pipeline to select tag SNPs using the 26 population reference panel from Phase 9 

3 of the 1000 Genomes Project. We evaluate our approach using leave-one-out internal validation 10 

via standard imputation methods that allows the direct comparison of tag SNP performance by 11 

estimating the correlation of the imputed and real genotypes for each iteration of potential array 12 

sites. We show how this approach allows for an assessment of array design and performance that 13 

can take advantage of the development of deeper and more diverse sequenced reference panels. 14 

We quantify the impact of demography on tag SNP performance across populations and provide 15 

population-specific guidelines for tag SNP selection. We also examine array design strategies that 16 

target single populations versus multi-ethnic cohorts, and demonstrate a boost in performance for 17 

the latter can be obtained by prioritizing tag SNPs that contribute information across multiple 18 

populations simultaneously. Finally, we demonstrate the utility of improved array design to provide 19 

meaningful improvements in power, particularly in trans-ethnic studies. The unified framework 20 

presented will enable investigators to make informed decisions for the design of new arrays, and 21 

help empower the next phase of rare variant association for global health.   22 
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Introduction 1 

The vast majority of human genomic variation is rare 1, and an appreciable fraction of rare variants 2 

are likely to be functionally consequential. 2 The gold standard approach to assay rare variation is 3 

via sequencing. So far, large-scale sequencing studies have had some, but limited, success for 4 

discovery of rare variant associations3-6. There is a new appreciation that studies of hundreds of 5 

thousands or millions of individuals will be needed to drive well-powered discovery efforts. 7,8 6 

Currently, genome sequencing on this scale is prohibitively expensive and computationally 7 

burdensome. In contrast, genome-wide genotyping arrays are inexpensive, with far less 8 

bioinformatic overhead compared to sequencing. The past decade of genomic research has seen 9 

the development of myriad commercial high-throughput genotyping arrays. 9,10 While initially 10 

designed to capture common variants 11, in recent years arrays have been leveraged to capture 11 

variation at the rare end of the frequency spectrum. One strategy is to ascertain rare variants 12 

directly on arrays, which is restricted to a very narrow subset of the rare variant spectrum due to 13 

array size limits. 12-14 Another strategy is to leverage the haplotype structure determined by common 14 

variants on the array, which form a 'scaffold', for accurate inference of un-genotyped variation 15 

through multi-marker imputation into sequenced reference panels of whole genomes. The strategy 16 

of genotyping, followed by imputation, has the potential to recover rare untyped variants in very 17 

large cohorts of arrayed samples at no additional experimental cost. 15,16 This model bridging 18 

genotyping and imputation has prompted efforts to build deep reference sequence databases and a 19 

renewed interest in methods for improving genome-wide scaffold design. 6,17,18 20 

Genotype array scaffolds have been designed historically using algorithms that select 21 

tagging single nucleotide polymorphisms (tag SNPs) that are in linkage disequilibrium (LD) with a 22 

maximal number of other SNPs. Tag SNP algorithms are optimized to maximize this score, typically 23 

described as pairwise coverage. However, imputation tools increasingly incorporate sophisticated 24 

haplotype information to impute unobserved variants. 19-21 Consequently, it is not clear that tag 25 

SNPs that maximize pairwise coverage will be tag SNP's that provide, in aggregate, the best GWAS 26 

scaffold for accurate imputation. 22 Further, most tag SNP selection algorithms use LD architecture 27 

in a single population, 23,24, while we know LD patterns can vary extensively between populations.17 28 

Historically, many commercial arrays were designed by selecting tag SNPs from European 29 

populations, although arrays targeting some other populations have recently entered the market. 9,10 30 

The number of SNPs tagged by a tag SNP can vary appreciably between populations due to 31 

demographic forces of migration, population expansion, and genetic drift. This may diminish GWAS 32 

scaffold performance in populations other than those in which the tag SNPs were selected, which in 33 

turn, can lead to reduced power for imputation-based association. This is a particularly pernicious 34 

problem in populations for which no targeted commercial array is available, in studies with multi-35 
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ethnic populations, and for accurate estimation of the transferability of genetic risk across 1 

populations.   2 

As association studies grow larger and increasingly diverse, there is a need to reassess 3 

design criteria for GWAS scaffolds and arrays. 25,26 On the one hand, tag SNPs that tag lower 4 

frequency variants are likely to be on the lower end of the site frequency spectrum and, 5 

consequentially, more geospatially restricted. 27-30 On the other hand, as studies grow very large, 6 

cohort heterogeneity is likely to increase substantially for both discovery and replication populations. 7 
31,32 Given finite GWAS scaffold density, examining the trade-off between lowering the frequency 8 

threshold for accurate imputation and extending utility to multiple populations will become important. 9 
33,34 In this manuscript, we describe a framework for developing well-powered tag SNP selection 10 

leveraging thousands of whole genomes from diverse populations for balanced cross-population 11 

coverage. In our study, genomic coverage is evaluated based on genome-wide imputation accuracy 12 

as measured by mean imputed r2
 at untyped sites, rather than pairwise linkage disequilibrium. 13 

Moving beyond pairwise metrics allows us to account for haplotype diversity across the genome and 14 

demonstrates population-specific biases from pairwise estimates. Assessing accuracy using leave-15 

one-out cross-validation yields a real-world estimate of genomic coverage. We examine the effect of 16 

allele frequency, correlation thresholds, and population diversity on the selection of tag SNP and on 17 

the landscape of tag-able variation. This work demonstrates that, while there may be limits given 18 

current reference panels, improving GWAS scaffold design is an underused means to increase 19 

power in association studies. 20 

Results 21 

Selecting tag SNPs from a single population results in suboptimal tagging 22 

performance across populations impacted by different patterns of 23 

demography 24 

First we designed an experiment to assess imputation accuracy performance comparing tag 25 

SNP selection from different populations. This experiment mimics the current design of many 26 

commercial arrays, in which tag SNPs were selected to capture the primarily variation in a single 27 

population or a closely related group of populations. We built a pipeline using the 26 population 28 

reference panel from Phase 3 of the 1000 Genomes Project and the Tagit algorithm for tag SNP 29 

selection.23 (Supplementary Table 1) Individuals were split into mutually exclusive “super 30 

populations.” These included the Admixed American (AMR), East Asian (EAS), European (EUR), 31 

and South Asian (SAS) populations as described in Auton et al.17 In addition, we divided the African 32 

super population into two groups: four populations from Africa (AFR) and two populations of African 33 
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descent in the Americas (AAC) (see Methods). Initially, to mimic the design of many arrays, tag 1 

SNPs were only selected from a single super population. We assumed a genome-wide allocation of 2 

500,000 tag SNPs, however analyses for a single population tagging strategy were only conducted 3 

on chromosome 9 with the allocation of 21,107 sites proportional to the physical distance of 4 

chromosome 9 compared to all chromosomes combined. Potential tags were required to have a 5 

minor allele frequency (MAF) ≥ 1% and be in pairwise LD with the tagged target site with a r2 ≥ 0.5. 6 

The current generation of phase-based imputation algorithms (BEAGLE, IMPUTE2, 7 

Minimac3) leverage local haplotype information and sequenced reference panels to improve 8 

accuracy of variant inference compared to tag SNP approaches. 19,21,35-38 Therefore, optimal array 9 

design depends not only on tag SNP selection, but also on empirical evaluation of imputation 10 

performance. For each of the population-specific GWAS scaffolds, imputation accuracy was 11 

assessed in all six super populations by MAF bins (common, MAF = 0.05-0.5; low frequency, MAF = 12 

0.01-0.05; and rare, MAF < 0.01) by comparing the imputed dosages to the real genotypes through 13 

leave-one-out internal validation. (see Methods)  14 

Consistently across all super populations, the population from which the tags were 15 

ascertained had the highest imputation accuracy in the common bin. (Supplementary Figure 1) 16 

Trends in imputation accuracy follow known patterns of demography. For example, if the tags were 17 

ascertained in European populations, imputation accuracy was best in Europeans (EUR), followed 18 

by out-of-Africa populations (AMR, SAS, EAS), and worst in African ancestry populations (AFR, 19 

AAC). (Figure 1) If the tags were ascertained in African populations, the inverse was observed. 20 

(Supplementary Figure 1) As expected, the same trend of reduced imputation accuracy in non-21 

ascertained populations was exacerbated in the low frequency bin. Imputation of low frequency 22 

variants in East Asian populations (EAS) was consistently most challenging; even when tag SNPs 23 

were selected from EAS, accuracy of low frequency imputation was the same or better in other 24 

populations. This can be explained by evidence of a recent tight bottleneck followed by rapid 25 

population grown in EAS, resulting in a large proportion of rare variants that are difficult to tag due 26 

to lower LD, especially with a limited scaffold of 500,000 sites. 27 In contrast, the imputation 27 

performance of tag SNPs ascertained in AFR, AMR, and AAC populations is the same or better 28 

compared to the performance in out-of-Africa populations. This is likely due to increased allelic 29 

heterogeneity in African ancestry populations, which results in greater haplotypic diversity and a 30 

higher chance that a rare variant is well tagged by a haplotype for imputation.17 The imputation 31 

accuracy of AMR higher in the rare frequency bin (MAF 0.5-1%), independent of the ascertainment 32 

population, is likely due to longer haplotypes resulting from recent admixture, allowing the rare 33 

variation to be captured accurately given the limited allocation.39 Importantly, in each case we 34 

observe a notable drop-off in performance across most of the frequency spectrum when examining 35 
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 6 

imputation coverage in populations diverging from the one used for tag SNP selection 1 

(Supplementary Figure 1). 2 

 3 

Figure 1: Imputation Accuracy by super population of tags selected in European populations for a 4 
scaffold assuming 500,000 genome-wide variants. Tags were required to have a MAF≥1% and r2≥0.5 with 5 
target sites. This trend is observed across all super populations (Supplemental Figure 1).  6 

Comparing single versus cross population tag SNP selection strategies 7 

The first criterion of developing a useful genotyping platform is whether or not the variants 8 

assayed segregate in the population of interest and contribute tagging ability by being in LD (high r2) 9 

with untagged sites. For example, using Illumina’s OmniExpress platform within the 1000 Genomes 10 

Project data, over 99.7% of the sites will be polymorphic (MAF>0.5%) in the overall dataset.  11 

However, when we stratify by super population, each group has a differential loss. While AFR loses 12 

<1% of sites for having a MAF<0.5%, EUR and EAS lose 4.4% and 9.2% of variants, respectively. 13 

This will lead to a loss of statistical power dependent on ancestry and could limit analyses. This is 14 

quantified as “informativeness”, or the ability of a tag SNP to both segregate in the population and 15 

provide LD information (r2>0.5 with at least one untagged site). When working in multiple 16 

populations, it is essential to have balanced representation of variation across all groups. 17 

To explore different approaches for GWAS scaffold design we compared three strategies for 18 

selecting tag SNPs; single population tag SNP ascertainment, in which all tags are selected from a 19 

single population; a ‘naïve’ approach, in which all populations are combined and tags are selected 20 

based on composite statistics derived from this multi-population pool; and a ‘cross-population 21 

prioritization’ approach, in which tags are prioritized if they are both informative in multiple 22 

populations and by the number of unique sites targeted across all groups (see Methods and 23 

Supplementary Figure 2). We generated lists of tags per method assuming a total genome-wide 24 
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 7 

allocation of 500,000 sites and minimum thresholds of r2>0.5 and minor allele frequency (MAF) ≥ 1 

1%. Using these parameters, an exhaustive set of tag SNPs were selected using the naïve 2 

approach with tags ranked by the absolute number of sites tagged across the 6 super populations, 3 

regardless of how many super populations had LD between tags and targets. We then re-ranked 4 

them using the cross-population prioritization approach (Supplementary Figure 2).  5 

To compare the three approaches, we tallied the number of informative tags per population 6 

for each method to investigate the added value of tags contributing information in multiple 7 

populations. (Figure 2) This was done for all 22 autosomes. As per the design, all the single-8 

population tags were informative within the super population from which tag SNPs were selected. 9 

Comparing the naïve and cross-population approaches that selected tag SNPs across all 10 

populations, the cross-population prioritization approach increased the number of informative tag 11 

SNPs in all populations relative to the naïve approach. In the naïve approach, we observed that the 12 

majority of tag SNPs were selected from the AFR population, followed by AAC, due to African-13 

descent populations having more polymorphic sites across the genome with lower linkage 14 

disequilibrium. 17,40 Whereas in the cross-population prioritization approach, variation specific to a 15 

single population is down-weighted leading to more balanced representation between all 6 super 16 

populations. By leveraging cross-population information the largest boost in the proportion of tag 17 

SNPs contributing linkage disequilibrium information compared to the naive approach was observed 18 

in non-African descent populations (10.5%, 28.6%, 25.9%, and 28.7% in AMR, EAS, EUR and SAS, 19 

respectively). Even the African descent populations (AFR and AAC), which dominate the naïve 20 

approach, have a higher proportion of tags in linkage disequilibrium with target sites with the cross-21 

population prioritization approach (a 2.2% and 1.0% boost for AAC and AFR, respectively).  22 

 23 
Figure 2: Proportion of tags that are informative by population with the three methods. (Left, lightest) 24 
tags selected from only a single population, (Center) tags selected by pooling all populations agnostically, and 25 
(Right) tags selected with the cross-population prioritization approach. Tag SNPs were informative if they 26 
were in linkage disequilibrium (r2>0.5) with at least one untagged site.  27 

 28 
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 8 

To assess performance across the frequency spectrum we also stratified our accuracy 1 

estimates by super population-specific MAF into common, low frequency, and rare bins, as 2 

previously described. We observed that the cross-prioritization approach results in a larger 3 

proportion of tags being informative compared to both the single-population and naïve for common 4 

tag SNPs (MAF>0.05) in all super populations. This is likely because the cross-prioritization 5 

approach prioritizes potential tag SNPs that provide LD information across multiple populations, 6 

therefore prioritizing common variants tagging common variation. However, by limiting tag SNP 7 

selection to these common variants only, the proportion of tags that provide LD information for low 8 

frequency variants is decreased compared to the single population approach, which had the highest 9 

proportion of informative tag SNPs in low and rare frequency in the target population. For example, 10 

when tags were ascertained using only AAC LD information, 19.5% of the 500,000 SNP scaffold 11 

were informative for rare variation (MAF<1%) and 62.8% for common variation MAF>5%) within 12 

AAC populations. When the cross-population approach was used, ensuring the prioritization of 13 

common variation, the proportion of tag SNPs informative for rare variation dropped to 6% while the 14 

proportion informative for common variation jumped up to 82.4%. This is consistent with low 15 

frequency and rare variants being population-specific, therefore not tagged by cosmopolitan 16 

common variation present in multiple populations.  A notable exception is that the naïve approach 17 

contributes the most LD information for rare variants in the AMR super population. This is consistent 18 

with our previous findings showing highest imputation accuracy in the rare variation within AMR, 19 

even when the population from which tag SNPs were ascertained was different. The AMR on 20 

average exhibit longer haplotype lengths from the recently admixed populations in the Americas. 21 
17,39 Because of the long haplotype tract lengths, more limited haplotypic diversity, and the limited 22 

allocation of tag SNPs, a naïve approach emphasizing the absolute number of unique sites up-23 

weights variation that is informative for at least one of the ancestral components present in these 24 

populations.  25 

Cross population prioritization of tag SNPs increases imputation accuracy for 26 

all groups across frequency spectrum compared to naïve approach 27 

Beyond being polymorphic and providing LD information across global populations, an 28 

efficient tag SNP scaffold must also optimize the LD structure beyond individual tag SNPs’ pairwise. 29 

The goal of tag SNP selection is to inform the unmeasured haplotypes, and therefore their 30 

performance must be evaluated as a collaborative unit. One way to assess this is through 31 

imputation accuracy. Hence, following the observation that cross-population prioritization selects a 32 

higher proportion of informative common tag SNPs for each population, even compared to the 33 

single population approach, we next assessed what impact this would have on imputation accuracy. 34 

We deployed the same leave-one-out internal cross validation approach as before using the 1000 35 

Genomes Project populations (see Methods). We assumed a genome-wide scaffold of 500,000 36 
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 9 

sites and tags had to have a MAF>1% and r2>0.5 with tagged sites. Imputation accuracy was 1 

highest across all population-specific minor allele frequency bins when ascertaining in the target 2 

population in non-African non-admixed descent continental populations (EAS, EUR, and SAS). 3 

(Supplementary Figure 3) For the two African descent groups (AAC and AFR), the cross-4 

population prioritization approach had the highest imputation accuracy across all sites. When 5 

stratified by MAF bins, the increase in informative tag SNPs for common variants with the cross 6 

population approach yielded higher imputation accuracy for common variation in all super 7 

populations. As previously seen, the population-specific nature of low frequency and rare variants 8 

led to decreased imputation accuracy in non-African descent populations for both the cross-9 

population and naïve approach when compared to targeted single-population ascertainment. The 10 

cross-population prioritization approach had higher imputation accuracy than the naïve approach for 11 

all MAF bins.  12 

As scaffold size can dramatically affect imputation accuracy41, we additionally examined 13 

allocations of 250,000, 500,000, 1,000,000, 1,500,000, and 2,000,000 genome-wide tags, which 14 

were all selected with r2>0.5 and MAF>0.01. The cross-population prioritization scheme performed 15 

better with higher imputation accuracy than the naïve method for all super populations across all 16 

minor allele frequency bins with tags selected. (Figure 3) The biggest improvement came with the 17 

smaller array sizes. The most marked improvement was found in EAS, which originally had the 18 

lowest imputation accuracy of the 6 super populations with the naive approach. Within EAS groups, 19 

the cross-population approach increased imputation accuracy overall by 9.8% (from 67.3% to 20 

77.1%) for a tag scaffold of 250,000 sites. For a scaffold of 500,000 sites, an overall improve of 21 

6.2% was observed (from 77.4% to 83.6%). Improvements were largely consistent with the increase 22 

of informative tag SNPs. (Figure 2) As with the naive prioritization approach SNPs were 23 

disproportionately informative within AFR and AAC, consistent with admixed ancestry reflected by 24 

reference panels. For the smaller sizes (250K), the greatest increase in performance incorporating 25 

cross-population information was found within common SNPs (MAF>5%). However, the larger sized 26 

scaffolds (1-2 million) showed the most improvement within the low frequency bins (MAF<5%). 27 
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 1 
Figure 3: Increased imputation accuracy with cross-population prioritization (solid line) versus naïve 2 
approach (dashed line) for a minimum pairwise correlation threshold of r2>0.5 and MAF>1% across 3 
different scaffold sizes. Imputation accuracy was calculated separately within minor allele frequency bins for 4 
each super population. 5 
 6 

Imputation accuracy varies by local ancestry background in admixed 7 

individuals 8 

We also assessed imputation ancestry stratified by local ancestry diplotype in the two 9 

admixed populations, the AAC and AMR, for a genome-wide allocation of 500,000 tag SNPs. First, 10 

using phased data, we inferred haploid tracts of African, European, and Native American local 11 

ancestry along the genomes of all individuals in the AMR and AAC populations (see Methods, 17,42). 12 

Then each variant was inferred to be on one of six ancestral diploid tracts; European-European 13 

(EUR-EUR), European-African (EUR-AFR), European-Native American (EUR-NAT), African-Native 14 
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American (AFR-NAT), African-African (AFR-AFR) and Native American-Native American (NAT-1 

NAT). In all local ancestry strata the cross-population prioritization yielded improved imputation 2 

accuracy when compared to the naïve approach. When looking at ASW population (Americans of 3 

African ancestry in South West US), performance was high overall with all diploid tracts having 4 

imputation accuracies of 92.8-96.8% for all sites with minor allele frequency above 1%. 5 

(Supplementary Figure 4) The lowest imputation accuracy was found in AFR-AFR tracts, 6 

especially at the lower end of the frequency spectrum. The highest imputation accuracy was found 7 

in EUR-EUR tracts (94% overall for ASW). In AMR populations, by contrast, the NAT-NAT tracts 8 

had the lowest performance of all. An example can be seen in the MXL population (Mexican 9 

Ancestry from Los Angeles), where the highest imputation accuracy was found in the AFR-EUR 10 

tracts (overall imputation accuracy of 90.1% for all SNPs with MAF>0.5%) and the lowest within 11 

NAT-NAT tracts (74.8% for all SNPS with MAF>0.5%). (Supplementary Figure 4B) These 12 

performances are reflective of the relative availability of reference data relevant to these specific 13 

ancestral components. 14 

Evaluating impact of r2 and MAF thresholds on tag SNP performance  15 

Previous standards in scaffold design have considered minimum linkage disequilibrium (r2) 16 

and minor allele frequency (MAF) thresholds when prioritizing possible tag SNPs. However, the 17 

impact of these thresholds are often evaluated through pairwise coverage. We explored varying the 18 

minimum r2 threshold (0.2, 0.5, 0.8) and MAF (0.5%, 1%, 5%) to assess their impacts on imputation 19 

accuracy, as well as pairwise coverage, assuming a genome-wide allocation of one million tags. For 20 

common variants, a higher minimum r2 threshold (r2>0.8) resulted in slightly higher imputation 21 

accuracy. (Figure 4A) However, the sites in the low and rare bin demonstrate population-specific 22 

accuracy only. (Supplementary Figure 5) For AFR, SAS, and EAS, a less stringent threshold of 23 

r2>0.2 had the worst imputation accuracy across all frequency bins. Low frequency and rare 24 

variation had higher imputation accuracy for an r2 threshold of 0.5 compared to 0.8. Within AAC, 25 

AMR, and EUR, the low frequency variation had improved imputation accuracy with the lowest r2 26 

threshold of 0.2. However, the imputation accuracy within this low threshold was notably 27 

compromised for common variants. This indicates that low frequency variation is better captured by 28 

weak correlation structure, but at a cost to common variation in these populations. Analyses 29 

performed with r2>0.5 had the best balance of performance across all frequency bins with the 30 

highest overall imputation accuracy in all super populations except for EAS. (Supplementary Table 31 

2) Overall, there was very small differences in imputation accuracy between the different r2 32 

thresholds. There were much larger differences in coverage, including both coverage evaluated with 33 

minimum r2 (LD) of 0.5 and 0.8. (Figure 4A) Additionally, the best “performance” using pairwise 34 

coverage was highly dependent on the definition of coverage. Specifically, if pairwise coverage was 35 
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calculated as the proportion of sites that are in LD with r2>0.5, then the best minimum r2 threshold in 1 

tag SNP selection will be 0.5. This holds true for r2>0.8 as well.  2 

 3 
Figure 4: Influence of (A) minimum r2 threshold and (B) lower MAF threshold on imputation accuracy 4 
and coverage(r2>0.5 and r2>0.8) within populations from the Americas with an allocation of 1M sites.  5 
 6 

The impact of minimum minor allele frequency threshold was negligible across variants with 7 

MAF>5% for all non-African populations (Supplementary Figure 6). Within populations of African 8 

descent, limiting tags to variants with MAF>5% resulted in increased imputation accuracy for all 9 

frequency bins, especially for common variants. Lowering the MAF to 0.5% reduced accuracy in 10 

African-descent populations across all frequency bins. For EUR, SAS, and AMR, tags with MAF>1% 11 

had decreased accuracy for variants with MAF 0.5-1% compared to when tags are limited to 12 

MAF>0.5%. (Figure 4B) The lowest limit of MAF (0.5%) showed increased accuracy for rare 13 

variation but at a slight cost to the accuracy for common sites (MAF>5%). We concluded that the 14 

best balance for tag SNP selection across all populations among these was MAF>1% within the 15 

population being tagged, as the imputation accuracy was best for MAF>5% for half of the groups 16 

(AAC, AFR, EAS) and best for MAF>0.5% for the other half (AMR, EUR, SAS). (Supplementary 17 

Table 2) However, the overall differences in imputation accuracy was minimal, with less than 1% 18 

between all lower MAF thresholds across all sites. Again, we observed large differences in pairwise 19 

coverage, despite negligible differences when performance is evaluated by imputation accuracy. 20 

(Supplementary Figure 6) This is particularly striking for African-descent populations (ASW and 21 

AFR), where there were large gains of pairwise coverage for MAF>1%, compared to MAF>0.5% 22 

and MAF>5%. As previously described, African populations have shorter LD blocks and a greater 23 

absolute number of polymorphic variants compared to other populations. 17 Therefore, pairwise 24 

coverage underestimates performance compared to imputation accuracy, as addressed below. 25 

 26 

 27 
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Tagging potential differs between populations 1 

Efficient tag SNP selection is an opportunity to boost power in downstream analyses. African 2 

and out-of-Africa populations exhibit distinct genetic architecture which resulted in different 3 

performance trends. There is therefore a need to balance the representation from all global 4 

populations. However, even when cross-population performance was prioritized, it did not 5 

guarantee equal representation of all population groups within the tag SNP set. To determine the 6 

contribution of each population, we again focused on chromosome 9 (42,215 tags), equivalent to 7 

one million sites genome-wide, selected with our novel cross-population prioritization scheme. This 8 

tag SNP allocation resulted in including all tags that were informative in at least 3 to all 6 9 

populations in the scaffold. Out of all tags for chromosome 9, 17.96% were informative in all 6 10 

populations. (Supplementary Table 3) No tags were included that were informative in only one or 11 

two populations. Of tags that were informative in 5 out of the 6 super-populations, only 54% were in 12 

LD with any target sites within EAS populations, while 93% were informative in AAC populations. 13 

(Figure 5A) This trend is consistent with cross-population tags tending to be less informative in EAS 14 

populations compared to the other populations. When tags are informative in 3 out of 6 groups, only 15 

18% were informative in EAS, while 75% were informative in AAC. Tags informative in only 2 of the 16 

6 groups were likely informative in AAC and AFR, the African descent populations, while very few of 17 

them were informative for non-African descent groups, consistent with capturing differential LD 18 

patterns in African populations.43 When tags are stratified by MAF (0.5-1%, 1-5%, and >5%), these 19 

trends are exaggerated in the rare and very rare MAF bins.  (Supplementary Figure 7) As 20 

expected, the very rare variation (0.5-1% MAF) was highly population-specific with no sites in this 21 

frequency bin being informative across all populations, or even 5 out of the 6 populations. 27 For rare 22 

variation (1-5%), tags were the least informative within EAS, with only 36% of the tags informative in 23 

5 out of 6 populations. 24 

Conditional performance, or the ability of a tag which is informative in the index population 25 

also being informative in an additional population, was also examined and found to be consistent 26 

with known population histories. Of tags that are informative within AFR, 94% were informative 27 

within AAC, while only 38% were informative within EAS. (Figure 5B) However, among tags that 28 

were informative within EAS, 81% were informative within African populations. Once again, the 29 

stratified analyses show exaggerated trends for the very rare and rare MAF bins. (Supplementary 30 

Figure 8) For the very rare variation (0.5-1%), only a very small percentage (<10%) of tags are 31 

informative in other populations (AMR, EAS, EUR, SAS) if they were informative within African-32 

descent populations (AFR and AAC). The high level of sharing between AFR and AAC is expected 33 

due to the high proportion of African ancestry within African-American and Afro-Caribbean 34 

populations. Of tags informative within EUR, 78% are also informative within AMR, largely due to 35 

the high proportion of European ancestry within some Hispanic/Latino populations. 39,44,45 36 
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 1 
Figure 5: Tag SNPs informativeness across population. (A) Proportion of sites informative (r2>0.5, 2 
MAF>0.01, 1M site scaffold) across a number of populations, with lines corresponding to the index population. 3 
(B) Proportion of sites shared across populations, conditional on index population. 4 
 5 

The tags were also not equally informative in each population when it comes to the number 6 

of sites they tag with r2>0.5. For chromosome 9, it would take 81,416 tags to capture all possible 7 

tag-able variation with an r2>0.5 within AFR populations, while it would take only 28,473 tags within 8 

EAS populations to saturate coverage. However, each tag within the AFR populations captures on 9 

average 7.17 other sites, whereas for EAS populations, each tag captures on average 10.27 other 10 

SNPs. When restricting the design to a million tag SNP scaffold, each tag captures on average 11 

16.16 other SNPs within EAS populations and 12.16 other SNPs in AFR populations. (Table 1) This 12 

reflects the different underlying genetic architecture of these different groups. 13 

Population 
All Possible Tags One Million Tag Scaffold 

Number of Tags Sites Captured 
per Tag Number of Tags Sites Captured 

per Tag 
AAC 74,255 8.04 36,336 12.97 

AFR 81,416 7.17 34,548 12.16 

AMR 43,065 9.40 28,691 12.80 
EAS 28,473 10.27 16,457 16.16 
EUR 35,027 9.48 22,111 13.63 
SAS 37,644 9.28 23,480 13.33 

Table 1: Performance per tag SNP to capture all variation possible with r2>0.8 on chromosome 9, as 14 
well as within a million site genome-wide scaffold allocation through cross-population prioritization. 15 
 16 

Limits of tagging and imputation 17 

Not all of the human genome can be captured through pairwise tagging given existing 18 

reference panels. For each super population, we filtered for sites that were polymorphic 19 

(MAF>0.5%) and had no pairwise correlation (r2>0.2) with any other site within one megabase.  The 20 

number of these “lone sites” without any pairwise correlation was dependent upon population. AAC 21 

had the greatest number of lone sites, but that is likely due to the significantly decreased sample 22 

size compared to the other populations. (Table 2) The lowest number of lone sites was found within 23 
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AMR. Although these sites have no notable pairwise correlation with any other site in the human 1 

genome, haplotypes may be informative and allow the recovery of information for imputation. We 2 

again assumed a one million genome-wide tag SNP scaffold allocation with minimum MAF of 1% 3 

and minimum r2 threshold of 0.5 and imputed to the entire 1000 Genomes reference panel. As 4 

expected, imputation accuracy and ability to recover information was population-specific. The 5 

imputation accuracy within AAC was an outlier when compared to other populations, with 80.72% of 6 

lone sites being imputed with at least the accuracy of racc
2≥0.5 and over 50% of sites being imputed 7 

with even higher accuracy (racc
2≥0.8). Many of these lone sites within AAC were captured with 8 

pairwise and haplotype LD within other populations, primarily AFR and to a lesser extent EUR. 9 

While there were likely insufficient allele counts for accurate correlation estimation within AAC due 10 

to the small sample size, this information could be recovered using a global reference panel. The 11 

number of unrecoverable “dark sites”, which had no pairwise correlation and were not recoverable 12 

with imputation using haplotype information, was the largest in EAS and is consistent with known 13 

demography and population history yielding an excess of highly rare variation compared to other 14 

populations.27  15 

Population Number of 
Individuals 

Number 
of Lone 

Sites 

Imputation Accuracy Quality Number Unrecoverable 
with r2

acc≥0.2 (%) r2
acc≥0.2 r2

acc≥0.5 r2
acc≥0.8 

AAC 156 7,509 90.79% 80.72% 51.72% 691 (9.2%) 
AFR 495 4,497 63.29% 38.73% 7.03% 1,651 (36.7%) 
AMR 341 2,701 48.98% 25.88% 3.78% 1,378 (51.02%) 
EAS 503 4,947 44.37% 12.41% 2.14% 2,752 (55.63%) 
EUR 501 3,881 51.07% 23.22% 3.74% 1,899 (48.93%) 
SAS 477 4,293 51.01% 18.77% 2.26% 2,103 (48.99%) 

Table 2: Lone sites by super population and their imputation accuracy for a 1M site scaffold. 16 
 17 

Pairwise coverage versus imputation accuracy 18 

When evaluating the performance of a GWAS scaffold, there are numerous factors to take 19 

into consideration. These include the number of sites you have allocated to tag SNPs and what your 20 

priorities are for balanced representation. To a lesser extent, the benefits and pitfalls of prioritizing 21 

low-frequency variants must be weighed. However, we have demonstrated that the influence of 22 

these components are highly dependent on how performance is measured. The notion of genomic 23 

“coverage” has historically been estimated using pairwise correlations, and therefore this term will 24 

be used to denote the proportion of polymorphic sites that are in pairwise LD (r2 threshold) with at 25 

least one tag SNP. We calculated coverage separately per super population at an r2 threshold of 0.5 26 

and 0.8 within minor allele frequency bins identical to the imputation accuracy estimation analyses, 27 

assuming a genome-wide tag SNP set of 500,000 and 1,000,000. (Table 3) For a tag SNP set of 28 

one million sites, coverage was lowest in AFR with an overall average of 59.15% for all sites with 29 

MAF>0.5% and r2>0.5. (Supplementary Figure 9) When the r2 threshold is raised to 0.8, the 30 
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 16 

proportion of sites in linkage disequilibrium with at least one tag SNP lowers to 28%. (Figure 6) The 1 

highest coverage was found in populations from the Americas (AMR) and East Asia (EAS). For a 2 

lower r2 threshold of 0.5, 79.9% of AMR sites with MAF>0.5% were covered. When using the higher 3 

r2 threshold of 0.8, East Asian populations had the highest coverage with 63.08% of sites in LD with 4 

at least one tag SNP. This difference is even more marked when looking at a smaller tag SNP set of 5 

500,000 sites. (Supplementary Figure 10-11) African populations now have an overall coverage of 6 

33.17% with r2>0.5 and 14.10% with r2>0.8. East Asian populations have the highest coverage with 7 

73.16% of sites covered with r2>0.5 and 55.09% with r2>0.8.  8 

 9 
Figure 6: Coverage versus Imputation Accuracy, assuming a genome-wide scaffold size of one million 10 
tags. Coverage is shown with an r2>0.8. While pairwise tagging values are low, particularly in African-descent 11 
populations, multi-marker imputation accuracy remains high across groups. 12 
 13 

Super 
population 

Total 
Number of 

Polymorphic 
Sites 

Scaffold of 1,000,000 tags Scaffold of 500,000 tags 
Coverage Imputation 

Accuracy 
Coverage Imputation 

Accuracy r2>0.5 r2>0.8 r2>0.5 r2>0.8 

AAC 780896 63.64% 30.27% 90.59% 34.03% 14.07% 84.85% 
AFR 777207 59.15% 28.05% 89.62% 33.17% 14.10% 83.32% 
AMR 503804 79.90% 53.60% 92.77% 61.00% 37.02% 90.09% 
EAS 367189 76.95% 63.08% 86.28% 73.16% 55.09% 84.16% 
EUR 414184 78.77% 62.65% 91.02% 72.87% 52.86% 88.90% 
SAS 455573 74.84% 56.97% 88.09% 67.28% 45.91% 85.46% 

Table 3: Coverage of 1 million and 500,000 tag SNP set by super population for all polymorphic sites 14 
on chromosome 9 with MAF>0.5% 15 

These trends are in striking contrast to those we observed in imputation accuracy. When 16 

comparing a tag SNP set of 1 million, pairwise LD coverage is the lowest in populations of African 17 

descent (59% with r2>0.5) yet imputation's ability to recover un-typed sites is on average high and 18 
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consistent with other populations (imputation accuracy of 89.62%) among SNPs with a minor allele 1 

frequency above 0.5%. This contrast is also found in East Asian populations, which had one of the 2 

highest proportion of polymorphic SNPs with r2>0.5 for coverage (76.95%), but the lowest 3 

imputation accuracy (86.28%). (Table 3) When sites are stratified by minor allele frequency bins, 4 

the differences in trends are even more striking. (Figure 6, Supplemental Figure 9) For example, 5 

within the lowest frequency bin (0.5% to 1%) for admixed populations of African-descent, the 6 

coverage of sites for a set of 500,000 tag SNPs with r2>0.8 falls below 10%, however the imputation 7 

accuracy remains relatively high at 77.82%. These trends are consistent and more dramatic when 8 

evaluated within a tag SNP set of 500,000 sites. (Supplemental Figures 10-11) These 9 

observations reinforce the necessity of examining imputation accuracy, instead of pairwise 10 

coverage, when evaluating the performance of tag SNPs. 11 

Discussion 12 

As larger and larger whole genome reference panels come into availability for imputation, it 13 

is important to design arrays with this ultimate goal in mind. There are currently two accepted 14 

methods of evaluating the performance of a tag SNPs: pairwise LD “coverage” and imputation 15 

accuracy. Coverage has historically been used as a term to denote the proportion of polymorphic 16 

sites that are in linkage disequilibrium with at least one tag marker above a certain r2 threshold. 46-49 17 

Genotyping arrays are typically compared using this score averaged across the genome. However, 18 

as others and we have demonstrated, restricting performance assessment to this definition of 19 

pairwise coverage is limited by removing multimarker information. 33,34 Evaluating imputation 20 

accuracy, particularly via leave-one-out cross validation, is highly computationally intensive, but 21 

provides a better assessment of how well untyped variation can be recaptured and a more realistic 22 

depiction of array performance. Imputation accuracy is also a more useful statistic in a practical 23 

sense, especially with the development of deeper and more diverse reference panels, 17,18,50-52 as 24 

performing GWAS with imputed variants is now the expectation. Emerging evidence suggests that 25 

very rare variants that are poorly tagged by an individual tag SNP will be accessible via imputation, 26 

due to added haplotype information, particularly as sample sizes move beyond the thousands into 27 

the tens of thousands. 19,34.  28 

In addition, previous tagging strategies have predominantly focused on optimizing 29 

performance in a single population. In prioritizing potential tags by their ability to provide linkage 30 

disequilibrium information across multiple populations, we were able to demonstrate that cross 31 

population tag SNP selection outperforms single population selection. This boost in imputation 32 

accuracy exists across all populations and frequency bins.  We simulated tag SNP sets for a range 33 

of sizes (250,000-2 million), as well as for several minimum minor allele frequencies (0.5%, 1%, 5%) 34 
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and minimum r2 thresholds (0.2, 0.5, 0.8). For investigators with limited real estate or budget for tag 1 

SNP selection, we found that the biggest improvement in imputation accuracy provided with our 2 

cross population approach was with the smaller array sizes (250K) when compared to a naïve 3 

design or biased population ascertainment. As expected, the influence of MAF and r2 threshold was 4 

population-specific. For African-descent populations, including tag SNPs with a low threshold of r2 ≥ 5 

0.2 resulted in lower imputation accuracy across all bins, while in other populations (EUR, AMR, 6 

SAS) tags at r2 ≥ 0.2 led to increased imputation accuracy for low frequency variants to the 7 

detriment of common variation. This is due to the lower LD patterns overall in African haplotypes, 8 

requiring denser coverage. The best balance was found with a moderate r2 threshold of ≥ 0.5 for 9 

those seeking to perform well across all populations. This compromise is also present in choosing 10 

the lower MAF threshold. Limiting tag SNP selection to common variants with MAF ≥ 5% produced 11 

the highest imputation accuracy across all frequency bins within African-descent populations. 12 

However, this threshold decreased imputation accuracy for low frequency and rare variants in all 13 

other populations. Therefore, the best balance is once again found in the moderate value of MAF ≥ 14 

1%. Investigators will need to take their priorities into account when selecting the correct thresholds 15 

for their populations and if they have a specific target frequency bin. We chose to prioritize all 16 

populations equally to provide a design of broad global utility, but if the study is comprised of mostly 17 

one ancestral group then the investigators should choose the appropriate thresholds tailored for 18 

their study. 19 

Consistent with demographic history, the potential to capture variation with a limited 20 

allocation is unequal between the different populations in the 1000 Genomes Project. The naïve 21 

tagging approach will bias tag SNP selection to be primarily informative within African-descent 22 

populations. The absolute number of polymorphic sites within African populations is much larger 23 

than other populations, and while LD tends to be lower than in other populations, the high number of 24 

potential tags and pairwise correlations overwhelms the other populations’ contributions without 25 

controlling for this unique pattern. By prioritizing potential tags that provide information across all 26 

populations, the population-level contributions are more balanced without detriment to the African-27 

descent groups (Figure 4). The absolute number of rare variants (MAF < 1%) is larger in African 28 

populations, but the frequency spectrum is more skewed towards rare variants in populations with 29 

recent bottlenecks and exponential population expansion, such as in East Asians. Contrasting these 30 

two populations (AFR and EAS), East Asian populations require fewer sites to saturate coverage, 31 

with each potential tag being in LD with more sites. However, far more polymorphic sites across the 32 

genome cannot be captured with either pairwise linkage disequilibrium or through haplotype 33 

information with imputation accuracy within these populations due to a dearth of LD information. 34 

This is amplified by the lack of comprehensive reference panels for many populations, such as East 35 

and South Asia. As reference panels are expanded, more variation will be captured to inform tag 36 
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SNP selection and imputation accuracy, and we expect imputation accuracy to improve for all 1 

populations and across the frequency spectrum.19  2 

As cosmopolitan biobanks and large-scale multi-ethnic epidemiological studies become 3 

more commonplace, the available technology to capture genetic variation must keep pace. It is 4 

important to rely on a platform that is as equitable as possible in providing information about the 5 

groups of interest when conducting genetic association studies within diverse populations. There 6 

are various considerations that an investigator must consider when selecting tag SNPs to customize 7 

or build an array, or evaluate an available commercial array. Assessing performance through 8 

imputation accuracy, as performed here, is the most apt comparison between tag SNP sets, 9 

allowing a real-world look at the extent of variation a set of tags can capture based on haplotype 10 

structure. We have presented an improved tagging algorithm and evaluation pipeline that prioritizes 11 

cross-population performance for increased imputation accuracy across multiple populations and 12 

the full range of MAF ≥ 0.5%.  We also provide recommendations and context for other researchers 13 

interested in similar goals.  14 

The power to identify relevant loci is inherently constrained by sample size and genome 15 

coverage. Imputation improves this by providing increased effective coverage across the genome. It 16 

is important to note that algorithmic development both on association testing and imputation 17 

methods has been a productive avenue of research since GWAS began, with new methods 18 

providing incremental improvements in statistical power. Here, we demonstrate with a fixed 19 

allocation, methods to improve statistical power by tailored SNP selection in the initial array, with 20 

sometimes dramatic improvements in imputation accuracy. With the expansion and improvement of 21 

global reference panels, genotyping arrays will be able to capture an increased amount of variation, 22 

especially when cross-population performance is prioritized.  The unified framework presented will 23 

enable investigators to make informed decisions in the development and selection of genotyping 24 

arrays for future large-scale multi-ethnic epidemiological studies. This increased representation of 25 

multi-ethnic genetic variation will promote the investigation of the genetics of complex disease and 26 

the improvement of global health in the next phase of GWAS. 27 
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Materials and Methods 12 

Genetic Data: The genetic data are from the 1000 Genomes Project (1000 Genomes) Phase 3 data 13 

release, version 2 (7/8/2014) containing whole genome sequences for 2,535 individuals from 26 14 

global populations. 53 Sequence data were in VCFv4.1 format, mapped to the forward strand and 15 

variants annotated as reference or alternate alleles. Only biallelic SNPs were included in this 16 

analysis (77,224,748 SNPs total). A list of known cryptically related individuals was obtained from 17 

the 1000 Genomes FTP site, and one individual from each related pair were subsequently removed 18 

(n=62). Individuals were assigned to their super populations according to the original 1000 19 

Genomes assignments (EAS=East Asian, EUR=European, AFR=African, SAS=South Asian, 20 

AMR=Americas, comprising 503, 501, 495, 477, and 341 individuals, respectively). Two populations 21 

of admixed African ancestry (ASW and ACB) were removed from the African super population and 22 

formed a separate African American/Caribbean (AAC) super population (n=156). 23 

Tag SNP Selection: Allele frequency was estimated within super population for each SNP using 24 

Plink v1.9. 54 Linkage Disequilibrium (LD) was also calculated within each super population using 25 

Plink v1.9 and settings for pairwise linkage with a minimum r2 of 0.2 within a maximum distance of 1 26 

megabase (mb). Tag SNP selection was performed per chromosome in the program TagIT 23, with 27 

frequency and LD files for each super population as input. The TagIT algorithm analyzed each 28 

super population separately. After filtering based on the minor allele frequency (set as either 0.5%, 29 

1% or 5%), TagIT annotates the tag SNP that has the highest number of LD pairs with r2 above a 30 

minimum threshold (set as either 0.2, 0.5, or 0.8). The selected tag SNP and all of its linked SNPs 31 

are masked and TagIT finds the next tag SNP with the highest number of LD pairs. The output for 32 
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each super population included for each index tag SNP the number of sites in LD, as well as the 1 

number of unique sites that weren't already tagged by a previously chosen tag. The number of 2 

unique SNPs tagged across all populations per tag SNP was tallied in the final output. 3 

Cross-population tag SNP ranking and scoring: The naive approach ranked potential tags by the 4 

absolute number of unique SNPs that are tagged across all super populations. From this list, the top 5 

SNPs were selected for the appropriate allocation. To ensure performance of the tags across 6 

multiple populations, the cross-population prioritization schema first ranks tags by the number of 7 

populations in which they are informative, meaning they tag at least one site (Supplementary Figure 8 

1). This ensures that the top ranked SNPs are not biased to a super population with large LD blocks 9 

or high SNP density in which one tag can contribute information about many other SNPs. Within 10 

each one of these categories (all 6 super populations down to only 1 super population), the tags are 11 

ranked by the number of unique tags across all six super populations, as was done in the original 12 

approach. The appropriate allocation is selected from the top of this list, scaled to the size of the 13 

chromosome of interest. 14 

Metric of Performance: Coverage and imputation accuracy were assessed using all polymorphic 15 

biallelic sites within the 1000 Genomes Phase 3 data release, version 2. Sites were categorized into 16 

ten discrete minor allele frequency bins: (0.005-0.01], (0.01-0.02], (0.03-0.04], (0.04-0.05], (0.05-17 

0.1], (0.1-0.2], (0.2-0.3], (0.3-0.4], and (0.4-0.5]. The term "coverage" is used to denote the 18 

proportion of untyped sites that had at least one tag SNP with pairwise r2 greater than a certain 19 

threshold (0.2, 0.5, or 0.8). Imputation accuracy was determined through a leave-one-out internal 20 

validation approach with the 1000 Genomes Project Phase 3 data using a modified version of 21 

Minimac.19 Correlation was calculated comparing the estimated dosages to the true genotypes from 22 

the original vcf files. 23 

Ascertainment Bias Analyses: Population-specific tags were selected separately through TagIT 24 

for each super population with a genome-wide allocation of 500,000 sites. All tags had a minimum 25 

MAF of 1% and a minimum r2 threshold of 0.5.  Each of the single population ascertained tag lists 26 

assessed for imputation accuracy in all six super populations, including their index population. 27 

Imputation accuracy was calculated as previously described and limited to chromosome 9.  28 

Local Ancestry: Local ancestry was estimated using RFMix 55 assuming three ancestral 29 

backgrounds: African, European, and Native American, and is described in detail in 42 Tracts were 30 

dropped if smaller than 20 cM to improve accuracy in local ancestry estimation. Diploid ancestry 31 

with three ancestral backgrounds yielded six categories of variation.  Imputation accuracy was then 32 

calculated separately per diploid tract category, with all other sections masked out. Results were 33 

aggregated across all chromosomes to calculate the genome-wide performance per diploid 34 

ancestry. Tracts were removed from analysis if the ancestral diplotype was found in fewer than 5 35 
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individuals. This included AFR-NAT and EUR-NAT within ACB which only occurred in 2 individuals 1 

each, NAT-NAT diplotypes in ASW which occurred in one individual, and AFR-AFR diplotypes in 2 

MXL which occurred in 3 individuals. 3 

Cross-population patterns of linkage disequilibrium: To determine how many sites were in LD 4 

with tag SNPs across all 6 super populations, we selected one million SNPs for a GWAS scaffold 5 

using a minimum r2 of 0.5 and a minimum MAF of 0.01 on chromosome 9. We calculated the 6 

number of polymorphic sites (MAF>0.5%) and the proportion of these sites that were in LD (r2>0.5 7 

or r2>0.8) with at least one tag marker. To determine sharing of tags across multiple populations, we 8 

calculated the proportion of tag markers that were informative in other populations, conditional upon 9 

them being informative in the index population. The proportion of sites shared among multiple 10 

populations was calculated as the proportion of tag SNPs that performed in a certain number of 11 

populations (from 1 to 6 super populations) per super population. 12 

Tagging Potential: Tag SNPs were selected with a minimum r2 of 0.5 and a minimum MAF of 0.01 13 

on chromosome 9. The potential for tagging was determined assuming an infinite site scaffold, 14 

using all possible tags until every pairwise relationship with r2 above 0.5 was captured. The average 15 

number of sites captured per tag was calculated in each super population separately, using only the 16 

tags that were informative within that population. We also calculated these trends assuming a 17 

scaffold of one million sites, following the same procedures.  The “dark sites” were calculated as 18 

sites in which there was no pairwise correlation with any other site with r2>0.2, determined 19 

separately for each super population.  20 
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