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Abstract 19 

Despite advances in aging research, a multitude of aging models, and empirical evidence for diverse 20 

senescence patterns, understanding is lacking of the biological processes that shape senescence, both for 21 

simple and complex organisms. We show that for a isogenic Escherichia coli bacterial population 22 

senescence results from two stochastic processes. A primary random deterioration process within the 23 

cell, such as generated by random accumulation of damage, leads to an exponential increase in mortality 24 

early in life followed by a late age mortality plateau; a secondary process of stochastic asymmetric 25 

transmission of an unknown factor at cell fission influences mortality. This second process is required to 26 

explain the difference between the classical mortality plateaus detected for young mothers’ offspring and 27 

the near non-senescence of old mothers’ offspring as well as the lack of a mother offspring correlation 28 

in age at death. We observed that life span is predominantly determined by underlying stochastic stage 29 

dynamics. Our findings support models based on stage-specific actions of alleles for the evolution of 30 

senescence. This support might be surprising since these models that have not specifically been 31 

developed in the context of simple, single cell organisms. We call for exploration of similar stochastic 32 

influences beyond simple organisms.  33 

 34 

Introduction 35 

One of the major challenges for biodemographic research on aging is to understand what drives 36 

senescence patterns (Vaupel et al. 1998, López-Otín et al. 2013). This challenge is illustrated by the 37 

variety of aging models that assume different, as yet unverified generating processes (Hamilton 1966, 38 

Kirkwood 2005, Wachter et al. 2014). Prominent — mutually not exclusive — evolutionary theories of 39 

senescence, such as William’s antagonistic pleiotropy hypothesis (Williams 1957), or Medawar’s 40 

mutation accumulation hypothesis (Medawar 1952), provide general predictions about uniform 41 
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senescence patterns across many taxa (Hamilton 1966). However, these generalities have been 42 

questioned both theoretically and empirically by illustrating how negligible and negative-senescence can 43 

theoretically be achieved and been empirically found in various species (Vaupel et al. 2004, Jones et al. 44 

2014). Despite an extensive literature on mechanistic approaches of aging, the generating processes that 45 

drive such diversity in senescence patterns remain opaque (López-Otín et al. 2013). Mechanistic 46 

approaches to aging identify a multitude of underlying biochemical, molecular and organismal 47 

mechanisms that relate to the decline of function with age, many of which are rooted in direct or indirect 48 

oxidative processes (Kirkwood 2005, López-Otín et al. 2013). Examples include age-related 49 

mitochondrial dysfunction, telomere shortening, stem cell exhaustion, genotypic instability, epigenetic 50 

alterations, accumulation of damaged proteins and general loss of proteostasis (Lindner and Demarez 51 

2009, Tyedmers et al. 2010, López-Otín et al. 2013). Yet, researchers have not conclusively determined 52 

whether such mechanisms are a cause or consequence of aging. This failure may be due to the complexity 53 

of model systems of aging. As a consequence, it is difficult to relate these mechanisms directly to the 54 

observed demographic patterns (Tyedmers et al. 2010, López-Otín et al. 2013, Denoth Lippuner et al. 55 

2014). Only such linkage — between mechanisms and senescence patterns — can elucidate generating 56 

processes that underlie the various theories and aspects of aging. 57 

 58 

Aging in bacteria has been established over the last one and a half decades and thereby provided a 59 

simple biological system to study aging (Ackermann et al. 2003, Stewart et al. 2005). Before, bacteria 60 

have been thought to not age (Williams 1957), because they normally fission into two equal sized 61 

progeny. These progeny were assumed to be identical, that is, the original mother cell would die when 62 

fissioning and leaves two identical daughters (Johnson and Mangel 2006, Tyedmers et al. 2010). This 63 

perspective has changed because the resulting progeny are phenotypically unequal (Tyedmers et al. 64 
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2010). This asymmetry among the progeny is manifested by asymmetry of intracellular content at cell 65 

fission and between carrying old and newly formed cellular poles (Stewart et al. 2005, Lindner et al. 66 

2008). Here, we follow the convention of old pole and new pole cells, being referred to as mother and 67 

daughter cell respectively (Fig. 1), to track the age of individual cells (Stewart et al. 2005). It has been 68 

shown that mother cells have a higher probability to accumulate misfolded protein and grow slower as 69 

compared to their daughter cells, but a causal relationship to mortality was not established (Lindner et 70 

al. 2008). From a theoretical point of view asymmetry is required to rejuvenate some cells in order to 71 

prevent whole population aging. Otherwisepopulations would accumulate more and more damage if 72 

perfect symmetric fissions occurred and damage accumulation accedes damage repair and dilution due 73 

to growth and fission (Ackermann et al. 2007, Evans and Steinsaltz 2007).  74 

 75 

Here, we reveal characteristics of the underlying aging processes by inference from observed senescence 76 

patterns. We achieve this aim by quantifying demographic parameters of a simple biological system, 77 

isogenic individual E. coli bacteria cells, under highly controlled environmental conditions. We used a 78 

high-throughput microfluidic device (Fig. 1; movie S1) to track individual cells throughout their lives 79 

(Wang et al. 2010, Gasset-Rosa et al. 2014, Jouvet et al. 2017). Two types of cells were tracked: early 80 

daughter cells and late daughter cells (Fig.1). A late daughter cell is the last daughter cell produced by 81 

an early daughter and hence an offspring of an old mother. An early daughter cell is the offspring of a 82 

young mother since they were haphazardly extracted from a population that grew exponentially. 83 

According to stable stage population theories such exponentially growing populations are vastly 84 

dominated by young cells (Caswell 2001)(Fig. S1). We expect early daughters to hold little or no 85 

deterioration or damage at birth, whereas late daughters are likely be born with some damage. In this 86 

study, we use damage as a synonym for any unknown aging factor that leads to deterioration and 87 
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increased mortality. We use this synonym because many aging factors are assumed to be accumulated 88 

damage caused by oxidative processes (Kirkwood et al. 2005, López-Otín et al. 2013). A third group of 89 

cells, resembling the late daughter type are the last daughter cells produced by the late daughters, which 90 

we call second generation late daughters (Results only in SI1). Our definition of mother and daughter 91 

cells builds on the concept of cell polarity for both early daughter and late daughter cells to track the age 92 

of cells and distinguish between the mothers (old pole cell) and the daughters (new pole cell) (Fig.1). 93 

 94 

Material and Methods 95 

For brevity we only provide in this section an overview of the methods. For more detailed methodological 96 

information on strains and growth conditions, time-lapse imaging, image analysis, determining death and 97 

estimating demographic parameters, statistical analyses, the simulations please see the supplemental 98 

information. 99 

 100 

We collected data in two independent sets of experiments. We loaded E. coli K12-derived MG1655 strain 101 

cells into a designed microfluidic (PDMS) chip (Wang et al. 2010, Gasset-Rosa et al. 2014, Jouvet et al. 102 

2017) from an exponentially growing culture in supplemented minimum media M9. During each 103 

experiment, we acquired 77 hours of time lapse phase-contrast imaging (15 frames/hour for each of the 104 

2x44 fields followed) using a temperature-controlled inverted microscope, at 43°C with an accuracy of 105 

the temperature control at the chip of ±0.1°C (note within the chip temperature should be even more 106 

closely controlled due to some buffering of the chip). We used 43°C to accelerate the aging process and 107 

thereby shorten the time the system needed to run under stable conditions. Such stability was particularly 108 

important to accurately track late daughter and second generation late daughter cells. Increasing 109 

temperature up to 43 °C scales senescence patterns, but does not alter the shape of patterns (Jouvet & 110 
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Steiner unpublished). At 44 °C patterns got unstable and cells were not viable over longer time periods 111 

(results not presented). The rod-shaped bacteria cells grew in dead end side channels of a microfluidic 112 

chip, with the focal cells trapped at the end of the side channels, and we tracked them over their lifespan 113 

(Fig. 1; movie S1). We used customized image analysis to generate the demographic data (lifespan, cell 114 

elongation rate, cell size, and time of each division).  115 

 116 

We assured by starting the experiments with exponentially growing cells that the initial loaded cells are 117 

descendants of young mothers (i.e. they are early daughter cells) (Fig. S1). At the end of their lives, these 118 

early daughter cells produced a last daughter (late daughters) that then became the next bottom-most cell 119 

trapped at the end of the respective growth channel. Therefore, we could directly compare mother and 120 

daughter cells. Note that the late daughters are not born at the same time (main text Fig. 2 E, F). The late 121 

daughter cells produced another generation of late daughter cells at the end of their lives (second 122 

generation late daughter cells) for which the results are shown in Fig. S2-8, Table S1-3. Analysis on the 123 

empirical data were done in program R (R Core Team 2016) using general linear, generalized linear, and 124 

non-linear models. Models were selected based on information criteria (AIC) (Burnham and Anderson 125 

1998) or based on differential evolution algorithm for global optimization (R package DEoptim). 126 

 127 

Simulations and extending random deterioration models. 128 

For the extended random deterioration model, we first estimated parameters by fitting a fixed frailty 129 

model — a Gamma-Gompertz-Makeham (GGM) model — to the observed survival data of the early 130 

daughter cells (Yashin et al. 1994, Missov and Vaupel 2015). We then translated these fitted GGM model 131 

parameters to an extended random deterioration process model, an extended LeBras type deterioration 132 

model (Le Bras 1976). In doing so, we took advantage of mathematical similarities between the two 133 
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types of models, even though they are biologically distinct (Yashin et al. 1994, Missov and Vaupel 2015). 134 

With these random deterioration model parameters we could estimate the probability matrix of an 135 

individual being at stage i at age x. Microsimulations based on these models provided stage at death 136 

distribution. For the late daughters, we assumed that they are born at a scaled version of the same damage 137 

stage in which their mothers died. We also assumed that late daughters accumulate damage at the same 138 

rates as early daughters do, i.e. same probabilities to transition to a higher damage state of early and late 139 

daughters. We further assumed that the amount of accumulated damage in late daughters had the same 140 

effect on mortality than on early daughters, that is, early and late daughter cells are not fundamentally 141 

different except that late daughters are born in different damage stages, while early daughters start their 142 

lives without damage, but the baseline mortality (Makeham term) can be interpreted as some starting 143 

level of damage even for early daughters. Our model simplifies the biological system substantially in as 144 

much as no repair of damage or purging of damage through asymmetric division at cell fission is 145 

considered. Damage accumulates unidirectionally, mortality increases exponentially with accumulated 146 

damage, and each cell suffers from an age-independent baseline mortality risk (Makeham term). 147 

 148 

 149 
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 150 

Fig. 1: Left panel: Overview sketch of the microfluidic device with dead-end side channels and the main 151 

laminar flow channel where the media is flushed through. The early daughters (founding initial loaded 152 

mothers) are the bottommost cells of the dead-end channels. Their daughters (new pole progenitor cells) 153 

are located closer to the main laminar flow channel and have more recent poles. When the mother (early 154 

daughter) dies (side channel on the right), its last daughter (1st generation late daughter) is then tracked 155 

throughout its life. Accordingly, 2nd generation late daughter cells are tracked once their mother (1st 156 

generation late daughter) dies. Right top and bottom panel: Phase contrast time sliced (4 min intervals) 157 

side channel images with initial loaded early daughter at the bottom (old pole progenitor). Growth (cell 158 

elongation) and division can be tracked throughout their life as depicted in the segmented cell lineages 159 

(bottom right panel). See also movie S1. 160 

 161 

Results and Discussion 162 

Chronological aging in E. coli 163 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

In our experiments, we followed by automated time-lapse microscopy 516 early daughters throughout 164 

their lives as they divide and age in microfluidic dead-end channels (Fig. 1). We also followed two 165 

generations of late daughters of these 516 early daughters and recorded each cells growth rate and 166 

lifespan. In this, we reveal classical senescence patterns of a decrease in reproduction (Fig. 2A, B) — 167 

indicated by decreased cell elongation and increased size at division with age (Fig. S2, Table S1) — for 168 

both early and late daughters (Figure 2A, B). The observed senescence patterns (Fig. 2C, D) describe 169 

chronological aging in E. coli and support previous studies on replicative senescence (time counted as 170 

number of divisions) in this species (Lindner et al. 2008, Wang et al. 2010) (Fig. S2 & Fig. S4). The 171 

main result highlights that early daughters and late daughters differ fundamentally in their senescence 172 

pattern, even though they are isogenic and grown in a highly controlled environment. Only the early 173 

daughters exhibit the classical senescence pattern, marked by an early exponential increase of the 174 

probability of death followed by a later age mortality plateau. Late daughters have the same probability 175 

of death across most of their lives, i.e. no senescence is observed at the population level. Only late in life 176 

does mortality increase, but this increase is largely driven by only one data point, the one for the last age 177 

class (>30h) and is accompanied by increased uncertainty due to small sample size at that age. Such a 178 

plateau, exhibited by the early daughters — recurrent in many higher organisms including humans 179 

(Vaupel et al. 1998) — has not been previously shown for bacteria, potentially indicating deep-rooted 180 

features of aging and senescence. In yeast, ambiguous results on senescence patterns have been described 181 

(Minois et al. 2005, Denoth Lippuner et al. 2014).  182 
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 183 

Fig. 2: Division rate (divisions per hour) (A, B) and probability of death per hour (C, D) with increasing 184 

age, as well as lifespan distribution (in hours) (E, F) of isogenic E. coli cells grown under highly 185 

controlled environmental conditions in a microfluidic device (Fig. 1, movie S1). Age patterns are shown 186 

for early daughters (A, C, E; N=516), and late daughters (B, D, F; N=516). Late daughters are the last 187 

offspring of the founding early daughters. The correlation of early daughter’s lifespan (mothers’ lifespan) 188 

(square root transformed for better visibility; N=516) versus the lifespan of their last daughter cell (late 189 

daughter cells; N=516) is shown in panel (G). For (A, B) hourly means ± standard errors are plotted, for 190 
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(C, D) the fitted regression ± 95% confidence intervals are plotted (confidence intervals are estimated 191 

based on individual level data SI1). The fitted regression (red lines) are likelihood optimization for 192 

Gamma-Gompertz-Makeham functions and relate closely to the modeling approach we took below (C, 193 

D, see also Fig. 3, simulations below, and SI1; Table S1, Table S2 for statistical testing) (Burnham and 194 

Anderson 1998). The grey points in panel C, D, mark average first hour probability of death which have 195 

been excluded from the modeling. For lifespan distributions (E, F), mean and median are marked by solid 196 

and dashed lines respectively. For patterns of the second generation late daughters, see Table S2, Table 197 

S3, Table S4, and Fig. S3, Fig. S7, Fig. S8, Fig. S9, Fig. S10, Fig. S11. 198 

 199 

The probability of death of newborn late daughters (<=1hour, filled grey data point in Fig. 2D) drops 200 

after the first hour to a level that is lower than their long-lived mothers (early daughters above age 20) 201 

and then remains at that level throughout their lives. This drop in mortality early in life of late daughters 202 

suggests a damage purging effect (see below). Such a drop of mortality after birth might indicate 203 

heterogeneity among newborns amenable to evolutionary selective forces (Yashin et al. 1994), e.g. 204 

heterogeneity in maternally-transmitted damage between mothers and daughters. With increasing age we 205 

detected increased variance and increased uncertainty of parameter estimation (Fig. 2 A-E). Such 206 

increase is expected for age-structured demographic analyses and well understood for its declining 207 

number of individuals with age (Brillinger 1986, Klein and Moeschberger 2003, Scherbov and Ediev 208 

2011). The increase in variance is more pronounced for probabilities of death (Fig. 2 C, D) than for 209 

division rates (Fig. 2 A, B), because each individual dies only once while each individual divides multiple 210 

times throughout its life and hence division rates suffer less from smaller sample sizes. Binning over 211 

larger time spans or having an earlier open age bracket would diminish the effect of increased variance 212 

with age.  213 
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 214 

Damage accumulation and selection 215 

If we assume, as in most physiological theories of aging, that accumulated damage is the determining 216 

factor for the probability of death, then the observed constant probability of death with age for older early 217 

daughters and the late daughters (Fig. 2C, D) indicates an equilibrium distribution of damage among 218 

individuals. Such equilibrium is realized at the population level while the individuals accumulate damage 219 

in a stochastic manner. It equilibrates on one hand the accumulation of new damage within individuals 220 

similar to processes described by random deterioration models (Weitz and Fraser 2001), and on the other 221 

hand, the intracellular repair of damage and purging of damage by two mechanisms. The first mechanism 222 

reduces damage within an individual by asymmetric division of damage at cell fission, which increases 223 

variance in damage among individuals (mother and daughters). The second mechanism selects against 224 

highly damaged cells, i.e. the most damaged cells of a population die, which lowers the average level of 225 

damage in the surviving population, and reduces the variance of damage among individuals (Evans and 226 

Steinsaltz 2007). Intriguingly, this equilibrium (plateau level) is lower for late daughters (Fig. 2D, see 227 

Table S3) than the late-age mortality plateau of the early daughters (Fig. 2C). This indicates — based on 228 

fixed frailty models (Missov and Vaupel 2015) — higher heterogeneity in transmitted damage of late 229 

daughters compared to early daughters. Such increased heterogeneity at birth predicts an earlier onset of 230 

selection against highly damaged cells which would explain why in our simulations (below) late 231 

daughters have on average less damage compared to early daughters at the plateau (see Fig. 3A, B, Fig. 232 

S10). Purging of damage through asymmetric division at cell fission has been shown in yeast, where late 233 

daughters showed reduced lifespan, but through further division and presumably damage dilution, the 234 

descendants of these late daughter yeast cells recovered high longevity (Kennedy 1994). This is also 235 
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reminiscent of asymmetric partition of protein aggregates in bacterial cells due to their passive 236 

accumulation in bacterial mother cells (Lindner et al. 2008, Coquel et al. 2013). 237 

 238 

Stochastic variability in lifespan and lack of mother-daughter correlation of lifespan 239 

We did not find any influence of the lifespan of the mothers on the lifespan of their (last) daughters (Fig. 240 

2G) (Table S6, Fig. S8). Since we are working with an isoclonal population we do not expect any genetic 241 

variability among mother-daughter pairs; therefore, we would not expect a genetically driven mother-242 

daughter correlation of lifespan caused by additive genetic differences. However, non-genetic factors 243 

such as maternal transmitted damage would predict mother-daughter correlated lifespans except if i) 244 

daughters would be perfectly rejuvenated — all daughters would be born without damage (see also Fig. 245 

3E) —, or ii) if the transmission of damage to the daughter is independent of the amount of accumulated 246 

damage by the mother — the mother-daughter transmission of damage is stochastic. Since late daughters 247 

display higher probability of death from birth onwards (Fig. 2D), which is indicative of some maternally 248 

transmitted damage and obviously shows that late daughters are not perfectly rejuvenated, we can 249 

exclude the first explanation why a mother-daughter correlation of lifespan is lacking. This leaves the 250 

second explanation where the amount of damage transmitted from the mother to the daughter is stochastic 251 

and independent of the age of the mother. Early daughters seem to hold little or no damage at birth, since 252 

their mothers have not yet accumulated much damage, whereas the average late daughter seems to be 253 

born with some damage that raises its probability of death. The lack of a mother-daughter correlation of 254 

lifespan is also remarkable as it contrasts heritability of lifespan in humans and other complex organisms 255 

that show similar senescence patterns (Finch and Kirkwood 2000). 256 

 257 
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The lack of correlation between mother-daughter lifespan suggests that the assumed mother-daughter 258 

transmission of damage is predominantly stochastic. If damage accumulates stochastically within a cell 259 

over its life, long-lived mothers might have been lucky and accumulated damage at a lower rate than the 260 

average mother, but they still accumulate damage with increasing age. At age of death, long-lived 261 

mothers might have similar damage levels compared to short lived mothers. Short-lived mothers, which 262 

likely accumulated damage at an exceptional high rate, do not produce daughters with shorter life 263 

expectancy. Despite their difference in lifespan, neither long-lived nor short-lived mothers tend to 264 

transmit higher or lower amounts of damage to their daughters, otherwise we would find a negative or 265 

positive correlation in mother-daughter lifespan (Fig. 2G). Therefore, our observation that early 266 

daughters — which are assumed to hold little or no damage at birth — die at very different ages indicates 267 

that the process of damage accumulation within an individual appears to be stochastic and varies highly 268 

among individuals. Despite an isogenic population in a highly controlled homogeneous environment, we 269 

observe a high variation in lifespan and reproduction among individuals, both for early daughters 270 

(Median±stdev lifespan 12 ± 7 hours, Coefficient of Variation, CV 0.57, Fig. 2E) (Fig. S7) and late 271 

daughters (Median±stdev 5 ± 7; CV=1.01, Fig. 2F). Such high variation supports substantial influences 272 

of stochastic events in shaping lifespan. 273 

 274 

Modeling damage accumulation and asymmetric transmission of damage 275 

To support our conclusions based on the empirical results and to gain a better understanding of the 276 

underlying stochastic processes that shape our observed senescence patterns, we extended random 277 

deterioration process models (e.g. random accumulation of damage, see details in Methods and SI1) (Le 278 

Bras 1976, Yashin et al. 1994, Evans and Steinsaltz 2007). Our extended model assumes that all cells 279 

accumulate damage unidirectionally at the same rate, i.e. cells move with equal probability to a higher 280 
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damage state, mortality increases exponentially with accumulated damage, and each cell suffers from an 281 

age-independent baseline mortality risk. We also assume that early daughters are born without damage 282 

(Fig. 3A). The results of our simulations show that with increasing age population level damage (and 283 

variance) slowly increases at early ages, accelerates after 10 hours and plateaus after 20 hours (Fig. 3A). 284 

These patterns in damage accumulation mirror the observed mortality patterns (Fig. 2C). Mortality 285 

plateaus, as observed for early daughters, can be explained by either fixed frailty, i.e. heterogeneity in 286 

damage stage at birth, or acquired heterogeneity throughout life (Vaupel and Yashin 1985, Yashin et al. 287 

1994, Weitz and Fraser 2001, Missov and Vaupel 2015). In our system heterogeneity in damage stage at 288 

birth seems to have little influence, at least for early daughter cells. Senescence is driven by an age 289 

independent baseline mortality and accrued damage as in random deterioration models (Le Bras 1976, 290 

Yashin et al. 1994, Weitz and Fraser 2001). This conclusion is supported by two results of our model. 291 

First, most early daughters die with no or very little damage (Fig. S10), and second, the observed survival 292 

patterns follow closely the survival curve of simulated cells that did not accumulate any damage 293 

throughout life (Fig. 3C).  294 

 295 

Contrasting the assumption for the early daughter cells, in our simulation the average simulated late 296 

daughter is born with some damage (~24% are born without damage) (Yashin et al. 1994)(Fig. 3B). For 297 

the following results, it is important to note that this heterogeneity in damage at birth of late daughters is 298 

an underestimation since we do not include the exceptionally high first-hour mortality rate (grey filled 299 

data point in Fig. 2D) for the simulations. In our simulations the distribution of this damage at birth of 300 

the late daughters is related to the distribution of the accumulated damage at death of the early daughter 301 

cells (mothers of the late daughters, Fig. S10). For the simulations, we assumed that the mother to 302 

daughter transmission of damage is a fixed fraction of all the damage the mother accumulated over her 303 
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lifespan. Note, we only simulated a single binomial division, rather than multiple asymmetric fissions as 304 

others have done (Evans and Steinsaltz 2007). We computed the fixed fraction of damage transmission 305 

between mother and daughter by optimizing the survival pattern predicted by the simulations to the 306 

observed survival curves. 307 

 308 

We found that the optimal (simulated) fixed fraction was at a low level of 0.07. This indicates a highly 309 

asymmetric division of damage between mothers and daughters. If damage transmission between 310 

mothers and daughters would be symmetrical (0.5), the predicted survival of the simulations (Fig. 3D 311 

hatched line) does not match the observed survival (Fig. 3D red line). For early daughters, the level of 312 

asymmetry makes little difference because most of them die with no or little accumulated damage (Fig. 313 

3C, Fig. S10). The predicted survival pattern of late daughters at older ages slowly converges to the 314 

simulated survival patterns of undamaged cells (outer right grey line) (Fig. 3D). Therefore, many cells 315 

in our simulation that survive to old ages hold little damage, which supports our interpretation of our 316 

experimental data that late daughter cells are born with diverse damage states, highly damaged cells are 317 

selected against, and at old ages, population-level survival patterns are strongly influenced by cells that 318 

have not accumulated much damage.  319 

 320 

Similar selective effects have been described by population level demographic theories as 321 

heterogeneity’s ruses, where selection among different damage stages (fixed frailty; i.e. heterogeneity in 322 

damage stage at birth) leads to diverse senescence patterns at the population level (Vaupel and Yashin 323 

1985). Compared to our simple model that only considers a single binary fission (branching) and suggests 324 

a strong asymmetry, more complex and realistic models that include multiple branching (fission) events 325 

show less extreme asymmetry at cell fission to be adaptive (Evans and Steinsaltz 2007). This difference 326 
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in optimal asymmetry between our simple and the more complex models can be understood in that the 327 

asymmetric transmission of damage is distributed over multiple fissions in the more complex models, 328 

while for our model it is concentrated at a single event. Even though the optimized fixed transmission 329 

fraction between mother and daughters of our model is low at 0.07, such a fixed fraction would lead to a 330 

correlation in lifespan between mother and daughters of about 0.25 (Fig. 3E). If different levels of fixed 331 

transmissions are simulated, correlation in lifespan between mother and daughters increases with 332 

increasing transmission. Only when there is no transmission of any damage (perfect rejuvenation of the 333 

daughters) we see no correlation in lifespan (Fig. 3E). The observed data does not support such 334 

correlation in lifespan (Fig. 2G), but also does not support perfect rejuvenation (Fig. 2C and D). Hence 335 

these simulations support our conclusion that the fraction of transmitted accumulated damage from 336 

mother to daughter at cell fission varies stochastically and is not fixed at a low level of 0.07 as our model 337 

assumes. 338 

 339 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 340 

 341 

Fig. 3: Random deterioration model: Simulation results are shown of mean (red solid line, + SD grey 342 

hatched lines) and median (red hatched line) damage state with increasing age (A, B); observed 343 

experimental population level survival curves (red solid line; see also related probability of death Fig. 2 344 
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C, D and related observed distributions of death Fig. 2E, F), Gamma-Gompertz-Makeham simulated 345 

survival curves with symmetric damage transmission (hatched black line) as well as simulated 346 

asymmetric damage transmission of 7% (solid black lines ± 95% CI in blue) (C, D). Graphs are shown 347 

for early daughter cells (A, C) and late daughter cells (B, D). Thin grey lines in (C, D) depict expected 348 

survival curve of simulated cells with different fixed damage state: outermost (right) curve depicts the 349 

highest survival of simulated cells with no damage throughout their lives, most left survival curve depicts 350 

the lowest survival of simulated cells that were born with maximum damage level of 5000. Lifespan 351 

(square root transformed) of simulated 516 early daughter cells (mothers) versus the lifespan of their 352 

simulated last daughter cell (late daughter cells) with different levels of mother to daughter damage 353 

transmission (E). The different scenarios include the optimized fixed transmission level at 0.07 (forest 354 

green), a scenario for perfect rejuventation, i.e. 0 transmission (red), 0.25 transmission (green), 0.5 355 

transmission, i.e. symmetric (equal) transmission between mother and daughter (blue), and transmission 356 

of all accumulated damage to the daughter (1) (pink).CI are shown for each correlation in lifespan 357 

between mothers and daughters as shaded areas. 358 

 359 

In this study, our experimental setup limits our analysis to two extreme cases: early and late daughter 360 

cells (in fact the last daughter cells). We hypothesize that the results do not only hold for these two 361 

extremes but rather portray the extremes of a continuous process across different aged cells. Two 362 

observations support our claim: first, changes in mortality of early daughters (Fig. 2C) and age patterns 363 

in reproduction (Fig. 2A) are somewhat gradual (more so for survival than for reproduction), suggesting 364 

a gradual underlying mechanism; second, we do not observe a pronounced pattern just before death (Fig. 365 

S5 & Fig. S6, Table S5). Such a pattern would be expected if the last daughters are exceptional because 366 
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their mothers are approaching death, for instance in the way as predicted under terminal investment 367 

theories (Clutton-Brock 1984). 368 

 369 

Two stochastic processes shape diverse senescence patterns  370 

We conclude that the diverse senescence patterns, including the classical senescence pattern of a 371 

mortality plateau, are determined by two stochastic processes that relate to underlying (damage) states 372 

and only indirectly to age (Yashin et al. 1994, Wachter 1999, Weitz and Fraser 2001, Evans and Steinsaltz 373 

2007). The primary process is a random deterioration process, e.g. the stochastic accumulation of damage 374 

throughout life, and the secondary process involves the stochastic transmission of damage from the 375 

mother to their daughters at cell fission. This transmitted damage or some other unknown aging factor 376 

increases the probability of death but is “non-heritable” as we show by the lack of correlation between 377 

mother and daughter lifespan (Yashin et al. 1994, Wachter 1999, Weitz and Fraser 2001, Evans and 378 

Steinsaltz 2007). Not only additive genetic variation but also other commonly assumed drivers of 379 

senescence, such as epigenetic variability, age itself, or the (extrinsic) environment can be ruled out as 380 

major players in our study. If epigenetic variability had a significant influence, a positive correlation 381 

among mother and daughter lifespan would be seen. If chronological age determined senescence, early 382 

and late daughter cells would show similar mortality patterns, hence senescence is rather driven by stage 383 

dynamics than by chronological age. The highly controlled microfluidic system creates a uniform 384 

environment and hence we can exclude extrinsic environmental drivers; this does not imply that 385 

senescence patterns do not differ under different environmental conditions, we just investigated only one 386 

specific environment. For instance, under complex media variance in division size and related division 387 

rate is increased compared to the minimum medium we used (Gangan and Athale 2017). Minimum 388 

medium also decreases the rate of filamentation, a stress response that causes continued cell elongate 389 
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without dividing. Recovery of filamentous cells is rarely observed under minimum medium but frequent 390 

under complex medium (Wang et al. 2010) (see also SI). The near identical conditions cells experience 391 

in the microfluidic system decreases environmental variability compared to naturally experienced micro-392 

habitats. The laminar flow provides large amounts of fresh media that constantly diffuses within seconds 393 

into the dead-end side channels and therefore prohibits built-up of micro-environmental-niches. Though, 394 

such micro-environments (e.g. biofilms) are characteristic for the natural conditions in the guts of the 395 

mammalian hosts most E. coli life and have evolved under. The microfluidic system we use largely 396 

prevents cell-to-cell contact and chemical communication among cells that can influence population 397 

growth (Aoki et al. 2005). The highly controlled conditions therefore lowers phenotypic variability 398 

compared to natural conditions. To what degree senescence patterns are altered by the environment 399 

remains to be explored. Temperature seem to conserve the shape of senescence patterns and simply scales 400 

patterns differently, whereas nutrient concentrations and nutrient source might alter shapes as has been 401 

found in other organisms (Stroustrup et al. 2016)(Steiner unpublished).  402 

 403 

Our findings indicate that two simple stochastic processes can create complex senescence patterns. Easily 404 

understood, simplistic, and plausible arguments behind evolutionary theories of aging might lure readers 405 

into the misconception that chronological age in itself plays an important role in senescence. Such 406 

simplistic assumptions of age-specific drivers must be approached with caution and seem not applicable 407 

to this study. Selective forces likely decline with time in our system, but the decline might be dominated 408 

by underlying stage dynamics. Selection on heterogeneity among individuals is rather generated by such 409 

stage dynamics than by increasing chronological age. In this sense, selective forces and their decline vary 410 

considerably among individuals, even though genetic load that relates to the accumulation of deleterious 411 

mutations should be negligible in an isoclonal population as ours. The substantial effect of stochastic 412 
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events on life histories is also indicated by the large variability in life histories despite excluding any 413 

genetic or environmental variability. Such large stochastic variation supports arguments behind neutral 414 

theories of life history (Steiner and Tuljapurkar 2012) that suggest that stochastic variability can account 415 

for substantial fractions of the total variability in fitness components. Our interpretation of stochastic 416 

events determining individual life courses is consistent with findings of significant stochastic influences 417 

at the molecular (Elowitz et al. 2002) and protein level (Tyedmers et al. 2010, Balázsi et al. 2011) and 418 

adds to the growing interest in such phenotypic heterogeneity and individuality (Wolf et al. 2007, 419 

Davidson and Surette 2008, Ackermann 2015).  420 

 421 

Future challenges will include determining whether these stochastic processes are neutral or adaptive, 422 

and what drives their evolution (Steinsaltz and Evans 2004, Kærn et al. 2005, Norman et al. 2015, Vera 423 

et al. 2016). For the basic aging processes that drive senescence, the causal relationships that drive age 424 

patterns are currently unknown (Lindner and Demarez 2009, López-Otín et al. 2013). The complex 425 

senescence patterns found in this study of a simple model organism under highly controlled conditions 426 

emphasizes the challenges to quantify contributions of well-defined determinants of aging in the complex 427 

systems on which most aging research is focused (López-Otín et al. 2013). Comparing mean 428 

characteristics of differently aged individuals as frequently done in aging research might hold limited 429 

insights in system where determining stages are likely highly dynamic. In light of the growing evidence 430 

that stochastic processes can have cascading effects across all levels of higher organisms (Finch and 431 

Kirkwood 2000, Elowitz et al. 2002, Balázsi et al. 2011) new avenues in aging research may require a 432 

shift towards the underlying stochastic processes that drive such stage dynamics in simple systems like 433 

bacteria and perhaps beyond. Identifying the underlying currently unknown (damage) states remains 434 

another challenge that we believe requires a combined quantitative demographic and mechanistic 435 
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approach, because of the high level of stochastic influences. Promising steps in such directions have been 436 

initiated by theoretically exploring stage-specific alleles shaping senescence patterns (Wachter et al. 437 

2014) and by exploring transcription factor signal dynamics at the single cell level across increasing parts 438 

of the lifespans of many individuals (Norman et al. 2013). 439 

 440 

 441 
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Supporting information SI1 555 

 556 

Strains and growth conditions 557 

We fabricated the microfluidics chips as previously described (Gasset-Rosa et al. 2014). We grew E. coli 558 

K12 MG1655 (Blattner 1997) strain derivative (intC::pSulA-yfp) cells at 43°C in filtered minimal 559 

medium supplemented with 0.4% Glucose and 0.2% Casamino Acids (hereafter M9). We diluted 100µl 560 

of the overnight culture into 50ml of M9 and then grew it at 43°C to exponential growth phase (OD600 561 

~0.2). We centrifuged the cells and resuspended the cell pellet in 100µl of M9 to load them into the chip 562 

by injection into the main (feeding) channel followed by centrifugation (15 minutes at ~168g). We 563 

applied a continuous laminar flow (2.7ml/h) of M9 supplemented with 1.5% Polyethylene Glycol (PEG 564 

P3015 Sigma Aldrich) through the main channel throughout the experiment. The temperature was kept 565 

constant at 43°C (see below).  566 

 567 

Time-lapse imaging 568 

We followed bacterial growth in the microfluidics chip by phase-contrast time-lapse imaging at a rate of 569 

4min/frame using a MetaMorph (Molecular Devices)-controlled inverted Nikon microscope (Eclipse Ti, 570 

100xobjective, CoolSNAP HQ2 camera) with a temperature-control chamber (Live Imaging Services). 571 

We continuously scanned 44 positions, each comprising 18 channels, for 77 hours, in two independent 572 

experimental sets. 573 

   574 

Image analysis 575 

We used a custom image analysis to segment all cells within the side channels per frame, the software 576 

measured the cells’ location and size within the time series and generated cell lineages. To this end, phase 577 
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contrast time-lapse images were lowpass-filtered and background flattened (MetaMorph Molecular 578 

Devices software) to increase contrast. We further processed the images by a customized ImageJ plugin 579 

for cell segmentation to crop each of the growth channels, stabilize the time sequenced images, adjust 580 

the brightness and to create a binary image by thresholding and filtering (median filter). Finally, the 581 

ImageJ plugin water-sheds the time sliced images. We then applied a final round of segmentation in 582 

Matlab by correcting errors in segmentation by checking for minimum (0.8) and maximum (1.4) cell 583 

elongation rates for each cell (size time-4 min, size time+4min). This way, we recorded for any time 584 

points (at 4 minute intervals) the exact location of a cell in the side channel (the pixel coordinate of the 585 

center of mass of the cell area), the side channel of the cell, and if a cell divided. By the position within 586 

the side channel we determined which cell was the mother (old pole progenitor) cell (bottommost cell), 587 

their most recent daughter (new pole progenitor) cell and so forth. We measured the length of a cell as 588 

the largest distance of the rod shaped cell in the orientation of the side channel. We applied a minimum 589 

“cell length” of ~1µm to exclude artefacts originating mainly from small deformations in the growth 590 

channels, or some shadows/reflections generated at the dead end of the growth channel.   591 

 592 

Age at death 593 

We defined age at death as the time when a cell stopped growing and dividing for at least one hour and 594 

20 min. None of the cells divided after such a long division arrest or resumed growth.  595 

 596 

Early and late daughter cells 597 

We defined the early daughter population as the cells that were initially loaded into the microfluidic chip 598 

and settled at the dead-end of the side channels. They originated largely from young mothers because the 599 

population was in exponential growth phase when we loaded cells into the chip (Jagers 1978). The age 600 
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distribution of these early daughter cells is, because of the exponential growth phase, negatively 601 

exponentially distributed. We show their expected age distribution in Fig. S1, based on a Leslie matrix 602 

generated from the survival and division rates of the early daughters (Fig. 2A & C). Due to the 603 

exponential growth phase, we assume a stable age distribution (the right eigenvector corresponding to 604 

the dominant eigenvalue of the Leslie matrix) (Caswell 2001). We tracked these early daughter cells to 605 

the end of their lives (Fig. 1, movie S1). The last daughters that were produced by these early daughter 606 

cells are the late daughter population. These late daughters are all of age zero but originate from mother 607 

cells (the early daughters) that had accumulated damage over their lives, and that were only one division 608 

from dying. We again tracked these late daughters throughout their lives. We focus mainly on these first 609 

two types of cells (early and late daughters), though as expected, the next generation of late daughter 610 

cells (second generation late daughters) follow the late daughter patterns (Fig. S4-6).  611 

 612 

Fig. S1: Expected (stable) age distribution (in hours) of early daughters (initial loaded cells), estimated 613 

from a Leslie matrix parameterized with the demographic rates of the early daughter cells. Due to the 614 

theory of stable age populations, the distribution of the ages of the mothers of these early daughters 615 
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should be exactly as the (stable) age distribution shown here of the initial loaded (early daughter cells) 616 

at the start of the experiments. 617 

 618 

Estimating demographic parameters 619 

Image analysis (see above) provided us the basis for estimating the age-specific demographic parameters: 620 

division rate, cell elongation rate, size at division, and survival rate. We excluded all cells that were not 621 

tracked throughout their lives. This concerned mostly cells that filamented (cell division arrested without 622 

growth arrest) and were flushed out of the side channels when they reached a size longer than 25 µm 623 

(length of the side channel). We also excluded all (early and late daughter) cells that died at chronological 624 

age 0 (never started to grow or divide). This was practiced because loading into the chip might be 625 

damaging and we wanted to exclude such death. This approach was conservative, because fewer early 626 

daughters never started growing or divided compared to late daughters (who could not have been 627 

damaged by the loading). We used data from 516 early daughters that produced 516 late daughters which 628 

in turns produced 298 (second generation) late daughters that were tracked throughout their lives.  629 

  630 

Statistical analysis  631 

We did the statistical analysis using the R software (R Core Team 2016). We estimated and plotted hourly 632 

rates for division rates, cell elongation, and cell size at division rather than rates on the 4 min intervals 633 

because data would be sparse for 4 min intervals at older ages. Already the hourly rates at old ages suffer 634 

from sparse estimates and increased uncertainty. We also clustered all data of ages beyond 30 h for the 635 

same reason. To guide statistical testing, we used model selection (Burnham and Anderson 1998) based 636 

on AIC (Akaike Information Criteria) and considered — as common practice —better support between 637 

models when the ΔAIC was more than 2. For the parameter estimation of the GGM and extended random 638 
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deterioration models, we used the DEoptim R package and the optim function within the stats R package. 639 

We calculated the CI (Fig. 2 C & D) by bootstrapping 1000 times. This bootstrapping is based on 640 

individual level data not the hourly means Fig. 2 C, D. We choose such an likelihood based global 641 

optimization approach to closely relate to the GGM modeling approach we used for the simulations. 642 

Using model comparison (AIC) based on the hourly rates (results not shown) selects for models with 643 

sigmoidal shapes like the GGM likelihood optimization, i.e. an early exponential increase in mortality 644 

followed by a late age mortality plateau (Fig. 2 C). For early daughters, other exponential or linear 645 

functions receive less support. For late daughters model comparisons selected non-senescence (Fig. 2 D, 646 

flat mortality) over linear or exponential models. We did not test for any breakpoint models or step 647 

functions, since such models are not expected based on evolutionary theories of aging.    648 

 649 

Lifespan distribution second generation late daughters  650 

In the main article, we focused on early and late daughter cells. Qualitatively, patterns of the second gen651 

eration late daughters (the last daughters produced by the late daughters) correspond to those of their m652 

others (the late daughters), though data becomes sparse uncertainty increases and some deviations occur653 

. Fig. S7 illustrates lifespan distributions of the 298 second generation late daughters, their mothers (late 654 

daughters), and grandmothers (early daughters). Kolmogorov-Smirnov tests (two-sided) verifies that bo655 

th lifespan distributions between early and late daughters (D = 0.3691, p < 0.00001), and early to secon656 

d generation late daughters are significantly different (D = 0.4094, p < 0.00001), while those between la657 

te daughters and second generation late daughters do not differ (D = 0.0973, p = 0.1189). 658 
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 659 

Fig. S7: Lifespan distribution (in hours) of isogenic E. coli cells grown under identical environmental 660 

conditions in a microfluidic device (Fig. S1). 1A – Founding early daughter cells (Median±stdev lifespan 661 

12 ± 6.8 hours, Coefficient of Variation, CV 0.57) (N=298); 1B – Late daughters (last daughter) of the 662 

founding early daughters of 1A (Median±stdev lifespan 4.4 ± 7.0 hours, Coefficient of Variation, CV 663 

1.03) (N=298); 1C – Second generation late daughters (last daughter of the late daughters of 1B; 664 

(Median±stdev lifespan 3.4 ± 7.1 hours, Coefficient of Variation, CV 1.14) (N=298). (Fig. S1 & S3). 665 

Hence, early daughters are the mothers of late daughters and grandmothers of second generation late 666 

daughters. 667 

 668 

Heritability or cross generation correlation in lifespan  669 

In order to estimate correlation of lifespan between mother cells (early daughters) and their last (late) 670 

daughter cells, we used linear models on square root transformed data for age at death (lifespan) for the 671 

mothers’ lifespan as response variable and their last daughters’ lifespan as explanatory variable, or 672 

intercept only models (null model) as comparative models.  673 

  674 
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Model selection (Table S6) does not allow distinguishing between the two alternative models and we ca675 

nnot completely rule out that the longer-lived mothers produce slightly shorter-lived late daughters (Fig676 

. 2G). In any case, the effect size is weak and such a negative correlation would suggest that longer-live677 

d mothers accumulate more damage that is then partly transmitted to their late daughter. Similar results 678 

hold for late daughters to second generation late daughters (Fig. S8). We cannot completely rule out a w679 

eak tendency that long-lived (late daughter) mothers produce last daughters (second generation late dau680 

ghters) that live slightly shorter (Table S6). In any case, our simulations with a low fixed transmission r681 

ate of 7% of damage transmitted between mother and daughters would lead to much higher correlation i682 

n lifespan as observed (Fig. 3E main text). 683 

 684 

 685 

Fig. S8: Correlation between lifespan (Square root-transformed) of the 298 late daughters [mothers] 686 

versus the lifespan of their last daughter cell, the second generation late daughters (Table S6). 687 

 688 

Table S6: Model selection for correlation between lifespan (Square root transformed, Gaussian error) 689 
Model Slope Std. Error T value p-value AIC ΔAIC 

Early daughters [516 mothers] and daughter cell (last daughter of early daughter) 
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sqrt(Lifespan Daughters) ~ sqrt(Lifespan 
mothers) 

-0.10 0.05 -1.8 0.07 1774.1  

sqrt(Lifespan Daughters) ~ intercept only     1775.5 1.3 
Late daughters [mothers 298] and second generation late daughters  

(last daughter cell produced by late daughters) 
sqrt(Lifespan Daughters) ~ sqrt(Lifespan 
mothers) 

- 0.09 
 

0.06 
 

-1.55 
 

0.12 
 

1061.1 
 

 

sqrt(Lifespan Daughters) ~ intercept only     1061.5 0.4 
 690 

Lifespan and lifetime reproductive success: reproductive and chronological aging 691 

Previous aging studies on E. coli (Stewart et al. 2005, Wang et al. 2010) and other bacteria (Ackermann 692 

et al. 2003) or many yeast studies (Denoth Lippuner et al. 2014) have focused on replicative aging and 693 

patterns have been described for time measured in number of divisions. Such age measures can be 694 

difficult to compare directly to chronological age if the time between divisions varies. Nonetheless, we 695 

detected a strong correlation between lifespan and the lifetime reproductive success (number of divisions 696 

an individual undergoes throughout its life), but there remains some variation, particularly for longer 697 

lived individuals (Fig. S4). 698 

 699 

Fig. S4: Correlation between lifespan and the lifetime reproductive success (cumulative number of 700 

divisions an individual undergoes throughout its life) for left panel) the 516 early daughters, mid panel) 701 

the 516 late daughters, and right panel) the 298 second generation late daughters. 702 
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 703 

Division rate 704 

We fitted linear models on hourly average division rates (at the cellular level) as response variable and 705 

age as explanatory variable. A model with a linear and quadratic term was best supported for the early 706 

(Fig. 2A), late (Fig. 2B) and second generation late (Fig. S3A) daughters (Table S2). 707 

 708 

Table S2: Model selection division rate 709 

Model Slope±Std. Error Quadratic 
term±StdE 

AIC ΔAIC 

Early daughters 
Divison rate ~intercept 
only 

  19663 
 

24 

Divison rate ~age -0.011±0.002    19642 21 
Divison rate 
~age+age^2 

0.005±0.0078 -0.0007±0.0003 19638  

Late daughters 
Divison rate ~intercept 
only 

  12432 24 

Divison rate ~age -0.009±0.004    12428 20 
Divison rate 
~age+age^2 

0.039±0.011 -0.002±0.0005 12408  

Second generation late daughters 
Divison rate ~intercept 
only 

  5494 63.3 

Divison rate ~age 0.009±0.004  5490.3 59.6 
Divison rate 
~age+age^2 

0.090±0.011 -0.004±0.0004 5430.7  

 710 

Mortality rate 711 

We fitted Gamma-Gompertz-Makeham related models to the survival data. GGM models were tested for 712 

assumptions among parameters, for instance, whether shape and scale parameters are independent or 713 

defined by a rate parameter. For late (Fig. 2D) and second generation late daughters (Fig. S3B), we 714 

optimized the scaling of the mother to daughter state relationship (transmission factor) based on the age 715 
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at death state distribution of early daughters (or late daughters for second generation late daughters) (Fig. 716 

S10). We assumed that accumulation of damage, which is the stage transition probabilities did not differ 717 

among early, late and second generation late daughters. We also assumed that the effect of the stage was 718 

not different for early, late or second-generation late daughters. These assumptions allowed us to use the 719 

translated GGM estimates of the early daughters also for late and second generation late daughters.  720 

 721 

Fig. S3: Age-specific division rate (number of divisions per hour) (A) and age-specific hourly mortality 722 

rate (B) of the 298 second generation late daughters. For (A) means ± standard errors are plotted, for (B) 723 

fitted regression ± 95% Confidence Intervals are plotted. Associated model selection results are presented 724 

in Table S2. 725 

 726 

 Difference in mortality rates at old ages for early and late daughters 727 

The late age mortality plateau detected in early daughters (Fig. 2C) and the flat mortality hazard pattern 728 

of the late daughters might indicate similar mortality rates at older ages (>19 hours). To test for this we 729 

compared models that distinguished between early and late daughters but only included cells that 730 
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survived to an age of at least 20 hours. Late daughter cells have lower mortality rates (qx=0.1248±0.0191 731 

mean±Std.Err.)  than early daughters at old ages (qx=0.2005±0.0168 mean±Std.Err.) (Table S3) . This 732 

result comprises 73 early daughters and 41 late daughters that lived longer than 19 hours.   733 

Table S3: Model selection for age-specific mortality rates (qx) of old (>19h) early daughters and old 734 
(>19h) late daughters, based on binomial models.  735 
Model Estimate±Std. Error Quadratic term AIC ΔAIC 
Mortality ~intercept only   95.79 6.09 
Mortality ~cell type -0.591±0.211  89.7  

 736 

Cell elongation rates 737 

We illustrate findings for cell elongation rates for early, late and second generation late daughters (Fig. 738 

S2). When comparing linear models, the best fitted model for all three cell types was a model with a 739 

linear and quadratic term, though the curvature was minimal for early daughters (Table S1). Early and 740 

late daughters showing a decline in cell elongation rate with age, while second generation late daughters 741 

patterns are less clear. 742 

 743 
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 744 

Fig. S2 Cell elongation and cell size: 745 

A-C) Age-specific cell elongation rate (fractional elongation) and D-F) cell size at division (in pixels, 746 

1pixel=0.064 µm) of the A&D) 516 early daughter cells, B&E) 516 late daughter cells, and C&F) 298 747 

second generation late daughter cells. Hourly means ± standard errors are plotted. Associated model 748 

comparisons are presented in Table S1). 749 

 750 

Table S1: Model selection for age-specific cell elongation rates and cell size at division. 751 
Cell elongation rates 

Model Slope±Std. Error Quadratic term AIC ΔAIC 
Early daughters 

Elongation rate ~interc. 
only 

  -21415 407 

Elongation rate ~age -0.002±0.0001  -21820 2 
Elongation rate 
~age+age^2 

-0.002±0.0002 -0.00002±0.00001 -21822  

Late daughters 
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Elongation rate ~interc. 
only 

  -10264 45 

Elongation rate ~age -0.00102±0.00016  -10304 5 
Elongation rate 
~age+age^2 

0.00013±0.00047 -0.000052±0.00002 -10309  

Second generation late daughters 
Elongation rate ~interc. 
only 

  -4042.4 32.1 

Elongation rate ~age 0.0014735±0.00029
59 

 -4065.1 10.4 

Elongation rate 
~age+age^2 

0.00429±0.00088 -0.00012±0.000035 -4074.5  

Cell size at division 
Model Slope±Std. Error Quadratic term AIC ΔAIC 

Early daughters 
Size at division ~interc. 
only 

  53741 1378 

Size at division ~age 1.72±0.04  52431 68 
Size at division 
~age+age^2 

2.797±0.135 -0.049±0.006 52362  

Late daughters 
Size at division ~interc. 
only 

  28592 101 

Size at division ~age 0.75±0.09  28525 34 
Size at division 
~age+age^2 

2.204±0.259 -0.069±0.012 28491  

Second generation late daughters 
Size at division ~interc. 
only 

  8381.7 276.2 

Size at division ~age 3.036±0.223  8215.9 110.4 
Size at division 
~age+age^2 

8.919±0.576 -0.293±0.027 8105.5  

 752 

Size at division 753 

We illustrate cell size at division for early, late, and second generation late daughters (Fig. S2). When 754 

comparing linear models, the best fitted model for all three cell types was a model with a linear and 755 

quadratic term, though the curvature was minimal for early and late daughters (Table S1). Early daughters 756 

showed clear senescence in cell elongation rate, late daughters showed weaker senescence in cell 757 

elongation rate, and patterns for second-generation late daughters are less clear. 758 

 759 
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Reverse time analyses: Hours before death 760 

Chronological aging follows individuals from birth to death and time counted starts at birth. Various 761 

hypotheses about the evolution of life histories, aging and senescence, in particular, terminal investment 762 

strategies (Williams 1966, Clutton-Brock 1984, Charlesworth 1994), assume that individuals can sense 763 

that they are approaching death and that an optimal strategy for an individual might be to invest remaining 764 

resources into reproduction rather than maintenance when approaching immediate death. Such terminal 765 

investment has also been labeled as terminal illness, last year effect, or similar terms, and have been 766 

studied in a broad range of taxa, also using reverse time analyses (Coulson and Fairweather 2001). As 767 

Fig. 2 & Fig. 3 in the main text illustrates, age at death is highly variable, for that chronological 768 

senescence patterns and terminal investment strategies might provide very different insights. We 769 

investigated whether patterns in reproduction (division rate), cell elongation rate, or size at division differ 770 

significantly when time is counted backward (remaining lifespan), starting with death. We would expect 771 

that the last hour before death would show significant changes compared to the more spread out 772 

chronological senescence patterns (Fig. 2, Fig. S3 & S4). In general, there seems to be little evidence that 773 

terminal investment is happening to a larger degree, at least such strategies if existent, do not show larger 774 

effects compared to chronological aging and classical senescence (Fig. S5 & S6, Table S4 & S5). 775 

 776 

Division rate for hours before death 777 

When individual cells approach death, their division rates decrease (Fig. S5), and these senescence 778 

patterns are similar compared to the (chronological) senescence patterns (Fig. 2A, B) (Table S4 & Table 779 

S2).  780 

 781 
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 782 

Fig. S5: Hourly division rate for hours before death [remaining life time] (death = time 0) for left panel 783 

the 516 early daughters cells, mid panel the 516 late daughters, and right panel the 298 second generation 784 

daughters. Means ± standard errors are plotted. Associated model selection is shown in Table S4. 785 

 786 
Table S4: Model selection for division rate in reverse time (starting with age at death=0). 787 
Model Slope±Std. Error Quadratic term AIC ΔAIC 

Early daughters 
Division rate ~interc. only   19567 69 
Division rate ~reverse 
time 

0.006±0.002 
 

 19561 
 

64 

Division rate ~ reverse 
time + reverse time ^2 

0.062±0.0070 
 

-0.002±0.0003 
 

19497 
 

 

Late daughters 
Division rate ~interc. only   12171 8 
Division rate ~reverse 
time 

0.006±0.003  12170 7 

Division rate ~ reverse 
time + reverse time ^2 

0.036±0.017 -0.001±0.0004 12163  

Second generation daughters 
Division rate ~interc. only   5474.5 47.8 
Division rate ~reverse 
time 

0.015±0.003  5456 29.3 

Division rate ~ reverse 
time + reverse time ^2 

0.069±0.017 -0.002±0.0004 5426.7  

 788 

Cell elongation rate for hours before death 789 
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The cell elongation rate does not drastically fall off when approaching death (no initial steep increase in 790 

cell elongation rate close to the time of death) (Fig. S6, Table S5). The senescence pattern is, at least for 791 

early and late daughters, less pronounced compared to that observed for chronological senescence (Fig. 792 

S2). Second generation daughters seem to reduce cell growth rates before death more substantially, but 793 

this reduction already starts a few hours before death and is not in line with terminal investment theories.  794 

 795 

Fig. S6: (Fractional) Cell elongation rate and cell size at division (in pixels, 1pixel=0.064 µm) for hours 796 

before death (death = time 0) for A & D) the 516 early daughters, B & E) the 516 late daughters, and C 797 

& F) the 298 second generation late daughters. Means ± standard errors are plotted. Associated model 798 

selection is shown in Table S5. 799 

 800 
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Table S5: Model selection for cell elongation and cell size at division rate in reverse time (starting with 801 
age at death=0). 802 

Cell elongation (reverse time) 
Model Slope±Std. Error Quadratic term AIC ΔAIC 

Early daughters 
Elongation rate ~interc. 
only 

  -22138 250 

Elongation rate ~reverse 
time 

0.001±0.00009  -22288 100 

Elongation rate ~ 
reverse time + reverse 
time ^2 

0.004±0.0003 -0.0001±0.00001 -22388 
 

 

Late daughters 
Elongation rate ~interc. 
only 

  -10529 65 

Elongation rate ~reverse 
time 

0.001±0.0001  -10561 33 

Elongation rate ~ 
reverse time + reverse 
time ^2 

0.003±0.0004 -0.0001±0.00002 -10594  

Second generation late daughters 
Elongation rate ~interc. 
only 

  -4082.8 122.1 

Elongation rate ~reverse 
time 

0.003±0.0003  -4167.5 37.4 

Elongation rate ~ 
reverse time + reverse 
time ^2 

0.008±0.0009 -0.0002±0.00003 -4204.9  

Cell size at division (reverse time) 
Early daughters 

Size at division ~interc. 
only 

  53679 386 

Size at division ~reverse 
time 

-0.952±0.0486  53299 6 

Size at division ~ 
reverse time + reverse 
time ^2 

-1.337±0.145 0.018±0.006 53293  

Late daughters 
Size at division ~interc. 
only 

  28629 26 

Size at division ~reverse 
time 

-0.438±0.088 
 

 28606 3 

Size at division ~ 
reverse time + reverse 
time ^2 

-0.990±0.258 0.026±0.011 28603  

Second generation late daughters 
Size at division ~interc. 
only 

  8182.3 54.9 
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Size at division ~reverse 
time 

1.254±0.236  8156.6 29.2 

Size at division ~ 
reverse time + reverse 
time ^2 

4.531±0.627 -0.158±0.028 8127.4  

 803 

Cell size at division for hours before death 804 

Cell size at division increased with chronological age, but mainly for early daughters (Fig. S2). One 805 

mechanism that might lead to such an increase in cell size at division is the formation of filamentous 806 

cells: cells that do continue to elongate but stop dividing. Such filamentation is usually seen as a stress 807 

response and increases mortality of the cell (Mattick et al. 2003, Wang et al. 2010). Previous studies 808 

(conducted under different media and temperature than ours) have reported higher filamentation rates 809 

with increasing age (Wang et al. 2010). Under our growth conditions, cells that entered a filamentation 810 

stage rarely recovered from that stage and did not return to a regular dividing smaller cell, though they 811 

not always stalled dividing. To test if such filamentous cells drive the chronological senescence pattern 812 

in size at division, we investigated the cell size for the hours before death. For early and late daughters, 813 

we detected an increase in cell size at division before death, but this increase is already initiated hours 814 

before the actual death and not a final increase in size due to filamentation (Fig. S6, Table S5).    815 

 816 

Random deterioration model 817 

Our random deterioration model builds on a LeBras type cascading failure model(Le Bras 1976). In such 818 

discrete state models, individuals increase from a current state i to a state i+1 at a rate proportional to i, 819 

and mortality increases proportionally to state i. We can think of such states as accumulating damage, or 820 

model the reverse process, where an individual starts with some vitality and this vitality then decreases 821 

with increasing state i (random deterioration) (Weitz and Fraser 2001). In this study, we assume 822 
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accumulating damage that stands symbolically for an unknown aging factor. These random deterioration 823 

models are mathematically closely linked to demographic frailty models that do not assume a stochastic 824 

stage progression among individuals, but rather heterogeneity of individual is defined by fixed frailty at 825 

birth (Yashin et al. 1994). Such frailty, an age independent mortality that follows a gamma distribution 826 

(Missov and Vaupel 2015), can be added to the classical models in demography, a Gompertz- model, 827 

which describes an age-dependent exponential increase in mortality. These models can also be extended 828 

by a Makeham term, an age-independent baseline mortality, which further improves model fit, at least 829 

for humans and various other complex species.  830 

 831 

We first estimated parameters of such a Gamma-Gompertz-Makeham (GGM) model, Zaebx+c fitted to 832 

the survival data of the early daughters. Z is the random frailty variable that follows a gamma distribution 833 

across individuals. The distribution has a mean 1 and variance of σ2. This definition of a gamma 834 

distribution with a mean of 1 implies that we have to set the scale parameter equal to the shape parameter 835 

of the gamma distribution. The rate of aging, b, is the same for all individuals, x determines the age in 836 

hours, a describes the baseline mortality of the Gompertz part of the model, and c describes the Makeham 837 

term, the age independent mortality.  838 

 839 

We then transformed these estimates of the GGM model to a random deterioration model according to 840 

Yashin et al. (Yashin et al. 1994), making use of mathematical similarities between the GGM and random 841 

deterioration models.  842 

Let t(i) = 𝜆𝜆0+ i 𝜆𝜆 ,  m(i) = µ0 + 𝑖𝑖𝜇𝜇 (for i greater than or equal to 0) denote the state transition rate and the 843 

death rate, respectively. 844 

µ0=a+c, the death rate at birth i.e. state i=0, 845 
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𝜆𝜆0 = 𝑏𝑏
𝜎𝜎2
− 𝑎𝑎 , the transition rate from state i=0 to state i=1, 846 

  𝜆𝜆 = 𝑏𝑏 − 𝜎𝜎2𝑎𝑎 , the change in the state transition rate between state i and i+1, for i>0  847 

 𝜇𝜇 = 𝜎𝜎2𝑎𝑎, the change in the death rate at state i, for i>0  848 

 849 

Resulting estimates for early daughters were µ0=0.056, 𝜆𝜆0 = 0.178, 𝜆𝜆 = 0.598, and 𝜇𝜇 = 0.00023.  850 

Using these estimates for early daughters, we estimated the probability of observing an individual at state 851 

i at age x, P(x,i),  852 

𝑃𝑃𝑖𝑖(𝑥𝑥) = �
𝑃𝑃0(0)𝑒𝑒−(𝜆𝜆0+𝜇𝜇0)𝑥𝑥 ,                                                                   𝑖𝑖 = 0
𝑃𝑃0(𝑥𝑥)
𝑖𝑖!

�
𝜆𝜆 − 𝜆𝜆𝑒𝑒−(𝜆𝜆+𝜇𝜇)𝑥𝑥

𝜆𝜆 + 𝜇𝜇
�� �

𝜆𝜆0
𝜆𝜆

+ (𝑘𝑘 − 1)� ,             𝑖𝑖 > 0
𝑖𝑖

𝑘𝑘=1

 853 

We then built a matrix of 𝑃𝑃(𝑥𝑥, 𝑖𝑖) for which we limited the age, x, between 0 and 31 and the states were 854 

limited between 0 and 5000. The column sum of this matrix equals the survival probability at any given 855 

age x to age x+1.  856 

Microsimulations of the random deterioration model 857 

In order to simulate the (damage) state at death distribution we used a microsimulation. As a step-by-858 

step calculation would take too long, we modelled the state at death distribution by drawing of a Poisson 859 

distribution with a rate of 1
𝜇𝜇0+𝚤̂𝚤𝜇𝜇

, where 𝚤𝚤̂ = 𝑖𝑖 + 1
𝜇𝜇0+𝑖𝑖𝑖𝑖

. In doing so, we estimated the expected state at 860 

death, rather than tracking individuals transitioning through damage states and their associated mortality 861 

risk as a step-by-step calculation would do. A step-by-step simulation would take a long time because 862 

individuals can easily end up in very high damage states (very long tailed distributions). 863 

 864 

Estimating parameters for the late daughters 865 
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For the late daughters, we used the same state transition and survival parameters (µ0=0.056, 𝜆𝜆0 = 0.178, 866 

𝜆𝜆 = 0.598, and 𝜇𝜇 = 0.00023) that we estimated for the early daughters. We did so because early and 867 

late daughter cells should biologically not be fundamentally different – aside of starting with different 868 

damage levels at birth. They should accumulate damage at the same rate and should experience mortality 869 

risk just based on their damage state. We assumed that the late daughters are born at the same stage, or a 870 

scaled version of the same stage, in which the mothers died, therefore let 871 

𝜆𝜆0,𝑙𝑙𝑙𝑙𝑡𝑡𝑒𝑒 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠�𝜆𝜆0,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑖𝑖�) 872 

𝜇𝜇0,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠�𝜇𝜇0,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑖𝑖�) 873 

Where subscript late and early denotes late and early daughter estimates and 𝑠𝑠 ∈ (0,1) and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(. ) is 874 

the nearest integer function. So based on the estimated damage state distribution of the mothers at death 875 

(early daughters), we also knew the damage state distribution at birth of the daughters (late daughters) 876 

[see below for optimally scaling this distribution]. Using the state transition probabilities of the early 877 

daughters and the probabilities of death, we estimated the survival of the late daughters. We also 878 

estimated the survival functions of cells that did not change their damage state with age. Each grey line 879 

in main text Fig. 3, describes such a fixed damage class survival function.  880 

In order to determine the transmission fraction of accumulated damage between mothers (early 881 

daughters) and daughters (late daughters), we optimized the scaling of the mother state at death 882 

distribution (fraction of mother-daughter transmission) to the daughter age at birth distribution. The 883 

optimization was based on observed survival of the late daughters, by minimizing the squared deviations 884 

from the observed survival function. This optimal scaling factor was estimated at 7%. 885 

Similar to the late daughters, we simulated the damage state distribution at birth, the damage state 886 

distribution at death, and calculated the matrix 𝑃𝑃(𝑥𝑥, 𝑖𝑖) for the second generation late daughters.  887 
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 888 

Fig. S9: Observed population level survival curve (red line), GGM simulated survival curve with 889 

symmetric damage transmission (hatched black line) as well as GGM simulated survival curve with 890 

asymmetric damage transmission of 7% (solid black line ± 95% CI in blue) for early (A), late (B) and 891 

second generation late daughters (C). Graphs A & B are identical to Fig. 1C & D. Thin grey lines in 892 

depict expected survival curve of cells with different fixed damage state. That is, for instance, the 893 

outermost thin grey line in B depicts the survivorship curve of a hypothetical cohort that starts without 894 

damage and never accumulates any damage. The most left survival curve illustrates the low survival of 895 

cells that were born with maximum damage level of 5000. 896 

 897 
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 898 

Fig. S10: Density distribution of damage state at death of early daughters, late daughters, and second 899 

generation late daughters. Most cells die with little accumulated damage. Note, the not so smooth tails 900 

of the distributions are a result of drawing from a Poisson distribution in our simulations. 901 

 902 

 903 

Fig. S11: GGM model results: mean (red solid line, + SD grey hatched lines) and median (red hatched 904 

line) damage state with increasing age for early daughter cells (A), and late daughter cells (B) and second 905 

generation late daughter cells (C). Panel A & B are identical to Panel Fig. 1A, B.  906 

 907 
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 908 

Fig. S12: Lifespan (square root transformed) of simulated 516 late daughter cells (mothers) versus the 909 

lifespan of their simulated last daughter cell (second generation late daughter cells) with different levels 910 

of mother to daughter damage transmission. Scenarios include the optimized fixed transmission level at 911 

0.07 (forest green), a scenario for perfect rejuventation, i.e. 0 transmission (red), 0.25 transmission 912 

(green), 0.5 transmission, i.e. symmetric (equal) transmission between mother and daughter (blue), and 913 

transmission of all accumulated damage to the daughter (1) (pink).CI are shown for each correlation in 914 

lifespan between mothers and daughters as shaded areas. 915 

 916 

References 917 

Ackermann, M. 2015. A functional perspective on phenotypic heterogeneity in microorganisms. - Nat. 918 

Rev. Microbiol. 13: 497–508. 919 

Ackermann, M. et al. 2003. Senescence in a bacterium with asymmetric division. - Science 300: 1920. 920 

Ackermann, M. et al. 2007. On the evolutionary origin of aging. - Aging Cell 6: 235–44. 921 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

Aoki, S. K. et al. 2005. Contact-Dependent Inhibition of Growth in Escherichia coli. - Science (80-. ). 922 

in press. 923 

Balázsi, G. et al. 2011. Cellular decision making and biological noise: from microbes to mammals. - 924 

Cell 144: 910–925. 925 

Blattner, F. R. 1997. The Complete Genome Sequence of Escherichia coli K-12. - Science (80-. ). 277: 926 

1453–1462. 927 

Brillinger, D. R. 1986. A Biometrics Invited Paper with Discussion: The Natural Variability of Vital 928 

Rates and Associated Statistics. - Biometrics 42: 693. 929 

Burnham, K. and Anderson, D. R. 1998. Model selection and multimodel inference : a practical 930 

information-theoretic approach. - Springer. 931 

Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. - Sinauer 932 

Associates. 933 

Charlesworth, B. 1994. Evolution in age-structured populations. - Cambridge University Press. 934 

Clutton-Brock, T. 1984. Reproductive effort and terminal investment in iteroparous animals. - Am. 935 

Nat. 123: 212–229. 936 

Coquel, A.-S. et al. 2013. Localization of protein aggregation in Escherichia coli is governed by 937 

diffusion and nucleoid macromolecular crowding effect. - PLoS Comput. Biol. 9: e1003038. 938 

Coulson, J. C. and Fairweather, J. A. 2001. Reduced reproductive performance prior to death in the 939 

Black-legged Kittiwake: senescence or terminal illness? - J. Avian Biol. 32: 146–152. 940 

Davidson, C. J. and Surette, M. G. 2008. Individuality in Bacteria. - Annu. Rev. Genet. 42: 253–268. 941 

Denoth Lippuner, A. et al. 2014. Budding yeast as a model organism to study the effects of age. - 942 

FEMS Microbiol. Rev. 38: 300–25. 943 

Elowitz, M. B. et al. 2002. Stochastic gene expression in a single cell. - Science (80-. ). 297: 1183–944 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 
 

1186. 945 

Evans, S. N. and Steinsaltz, D. 2007. Damage segregation at fissioning may increase growth rates: a 946 

superprocess model. - Theor. Popul. Biol. 71: 473–90. 947 

Finch, C. and Kirkwood, T. B. 2000. Chance, Development, and Aging. - Oxford University Press. 948 

Gangan, M. S. and Athale, C. A. 2017. Threshold effect of growth rate on population variability of 949 

Escherichia coli cell lengths. - R. Soc. open Sci. 4: 160417. 950 

Gasset-Rosa, F. et al. 2014. Direct assessment in bacteria of prionoid propagation and phenotype 951 

selection by Hsp70 chaperone. - Mol. Microbiol. 91: 1070–87. 952 

Hamilton, W. D. 1966. The moulding of senescence by natural selection. - J. Theor. Biol. 12: 12–45. 953 

Jagers, P. 1978. Balanced exponential growth: what does it mean and when is it there? - In: 954 

Biomathematics and cell kinetics. Elsevier, pp. 21–29. 955 

Johnson, L. R. and Mangel, M. 2006. Life histories and the evolution of aging in bacteria and other 956 

single-celled organisms. - Mech. Ageing Dev. 127: 786–93. 957 

Jones, O. R. et al. 2014. Diversity of ageing across the tree of life. - Nature 505: 169–73. 958 

Jouvet, L. et al. 2017. Demographic variability and heterogeneity among individuals within and among 959 

clonal bacteria strains. - Oikos in press. 960 

Kærn, M. et al. 2005. Stochasticity in gene expression: from theories to phenotypes. - Nat. Rev. Genet. 961 

6: 451–464. 962 

Kennedy, B. K. 1994. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced 963 

life span. - J. Cell Biol. 127: 1985–1993. 964 

Kirkwood, T. B. L. 2005. Understanding the odd science of aging. - Cell 120: 437–47. 965 

Kirkwood, T. B. L. et al. 2005. What accounts for the wide variation in life span of genetically identical 966 

organisms reared in a constant environment? - Mech. Ageing Dev. 126: 439–443. 967 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 
 

Klein, J. P. and Moeschberger, M. L. 2003. Survival analysis : techniques for censored and truncated 968 

data. - Springer. 969 

Le Bras, H. 1976. Lois de mortalité et age limite. - Population (Paris). 33: 655–691. 970 

Lindner, A. B. and Demarez, A. 2009. Protein aggregation as a paradigm of aging. - Biochim. Biophys. 971 

Acta 1790: 980–96. 972 

Lindner, A. B. et al. 2008. Asymmetric segregation of protein aggregates is associated with cellular 973 

aging and rejuvenation. - Proc. Natl. Acad. Sci. U. S. A. 105: 3076–81. 974 

López-Otín, C. et al. 2013. The hallmarks of aging. - Cell 153: 1194–217. 975 

Mattick, K. et al. 2003. Morphological changes to Escherichia coli O157:H7, commensal E. coli and 976 

Salmonella spp in response to marginal growth conditions, with special reference to mildly 977 

stressing temperatures. - Sci. Prog. 86: 103–113. 978 

Medawar, P. B. 1952. An unsolved problem of biology. - In: Uniqueness of the Individual. H. K. 979 

Lewis, in press. 980 

Minois, N. et al. 2005. Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. - Proc. 981 

Natl. Acad. Sci. U. S. A. 102: 402–6. 982 

Missov, T. I. and Vaupel, J. W. 2015. Mortality Implications of Mortality Plateaus. - SIAM Rev. 57: 983 

61–70. 984 

Norman, T. M. et al. 2013. Memory and modularity in cell-fate decision making. - Nature 503: 481–985 

486. 986 

Norman, T. M. et al. 2015. Stochastic Switching of Cell Fate in Microbes. - Annu. Rev. Microbiol. 69: 987 

381–403. 988 

R Core Team, R. A. language and environment for statistical computing. 2016. R: A language and 989 

environment for statistical computing. (RDC Team, Ed.). - R Found. Stat. Comput. 1: 409. 990 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 
 

Scherbov, S. and Ediev, D. 2011. Significance of life table estimates for small populations: Simulation-991 

based study of estimation errors. - Demogr. Res. 24: 527–550. 992 

Steiner, U. K. and Tuljapurkar, S. 2012. Neutral theory for life histories and individual variability in 993 

fitness components. - Proc. Natl. Acad. Sci. U. S. A. 109: 4684–9. 994 

Steinsaltz, D. and Evans, S. N. 2004. Markov mortality models: implications of quasistationarity and 995 

varying initial distributions. - Theor. Popul. Biol. 65: 319–37. 996 

Stewart, E. J. et al. 2005. Aging and death in an organism that reproduces by morphologically 997 

symmetric division. - PLoS Biol. 3: e45. 998 

Stroustrup, N. et al. 2016. The temporal scaling of Caenorhabditis elegans ageing. - Nature 530: 103–999 

107. 1000 

Tyedmers, J. et al. 2010. Cellular strategies for controlling protein aggregation. - Nat. Rev. Mol. cell 1001 

Biol. 11: 777–788. 1002 

Vaupel, J. W. and Yashin, A. I. 1985. Heterogeneity’s Ruses: Some Surprising Effects of Selection on 1003 

Population Dynamics. - Am. Stat. 39: 176. 1004 

Vaupel, J. W. et al. 1998. Biodemographic Trajectories of Longevity. - Science (80-. ). 280: 855–860. 1005 

Vaupel, J. W. et al. 2004. The case for negative senescence. - Theor. Popul. Biol. 65: 339–351. 1006 

Vera, M. et al. 2016. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. - 1007 

Annu. Rev. Genet. 50: 267–291. 1008 

Wachter, K. W. 1999. Evolutionary demographic models for mortality plateaus. - Proc. Natl. Acad. Sci. 1009 

96: 10544–10547. 1010 

Wachter, K. W. et al. 2014. Evolutionary shaping of demographic schedules. - Proc. Natl. Acad. Sci. U. 1011 

S. A. 111 Suppl: 10846–53. 1012 

Wang, P. et al. 2010. Robust growth of Escherichia coli. - Curr. Biol. 20: 1099–103. 1013 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 
 

Weitz, J. and Fraser, H. 2001. Explaining mortality rate plateaus. - Proc. Natl. Acad. Sci. U. S. A. 98: 1014 

15383–15386. 1015 

Williams, G. C. 1957. Pleiotropy, Natural Selection, and the Evolution of Senescence. - Evolution (N. 1016 

Y). 11: 398. 1017 

Williams, G. C. 1966. Adaptation and natural selection : a critique of some current evolutionary 1018 

thought. - Princeton Univeristy Press. 1019 

Wolf, M. et al. 2007. Life-history trade-offs favour the evolution of animal personalities. - Nature 447: 1020 

581–584. 1021 

Yashin, A. I. et al. 1994. A duality in aging: the equivalence of mortality models based on radically 1022 

different concepts. - Mech. Ageing Dev. 74: 1–14. 1023 

 1024 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/105387doi: bioRxiv preprint 

https://doi.org/10.1101/105387
http://creativecommons.org/licenses/by-nc-nd/4.0/

	*Corresponding author: usteiner@biology.sdu.dk

