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Abstract In phenotype prediction, the physical characteristics of an organism are predicted
from knowledge of its genotype and environment. Such studies are of the highest societal
importance, as they are of central importance to medicine, crop-breeding, etc. We investi-
gated three phenotype prediction problems: one simple and clean (yeast), and the other two
complex and real-world (rice and wheat). We compared standard machine learning methods
(elastic net, ridge regression, lasso regression, random forest, gradient boosting machines
(GBM), and support vector machines (SVM)), with two state-of-the-art classical statistical
genetics methods (including genomic BLUP). Additionally, using the clean yeast data, we
investigated how performance varied with the complexity of the biological mechanism, the
amount of observational noise, the number of examples, the amount of missing data, and
the use of different data representations. We found that for almost all phenotypes consid-
ered standard machine learning methods outperformed the methods from classical statistical
genetics. On the yeast problem, the most successful method was GBM, followed by lasso
regression, and the two statistical genetics methods; with greater mechanistic complexity
GBM was best, while in simpler cases lasso was superior. When applied to the wheat and
rice studies the best two methods were SVM and BLUP. The most robust method in the
presence of noise, missing data, etc. was random forests. The classical statistical genetics
method of genomic BLUP was found to perform well on problems where there was pop-
ulation structure, which suggests one way to improve standard machine learning methods
when population structure is present. We conclude that the application of machine learning
methods to phenotype prediction problems holds great promise.
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1 Introduction and Background
1.1 Predicting Phenotype

The phenotype (physical character) of an organism is the result of interactions between
the organism’s complement of genes (its genotype) (Wei et al., 2014; Mackay, 2014) and
its environment. A central problem of genetics is to predict an organism’s phenotype from
knowledge of its genotype and environment. This problem is now of the highest societal
importance. For example, human disease is a phenotype and understanding its relation to
genotype and environment is a central problem in medicine (Stranger et al., 2011; Lee et al.,
2011), see for example the recent studies in schizophrenia (Schizophrenia Working Group
of the Psychiatric Genomics Consortium, 2014), obesity (Locke et al., 2015), educational
achievement (Rietveld et al., 2013), etc. Similarly, crop yield and drought resistance are
phenotypes, and if we are going to be able to feed the world’s growing population, it is
essential to better predict crop phenotypes from knowledge of their genotypes and environ-
ment (Buckler et al., 2009; Jannink et al., 2010; Hayes and Goddard, 2010; Brachi et al.,
2011; Desta and Ortiz, 2014). For such reasons the problem of predicting phenotype has
recently (2016) been listed by the US National Science Foundation as one of its six key
‘Research Frontiers’: ‘understanding the rules of life’.

Our ability to predict phenotype is being revolutionised by advances in DNA sequenc-
ing technology. These advances have enabled, for the first time, an organism’s genotype
to be extensively characterised, typically via thousands of genetic markers. The cost of se-
quencing is decreasing rapidly, which means that it is now often low enough that in a single
investigation many organisms (hundreds/thousands) may be genotyped, which opens up the
possibility of using statistics/machine learning to learn predictive relationships between an
organism’s genotype, environment, and phenotype. Such studies are often called Genome-
Wide Association Studies (GWAS).

The traditional focus of most GWAS has been on the discovery of genetic markers (nor-
mally only a small number) that are ‘associated’ (i.e., correlated) with a phenotype. This has
limitations. The focus on a small number of genes has significant biological limitations as
most biological phenotypes result from the interaction of multiple genes and the environ-
ment. The focus on association rather than prediction has statistical limitations as it makes
the objective evaluation of the utility of results difficult.

The current trend is therefore towards a more direct and operational approach to phe-
notype prediction problems: learn a predictive function that, from the input of an organ-
ism’s genotype and environment, predicts its phenotype (see, for example, Yang et al., 2010;
Bloom et al., 2013; Desta and Ortiz, 2014; Shigemizu et al., 2014). Special purpose statisti-
cal genetics methods have been developed for this task (see, for example, Lynch and Walsh,
1998; Bloom et al., 2013; Desta and Ortiz, 2014). Predictive phenotype problems are also
clearly well suited for standard machine learning methods.

In this paper, we compare for phenotype prediction a state-of-the-art classical statistical
genetics method and a mixed-model approach BLUP (used extensively in genomic selection
applications) with standard machine learning methods. We investigate how these methods
perform on three very different types of phenotype prediction problem, one from yeast Sac-
charomyces cerevisiae (Bloom et al., 2013), the other two from wheat Triticum aestivum
L. (Poland et al., 2012) and rice (Alexandrov et al., 2015). We also compare how perfor-
mance varies with the complexity of the biological mechanism, the amount of observational
noise, the number of examples, the amount of missing data, and the use of different data
representations.
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1.2 Phenotype Prediction Data

Genomic data has a specific structure that strongly influences the application of machine
learning methods. We therefore first briefly describe this structure using standard machine
learning terminology—rather than the terminology of statistical genetics which may confuse
the uninitiated.

Representing genotype. The complete genotype of an organism consists of the linear ar-
rangement of its genes on chromosomes, together with the sequences of all the genes and
intergenic regions. Genotype information is normally represented in phenotype prediction
problems as ‘markers’, these are discrete attributes that signify that a particular stretch of
DNA varies between organisms. Usually, these variations are mutations at a single posi-
tion (base pair) in a DNA sequence called single-nucleotide polymorphisms (SNPs). As
organisms of the same species mostly share the same DNA sequences, this representation
is reasonably concise, but as genomes are large, many thousands of markers are typically
needed to characterise an organism’s genome. (It should be noted that this propositional
marker representation is sub-optimal, as it ignores a substantial amount of information: the
biological context of the markers involved, the linear ordering of the markers, etc.) In this
paper we utilise this marker representation as it is standard, and it simplifies the application
of standard statistical/machine learning methods.

In phenotype prediction problems it is preferable for all the organisms (examples) to
have their genotypes fully sequenced, as this provides the maximum amount of information.
However, this is not possible in many problems, either because of technical reasons or cost.
In such cases, the genotypes are not fully characterised. In this paper, we investigate two
problems (yeast and rice) where all the organisms are fully sequenced, and another (wheat)
where only a subset of markers is known, and the organism’s genome has not yet been
sequenced because of its complexity.

Environment. Prediction of phenotype is easier if the environment is controlled. How-
ever, this is difficult or impossible to do in many cases, for example, in studies involving
humans many aspects of the environment are unknown, in outdoor crop studies the weather
cannot be controlled, etc. In this paper, we investigate one problem (yeast) where the en-
vironment is fully controlled (well-defined laboratory conditions), and another two (wheat
and rice) where the environment is partially controlled.

Measuring phenotype. Due to the continuing steep fall in DNA sequencing costs in many
phenotype prediction problems, the most expensive step is the observation of an organism’s
phenotype. This means that in many scenarios the number of attributes is greater than the
number of examples. Furthermore, it has also led to new genetic methodologies based on
phenotype prediction, an example of which is genomic selection (Meuwissen et al., 2001;
Heftner et al., 2009). In this paper we investigate one problem (yeast) where the observation
of phenotype (growth) is cheap as it involves laboratory automation equipment, and another
(wheat and rice) where it is expensive and time consuming—it takes many months for a
harvest.

Causation of phenotype. The number of genetic mutations involved in causing a phe-
notype can vary greatly between phenotypes. For example, the phenotype of pea colour
(yellow or green), that was classically studied by Gregor Mendel, is caused by variations
(polymorphisms) in a single gene (stay-green) (Armstead et al., 2007). Therefore, given
knowledge of markers in stay-green, one can usually very accurately predict pea colour.
In contrast, the phenotype of human height (classically studied by Sir Francis Galton in the
original ‘regression’ problem) involves a large number of genes and environmental effects—
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the central-limit theorem thereby explains why human height is roughly normally distributed
when controlled for sex and geographical population (Wood et al., 2014).

An important feature of genetic data is that the examples (organisms) are formed by
meiosis (sex), where parents shuffle their genomes when forming offspring. The mecha-
nisms involved in meiosis are complicated, but the result is that each of the child cell’s
chromosomes consists of a random patchwork of linear sections taken from the two parents
(Figure 1a). This means that if two markers are close together on an organism’s DNA, then
the associated mutations (allele types) are likely to be inherited together. Consequently, at-
tributes (markers) can be highly correlated (linkage disequilibrium). It also means that all
the markers in each of these linear sections are identical to that of one parent so that the
variety of children that are likely to be formed is constrained.

Due to meiosis populations of organisms typically have complex ancestral (pedigree)
interrelationships. These interrelationships take the form of a directed acyclic graph (DAG),
with meiosis events being the nodes. However, in many phenotype prediction problems the
structure of the DAG is unknown. (Note that the DAG imposes a natural metric between
examples (organisms) based on genetic changes resulting from meiosis.) Much of classical
statistical genetics research has focused on dealing with population structure. For example,
the BLUP (best linear unbiased prediction) method encodes genetic similarities between
pairs of individuals in a genomic similarity matrix (GSM) (Meuwissen et al., 2001; Speed
and Balding, 2014).

Many organisms have multiple genomes in each cell. Humans have single copies (hap-
loid) in their sex cells (sperm/eggs), but otherwise have two copies (diploid), one from their
father and the other from their mother. This complicates phenotype prediction as it is not
clear how the genomes interact to cause phenotype. This complication is related to multi-
instance learning problems (Ray and Page, 2001). In this paper we investigate one problem
(yeast) where the observed organisms are haploid, i.e., there is no complication with mul-
tiple genomes. Rice is diploid, with two paired sets of genomes, while wheat is hexaploid
with three pairs of paired genomes.

1.3 Types of Phenotype Prediction Problem

The simplest form of phenotype prediction problem is the case when a pair of parent organ-
isms breed to produce a large set of offspring. In such cases the offspring can reasonably
be assumed to be randomly generated from a given distribution: indeed the analogy with
randomly dealing hands of cards is close and is commonly used in genetics (Hogben, 1946).
This type of phenotype prediction problem is closely connected to practical phenotype pre-
diction problems, for example: which embryo to select?

To investigate this type of problem we utilised a large phenotype prediction study in
yeast (Bloom et al., 2013). In this study there are a large number of examples, the complete
genomes of the organisms are known, the organisms are haploid, a large number of different
environments were investigated under controlled laboratory conditions, and the phenotype
of growth was accurately measured. Taken together these features give a phenotype predic-
tions dataset that is as clean and complete as it is currently possible to get. Moreover, the
uniform laboratory conditions under which the yeast was grown ensured that there were no
(or nearly no) confounding environmental factors.

We chose as a second, and comparative, phenotype prediction problem—the real-world
problem of predicting phenotype in crops: wheat (Poland et al., 2012) and rice (Alexandrov
et al., 2015). This type of phenotype prediction problem is typical of genomic selection
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problems in organisms, in which genome-wide molecular markers are used to predict the
breeding utility of individuals or breeding lines prior to phenotyping. The wheat dataset we
investigated comes from a study involving 254 varieties (breeding lines) of wheat (Poland
et al., 2012). These varieties were derived through six generations of meiosis (crosses) from
a set of ancestor varieties. Experimental design methods were used to control the environ-
ment, and different irrigation techniques investigated. This dataset is more complex and
difficult to predict than the yeast one for a number of reasons: the complete genotypes of the
organisms are not known (only the markers, indeed wheat has still not been fully sequenced),
the organisms are hexaploid, the organisms come from different parents (although there is
some knowledge of the relationships between parents), there are fewer examples, and the
environment is not fully controlled.

The rice dataset comes from the 3000 rice genomes project (Alexandrov et al., 2015).
Like the wheat dataset, this problem also involves the selection of individuals that will serve
as parents for the next generation of progeny using genomic predictions. The phenotype
data is from different years of screening without replication. However, the values do not
show significant variation due to environmental differences, as the data is part of a routine
characterization of genetic resources performed by the International Rice Genebank at the
International Rice Research Institute.

1.4 Classical Statistical-Genetics Methods for Predicting Phenotype

The most common classical statistical genetics approach to the analysis of genotype/environment/phenotype
data has been to use univariate and bivariate statistical methods (Lynch and Walsh, 1998;

Westfall et al., 2002; Marchini et al., 2005). These typically test each marker (or pairs of

markers) for association with a phenotype individually, and independently of the other mark-

ers. The focus on such approaches seems to have been because of a desire to understand and

possibly control the mechanism that causes phenotype, through identification of the markers

involved. This is reasonable, but the assumption of independence does not reflect the com-

plex causal relationships involved in phenotype formation (e.g., it ignores systems biology),

and it is prone to missing markers with small effects.

The emphasis on univariate and bivariate correlations also raises the problem of multiple
testing and is hindered by typical p-value limitations, such as dependence on sample size,
minor allele frequency, and difficulty to determine a meaningful threshold for the study. The
multiple testing problem may be classically addressed by using false discovery rate (FDR)
(Benjamini and Hochberg, 1995) instead of the conventional p-values or the Bonferroni
correction. One of the more recent approaches is to use Bayes factors instead of p-values
(Wakefield, 2007), thus taking prior belief of association into account. The problem of the
interdependence of hypotheses in multiple testing (that is, possible interactions between
markers) has been addressed for example by using hidden Markov models (Sun and Tony
Cai, 2009) and graphical models (Liu et al., 2012). In statistical genetics, arguments based
on multiple testing are often used to claim that it is not possible to identify complicated in-
teractions between markers in datasets that are not very large (Gauderman, 2002; Wang and
Zhao, 2003). These arguments are incorrect as they would imply that multivariate learning
is generally very difficult, which is not the case.

The emphasis in classical statistical genetics on univariate and bivariate methods re-
search has also led to efforts to reduce the dimensionality of GWAS problems. This, for
example, can be done by grouping markers in haplotypes—specific arrangements of alleles
from a parent (Clark, 2004). This enables the simultaneous testing of associations between
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a phenotype and several markers in a target region. However identifying meaningful haplo-
types is in itself a non-trivial task (Meng et al., 2003; Lin and Altman, 2004).

A change of focus from association to prediction cuts through most of the problems of
the significance of associations: the validity of a multivariate relationship between markers
is demonstrated by success of predictions on test data. The utility of using test data is appre-
ciated in statistical genetics (Lynch and Walsh, 1998; Bloom et al., 2013; Desta and Ortiz,
2014; Shigemizu et al., 2014) but should perhaps be stressed more.

Recently the importance of considering all the markers simultaneously has been widely
recognised (e.g. de los Campos et al. (2013)) with various multivariate linear models gaining
popularity. Amongst them are genomic BLUP (Meuwissen et al., 2001; VanRaden, 2008) (a
mixed-model related to ridge regression with a pre-specified penalty parameter) and other
penalised regression methods (Gianola et al., 2006; De Los Campos et al., 2009; Li and Sil-
lanpai, 2012) and Bayesian techniques (Meuwissen et al., 2001; De Los Campos et al., 2009;
Habier et al., 2011; Guan and Stephens, 2011; Zhou et al., 2013). An important extension of
BLUP proposed by Speed and Balding (2014) relaxes the assumption of constant variance
for SNP effects. Many improved and efficient linear mixed model (LMM) algorithms have
also been introduced in recent years (Kang et al., 2008; Zhang et al., 2010; Lippert et al.,
2011; Loh et al., 2015; Lee and van der Werf, 2016), some of which are capable of deal-
ing with several correlated phenotypic traits (Korte et al., 2012; Zhou and Stephens, 2014;
Casale et al., 2015) (see also Widmer et al. (2014) and references therein). The attractiveness
of these linear techniques lies in the fact that they take population structure and genetic re-
latedness into account (Price et al., 2010). However, most of these techniques have difficulty
accounting for interactions.

1.5 The Applicability of Machine Learning Methods

Standard off-the-shelf machine learning methods (Dudoit et al., 2002; Ziegler et al., 2007;
Szymczak et al., 2009; Ogutu et al., 2011, 2012; Pirooznia et al., 2012; Mittag et al., 2012;
Okser et al., 2014; Leung et al., 2016) present an attractive alternative to classical statistical
genetics methods. These machine learning methods are easy to use, are freely available in a
variety of implementations, and intrinsically multivariate. They also do not require assump-
tions about the genetic mechanism underlying a trait in question (e.g., additivity of effects,
the number and size of interactions, depth of interactions, etc.). In addition, machine learn-
ing methods are available that perform attribute selection (e.g., lasso and regression trees).
There are also machine learning methods available that can identify complex interactions be-
tween attributes (e.g., random forest, boosted trees, neural nets), not simply bivariate ones.
Furthermore, in typical GWAS problems there is the p > n problem (where the number of
attributes (p) greatly exceeds the number of sample points (1)), and this is a problem for
classical multivariate regression, but less so for many machine learning methods.

2 Materials and Methods
2.1 Experimental Data
The yeast dataset was derived from a study of 1,008 haploid yeast strains derived from a

cross (meiosis) between a laboratory and a wine strain of the yeast Saccharomyces cere-
visiae. The parent strains differed by 0.5% at the sequence level. The genotypes of the par-
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ents and children were determined by sequencing (Figure 1). The raw sequence data was
transformed into 11,623 Boolean markers: coded to be ‘1’ if the sequence variation came
from the wine strain (RM) parent and ‘0’ if it came from the laboratory strain (BY) parent.

RM - THimis m el Semm miEd i@ I EESiEEE 6§l
@
°
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0.46
|

Position (Mbp)
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Fig. 1: (a) Markers’ expression for a RM xBY yeast strain (segregant AO1-01 (Bloom et al.,
2013)) plotted against their position (mega base pairs) on the genome. Each tick represents
a marker, bands represent chromosomes. 1/0 marker values correspond to RM/BY parent,
respectively. (b) Proportion of markers coming from the RM parent plotted against markers
position (mega base pairs) on the genome. White and grey bands separate the 16 chromo-
somes.

The environment of the yeast strains was modified in 46 different ways (Table 1): the
basic chemicals used for growth were varied (e.g., galactose, maltose), minerals added (e.g.,
copper, magnesium chloride), herbicides added (paraquat), etc.

Yeast population growth (growth is the most basic of all phenotypes) was measured un-
der these different conditions. As the data was generated by high-throughput robotics there
are many missing values; there are, for example, only 599 readings available for sorbitol.
Most traits, however, have upwards of 900 readings, some with two replications (which we
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average). All the growth measurements are normalised to have a mean of 0 and variance of
1.0.

Using this yeast study, we investigate different aspects of applying machine learning to
phenotype prediction data by starting with as clean data as possible, and then gradually ar-
tificially degrading it to make it resemble different practical phenotype prediction problems
in animals and plants. A complementary motivation for using such clean and complete data
is that with improved technology applied phenotype prediction problems will increasingly
resemble this clean, comprehensive form.

The wheat dataset comes from a genomic selection study in wheat involving 254 breed-
ing lines (samples) with genotypes represented by 33,516 SNP markers coded as {—1,0,1}
to correspond to the aa, aA and AA alleles, respectively (Poland et al., 2012). Missing values
were imputed with heterozygotes aA (the original paper found little difference between four
different imputation methods, one of which was imputing with heterozygotes). The wheat
lines were evaluated in plots for four phenotypic traits: yield (drought), yield (irrigated),
thousand kernel weight (TKW) and days to heading (DTH). Phenotypic values were once
again normalised.

For the rice data, the Core SNP subset of 3000 Rice Genomes version 0.4 from SNP-
SEEK (Mansueto et al., 2016) was used. The genotypes for the samples in the dataset orig-
inally contained 996,009 SNP markers. However, a subset of 101,595 markers was used in
this study to reduce computational complexity. These markers were selected by linkage dis-
equilibrium in Plink (Purcell et al., 2007), using the --indep-pairwise command with a
window of 50 SNPs, a step size of 5, and 2 value of 0.02. The markers were coded in the
same way as in the wheat dataset, and missing values were imputed using column means.
Twelve phenotypic traits were considered: culm diameter, culm length, culm number, grain
length, grain width, grain weight, days to heading, ligule length, leaf length, leaf width, pan-
icle length and seedling height. Due to missing phenotype data, each trait has its own set of
samples, with the number of samples ranging from 1877 to 2265.

In statistical/machine learning terms: each of the different genotype/phenotype combi-
nations represents a different regression problem. The yeast strains/wheat/rice samples are
the examples, the markers in the examples are the attributes, and the growth of the strains
(for yeast) and agronomic traits evaluated (for wheat and rice) are variables to be predicted.

3 Learning Methods
3.1 Standard Statistical and Machine Learning Methods

We investigated several variants of penalised linear regression: elastic net (Zou and Hastie,
2005), ridge regression (Hoerl and Kennard, 1970), and lasso regression (Tibshirani, 1996).
The rationale for choosing these methods is that they most closely resemble the multivariate
approaches used in classical statistical genetics. We also investigated an array of models
that interpolate between ridge and lasso regressions through use of an elastic net penalty.
We considered 11 values of the elastic net penalty & evenly spaced between O (ridge) and
1 (lasso) with the value of the overall penalty parameter A chosen by cross-validation sepa-
rately for each value of o (see Figure 2).

We also investigated the tree methods of random forests (Breiman, 2001) and gradient
boosting machines (GBM) (Friedman, 2001). The rationale for the use of these is that they
are known to work robustly, and have an inbuilt way of assessing the importance of at-
tributes. For random forests we used 700 iterations for yeast and wheat and 1000 iterations
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Fig. 2: Comparison of performance of elastic net on yeast, wheat and rice datasets for vary-
ing values of the o parameter for each trait with o on the x-axis and cvR? on the y-axis.

for rice (chosen to be enough for convergence) of fully-grown trees with the recommended
values of p/3 (where p is the number of attributes) for the number of splitting variables
considered at each node, and 5 examples as the minimum node size. For GBM we tuned
two parameters via internal train/test split inside each fold: interaction depth and shrinkage.
We investigated interaction depths of 1, 2 and 3 and shrinkage of 0.001, 0.01 and 0.1 (in
our experience the default shrinkage parameter of 0.001 lead to too slow of a convergence),
resulting in a two-dimensional parameter grid. We used 1,000 trees, which was enough for
convergence for all traits. The optimal number of iterations was determined via an assess-
ment on an internal validation set within each cross-validation fold. Finally, we used the
default value of 0.5 as the subsampling rate.

Finally, we investigated support vector machines (SVM) (Cortes and Vapnik, 1995).
SVM methods have been gaining popularity in phenotype prediction problem recently.
However, experience has shown that they need extensive tuning (which is unfortunately
extremely time consuming) to perform well (Hsu et al., 2008). We used &-insensitive re-
gression with Gaussian kernel and tuned the model via internal testing within each cross-
validation fold over a fine grid (on the logarithmic scale) of three parameters: €, cost param-
eter C and ¥ (equal to 1/(202), where 62 is the Gaussian variance).

All analysis was performed in R (R Core Team, 2018) using the following packages:
GLMNET for elastic net, RANDOMFOREST for random forest, GBM for gradient boosting
and KERNLAB for support vector machines. The CARET package was used for tuning GBM
and SVM.

3.2 Classical Statistical Genetics

To compare the machine learning methods with state-of-the-art classical genetics prediction
methods we reimplemented the prediction method described in the original yeast Nature
paper (Bloom et al., 2013), and applied the genomic BLUP model. The ‘Bloom’ method has
two steps. In the first, additive attributes are identified for each trait in a four-stage iterative
procedure, where at each stage only markers with LOD significance at 5% false discovery
rate (identified via permutation tests) are kept and added to a linear model; residuals from
this model are then used to identify more attributes in the next iteration. In the second step,
the genome is scanned for pairwise marker interactions involving markers with significant
additive effect from the previous step by considering likelihood ratio of a model with an
interaction term to a model without such a term. We reapplied the first step of the analysis
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to the yeast dataset using the same folds we used for cross-validation (CV) for our ML
methods. Additionally, we altered the CV procedure reported in the Nature paper (Bloom
et al., 2013) as it was incorrect (the authors incorrectly identified QTLs on the training fold,
but both fitted the model and obtained predictions on the test fold, which unfortunately
overestimates the obtained R? values, one of the pitfalls described by Wray et al. (2013)).
We selected attributes and constructed the models only using the data in a training fold, with
predictions obtained by applying the resulting model to the test fold.

The genomic BLUP model is a linear mixed-model similar to ridge regression but with a
fixed, biologically meaningful penalty parameter. BLUP takes relatedness of the individuals
in the study into account via genetic relatedness matrix computed from the genotypic matrix.
The reason for choosing this method is that it (and its various extensions) is a very popular
approach in genomic selection, and was the method applied in the original wheat paper
(Poland et al., 2012). We used the R implementation in the RRBLUP package (Endelman,
2011).

3.3 Evaluation

The performance of all models was assessed using 10-fold and 5-fold cross-validation, for
yeast and wheat, respectively and a train/test split for rice. Cross-validated predictions were
collected across the folds and then used to calculate R? (informally—proportion of vari-
ance explained by the model) in the usual manner (we call this measure cross-validated
R>—cvR?). Wheat data set was small enough to repeat the CV procedure several times:
we accumulated cvR? across 10 runs on different fold selections and reported the average
values. For rice, models were trained on 70% of the data and performance assessed on the
remaining 30%.

4 Results
4.1 Overall Comparison of Methods

Tables 1, 2 and 3 summarise the cvR? and R? values for the standard statistical/machine
learning methods, the Bloom GWAS method and BLUP for yeast, wheat and rice, respec-
tively. The elastic net results are represented by the extremes, lasso, and ridge, as predictive
accuracy appears to be a monotonic function of the elastic net penalty parameter ¢ for all
the datasets (see Figure 2).

The yeast results show that there is at least one standard machine learning approach that
outperforms Bloom and BLUP on all but 6 and 5 traits, respectively. In addition the mean
advantage of the Bloom (BLUP) method on these 6 (5) traits is marginal: 1.8% (0.4%),
with a maximum of 4.1% (1.5%), whilst the mean advantage of the standard ML techniques
is 5.0% (5.5%), with a maximum of 14.2% (27.5%)—ftor SVM (GBM) on tunicamycin
(maltose). (N.B. we did not re-run the second stage of the Bloom’s procedure, mining for
pairwise marker interactions, but used the paper’s original results, so the actual cvR? results
for traits with interactions for Bloom’s method should be slightly lower than in Table 1).
Across the ML methods the best performing method was GBM, which performed best in
26 problems. For 6 problems each lasso and the method of Bloom won. BLUP and SVM
showed the best results for 5 and 3 traits, respectively. SVM on the whole across traits
performed very similarly to BLUP but required time-consuming tuning.
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The results for the wheat dataset paint quite a different picture: SVM performs the best
for all traits (albeit with a marginal advantage for 3 out of 4 traits), followed closely by
genomic BLUP. Both of the tree methods underperform compared to SVM and BLUP. The
weakest method overall is lasso.

On the rice dataset, SVM also performs best for 6 of the 12 traits, genomic BLUP out-
performs all other methods on 4 of the 12, and on a trait each, lasso and ridge perform best
(see Table 3). As with the wheat dataset, the tree methods are also outperformed by BLUP
and SVM, and the weakest method overall is also lasso. We hypothesise that BLUP’s ability
to take genetic relatedness of the individuals into account gives it an advantage over the
other two penalised regressions and also the two tree models.

The rest of this section is devoted to studying the performance of the five ML methods
and BLUP on the yeast dataset in greater detail. As noted above, this form of dataset is
arguably the cleanest and simplest possible.

4.2 Investigating the Importance of Mechanistic Complexity

The number of relevant attributes (markers, environmental factors), and the complexity of
their interactions have an important impact on the ability to predict phenotype. We inves-
tigated how the mechanistic complexity of a phenotype impacted on the prediction results
for the different prediction methods applied to the yeast dataset. Without a full mechanistic
explanation for the cause of a phenotype, it is impossible to know the number of relevant
attributes. However, in our yeast phenotype prediction data, which has no interacting envi-
ronmental attributes, a reasonable proxy for the number of relevant attributes is the number
of non-zero attributes selected by lasso regression (Figure 3). Therefore, to investigate the
relationship between the number of markers chosen by the lasso and variance explained by
the models we split the data into test (30%) and training (70%) sets, counted the number of
non-zero parameters in the model fitted to the training set, and compared it to the model’s
performance on the test set. We observed that the environments with the higher proportion of
variance explained tend to have a higher number of associated non-zero attributes. Notable
exceptions to this are the three (cadmium chloride, YPD-37C, and maltose) in the top-left
part of the graph, which has an unusually high R?, but only a handful of associated non-zero
attributes (only 6 markers for cadmium chloride). Notably, all three environments have a
distinctive bimodal distribution that probably indicates that they are affected only by a few
mutations.

We also wished to investigate how the complexity of the interactions of the attributes
(in genetics the interaction of genes is termed ‘epistasis’) affected relative performances of
the models. Figure 4 shows pairwise plots of relative performances of the seven approaches
with red circles corresponding to those traits for which Bloom identified pairs of interact-
ing attributes, and blue triangles corresponding to those for which no interacting attributes
were found. We observed that lasso outperforms or matches (difference of less than 0.5%)
Bloom’s method on those traits where no interactions were detected. This is true for all 22
such traits. Furthermore, we observed that the lasso on the whole also slightly outperforms
GBM for some traits, and considerably outperforms random forest for the traits with no
interactions. For traits with identified interactions boosted trees seem to show the best per-
formance relative to results of Bloom and random forest; the former outperforms GBM for
only 6 traits out of 46. Random forest seems to underperform compared to GBM and lasso,
and it beats Bloom for only 14 traits with an average advantage of 1.9%.
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Trait/Method | Bloometal Lasso Ridge BLUP GBM RF SVM
Cadmium Chloride | 0.780 0.779 0445 0556  0.797 0.786  0.565
Caffeine | 0.197 0203 0.171 0229 0250 0.236 0.234
Calcium Chloride | 0.198 0255 0240 0.268 0.261 0205 0.261
Cisplatin | 0.297 0319 0253 0290 0338 0.275 0272
Cobalt Chloride | 0.431 0.455 0431 0457 0460 0398 0.448
Congo Red | 0.460 0.504 0469 0500 0500 0.398 0.487
Copper | 0.405 0345 0284 0.331 0456 0.406 0.338
Cycloheximide | 0.466 0.498 0480 0516 0513 0444  0.529
Diamide | 0.417 0479 0468 0498 0460 0318 0.486
E6_Berbamine | 0.380 0.403 0372 0399 0412 0281 0.390
Ethanol | 0.486 0495 0434 0460 0.518 0475 0455
Formamide | 0.310 0238 0.179 0232 0350 0.298 0.240
Galactose | 0.201 0.183  0.171  0.211 0235 0.219 0.217
Hydrogen Peroxide | 0.362 0377 0308 0365 0385 0355 0.399
Hydroquinone | 0.135 0201 0.173 0225 0212 0.191 0.188
Hydroxyurea | 0.232 0303 0266 0303 0336 0.243 0.320
Indoleacetic Acid | 0.480 0302 0239 0.301 0.476 0458 0.310
Lactate | 0.523 0568 0522 0552 0561 0510 0.557
Lactose | 0.536 0.567 0.532 0562 0.582 0.530 0.565
Lithium Chloride | 0.642 0.704 0.635 0.670  0.711 0.538  0.680
Magnesium Chloride | 0.278 0229 0.196 0250 0.266 0.255 0.267
Magnesium Sulfate | 0.519 0369 0326 0.360 0492 0434 0378
Maltose | 0.780 0.620 0488 0534 0.809 0.806 0.522
Mannose | 0.230 0.202 0.162 0210 0255 0.234 0215
Menadione | 0.388 0412 0375 0407 0432 0396 0402
Neomycin | 0.556 0.614 0580 0.609  0.600 0.487 0.597
Paraquat | 0.388 0496 0447 0474 04838 0298 0.479
Raffinose | 0.317 0.357 0341  0.371 0.383 0.368 0.364
SDS | 0.348 0411 0345 038 0393 0337 0.383
Sorbitol | 0.424 0369 029 0333 0379 0383 0318
Trehalose | 0.489 0.500 0463 0487 0515 0472 0477
Tunicamycin | 0.492 0.605 0586 0.618 0.618 0385 0.634
x4-Hydroxybenzaldehyde | 0.442 0.411 0325 0365 0471 0404 0.355
x4NQO | 0.604 0.612 0487 0538  0.636 0.559 0.542
x5-Fluorocytosine | 0.354 0.386  0.321 0.354 0.397 0334 0.373
x5-Fluorouracil | 0.503 0552 0512 0545 0536 0454  0.546
x6-Azauracil | 0.258 0.298 0270 0308 0315 0.289 0.279
Xylose | 0.475 0.468 0431 0465 0516 0.484 0.460
YNB | 0.508 0.541 0481 0519 0.543 0411 0.525
YNB:ph3 | 0.151 0.18 0.144 0195  0.194 0.153 0.166
YNB:ph8 | 0.295 0345 0315 0356 0354 0267 0.334
YPD | 0.533 0.546 0480 0.515 0.556 0.469 0.524
YPD:15C | 0.432 0383 0311 0345 0427 0424 0333
YPD:37C | 0.711 0.653 0576  0.606  0.691 0.686 0.603
YPD:4C | 0.406 0.430 039 0418 0.485 0.405 0421
Zeocin | 0.465 0.469 0450 0482 0495 0360 0475

Table 1: cvR? for the five ML methods, BLUP and for the QTL mining approach of Bloom
et al. The best performance for each trait is in boldface.

Trait/method | Lasso Ridge @BLUP GBM RF SVM
Yield (drought) | 0.023 0.060 0217  0.051 0.172  0.219
Yield (irrigated) | 0.084  0.162  0.253  0.132 0.184  0.258
TKW | 0.172 0240 0277 0.218 0242 0.304

DTH | 0292 0.325 0.381 0.325 0.358  0.394

Table 2: cvR? for the five ML methods and for BLUP across 10 resampling runs. The best
performance for each trait is in boldface.
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Fig. 3: Non-zero attributes selected by lasso regression in training sample plotted against
variance explained in the test sample (yeast).
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Fig. 4: cvR? for 10-fold cross-validation for different ML models, genomic BLUP and
method of Bloom et al. applied to the yeast data. Red circles and blue triangles correspond
to traits with interactions and no interactions (as identified by Bloom et al.), respectively.
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Trait/Method | Lasso Ridge @BLUP GBM RF SVM
Culm Diameter | 0.142 0.191 0.190 0.145 0.163 0.182
Culm Length | 0.529 0.567 0.568 0.559 0.539 0.516
Culm Number | 0.205 0.232  0.233 0.188 0.222  0.247
Grain Length | 0.387 0.375  0.381 0.371  0.361 0.383
Grain Width | 0.474 0.508 0.511 0466 0.435 0.500
Grain Weight | 0.309 0.379  0.380  0.327 0.350 0.387
Days to Heading | 0.677 0.693  0.698 0.669 0.657 0.636
Ligule Length | 0.351 0.382 0376 0372 0367 0.390
Leaf Length | 0.335 0.406 0405 0407 0388 0.414
Leaf Width | 0.371 0409 0406 0388 0.384 0.416
Panicle Length | 0.352 0.399 0.399 0383 0.388 0.416
Seedling Height | 0.188  0.224  0.226  0.184 0.188  0.202

Table 3: R? for the five ML methods and for BLUP using a train-test split for rice data. The
best performance for each trait is in boldface.

Finally, we noted optimal tuning parameters chosen for GBM in each CV fold for each
trait. In particular, we recorded tree interaction depth most frequently chosen across the 10
cross-validation folds (if two depths had equal frequency we took the smallest). Overall 1,
3 and 7 splits (corresponding to stumps, two- and three-way interaction trees, respectively)
were chosen for 9, 18 and 19 traits, correspondingly. Looking closer, we noted that traits
for which Bloom did not identify interacting attributes favoured stumps and shallow trees,
while those with 2 or more interactions favoured deeper trees (7 splits)—in fact, 7 splits
were identified as the optimal tree depth for all traits with more than two interactions. We
conclude that optimal GBM tree depth might help draw conclusions about the structure and
complexity of the underlying data.

4.3 Investigating the Importance of Noise in the Measured Phenotype

There is a great deal of noise in many real-world phenotype prediction problems. By noise,
we mean both that the experimental conditions are not completely controlled, and the inher-
ent stochastic nature of complex biological systems. Much of the experimental conditions
noise is environmental (e.g., soil and weather differences for crop phenotypes, different
lifestyles in medical phenotypes), and this cannot be investigated using the yeast dataset.
However, in many phenotype prediction problems, there is also a significant amount of class
noise. To investigate the importance of such class noise we randomly added or subtracted
twice the standard deviation to a random subset of growth phenotype. We sequentially added
noise to 5%, 10%, 20%, 30%, 40%, 50%, 75% and 90% of the phenotypic data for each trait
and assessed performances of the statistical/machine learning methods on a test set (with
training-testing split of 70%-30%). We repeated the procedure 10 times, each time selecting
a different random subset of the data to add noise to. Figure 5a plots the ratio of variance
explained using noisy phenotype versus original data versus proportion of noisy data added,
averaged over the 10 runs. The results show a monotonic deterioration in accuracy with
random forests performing the best, followed by GBM, BLUP, SVM, and lasso, with ridge
regression trailing behind substantially. At about 20% of noisy data RF starts to outperform
GBM in terms of average R? (see Figure 5b).

The algorithm underlying GBM is based on recursively explaining residuals of a model
fit at the previous step, which might explain why it fares worse than RF under noise addition.
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Fig. 5: (a) Performance of ML and statistical methods under varying degrees of added class
noise. The ratio of variance explained using noisy phenotype versus original data is plotted
against proportion of noisy data added. The thick lines represent average value across all
traits. (b) Comparison of methods on the absolute scale.

For all the methods and traits there seem to be very rapid deterioration in accuracy even for
relatively small noise contamination (less than 10% of the data).

4.4 Investigating the Importance of Number of Genotypic Attributes

Another common form of noise in phenotype prediction studies is an insufficient number
of markers to cover all sequence variations in the genome. This means that a genome is
not fully represented, and other unobserved markers are present. To investigate this problem
we sequentially deleted random 10%, 25%, 50%, 60%, 70%, 80%, 90%, 95% and 99% of
the markers, and compared the performances of the five ML methods and BLUP on a test
set (again with a training-testing split of 70%-30%). Figure 6a plots the ratio of variance
explained using a reduced marker set versus variance explained using the full marker set
versus proportion of markers deleted. Again these are average values over 10 runs with
different random nested subsets of markers selected in each run. The statistical/machine
learning methods, with the exception of ridge regression, lose minimal accuracy up until
only 20% of the attributes remain, then undergo a rapid decline in accuracy after that. GBM
and SVM seem to benefit from a reduced marker set for certain traits. BLUP’s performance
is very consistent across the traits and seems to be affected by marker deletion the least.
Absolute performance across all traits of different methods relative to each other remains
unchanged for all levels of marker deletion (see Figure 6b).

The steepest dropping line in plots for lasso, ridge, GBM, and RF corresponds to cad-
mium chloride; this is most likely because only a handful of important markers are likely to
be governing the trait (see Figure 3).
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Fig. 6: (a) Plots of the ratio of variance explained using a reduced marker set versus variance
explained using the full marker set versus proportion of markers deleted for the five ML
methods and BLUP. The thick lines represent average value across all traits. (b) Comparison
of methods on the absolute scale.

4.5 Investigating the Importance of Data Representation

For each yeast strain the marker data enabled us to recover the genomic structure formed by
meiosis. We observed blocks of adjacent markers taking the same value, 1 or O (Figure 1a).
As yeast has been fully sequenced and annotated (Cherry et al., 2012) we also know where
the markers are relative to the open reading frames (ORFs), continuous stretches of the
genome which can potentially code for a protein or a peptide,—‘genes’. Knowledge of this
structure can be used to reduce the number of attributes with minimal loss of information.
We then investigated two ways of doing this. In the first, we generated a new attribute for
each gene (in which there are one or more markers) and assigned it a value of 1 if the
majority of markers sitting in it had a value 1, and O otherwise. In practice, we found that
markers within each gene usually took on the same value for all but a handful of examples.
Partially and fully overlapping genes were treated as separate. Markers within intergenic
regions between adjacent genes were fused in a similar manner. Combining the gene and
intergenic fused markers produced an alternative attribute set of 6,064 binary markers.

The second way we investigated the fusing of blocks of markers was to group markers
in genes and their flanking regions. To do this, we divided the genome into regions, each
of which contained one gene together with half of the two regions between it and the two
neighbouring genes. Partially overlapping genes were treated separately, but genes contained
entirely within another gene were ignored. Markers lying within gene regions formed in this
manner were fused according to the dominant value within this gene. This produced an
alternative set of 4,383 binary attributes.
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We observed that the performance of the two alternative sets of genotypic attributes
matched that of the full attribute set with the mean pairwise difference between any two
attribute sets performance for each of the five ML methods, apart from ridge, not exceed-
ing 0.5%. Ridge regression’s accuracy for some traits suffers considerably (e.g., cadmium
chloride 5%, maltose 5-12%) when the reduced attribute sets were used. This indicates that
most of the markers in blocks are in fact redundant as far as RF, GBM, SVM, and lasso are
concerned.

4.6 Investigating the Importance of Number of Examples

In phenotype prediction studies there is often a shortage of data as it is expensive to collect.
Traditionally obtaining the genotype data was most expensive, but increasingly data cost is
being dominated by observation of the phenotype—with the cost of observing genotypes
decreasing at super-exponential rate. To investigate the role of the number of examples we
successively deleted 10%, 25%, 50%, 60%, 70%, 80% and 85% of all sample points and
assessed performance of the six statistical/ML models (again on a test set with a train-test
split of 70%-30% and 10 resampling runs). Figure 7a plots the ratio of variance explained
using reduced data set versus original data versus proportion of data deleted. Figure 7b plots
average performance over all traits for each method. Plots show that RF performed the most
robustly. We note that by the time 50% of data is removed RF is outperforming lasso, BLUP,
and SVM, and at the 80% mark it starts outperforming GBM (in absolute terms across traits,
see Figure 7b). We notice that there is more variation across the traits in response to sample
point deletion, as compared to addition of class noise and attribute deletion, where behaviour
across the traits is more uniform (see Figures 5 & 6).
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Fig. 7: (a) Performance of ML methods and BLUP under sample points deletion. The ratio of
variance explained using reduced dataset versus original is plotted against the proportion of
data deleted. Thick lines represent average value across all traits. (b) Comparison of methods
on the absolute scale.
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4.7 Multi-Task Learning: Learning Across Traits

Rather than regarding the yeast dataset as 46 separate regression problems with 1,008 sample
points in each, in the spirit of multi-task learning one might consider it as a single large
regression problem with 46x 1008 observations (in practice less due to missing values). One
would then hope that a predictive model will learn to differentiate between different traits,
giving accurate predictions regardless of the environments. Moreover, letting a model learn
from several traits simultaneously might enhance predictive accuracy for individual traits
through drawing additional information from other (possibly related) traits. We can think of
this set-up as of a kind of transfer learning (Caruana, 1997; Evgeniou and Pontil, 2004; Ando
and Tong, 2005). Most of the 46 traits are only weakly correlated (Pearson’s correlation) but
there are several clusters of phenotypes with much higher pairwise correlations. Hence, on
top of considering a regression problem unifying all 46 traits we also chose two smaller
subsets of related traits with various levels of pairwise correlations:

(a) Lactate, lactose, sorbitol and xylose: four sugar-related phenotypes with relatively high
pairwise correlations (0.6-0.8).

(b) Lactate, lactose, sorbitol, xylose, ethanol and raffinose: six sugar-related phenotypes
with medium to high pairwise correlations (0.42-0.8).

Grouping these traits makes sense given yeast biology: xylose, sorbitol, lactose, and
raffinose are all sugars, and plausible environments for yeast to grow in; ethanol is a product
of yeast sugar fermentation; while lactate participates in yeast metabolic process. Hence it
is not surprising that the six traits enjoy moderate to high pairwise correlations.

Combining several phenotype prediction problems into one results in each individual
(yeast sample) having several entries in the input matrix and output vector—one for each
trait. Additionally, we introduced an extra attribute, a categorical variable indicating which
trait each sample corresponds to. We applied GBM and RF to this grouping approach. We
show only random forest results, as GBM considerably underperformed compared to RF,
and we did not apply SVM due to it being too computationally extensive for such a large
problem. The performance was assessed by evaluation on a test set (30% of the data), which
was an aggregation of test sets of individual traits used throughout the paper; this made
comparing the new results to reference results obtained by training on separate traits easier.

We assessed the performance of RF on the two groups of traits above as well as on
the group comprising all 46 traits. The three models were assessed for overall prediction
accuracy as well as for prediction accuracy for each trait. We compared the latter values
to reference fits, models trained and tested on each trait separately. Figure 8 below shows
the results. One can see that 3 out of 4 traits that belong to both groups (a) and (b) (lac-
tate, sorbitol, xylose) benefited greatly from grouped learning (blue and orange bars) whilst
predictive accuracy for the two additional traits in group (b) (ethanol and raffinose) are
substantially lower than reference. Moreover, adding these two traits reduced predictive ac-
curacy for 3 out 4 of the original traits in group (a) (orange bars). Overall accuracy across
all traits was 61% for group (a) and 52% for group (b).

For the full multi-task set-up using all 46 traits (green bars in Figure 8), the overall
accuracy of all traits was just 20%. On average predictive accuracy for individual traits for
this model was 22% lower than reference results (models trained and tested just on one trait).
The accuracy for cadmium chloride, for example, dropped to just 0.4%. There were however
7 traits that benefited from grouped learning. Curiously these included lactate, sorbitol and
xylose along with two other sugars trehalose and galactose (with an improvement of 5-
10%). However, the accuracies for lactate, sorbitol and xylose were still lower than when
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Fig. 8: RF prediction accuracy (R” on a test set) for individual traits when trained on group
(a) (blue bars), group (b) (orange bars) and all of the 46 traits (green bars) compared to
reference results (grey bars), when both learning and prediction was performed on individual
traits.

these traits were considered as part of groups (a) and (b). It, therefore, seems that while
combining multiple traits into a single regression problem indiscriminately might not, on
the whole, improve overall or individual trait prediction accuracy, grouping carefully chosen
traits with high pairwise correlation (perhaps advised by the organism’s biology) can be
advantageous.

5 Discussion

We have demonstrated the utility of the application of machine learning methods on three
phenotype prediction problems. The results obtained compared favourably to those obtained
from state-of-the-art classical statistical genetics methods.

The yeast problem investigated has the simplest form of phenotype prediction problems.
The data is also as clean and complete as is currently possible, and this enabled us to gradu-
ally degrade the data in various ways to better understand the factors involved in prediction
success and to make it resemble other types of phenotype prediction problem. In the original
clean yeast data, GBM performed best, with lasso regression and the method of Bloom et
al. joint second best.

The wheat and rice problems are typical of crop genome selection problems. For this
problem, SVM and BLUP were the best performing methods. We hypothesise that the suc-
cess of BLUP is related to the population structure in this problem. Despite this success,
BLUP does not optimally use population structure. Therefore, there is room to develop new
machine learning methods that better use prior knowledge of population structure.

We investigated the role of the number of interactions between attributes. For yeast
dataset traits with no interactions lasso proved to be the preferable method. We observed
that GBM was the best method with traits with interacting attributes. In particular, traits
with more than 2 interactions benefited deeper GBM trees. This suggests that complex in-
teractions of order greater than two have utility in phenotype prediction problems, and that
classical statistical genetics methods are mistaken to focus on univariate and bivariate inter-
actions.

Out of the three types of noise we investigated class noise seem to be by far the most
damaging to the prediction accuracy of all the methods. Of the machine learning methods,
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ridge regression’s performance deteriorated the most under various forms of noise, while
random forest was the most robust method.

One important form of phenotype prediction problem that we have not studied is human
disease associations studies. These problems typically differ from the problems investigated
in several ways: there exists complex but unknown population structure, the environment of
the examples is poorly controlled, and the phenotype investigated is a disease that may have
a partly understood mechanism. These properties make such problems in some ways easier,
and some ways harder, than the yeast and crop problems. We hypothesise that just as for
the yeast, wheat, and rice datasets, the performance of off-the-shelf machine learning meth-
ods would compare favourably to those obtained from state-of-the-art classical statistical
genetics methods.

There are a number of ways that machine learning methods could be developed for
phenotype prediction problems. As mentioned in the introduction, the use of markers to
describe genotypes is inefficient as it ignores their linear ordering, the type of sequence
change, etc. One way to capture this information would be to use a relational representation
(Getoor and Taskar, 2007). The marker representation also ignores all the prior biologi-
cal knowledge that is available about the genes involved. For a gene, there may be known
tens/hundreds/thousands of facts. This knowledge is highly relevant to determining whether
a gene is mechanistically involved, but is often ignored by both ML and classical statistical
genetics methods. To include this knowledge in prediction, a good approach would perhaps
be to use a hybrid relational/propositional approach that uses relational data mining to iden-
tify useful attributes (King et al., 2001). A relational approach could also explicitly include
prior background knowledge about the population structure of the examples.

For some GWAS problems the goal is to produce new organisms with desired properties,
and an example of this is plant breeding where the goal is to produce plants with increased
crop yield, resistance to drought, etc. This suggests an application of active learning. But
this would require the development of new active learning methods that take into account
the specific way (meiosis) that new examples (organisms) are produced.

To conclude, there is relatively little interaction between the machine learning and statis-
tical genetics communities. This is unfortunate. Statistical genetics suffers from lack of ac-
cess to new developments in machine learning, and machine learning suffers from a source
of technically interesting, and societally important problems. We therefore hope that this
paper will help bridge the differences between the communities and encourage machine
learning research on phenotype prediction problems.

The original yeast data can be found at http://genomics-pubs.princeton.edu/YeastCross_
BYxRMY/, wheat data at https://dl.sciencesocieties.org/publications/tpg/abstracts/5/3/103, and
rice data at http://snp-seek.irri.org/_download.zul. Custom R code used to analyse the datasets
can be found at: https://github.com/stas-g/grinberg-et-al-evaluation-of-ML-code.
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