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Abstract

Along with the survey techniques of 16S rRNA amplicon and whole-metagenome shotgun sequencing, an
array of tools exists for clustering, taxonomic annotation, normalization, and statistical analysis of
microbiome sequencing results. Integrative and interactive visualization that enables researchers to
perform exploratory analysis in this feature rich hierarchical data is an area of need. In this work, we
present Metaviz, a web browser-based tool for interactive exploratory metagenomic data analysis. Metaviz
can visualize abundance data served from an R session or a Python web service that queries a graph
database. As metagenomic sequencing features have a hierarchy, we designed a novel navigation
mechanism to explore this feature space. We visualize abundance counts with heatmaps and stacked bar
plots that are dynamically updated as a user selects taxonomic features to inspect. Metaviz also supports
common data exploration techniques, including PCA scatter plots to interpret variability in the dataset and
alpha diversity boxplots for examining ecological community composition. The Metaviz application and
documentation is hosted at http://www.metaviz.org.
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Introduction

High-throughput sequencing of microbial communities provides a tool to explore associations between host
microbiome and health status, detect pathogens, and identify the interplay of an organism’s microbiome
with the built environment. Recent highlights include work on personalization of the human skin microbiome
(Oh et al., 2014), diversity in the ocean microbiome (Sunagawa et al., 2015), and cataloging the global
virome (Paez-Espino et al., 2016). As data is continually generated, developing analysis techniques and
appropriate statistical models remains vital to gain insight from these projects. In other high-throughput
sequencing assays, including human whole genome and transcriptome sequencing, software systems such
as genome browsers that integrate exploratory computational and visual analysis have proven to be
effective in analyzing these datasets (Chelaru, Smith, Goldstein, & Bravo, 2014; Kent et al., 2002).
Extending this work to metagenomics presents challenges as metagenomic features, the units of
measurement and analysis, do not map to the linear structures of tracks and ranges used in genome or
gene expression visualization. As the features in metagenomic datasets have a hierarchy derived from
annotation databases that link sequences to taxonomic classifications of bacteria, we use this hierarchy to
build a navigation tool for effective exploration, analysis, and data visualization.

Motivation

As an illustrative use case for statistically guided interactive visualization, we consider analyzing data from
the Moderate to Severe Diarrheal disease study among children in four countries. Specific details for data
generation, preprocessing, and annotation are covered in Pop et al. (2014). Raw count data is publicly
available in the msd16s Bioconductor package [http://bioconductor.org/packages/msd16s/].

A typical analysis for this case-control study includes testing to compare taxa abundance between children
with and without diarrhea to find novel associations with health and disease. The metagenomeSeq
Bioconductor package [http://bioconductor.org/packages/metagenomeSeq] is a popular tool to identify

differentially abundant features (Paulson et al. 2013). The first step of this approach is aggregating counts
to a level of a taxonomic hierarchy (e.g. species or genus) and computing log fold-changes and p-values
for each taxa between case and control groups. Then a selection can be made to retain only features with
a log fold-change beyond a given threshold and p-value cutoff. The abundance of these filtered features
across samples can then be visualized in a heatmap. After interpreting the plot, changing the feature
selection or exploring the hierarchy requires another iteration of computing the feature set and generating a
heatmap. Each refinement of parameters produces another visualization with no linking between results.

Our design of the Metaviz application for interactive visualization and analysis makes this workflow much
more effective: once the set of features is selected, those changes can be propagated onto a web-browser
visualization workspace. A user can then explore the hierarchy of features, aggregate counts to any level of
the taxonomy, and identify sub-structures that are difficult to ascertain at lower levels of the taxonomic
hierarchy. Further, differential abundance can be calculated at another level of the hierarchy then
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dynamically pushed to the same Metaviz workspace, thus streamlining the exploration of a complex set of
differential abundance results between statistical and visualization tools.

Design

We present the architecture of Metaviz from the web-browser application to database storage. A web-
browser based application provides flexibility for users and “run anywhere” functionality when deploying the
tool. We built upon the D3.js project for an aesthetically pleasing and effective suite of plots and charts. The
back end serves an abundance matrix with taxonomic annotation for features, in our case Operational
Taxonomic Units (OTUs), and the front end is a JavaScript application for data visualization. Given the
structure of metagenomic data, the user navigation tools and the database storage are tailored to
taxonomic hierarchies. We moved from a relational database model used in Epiviz (Chelaru & Bravo,
2015), an interactive application for visualization and analysis of functional genomic data such as gene
expression and methylation data, to a graph database to hold the feature hierarchy and abundance counts.
A fundamental operation we enable is specifying a set of nodes in the hierarchy of features and
aggregating counts to that set.

Visualization layer

Implementing the visualization layer presents several challenges for displaying, navigating, and
manipulating data from a feature-rich hierarchy. Design considerations for metagenomic data analysis
include: 1) size of the feature space, which in datasets we visualized using Metaviz, ranges from 47
(unpublished collaborator data) to 45,000 (Human Microbiome Project) features; 2) depth of the feature
hierarchy, which is a function of the annotation database; and 3) number of samples, with as many 992
(msd16s) samples in a dataset we analyzed. Given these characteristics, we focused the design of Metaviz
on efficient traversal of the feature space and defining feature selections across the taxonomy. In addition,
we engineered the navigation tools to be applicable across datasets and persistent between user sessions
for collaboration and publication of results.

In Figure 1, we demonstrate the visualization layer of Metaviz on a metagenomic dataset. The bottom
panel is a novel navigation control designed to effectively explore the taxonomic feature hierarchy and
aggregating count values of features to any set of taxonomic nodes. The top panel consists of a heatmap
with the color intensity set as the observed count of a feature (column) in a sample (rows). The rows are
dynamically clustered based on Euclidean distance of the count vectors for each sample and a dendrogram
shows the clustering result. The top panel also includes a PCA plot over all the features of the samples in
the heatmap. The stacked bar plots in the second row render, for each sample (column), the proportion of
counts for each bacterial feature. The separate plots show case (left) or control (right) samples based on
dysentery status and the columns are samples grouped by age range. The collection of charts provides
multiple views of the same data and are dynamically updated upon user interaction with the navigation tool
to achieve exploratory iterative visualization.
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Using Information Visualization Techniques for Metagenomics
Our design for the visualization layer is motivated by results in the information visualization literature for

displaying large tree structures with associated complex data. In this section, we provide a brief review of
pertinent visualization techniques. To provide a basis for our design decisions, we present metagenomic
visual analysis operations in relation to the Task by Data Type Taxonomy for Data Visualization
(Shneiderman, 1996). In metagenomic sequencing projects, sample data is multi-dimensional with study-
specific attributes, e.g. age, sex, gathered in each experiment. Feature data is tree-structured with a node
fan-out dependent on the bacterial hierarchy of the annotation database and the ecological community
observable in each sample.

We review the tasks presented by Shneiderman for completeness. These consist of the following: 1)
Overview: gain an overview of the entire collection; 2) Zoom: Zoom in on items of interest; 3) Filter: filter out
uninteresting items; 4) Details-on-demand: Select an item or group and get details when needed; 5) Relate:
View relationships among items; 6) History: Keep a history of actions to support undo, replay, and
progressive refinement; 7) Extract: Allow extraction of sub-collections and of the query parameters
(Shneiderman, 1996). Our task taxonomy below builds upon and generalizes the description of features
presented in the Krona interactive visualization tool (Ondov, Bergman, & Phillippy, 2011), also based on
the Shneiderman interactive visualization task taxonomy.

We now discuss the specific operation and goal for each task with regards to metagenomic analysis. The
overview task consists of examining global patterns in feature abundance among samples across levels of
the taxonomic hierarchy. This task is also accomplished by presenting statistics that summarize feature
variance and observed ecological diversity. The zoom task requires navigation to the lowest levels of the
feature hierarchy as well as inspection of individual sample data. The filter task consists of removing or
expanding taxonomic features and samples. With metagenomic data, several operations need to be
enabled, first a level-wise filtering and then removal of features at a given depth along with aggregating to a
specific point in the hierarchy. Details-on-demand includes showing all children of a given node, text-based
search for features that contain a character string, and the utility to visualize the same data in different
views. Relate in metagenomics is enabled by linking multiple data views with the feature hierarchy along
with group-by and color-by operations over sample attributes. History requires keeping track of the current
position during navigation of a feature hierarchy as well as the ability to select and remove nodes as
desired. Finally, extract entails capturing the parameters to recreate an analysis. Specific to metagenomic
analysis, the extract task also should encompass providing a mechanism to interoperate between
annotation databases and retrieving cluster center sequences from a dataset.

Navigation Mechanism - FacetZoom

We developed a novel navigation technique to handle the complex and hierarchical structure of
metagenomic feature data that enables the visualization tasks of overview, zoom, and filter. The design is
inspired by aspects of an icicle plot, which shows all children under a given node and was historically
proposed for biological taxonomy visualization (J. B. Kruskal, 1983). We also incorporate a technique,
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FacetZoom, that visualizes a hierarchy using a tree structure showing a subset of levels at one time
(Dachselt, Frisch, & Weiland, 2008). Our navigation tool is designed to handle the limitations in the screen
size and performance of rendering trees with tens of thousands of nodes. We refer to our navigation utility,
shown in the bottom panel of Figure 1, as a FacetZoom control for the rest of the manuscript.

The nodes of the FacetZoom control indicate how the abundance counts for taxonomic features are
displayed in the charts of the Metaviz workspace. Every node of the FacetZoom control can receive
mouse-click input from the user. A click on a node sets that feature as the root of a dynamically rendered
subtree. Each node can be in one of three possible states as indicated by an icon in its lower left corner: 1)
aggregated, where counts of descendants of this node are aggregated and displayed in other charts, 2)
expanded, where counts for all descendants of this node are visualized in other charts, or 3) removed,
where this node and all its descendants are removed from the other charts. The state of a node is
propagated to all its descendants. Node opacity in the FacetZoom control indicates the set of taxonomic
units selected across all appropriate visualizations in the Metaviz workspace. Hovering the mouse over
FacetZoom nodes highlights the corresponding features in other charts through brushing as shown in
Figure 1.

The FacetZoom control includes a level-wise aggregation indicator panel on left side. Each element of the
indicator panel provides information on the current depth in the hierarchy and can be used to set the state
of all nodes at a given depth. The letter on the indicator panel identifies the taxonomic level with “P”
denoting phylum and “O” signifying order, for instance. The top and bottom nodes of the indicator panel
display the directions in the hierarchy containing additional levels to visualize.

The bar at top of the FacetZoom sets the range of features to query and visualize. The bar is a flexible
component with arrows to control movement left or right and expansion over the full range of the current
hierarchy. Updates to the filter bar triggers queries over the count data and those results are automatically
propagated to the other charts in the workspace.

Data Plots and Charts

We provide several visualizations of feature count data. These allow the user to explore relationships
between sample phenotype and metagenomic features. The first is a heatmap with rows as samples and
columns as features (Sneath, 1957). The heatmap is an interactive component from which a user can
select to show a dendrogram of a dynamic clustering over features or samples. If the user chooses not to
employ clustering, rows can be re-ordered based on a sample metadata attribute. We also provide several
utilities on the samples including color-by and modifying the displayed name of any sample attribute. Figure
1 shows a heatmap of the msd16s dataset with the colors for sample rows set based on dysentery status.

Another visualization in Metaviz is the stacked bar plot that shows the proportion of features in a given
sample. On the stacked plot, we implemented a group-by function to aggregate samples based on a
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sample metadata attribute. This plot is useful for comparing microbial community composition between
individual samples or groups. Figure 1 shows two stacked bar plots that are split based on sample
dysentery status and grouped by age range.

Metaviz supports scatter plots to visualize feature count values of selected samples in a X, Y coordinate
plane. A scatter plot is useful for fast identification of distribution and spread across measurements. The
scatter plot has a color-by feature to color points based on a specific sample metadata attribute. One
specific scatter plot is the PCA plot seen in the upper left corner of Figure 1.

Further, Metaviz includes a line plot with each line representing a feature, the height of the line denoting
abundance, and the samples across the X-axis. We find the line plot useful for examining time-series data.
Metaviz also provides a box-plot for visualization of alpha diversity with each box as a group of samples
with a selected attribute.

All data plots and charts added to the workspace are linked to the feature nodes on the FacetZoom.
Hovering over a feature column in a heatmap highlights that feature in all other plots as well as the path
through the hierarchy for that feature in the FacetZoom. This brushing and linking is essential to providing
integrative visual analysis. Also, each plot and chart has a toolbar that can be used to modify presentation
settings, the color scheme, saving to an SVG, and writing custom JavaScript for that chart. The toolbar is
shown in the upper right hand corner of the stacked plot for control samples in Figure 1.

Text Search

Metaviz supports text-based search for quick navigation to specific taxonomic features. A user can enter a
feature of interest into a search box on the toolbar. The search provides auto-complete and a list of
features that contain the character string are displayed in a drop-down list. Once a user selects a feature,
the filter bar in the FacetZoom control will update to encompass that feature and all linked data
visualizations update as well.

Data layer

A key difference between metagenomic data and other genomic data is the hierarchical organization of its
features, which drives the design of the Metaviz back end. Our data model of metagenomic datasets
includes the observed counts for each feature in every sample, the hierarchical taxonomic feature
annotations and metadata such as phenotypic, behavioral, and environmental information for each sample.
A query triggered from the Ul operates over these three data types and computes aggregation on the count
data to the specified hierarchy level.

Graph Database

Our initial backend architecture separated the counts, sample metadata, and feature hierarchy into
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relational database tables. An aggregation query operated on the feature hierarchy table followed by a join
with the sample and count tables to arrive at the result. This approach worked for developing a proof-of-
concept, but to achieve interactive visualizations with reasonable query response times, we ultimately
chose to implement a graph database architecture.

In a graph database, nodes and edges in a graph are first class objects that can be queried directly. This is
a contrast to relational databases in which samples are rows and sample attributes are columns. Each
table in a relational database encompasses all the required data fields for the observations in that table
while keys handle relationships between tables. As the join operation is the costliest operation in our three-
table design, we use a graph database to store each feature as a node and each feature has an edge
connecting it in the taxonomic hierarchy. We also store samples as nodes and the count value for a feature
in a sample is an edge between leaf feature nodes and sample nodes. This graph database structure is
shown in Figure 2.

To inform the choice of graph database versus relational database, we benchmarked an implementation of
the three table design using MySQL-PHP against a Neo4j-Flask deployment. In the benchmarks, we
deploy our backend services on an Amazon EC2 t2.small instance and used the wrk tool
[https://github.com/wg/wrk] to send HTTP requests. The testing dataset consisted of 62 samples, 973
features, and 7 hierarchy levels. We observed that compared to our initial MySQL-PHP approach, the
graph database provides 5x lower latency. We also modified our MySQL-PHP design to pre-compute the
join operation across the three tables and store that in the database as well. Compared to this
implementation, our Neo4j-Flask implementation showed approximately 50% lower latency. We show our
benchmark results in Figure 3.

metavizr

In addition to the persistent database backend, Metaviz can also perform interactive visualization with the
metavizr R package [https://github.com/epiviz/metavizr]. Metavizr loads an MRexperiment object, the main
class of the metagenomeSeq R/Bioconductor package for statistical analysis of metagenomic data, into an
EpivizMetagenomicData-class object. This R object can then communicate with a Metaviz application
instance using a WebSocket connection. FacetZoom controls along with data charts and plots can be
added to the Ul from the R session. A user can specify features for visualization from the results of
statistical testing as discussed in the Motivation section. The feature selection can use R/Bioconductor
packages beyond metagenomeSeq. For instance, we use the vegan CRAN package to compute alpha
diversity in metavizr sessions (Oksanen et al., 2015). Github gists can be used through metavizr to modify
any plot or chart display setting using JavaScript in addition to customization facilities provided directly by
the metavizr package itself. Finally, a persistent workspace can be used to reproduce the visual analysis of
another researcher after metavizr loads the dataset.

To measure the performance of metavizr relative to the graph database architecture, we benchmarked the


https://doi.org/10.1101/105205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/105205; this version posted March 6, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

memory usage and run-time of aggregation operations on datasets of different sizes. Figure 4 show the
profiling results. From these benchmarks, we recommend using the graph database backend for
abundance matrices that are larger than 4000 features and 100 samples.

Deployment

We support three deployment mechanisms of Metaviz for users to interactively visualize an abundance
matrix with hierarchical feature annotations. The first scenario is hosting the Metaviz browser application
and graph database locally. We provide Docker [http://www.docker.com] scripts to build and deploy
containers of the database, load the abundance matrix to the database, and launch the web-browser
application [https://github.com/epiviz/metaviz-docker]. The second deployment option is loading the
abundance matrix into an MRexperiment object with the metagenomeSeq R/Bioconductor package and
creating a metavizr EpivizMetagenomicsData-class object. Then, metavizr can communicate with the
client's web-browser through an R session. We also support hosting datasets at the University of Maryland
Center for Bioinformatics and Computational Biology. The abundance matrix will be loaded into a Neo4j
database and can be accessed from http://metaviz.cbcb.umd.edu. A user can perform analysis and then
share results with collaborators using the persistent workspace functionality.

Use cases

Exploration of MSD16s childhood diarrhea study in developing countries

To test the analysis utility of Metaviz, we inspected the msd16s dataset using the web-browser application.
To visualize and explore the samples, we examined the data from each country in the study separately and
aggregated to the order level for all features. In this analysis, we set case samples as those with dysentery
and control samples as those without blood in stool, meaning that samples with diarrhea and healthy
samples are in the control group for dysentery. We used three plots, a heatmap and two stacked bar plots
to identify differences between age range and dysentery status by country. In the heatmap, row colors were
set by dysentery status and each stacked bar plot consisted of the case and controls samples for dysentery
of each country. We also grouped the samples in the stacked bar plot by age range. We compared the
results of visual analysis by computing the log fold-change using metagenomeSeq and identifying features
detected as differentially abundant via the statistical method and those detected through visual exploration.

From the heatmap for Bangladesh samples, the following orders appear more abundant in the samples
with dysentery than the control samples: Actinomycetales, Burkholderiales, Neisseriales,
Campylobacterales, Pasteurellales, and Pseudomonadales. Correspondingly, these orders appear more
abundant in the control samples as compared to the case samples: Coriobacteriales, Bacteroidales, and
Clostridiales. Looking at the stacked bar plots, Clostridiales exhibits low proportion in the case samples at
0-6 and 6-12 months, a lower level compared to control samples at 12-18 months, and then a similar
proportion in both groups for 18-24 and 24-60 months. With the control samples, Bacteroidales and
unannotated (NA) show a greater proportion at all intervals after 0-6 months. Supplementary Figure 1
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shows the visual analysis of Bangladesh samples.

We followed the visual analysis by differential abundance testing using metagenomeSeq. The following
orders had a log fold-change above 1 and an adjusted p-value < .1 when comparing the dysentery samples
against non-dysentery: Acidithiobacillales, Pasteurellales, Spirochaetales, Campylobacterales,
Neisseriales, and Enterobacteriales. Through visual analysis we found Campylobacterales (log fold-
change: 2.30, p-value: 2.46*107-4), Neisseriales (1.92, 3.55*10%-5), and Pasteurellales (2.40, 4.96*10"-11).
The orders identified from visual inspection but not through metagenomeSeq had the following log fold-
change and adjusted p-values: Actinomycetales (log fold-change: .973, adjusted p-value: 7.65*107-3),
Burkholderiales (0.417, 0.400), and Pseudomonadales (0.834, 1.83*10-2). These are the orders with a log
fold-change below -1 and adjusted p-value < .1 in our analysis: Coriobacteriales (-1.27, 6.96*10"-4),
Bacteroidales (-1.23, 3.77*10”-4), and Clostridiales (-1.20, 6.95*10”-5). We identified each of those orders
through visual analysis. The results for metagenomeSeq differential abundance calculation are in
Supplementary Table 1.

Building the same Metaviz plots for The Gambia, we note that the number of control samples outweighs the
number of case samples and no case samples from the 0-6 month age range are present. Examining the
heatmap, it appears that Actinomycetales, Lactobacillales, Campylobacterales, Enterobacteriales, and
Pasteurellales are more abundant in the case than control samples. While Bacteroidales and Clostridiales
are more abundant in the control samples than case. Examining the stacked plots, we first notice the
proportion of Bacteroidales increases with age in the control samples as compared to the dysentery group.
Lactobacillales decreases in proportion as age increases for both the case and control samples with a large
decrease from 18-24 to 24-60 months in the case samples. In the case samples, Enterobacteriales has one
of the highest proportions orders at 0-6 months, decreases for both 12-18 months and 18-24 months, but is
then the highest proportion order in the 24-60 month interval. In the control samples, the proportion of NA
increases at each age range. For case samples, NA shows lower proportion in 6-12 and 24-60 months than
the 12-18 and 18-24 months intervals. Supplementary Figure 2 shows the Metaviz workspace for The
Gambia.

Using metagenomeSeq we found the following orders to have a log fold-change above 1 and an adjusted
p-value < .1 in case samples compared to control: Pasteurellales (1.54, 4.70*10%-4), Enterobacteriales
(1.46, 1.26*10%-2), and Actinomycetales (1.13, 1.26*10”-2). We found Actinomycetales, Pasteurellales and
Enterobacteriales through visual analysis. We also identified Campylobacterales (1.10, 0.133) and
Lactobacillales (0.624, 0.377) while inspecting the heatmap but these were not differentially abundant using
metagenomeSeq. Our visual analysis showed Bacteroidales (-1.76, 3.02*10%-3) and Clostridiales (-

.833, .175) more abundant in control samples but metagenomeSeq analysis yielded only Bacteroidales.
We present the metagenomeSeq differential abundance calculations for The Gambia in Supplementary
Table 2.
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Inspecting the Kenya samples with Metaviz we noticed there are far fewer samples with dysentery than
non-dysentery samples. From the heatmap, we observed Actinomycetales, Lactobacillales,
Fusobacteriales, Enterobacteriales, and Pasteurellales to be more abundant in the case samples than
across the control samples. Bifidobacteriales, Bacteroidales, Coriobacteriales, and Clostridiales appear
more abundant in control over case. As for changes across age ranges and case/control status,
Campylobacterales is more prevalent in 0-6, 6-12, and 12-18 month age ranges in the case group than the
control group. Supplementary Figure 3 shows the visual analysis of the Kenya samples.

Testing with metagenomeSeq showed Pasteurellales with a log fold-change above 1 and an adjusted p-
value < .1 when comparing case against control samples. The Pasteurellales (1.09, 3.76*10"-2) result
matched our findings from visual analysis but the Lactobacillales (.201, .949) Actinomycetales (0.365,
0.572), Fusobacteriales (4.19*107-2, 0.949), and Enterobacteriales (0.509, 0.430) results did not. Using
metagenomeSeq, we did not find any orders with log fold-change below -1 and adjusted p-value < .1. In
Metaviz, Coriobacteriales (-.993, 7.31*10%-2), Bifidobacteriales (-3.50*10/-2, 0.949), Bacteroidales (-1.16,
0.146), and Clostridiales (-.898, .153) appeared to be more abundant in control samples than case
samples. We show the metagenome Seq differential abundance calculations for Kenya samples in
Supplementary Table 3.

From the Metaviz plots for Mali samples, we note that the number of case samples is far smaller than the
number of control samples and no case samples are from the 0-6 month age range. Examining the
heatmap, Neisseriales, Lactobacillales, Enterobacteriales, and Pasteurellales show greater abundance in
the case samples. In contrast, Bifidobacteriales, Bacteroidales, Clostridiales, and Pseudomonadales exhibit
higher abundance in control samples compared to the case samples. From the stacked plots, the
proportion of Enterobacteriales among case samples in age range 6-12 and 12-18 months is much higher
than that in the same age ranges for control samples. For dysentery samples, Pasteurellales shows a
much higher proportion in the 18-24 month age range than for normal samples. Also, across all age ranges
Bacteroidales is more prevalent in the control samples. Supplementary Figure 4 shows the visual analysis
of samples from Mali.

With metagenomeSeq, we observe Pasteurellales (2.82, 5.39*10”-4) and Neisseriales (1.77, 1.38*10%-2) to
have a log fold-change above 1 and adjusted p-value < .1 for abundance in case against control. We found
Pasteurellales and Neisseriales through visual inspection along with Enterobacteriales (1.46, 0.799) and
Lactobacillales (6.82*10”-2, 0.998). From Metaviz visual analysis, we found Bifidobacteriales (-1.59, .439),
Pseudomonadales (0.662, 0.460), Bacteroidales (-1.16, 0.439), and Clostridiales (-1.80*107-3, 0.998) to
show higher abundance in control samples but that was not borne out in statistical testing. Supplementary
Table 4 contains the metagenomeSeq results for Mali samples.

Analysis of longitudinal metagenomic studies

Another use case we sought to test the effectiveness of Metaviz is the analysis of longitudinal
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metagenomic datasets. We followed the analysis using smoothing spline ANOVA as described in Paulson
et al. (Paulson, Talukder, & Corrada Bravo, 2017) for a longitudinal dataset understanding host response to
a challenge with enterotoxigenic E. coli (Pop et al., 2016). The dataset was gathered from 12 participants
who were challenged with E. coli and subsequently treated with antibiotics. Stool samples were gathered
from participants each day starting 1 day pre-infection until 9 days post-infection. This time series analysis
using smoothing spline ANOVA yields features that are differentially abundant across timepoints. The
metagenomeSeq Bioconductor package provides a function for fitting the smoothing spline and performing
SS-ANOVA testing. For visualizing the results of that analysis, we use a line plot with time points on the X-
axis, log fold-change on the Y-axis, and each line representing a feature. The FacetZoom is linked to the
line plot and the path through the hierarchy is highlighted when hovering over a given line. Figure 5 shows
the visualization of the smoothing spline using metavizr.

Conclusion

In this paper, we presented the design and performance of a web-browser based interactive visualization
and statistical analysis tool for metagenomic data. We described design decisions for operating over
abundance matrices with tens of thousands of features, thousands of samples, and complex feature
hierarchies. We use a graph database for storing metagenomic abundance matrices as the features have a
hierarchy derived from taxonomic databases. We also built an R package for serving data to the Metaviz
web-browser application and computing analyses using R/Bioconductor packages. A major contribution of
this work is the novel navigation utility that adapts information visualization techniques to effectively explore
and manipulate the rich feature hierarchy of metagenomic datasets. Another significant contribution is a
web service available to host abundance matrices that allows researchers to explore and share results. We
expect that Metaviz will prove useful for researchers in analyzing metagenomic sequencing studies as
genome browsers have for genomic data.

Related Work

We designed and implemented Metaviz while continually examining the list of successful projects for
interactive visualization of sequencing data. The UCSC genome browser provides a track-based web tool
for exploring the linear structure of genome and transcriptome sequencing data (Kent et al., 2002). Galaxy
provides an integrated analysis environment and visualization tools that can be run in a hosted computing
setup (Afgan et al., 2016). Taxonomer performs both read taxonomic assignment and visualization of
results using a sunburst diagram to visualize features (Flygare et al., 2016). Pathostat is a Shiny
application that computes statistical metagenomic analyses, visualizes results, and is integrated with
different Bioconductor packages [http://bioconductor.org/packages/PathoStat/]. Pavian is an R package
which incorporates Shiny and D3.js components to enable interactive analysis of results for metagenomic
classification tools such as Kraken (Breitwieser & Salzberg, 2016). Panviz is a tool for exploring annotated
microbial genomics data sets based on D3.js libraries [http://bioconductor.org/packages/PanVizGenerator/].
Krona is a web-based tool for metagenomics visualization that provides a sunburst diagram to navigate the
feature space (Ondov et al., 2011). VAMPS is a web-service that provides a JavaScript and PHP based
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metagenomics visualization toolkit of datasets uploaded by researchers (Huse et al., 2014). Anvi'o is a
multiomics platform that supports analysis along with custom JavaScript visualizations (Eren et al. 2015).

Future Work

An avenue for continued research in this area is visualization of whole metagenome shotgun sequencing
data. This will involve both navigation of the feature taxonomy tree as well as exploration of the genes for
each bacterial feature. This will be a useful visualization as strain level analysis is expected to be useful for
research and clinical applications. Immediate problems in this case are merging with a functional hierarchy
for genes in different features and aligning in a track viewer the different genomes present in a sample.
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Figure 1: Metaviz interactive visualization of childhood severe diarrhea study. This figure shows a
subset of 50 samples (25 case and 25 control for dysentery) from the Moderate to Severe Childhood
Diarrheal Disease study (Pop et al., 2014). The FacetZoom control on the bottom panel is used for
interactive exploration of the taxonomic organization of metagenomic features. Node opacity in the
FacetZoom control indicates the set of taxonomic units selected across all appropriate visualizations in the
Metaviz workspace. Each node can be in one of three possible states as indicated by the icon in its lower
left corner: 1) aggregated, where counts of descendants of this node are aggregated and displayed in other
charts, 2), expanded, where counts for all descendants of this node are visualized in other charts, or 3)
removed, where this node and all its descendants are removed from all the other charts. The left column of
the FacetZoom control indicates the levels of the taxonomy and the overall selection for nodes at each
taxonomic level. Hovering the mouse over FacetZoom panels highlights the corresponding features in other
charts through brushing. The top left chart is a heatmap showing log-transformed counts with color intensity
in each cell corresponding to the abundance of that feature (column) in that sample (row). The row
dynamically computed and rendered dendrogram shows Euclidean distance hierarchical clustering of
samples with color indicating case/control status of each sample. The yellow highlighted column is linked
between charts and FacetZoom control through brushing. The top right chart is a PCA plot over all features
for the samples selected. The stacked bar plot on the left of the second row shows proportion of selected
features in each case sample (columns) while the right chart shows control samples. In both, sample
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counts are grouped and aggregated by age range. This is available as a Metaviz workspace at
http://metaviz.cbcb.umd.edu/?ws=yA4BWgUOTiq.
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Figure 2: Metaviz query processing and Graph DB structure. There are two deployment options, which
can be used concurrently if desired. In one deployment option (left), the Metaviz JavaScript front end
makes requests to a Python application querying a graph database using HTTP. In the other deployment
option (right), abundance matrices are loaded into a metavizr session which uses the WebSocket protocol
to communicate to the JavaScript component, allowing two-way communication between JavaScript and an
interactive R session. The graph on the left shows how abundance matrices are stored in the graph
database. Nodes in the graph correspond to metagenomic features or samples, edges between
metagenomic features denote taxonomic relationship, edges at the leaf level of the taxonomy connect to
samples and store the corresponding abundance counts. In either deployment option, aggregation queries
are evaluated in response to FacetZoom control selections in the Ul and require summing, for each
sample, the counts for features in a selected taxonomic subtree.
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Figure 3: Metaviz database architecture benchmarks. We use the wrk [https://github.com/wg/wrk] tool to
benchmark Ul requests to three database architectures for storing abundance matrices and feature
hierarchies (taxonomies): (1) Graph DB, using Neo4j with a Python Flask web service, (2) Relational DB
Pre-computed Join, using a MySQL implementation with a JOIN of the 3 tables of features, values, and
samples pre-computed and stored as a table, (3) Relational DB On-The-Fly Join, a MySQL implementation
with computing a JOIN across the three tables for each query. For (2) and (3), a PHP application issues
queries to the database in response to requests from the Ul. We deployed each implementation on an
Amazon EC2 t2.small instance and the dataset used across all instances consisted of 62 samples, 973
features, and 7 hierarchy levels. The upper panel shows query latency including standard error across 5
days of measurements. In addition to the latency of processing each request, we also measure the number
of requests per second processed providing a measure of throughput in our application. In both
performance measures, we see significant benefits of a Python-Neo4j deployment compared to a PHP-
MySQL stack for Metaviz tasks.
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Figure 4: metavizr benchmark. MSD16s dataset with 992 samples, 26044 features, and a 7 level
hierarchy. The Rprof library was used for profiling. The benchmark consisted of an aggregation query to the
3rd level of the hierarchy. The top panels show tests for keeping the number of samples at 100 and
increasing the number of features over which the aggregation query is operating. The left top panel shows
the aggregation query completion time in seconds and the top right panel shows the highest memory
footprint in MBs during the query execution. The bottom panels show the performance on all samples in the
dataset and increasing the number of features. The bottom left panel shows the relationship between
aggregation query time and number of features while the bottom right panel is the memory footprint in MBs
use during the aggregation. In order to achieve interactive visualization, we recommend using the Neo4j
graph database when aggregation query response times will be above 400 milliseconds. Also, the graph
database backend is recommended for datasets that require a memory footprint above 200 MB.
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Figure 5: Interactive visualization of smoothing spline differential analysis of longitudinal study. We
use Metaviz to explore a longitudinal analysis of the dataset from an enterotoxigenic E. coli study (Pop et
al., 2016). Count data was aggregated to the species level and a smoothing-spline ANOVA model was fit
using the fitTimeSeries function of the metagenomeSeq Bioconductor package. Features with a statistically
significant difference of an absolute log fold-change greater than 2.5 as estimated by the smoothing spline
model at any time point were selected for visualization. The line plot is linked with the FacetZoom control
via brushing.


https://doi.org/10.1101/105205
http://creativecommons.org/licenses/by/4.0/

