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Abstract

The cellular translation process should obey the principle of maximizing efficiency
and minimizing resource and energy costs. Here, we validated this principle by
focusing on the basic translation components of tRNAs and amino acids. To most
efficiently utilize these components, we reasoned that the quantities of the 20 tRNAs
and their corresponding amino acids would be consistent in an organism. The two
values should match at both the organismal and protein scales. For the former, they
co-vary to meet the need to translate more proteins in fast-growing or larger cells. For
the latter, they are consistent to different extents for various proteins in an organism to
comply with different needs of translation speed. In this work, 310 out of 410
genomes in three domains had significant co-adaptions between the tRNA gene copy
number and amino acid composition, and thus validating the principle at the organism
scale. Furthermore, fast-growing bacteria co-adapt better than slow-growing ones.
Highly expressed proteins and those connected to acute responses have better
co-adaption, illustrating the principle at the individual protein scale. Experimentally,
manipulating the tRNA gene copy number to optimize co-adaption between enhanced
green fluorescent protein (EGFP) and tRNA gene set of Escherichia coli indeed lifted
the translation rate (speed). Our results also contribute to revealing a translation
rate-associated factor with universal and global effects. From a practical perspective,
our findings suggest a strategy to increase the expression of target proteins and have
implications for designing chassis cells in the field of synthetic biology field.
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Introduction

Translation initiation, elongation and termination involve many factors, that balance
translation rate (speed) and accuracy (Gingold and Pilpel 2011; Yang et al. 2014). The
final translation efficiency for a given protein is restricted by the cost of its production
and organization (Dekel and Alon 2005). Therefore, evolving a genome-wide
translation regulation regime can efficiently determine the translation rates of various
genes in different conditions (Gingold and Pilpel 2011). Conventional computations
of translation elongation efficiency refer to codon usage (Sharp and Li 1987) and
tRNA availability (dos Reis et al. 2004). The relationship between codon usage and
tRNA abundance predicts translation efficiency with reasonable accuracy (Gingold
and Pilpel 2011).

Additional theories have been proposed with constantly emerging experimental
technologies (Ingolia 2016; Yan et al. 2016) to cope with challenges to the simplified
assumptions about translation described above. Thus, the effects of codon order
(Fredrick and Ibba 2010; Tuller et al. 2010a; Gamble et al. 2016), local tRNA
availability (EIf et al. 2003; Chan and Lowe 2009; Nedialkova and Leidel 2015),
regulation of expression of the tRNA gene (Cannarozzi et al. 2010), the diverse
demands of the transcriptomes (Dittmar et al. 2006; Tuller et al. 2010a), ribosomes
(Qu et al. 2011), mRNA structures (Li et al. 2012; Shah et al. 2013; Yu et al. 2015)

and folding energy (Tuller et al. 2010b) were included in the translation efficiency
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models. Among these factors, tRNA availability repeatedly emphasized decides the
supply of aminoacyl-tRNA (Vargas-Rodriguez and Musier-Forsyth 2014), which
influences the translocation of ribosomes on MRNA (Subramaniam et al. 2014; Espah
Borujeni and Salis 2016; Rozov et al. 2016; Wu et al. 2016). Nutriment limitations,
such as amino acid shortage, also have influences on the cellular supply of
aminoacyl-tRNA (Mandel and Silhavy 2005). However, how the formation of
aminoacyl-tRNA influences translation efficiency is still unclear.

In the translation process, tRNAs can be thought of as tools and the amino acids
as the raw materials. Each species of tRNA corresponds to a particular amino acid,
and each of the former is responsible for carrying one of the latter. We hypothesize
that the levels of the tRNAs and the corresponding amino acids should be well
matched to synthesize proteins more efficiently. Such a consistency would maximize
efficiency and minimize resource/energy costs.

Here, we try to test the concept that the process of translation is selected for
maximum efficiency by examining the association between the tRNA gene copy
numbers and amino acid compositions in various organisms. We sought to validate
two points of reasoning: at the organismal scale, most organisms evolve co-adaption
between tRNA gene copy number and amino acid composition; and at the second
scale of individual proteins, the co-adaption intensity may vary among the proteins
within an organism. Some proteins need to be expressed rapidly to maintain a high
quantity or to satisfy the requirements of acute responses. We speculated that such

proteins would have higher co-adaption to increase their translation efficiency.
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Computational analyses were employed to elucidate co-adaption between tRNA gene
copy numbers and amino acid usage for proteins/proteomes in three domains of life,
indicating the effects of maximum efficiency and the minimum cost principle. Then,
we correlated the co-adaption with proteins’ translation rates, which were validated by
growth rates of bacteria and production rates of target proteins. The target proteins’
translation rates were observed to be lifted through changing the proportions of gene
copy numbers of tRNASs, providing clues for applied biology.

Results

Validation of the principle at the genome scale

During translation, tRNAs transport amino acids to ribosomes; co-operation between
these factors has been reported in a few organisms (Yamao et al. 1991). Previous
researches demonstrated that the tRNA gene copy numbers were different among
organisms/strains/species, and that the protein sequences varied greatly (Levitt 2009).
To check whether the amino acid usage of proteins generally co-adapts with the
corresponding organism’s tRNA gene copy number, we calculated and compared
independent frequencies of the two in 410 genomes from three domains of life (17
archaea; 359 bacteria; 34 eukaryotes), using more accurate tRNA gene annotations in
GenBank (Benson et al. 2013), the Genomic tRNA database (Chan and Lowe 2009)
and tRNAdb (Jthling et al. 2009). First, the frequencies of 20 standard tRNA genes
(Table S1) were computed by counting cognate tRNA gene copies and being divided
by the organism’s total tRNA gene counts. Second, frequencies of the 20 amino acids

in the proteome (Table S1) were computed by dividing the count of each amino acid
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by the sum of the twenty amino acid counts. After obtaining these two types of data
for each organism, we performed linear fit and correlation analyses.

The linear fit results showed variable co-adaption relationships (Fig. 1A and
Table S1), illustrating that the two factors (tRNA gene copy number and the amino
acid frequency) are not independent from each other. Indeed, although the slopes of
the fitted lines differed, in all cases, the tRNA gene copy numbers showed positive
correlations with corresponding amino acid usages. Spearman rank correlation
coefficients (r) were calculated after least square fitting (Table S1). Specifically,
99.27% had correlation coefficients greater than 0.1 (Fig. 1B), and 75.61% showed
significant correlations (p < 0.05). Finally, a general linear relationship exists between
tRNA gene copy and amino acid usage. For four representative organisms, the
archaebacterium Methanosphaera stadtmanae (r = 0.17, p = 0.46), the bacterium
Escherichia coli (r = 0.54, p = 0.01), and the eukaryotes Saccharomyces cerevisiae (r
= 0.74, p = 1.67E-04) and Homo sapiens (r = 0.56, p = 0.01), the linear models
presented different co-adaption intensities (Fig. 1C, Table S1). Compared with the
other three organisms, yeast had the best linear fit. However, for M. stadtmanae,
having the most unbalanced constitution of tRNA genes, the observed points were not
well fitted. In general, most organisms’ tRNA gene copy numbers and amino acid
usages showed a positive linear relationship.

We measured the co-adaption intensity using a tRNA gene copy and amino acid
usage accordance index (TAAI), which is close to the correlation coefficient of linear

fitting and equal to the r value of the Spearman rank correlation. During protein
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production, tRNA genes will be transcribed to tRNAs, and then loaded with amino
acids for protein translation. Resource allocation would be the most efficient if the
supply of tRNAs just meets the required amount of amino acids. Based on the results,
our species/strain/organism scale reasoning was confirmed. In other words, most
genomes had significant co-adaption between the tRNA gene copy number and the
frequencies of amino acid usage and hence maximized their translation efficiency and
minimized their energy/resource costs.

Different genomes (species/strain/organism) may have different translation
selection pressure: to translate different numbers of proteins in a given time. For
example, large genomes have more proteins, and fast-growing bacteria need to
synthesize more proteins simultaneously. In fact, large bacterial genomes are often
associated with short generation times (Rocha 2004). According to the maximum
efficiency/minimum cost principle, fast-growing/large bacteria should have higher
TAAIs than slow-growing and/or small bacteria. To test this possibility, we compared
the TAAIs of 53 bacteria (Table S2) and grouped them by growth time (Rocha 2004).
The fast, had growth times below the mean of the 53 ones; the slow, had growth times
greater than the average. The two groups had similar variances of TAAI values, while
the slow group had significantly lower TAAIs than the fast group (Fig. 2A). Thus,
co-adaption showed an effect on growth rate. This result is consistent with the idea
that population growth rate is a fundamental ecological and evolutionary
characteristic of living organisms (Kempes et al. 2012). Similarly, larger bacteria have

larger genomes and more proteins that need to be translated than bacteria with smaller
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genomes (Kempes et al. 2012; Kempes et al. 2016). Therefore, we also compared the
TAAIs of prokaryotic organisms grouped by genome size (small, medium and large).
These three groups had significantly divergent mean TAAIs of 0.37, 0.60 and 0.65 (p
value of Student’s t test: < 2.2e-16; Fig. 2B). That the relatively larger genomes have
higher TAAIs supports the conclusion that bacteria under higher selective pressure
have higher TAAIs, thus conforming to our first hypothesis based on the principle of
efficiency described above. Bacteria with smaller genomes and slow growing speeds
would suffer less pressures from protein translations and hence have lower TAAIs.
Some genomes have non-significant TAAIs and it would be beneficial to
understand why. In prokaryotes, genome size and TAAI correlated well (r = 0.49, p <
2.2e-16) and almost all the 96 prokaryotes with bad TAAIl/co-adaption do have
genome sizes smaller than 2.5Mb, whereas almost all genomes with good co-adaption
are larger than 2.6 Mb. The weak TAAI of smaller genomes is obviously caused by
their deficiency in request of translation efficiency: less selection pressure, which
could be measured based on the genome size in these organisms. However, in
eukaryotes, alternative splicing of messenger RNA results in an inconsistency
between the number of proteins produced and genome size. Using the quotient of the
number of proteins divided by genome size should be a more reliable reflection of
eukaryotes’ actual translation demand (also selection pressure). Consequently, four
eukaryotes, Bos taurus (cow), Felis catus (cat), Strongylocentrotus purpuratus (Sea
urchin) and Plasmodium falciparum with non-significant TAAIs indeed have smaller

quotient. Therefore, it is reasonable that the lower translation demand (also selective
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pressure) leads some genomes to have bad TAAISs.

Validation of the principle at the protein scale

The aforementioned results validated the principle at the genome
(species/strain/organism) scale. Next, we asked whether there are co-adaption
divergences within genomes and what such divergences may signify. The proteins
within a genome also have different adaptions (variable TAAIs) for their different
amino acid compositions (Fig. 3A). Taking E. coli as an example, a distinct difference
was noted when comparing the co-adaption of the five proteins with the highest
TAAIs and the five proteins with the lowest TAAIs (Fig. 3B). The amino acid
frequencies of the top five were more consistent with the corresponding genomic
tRNA gene copy frequencies. Within a given genome, this co-adaption divergence
generally occurred among proteins.

Selective pressure within genomes is reflected by the direct results of translation
efficiency: proteins’ abundances, even though the two values are not entirely
equivalent. Co-adaption should reflect the supply of aminoacyl-tRNA, which
ultimately affects the final protein synthesis. We compared six model organisms’
TAAIs and found that proteins with higher expression levels had clearly higher TAAIs
than proteins with lower expression levels by Student's t test (Fig. 3C). Furthermore,
when using a linear fit, the TAAIs and the protein abundances showed significantly
positive correlations (p < 1e-6; Table S3). This result is consistent with the idea that
tRNA level has direct effects on translation efficiency (Dana and Tuller 2014). Thus,

as a reflection of the translation rate, protein abundances correlate with TAAIs to a
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certain extent, and their relationship seems to be a consequence of selection pressure
to have a suitable translation rate.

To further explore this finding, and considering that paralogous genes in the same
family have similar molecular evolutionary stresses and changes (Jost et al. 2008), we
compared the TAAIs in E. coli and yeast according to gene function groups: ribosome
subunits, cell division (Hale and de Boer 1997), two-component system (including
response regulators and sensors; (Chang and Stewart 1998), mismatch repair (Kunkel
and Erie 2005), and sugar metabolism (Titgemeyer and Hillen 2002). The average
TAAIs and protein abundances for five groups of genes were calculated (Table 1). For
the E. coli and yeast genomes, proteins from all groups had average TAAIs higher
than the genome average (Student’s t test: p = 3.54e-12). Three of the five groups
correspond to acute responses (cell division, two-component system, and mismatch
repair), and the other two groups relate to fast growth (ribosome subunits and sugar
metabolism). Ribosome subunits are important participants in the translation process,
and there is no doubt that ribosome subunits have the highest abundance, TAAI and
codon usage bias index CAI (Sharp and Li 1987). Sugar metabolism proteins, which
includes proteins in “Amino sugar and nucleotide sugar metabolism”, also has higher
TAAI and abundance than genome average. Although the abundances of proteins in
the other three categories are lower than genome average, their TAAIs were higher.
We further compared the protein abundance and TAAIs of experimentally determined
upregulated yeast genes (Ingolia et al. 2009), and observed similar results (Table S4).

Thus, proteins involved in acute responses under more selective pressure, generally
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have good co-adaption relationships.

Therefore, our second reasoning was also validated: at the scale of individual
proteins, co-adaption intensity may vary among the protein collective within a
genome. Some proteins need to be expressed rapidly to maintain their quantity to be
connected with an acute response.

Experimental Verification of Co-Adaption Affecting the Translation Rate
According to the principle and the above results, co-adaption was associated with the
translation rate, prompting us to examine whether the proteins with high TAAIs
indeed have high translation rates in vivo. To test this conjecture, one copy of a
specific tRNA gene that might increase or decrease the TAAI was introduced to E.
coli along with a gene encoding enhanced green fluorescent protein (EGFP) after
which EGFP protein synthesis was analyzed.

Proteins with higher TAAIs might have higher translation rates, and thus higher
production levels. EGFP is easy to express and detect, and constructs for tRNA
overexpression have previously been designed and tested (Acosta-Rivero et al. 2002).
Therefore, by combining the expression of EGFP with a tRNA gene, we can see the
effect of a specific tRNA on EGFP expression. Increasing the copy number of the
corresponding tRNA gene may increase or decrease the TAAI for EGFP and the
whole genome (Fig. 4A). EGFP had a TAAI of 0.45 when expressed with the original
tRNALY

frequencies of E. coli tRNA genes. When one gene copy encoding either uc |

tRNALS tRNA]

yr
AT Or TA was introduced, the corresponding ATAAIs for EGFP were

0.03, 0.0008 or -0.007, respectively, and the cumulative ATAAIs for all proteins of
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the genome were -28.68, -43.77 or 78.68, respectively. The following sequences were

constructed in plasmids: EGFP (control group), tRNAC —EGFP (tRNA-Asp),

tRNAG — EGFP (tRNA-1le), and tRNAZ, — EGFP (tRNA-Tyr), which were used to

transfer E. coli Top10 cells (Fig. 4B). In E. coli, there is only one type of tRNA
(isoacceptor tRNA) for Asp, Tyr and lle, which means that codon bias has no
observable effect on the increase in EGFP expression. We observed fluorescence

intensity with confocal microscopy and found that the EGFP yield of the experimental

group expressing tRNA:®. —EGFP was significantly higher than the others at the
same time point (Fig. 4B and Fig. S1A). Detailed fluorescence intensities of the four
groups acquired with a fluorospectro photometer (Fig. 4C), showed that the EGFP
production efficiency of the four groups from low to high was as follows: Control,
tRNA-Ile, tRNA-Tyr and tRNA-Asp. The fluorescence intensities were consistent

with western blotting results (Fig. 4D and Fig. S1B). The experimental group

tRNA-Asp produced ten times more EGFP than the Control. Considering the dynamic

processes involved in EGFP abundance variation, the slope of tRNAS®. — EGFP
abundance was much higher than that of the control, indicating that the translation
rate of the former was higher.

To further rule out the possibility of codon usage influence, we compared the
number and coding order of codons for the three tRNAs in EGFP (Fig. S1C). The
EGFP mRNA sequence has one type of lle codon (ATC), two types of Tyr codons

(TAT: 9%, TAC: 91%), and two Asp codons (GAT: 11%; GAC: 89%). All preferred

codons are the corresponding codons for the E. coli cognate tRNAs. Therefore, there
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should be no significant variant effect of varying from the preferred codon. Then, we
calculated the dispersion degree by analysis of variance, as the order of tRNA can
influence its recycling during translation (Cannarozzi et al. 2010). We analyzed the
variance of amino acid sites both locally and globally. The variance of the first eleven
sites for lle, Tyr and Asp are: 53, 61 and 46. The corresponding recycling effects
should be weakened when increasing specific tRNA gene copy numbers. In fact,
increasing the lle tRNA gene copy number does not significantly increase EGFP
production. Together, the results do not indicate an influence of tRNA recycling or
preferred codon usage. This experiment confirmed that co-adaption has a clear effect
on translation rate. Thus, optimizing co-adaption could significantly promote
translation production of foreign proteins.

Discussion

Cells are believed to evolve to maximize efficiency and minimize resource and energy
cost (Maitra and Dill 2015; Grosskopf et al. 2016). We hypothesized that this
principle would affect translation mechanisms, and we tested this conjecture based on
the basic translation “tool” tRNAs and the “raw material” amino acids. To maximally
utilize the resources, we reasoned that the quantities of the 20 tRNAs and amino acids
in a species should be consistent based on this principle. For simple and convenient
analysis, we used the tRNA gene copy number as the proxy for the former, and used
the amino acid frequency as the latter. The genome has an average vector of amino
acid frequency and each protein also has its vector form of amino acid frequency.

Hence, there would be a general co-adaption value for each genome and a specific
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co-adaption value for each protein. Using correlation and abundance (functional group)
analyses we validated our two conjectures, which are logical outcomes of the
maximum efficiency and minimum cost principle. Based on the results and analyses,
the genome’s TAAI could be regarded as a proxy for general translation efficiency or
actual translation needs. Proteins” TAAIs reflect the highest translation efficiency or
translation need in extreme conditions.

Co-adaption is a global effect exerted on proteins and organisms. Each organism
has a specific amino acid usage and a co-adapted tRNA gene copy number. This
co-adaption maximizes the translation efficiency of the complete proteomes. The
larger translation pressure the organism is exposed to, the higher average TAAI it has.
In a genome, almost all the proteins have positive TAAI values (Fig. 3A). Hence, this
co-adaption as a translation rate associated factor is applicable to all three domains of
life and all proteins within an organism. In contrast to the consistency between the
effects of synonymous codon usage and tRNA gene copy number on translation rates
(Duret 2000; Li et al. 2012), which is a local factor acting on regions of a gene, the
TAAI is a translation rate associated factors with universal and global effects.

Co-adaption arises from energy efficiency and selective pressure. Organisms
evolve to maximize efficiency and minimize energy cost by adapting through genetic
mechanisms (Maitra and Dill 2015; Kempes et al. 2016). Such global co-adaption
might raise the translation efficiency globally, coinciding with the energy
efficiency/ecological dynamics principle (Grosskopf et al. 2016). Previously, Higgs

and Ran analyzed 80 bacterial genomes and found that tRNA gene copy numbers
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evolved in response to translational selection (Higgs and Ran 2008). It is notable that
they observed consistency between synonymous codon usage and tRNA gene copy
number and that the unequal usage of synonymous codons encoding the same amino
acid was involved. However, our current study on co-adaption focuses on
disequilibrium frequencies among the twenty standard amino acids. Here, the
co-adaption reflects a balance between tRNA gene copy number and the amino acids

needed by the proteome. Redundant excessive tRNA gene copies will ultimately be a

waste of translation resources (tRNAY._ did not increase the EGFP production in E.

AT

coli). Selective pressure drives the co-adaption at the protein level. Experiments
showed that increasing the TAAI could indeed improve the translation speed of the
proteins and hence validate that the co-adaption is caused directly by translation
pressure. These results indicate that translation selection causes co-variation at the
scale of organisms and individual proteins.

If we expand our view to the domains of life, which have evolutionary
connections (Lynch and Conery 2003; Booth et al. 2016), such selection also exists.
We found that eukaryotic genomes had much better adaption values than the other two
domains (Fig. 5). The translation rate for eukaryotic genomes is approximately 3~8
amino acids per second (Mathews et al. 2000), compared to 10~20 amino acids per
second for bacterial genomes (Liang et al. 2000). In contrast, eukaryotes have much
larger genomes and, hence, many more proteins. Thus, eukaryotic proteins would
undergo stricter translation selective pressure. This higher pressure may be one of the

reasons for the higher co-adaption observed in eukaryotes. Focusing on the bacterial
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domain, we observed that larger bacterial genomes tended to have higher TAAIs, and
the TAAI value correlated positively with the genome size. Higher selective pressure
may be the reason for this positive correlation. Taking all of the results into account,
co-adaption is one effect of translation selection at all three levels (domain, genome
and protein) and the selection complies with the maximum efficiency & minimum
cost principle.

This co-adaption can be applied to enhance translation efficiency in practice.
Traditionally, in industrial application, the yield of a specific protein is improved in by
optimizing its synonymous codon usage (Menzella 2011). A higher ratio of optimal
codons could facilitate the transcription efficiency by frequent usage of abundant or
efficient tRNAs (Cannarozzi et al. 2010). Here, the yield of EGFP was improved
markedly in E. coli by optimizing TAAI through increasing the gene copy number of
specific tRNAs, thus increasing the translation speed at least tenfold. This finding
may be applied in industrial production. To obtain higher output of one protein, we
could optimize its co-adaption between tRNA gene copy number and amino acid
usage by adding specific tRNA gene copies. Thus, the protein’s translation could be
accelerated quickly. One of the prominent advantages of such an operation is that the
yields of multiple proteins could be improved in one round. The production of
multiple proteins could be increased by adding specific tRNA gene copies
corresponding to their amino acid usage. This ideal result is based on the supposition
that adding a specific tRNA gene could increase the TAAIs of many proteins

simultaneously. A more practical method would be to divide all target proteins into
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groups based on similar amino acid frequencies. If the tRNA genes to import are
carefully chosen, the target group of proteins will have higher expression levels but
the other proteins should remain almost unchanged.

In the field of synthetic biology, it is hoped to devise and construct a general
bacterial chassis cell that integrates functional synthetic parts, devices and systems. In
practice, such a chassis has often been constructed or synthesized based on small and
slowly growing bacteria (Hutchison et al. 2016; Vickers 2016). However, slow growth
may limit their capacity to produce enough target molecules in a short time. Our
strategy of importing certain tRNA genes may help to address this problem when

designing chassis cells.

Methods

E. coli strain and methods

DNA amplification and expression were performed in E. coli Top10 cells (F- mcrA
A(mrr-hsdRMS-mcrBC) ®80lacZAM15 A lacX74 recAl araD139 A(araleu)7697
galU galK rpsL (StrR) endAl nupG). All bacterial media and methods used in this
study were as described in Current Protocols in Molecular Biology (Ausubel et al.
1987).

Production of synthetic genes

Oligonucleotides were synthesized using PCR amplification. The fragments were
recombined to generate the target coding sequences, which were inserted behind the

arabinose promoter. Positive clones were screened by resistance screening and
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confirmed by PCR and sequencing.

Detection of target polypeptides

Cells were grown overnight at 30°C in Luria-Bertani (LB) culture medium, and were
inoculated in LB culture medium with ampicillin at OD600 = 2. After hours of
constant shaking (OD600 = 0.6), L-arabinose (0.05%) was added to the culture
medium to induce heterologous expression. Samples were collected at different time
points and put on ice. When all samples were prepared, aliquots of the cells were
observed through confocal microscopy (Leica TCS SP8, Germany), and the rest were
collected by centrifugation (4000 x g, 20 min). The cells were then washed three
times with cold PB (4000 x g, 10 min), and cell lysis buffer (phenylmethylsulfonyl
fluoride [PMSF] 0.1 mM, PB 10 mM, lysozyme 1 mg/ml) was added to lyse the cells
for 15min before sonication (3 min). After ultrasonic breakage, the samples were
centrifuged, and the supernatants were collected. EGFP in the supernatants was
measured using fluorospectro-photometer (Hitachi F7000, EX WL: 460.0 nm) and
was quantified using a Bicinchoninic Acid (BCA) Protein Assay Kit (CWBIO) before
adding loading buffer and boiling for five minutes. Thirty micrograms of the protein
extract samples were loaded on 12% stain-free SDS-polyacrylamide gel (Bio-Rad),
subjected to electrophoresis, and transferred to 0.2 pm polyvinylidene difluoride
membranes (Millipore). After blocking with 5% nonfat milk in Tris-buffered saline
buffer with Tween 20 (TBS/T) for 4h at room temperature, the membrane was
incubated with the appropriate primary antibodies (Abmart GFP-tag mAb, 1:1000) for

18h at 4<C. Next, horseradish peroxidase (HRP)-conjugated goat anti-mouse
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secondary antibody (1:5000, ZSGB-BIO) was applied for 2h at room temperature.
Finally, the signals were visualized using an Enhanced Chemiluminescence (ECL) kit
(Roche).

TAAI

TAALI is short for the “tRNA gene copy number and amino acid usage” accordance
index and measures the co-adaption of amino acid usage and tRNA gene copy number.
For a given protein sequence, the frequencies of the 20 types of amino acids are
unique. For a specific organism, the average frequencies of amino acid usage also

differ among organisms.

X, = BNA 123,20 [1]
S NRNA,
k=1
Y= 123,20 [2]
D Naa,
k=1
(% =X)(y, -V
raal -2 0D G55 00 [3]

I =X (- Y

where X; is the frequency of the gene copy of tRNA i in one organism’s genome
in equation [1], and let Y be the frequency of amino acid i of in a specific protein in
the equation [2]. The value NtRNA is the corresponding gene copy number of tRNAI
decoding all codons for the ith amino acid. The value Naai is the corresponding counts
of the ith amino acid in special protein or genome. TAAI in equation [3] is the
Spearman correlation index of X and Y. In addition to the TAAI of one protein, we
also calculated the general TAAI of an organism to denote its overall co-adaption. The

overall value equals the average of all proteins’ TAAIs for that organism.
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Bioinformatics data source

This work requires tRNA gene annotation information that is as accurate as possible;
therefore, we compared annotation information from three databases. We chose three
widely used databases: GenBank (Benson et al. 2013), a comprehensive
bioinformatics database; the Genomic tRNA Database (Chan and Lowe 2009), which
uses tRNAscan-SE (Lowe and Eddy 1997); and tRNAdb (JUnling et al. 2009), which
contains more than 12,000 tRNA genes. A total of 410 genomes have the same tRNA
gene annotation information in all three databases. If the tRNA gene annotations for
one organism were consistent in the three databases, we took it as reliable and then
employed this organism in further analysis. Protein sequences were acquired from
GenBank, and protein abundance values were acquired from PaxDb (Wang et al.
2012).

We employed 53 organisms’ growth times (Table S4). Here, we chose those
archaea and bacteria with growth times from (Rocha 2004). Among 410 organisms
filtered for reliable tRNA gene annotation, 376 archaea and bacteria were chosen to
perform the analysis of correlation between TAAI and genome sizes. When
comparing the TAAIs among proteins within a specific genome, we analyzed the
protein abundances and TAAIs in six model organisms, which have integrated
abundances in PaxDb (Wang et al. 2012).
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Figure Legends

Fig. 1 Co-adaption between frequencies of tRNA gene copy numbers and amino
acid usage

A) Linear fitting results for 410 organisms. When the p value of linear fitting is
greater than 0.05, the lines are blue; red indicates a p value less than 0.05. B)
Corresponding Spearman rank correlation coefficients r for the linear fit of 410
genomes. C) Linear fit of four model organisms.

Fig. 2 Co-adaption at the genome scale

A) TAAIs of bacteria divided into two groups based on their growth rates. The dataset
includes 53 bacteria with available information on growth rates. The fast group has
higher TAAIs than the slow. B) Prokaryotic organisms’ TAAIs, associated with
corresponding genome sizes. The prokaryotic organisms were divided into three
groups, showing significantly different TAAIs. Here, 376 prokaryotic genomes were

involved in the analysis of correlation between TAAIs and genome sizes.

Fig. 3 Intra-genome variation and translation factors

A) TAAI distribution in three model organisms. B) A stacked area map of the five E.
coli genes with the lowest TAAI values, and a stacked area map of the five E. coli
genes with the highest TAAI values. The amino acid frequencies were sorted by tRNA

gene copy number. The stacked area that increases with the order of tRNA gene copy
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frequencies (horizontal axis) shows better co-adaption. C) Analysis of six model
organisms’ abundance shows that highly expressed proteins generally have higher
TAAIs than proteins with lower expression levels. The high and low values were

normalized to each genome’s median value of abundance.

Fig. 4 EGFP expression of with original and optimized TAAIs in E. coli

A) ATAAI is the upregulated TAAI value resulting from adding a copy of one of the
20 standard tRNAs. The star marks tRNA-Asp, tRNA-lle and tRNA-Tyr. B) Confocal
micrographs of the control and experimental groups present different fluorescence
intensities in the EGFP channel; the corresponding merge figures of the bright-field
and EGFP channel are shown in Fig. S1. C) Fluorescence intensities of four nascent
sequences with EGFP at 513nm from 0 h to 2.5 h. All of these results showed that in
the experimental group transformed with the Asp tRNA gene, there was an
approximately ten-fold lift. D) Western blot results for the nascent sequences. The
following histograms show the normalized density of the corresponding lane, and the
chemiluminescence intensity of the corresponding target band using stain-free
technology (Bio-Rad). The corresponding electrophoretogram, shown in

Supplementary Fig. 1B, reflects the loading volume of the total proteins.

Fig. 5 Comparison of the co-adaption (TAAI) for three domains
The medians for Archaea, Bacteria and Eukarya were 0.37, 0.61 and 0.69. Archaea

had relatively low TAAIs, and Eukarya had the highest. Analysis of variance revealed
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that the three domains were significantly different, with a p value close to zero (p =

2.57e-06).
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Table Legends
Table 1 Analysis of the potentially rapidly expressed proteins according to their

functions in E. coli and S. cerevisiae.

E. coli S. cerevisiae

Number Abundance TAAI CAl Number Abundance TAAI CAl
Whole genome 3133 319.2 0.51 0.35 6087 163.8 0.62 0.18
Ribosome subunits 57 4724.28 0.59 0.63 178 1231.65 0.74 0.48
Cell division 19 131.84 0.57 0.35 20 15.09 0.67 0.16
Two-component

58 80.7 0.57 0.29 216 203.86 0.65 0.19
system
Mismatch repair 20 57.21 0.53 0.34 19 3251 0.72 0.16
Sugar metabolism 47 325.52 0.52 0.41 28 563.53 0.69 0.26

Proteins in bold face had lower corresponding values than genome’s average values.
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