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Abstract

Motivation: Translation initiation is a key step in the regulation of gene expression. In addition to the
annotated translation initiation sites (TISs), the translation process may also start at multiple alternative
TISs (including both AUG and non-AUG codons), which makes it challenging to predict TISs and study
the underlying regulatory mechanisms. Meanwhile, the advent of several high-throughput sequencing
techniques for profiling initiating ribosomes at single-nucleotide resolution, e.g., GTI-seq and QTI-seq,
provides abundant data for systematically studying the general principles of translation initiation and the
development of computational method for TIS identification.
Methods: We have developed a deep learning based framework, named TITER, for accurately predicting
TISs on a genome-wide scale based on QTI-seq data. TITER extracts the sequence features of translation
initiation from the surrounding sequence contexts of TISs using a hybrid neural network and further
integrates the prior preference of TIS codon composition into a unified prediction framework.
Results: Extensive tests demonstrated that TITER can greatly outperform the state-of-the-art prediction
methods in identifying TISs. In addition, TITER was able to identify important sequence signatures for
individual types of TIS codons, including a Kozak-sequence-like motif for AUG start codon. Furthermore,
the TITER prediction score can be related to the strength of translation initiation in various biological
scenarios, including the repressive effect of the upstream open reading frames (uORFs) on gene
expression and the mutational effects influencing translation initiation efficiency.
Availability: TITER is available as an open-source software and can be downloaded from https:

//github.com/zhangsaithu/titer

Contact: lzhang20@mail.tsinghua.edu.cn and zengjy321@tsinghua.edu.cn

1 Introduction
Translation initiation plays an important role in mRNA translation, in
which the methionyl tRNA unique for initiation (Met-tRNAi) identifies the
AUG start codon and triggers the downstream translation process (Jackson
et al., 2010; Sonenberg and Hinnebusch, 2009; Hershey et al., 2012). As

translation initiation is an essential step in controlling gene expression
and protein synthesis, the dysregulation of the initiation process
can cause various human diseases, including cancers and metabolic
disorders (Sonenberg and Hinnebusch, 2009; Hershey et al., 2012).
On the other hand, the mechanisms underlying translation initiation,
e.g., the recognition of a translation initiation site (TIS) by the 80S
ribosome assembly, are far more complicated than scientists had initially
believed (Gao et al., 2015; Lee et al., 2012). In particular, experimental
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studies have shown that the eukaryotic translation is not always initiated
at the canonical AUG start codons (Gao et al., 2015; Peabody, 1989;
Lee et al., 2012; Kozak, 1989). In addition to those annotated translation
initiation sites (aTISs), both upstream (uTISs) and downstream translation
initiation sites (dTISs) can also occur at non-AUG codons, which yields
alternative open reading frames (ORFs) that can be translated into short
peptides or affect the expression levels of the main ORFs (Calvo et al.,
2009; Sonenberg and Hinnebusch, 2009; Jackson et al., 2010; Hershey
et al., 2012; Barbosa et al., 2013). This underscores the necessity of a
better understanding of the mechanism of TIS recognition.

Ribosome profiling (ribo-seq), a high-throughput deep sequencing
based technique that measures the ribosome protected fragments in vivo,
has become a widely-used method to quantify the translation dynamics on
a transcriptome (Ingolia et al., 2009, 2012). However, the standard ribo-
seq is not suitable for directly detecting TISs (Lee et al., 2012). Based
on ribo-seq, additional techniques, e.g., the global translation initiation
sequencing (GTI-seq) (Lee et al., 2012) and the quantitative translation
initiation sequencing (QTI-seq) (Gao et al., 2015), have been developed
for a systematic mapping of the start codon positions at single-nucleotide
resolution in vivo. By far, these techniques have provided abundant data
for investigating the principles of translation initiation and translational
control.

A variety of computational methods have been developed to predict
alternative TISs or ORFs (Zien et al., 2000; Hatzigeorgiou, 2002; Li and
Jiang, 2005; Zur and Tuller, 2013; Chew et al., 2016). However, most of
these methods only focused on the AUG start codon and did not consider
the widely-observed non-AUG TISs. In addition, few studies have utilized
experimental data generated by GTI-seq or QTI-seq in their works, which
limits the empirical predictive power of these methods. Recently, a linear
regression based approach, called PreTIS, was proposed to predict non-
canonical TISs by incorporating both AUG and its near-cognate codons
(i.e., the codons differing from AUG by one nucleotide), in which TISs
identified by GTI-seq were used to train the prediction model (Reuter et al.,
2016). However, only alternative TISs in the 5’ UTR (i.e., uTISs) were
considered by PreTIS, and several constraints on the candidate TISs (e.g.,
the codon position in the transcript and the existence of an orthologous
mouse sequence) had to be imposed due to the limitations of their feature
engineering. To our best knowledge, our work is the first attempt to
predict all possible TISs, including uTISs, aTISs and dTISs, in a unified
framework without any restriction to the codon site of interest.

Recently, deep learning has become one of the most effective
and powerful prediction methods in machine learning (Hinton and
Salakhutdinov, 2006; Hinton et al., 2006). It has been widely used and
shown to be able to achieve the state-of-the-art prediction performance
on various machine learning tasks, such as speech recognition (Hinton
et al., 2012), image classification (Hinton and Salakhutdinov, 2006) and
natural language processing (Collobert et al., 2011). In addition, deep
learning is gradually gaining its popularity in bioinformatics and has
yielded superior performance over conventional learning methods on a
variety of biological prediction tasks, such as the predictions of protein-
nucleotide binding (Zhang et al., 2015; Alipanahi et al., 2015), functional
effects of noncoding sequence variants (Quang and Xie, 2016; Zhou and
Troyanskaya, 2015) and ribosome stalling (Zhang et al., 2016).

In this study, we have developed a deep learning based framework,
named TITER (Translation Initiation siTE detectoR), for accurately
predicting TISs based on the available high-throughput sequencing
data. TITER possesses more flexibility than previous methods, and
integrates the prior preference of the TIS codon composition as well
as their surrounding sequence contexts into a unified framework, in
which an ensemble of hybrid deep convolutional and recurrent neural
networks is implemented to effectively and robustly capture the sequence
features of translation initiation. Extensive validation tests have shown
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Fig. 1. Schematic overview of the TITER pipeline. See the main text for more details.

that TITER can greatly outperform the state-of-the-art computational
approaches in detecting TISs. In addition, TITER can successfully
identify significant sequence motifs for different TIS codons, including
a Kozak-sequence-like motif for the AUG TIS codon. By combining gene
expression data with TITER analysis, we found that the predictions of
TITER well correlated with translation efficiency (TE) of genes, which
basically reconfirmed the repressive effect of uORFs on gene expression.
Furthermore, our comparative analyses on several important mutations
around TISs showed that the fold changes of TITER prediction scores
well conformed to the experimentally-verified mutational effects reported
in the literature (Noderer et al., 2014; Calvo et al., 2009). These results
demonstrated that TITER can offer a powerful tool to model the sequence
features of translation initiation and identify potential TISs, which will
provide useful insights into understanding the underlying mechanisms of
translation initiation.

2 Methods

2.1 Datasets

We mainly used the QTI-seq data collected from the HEK293 cell line (Gao
et al., 2015) and the annotated TISs retrieved from Ensembl v84 (Aken
et al., 2016) (together denoted by Gao15) to train and test TITER.
Specifically, we first retrieved all transcripts, each containing at least
one translation initiation site identified by the QTI-seq experiment. Then
we combined the QTI-seq identified TISs among these transcripts with
the corresponding annotated TISs obtained from the Ensembl database,
and regarded them as positive samples. To construct a dataset of negative
samples that well reflected the imbalance of positive and negative samples
in vivo, for each TIS in the positive dataset, we chose up to ten codon sites of
the same triplet within the same transcript as negative samples. Considering
the leaky scanning nature of the translation initiation process (Michel et al.,
2014), we searched for the negative samples starting from the 5’ end of an
mRNA, until ten eligible sites were found. Altogether, the Gao15 dataset
consisted of 9,776 positive samples and 94,899 negative samples from
4,111 transcripts, among which 400 transcripts were reserved for testing
and the others were regarded as our training data (denoted by Gao15_test
and Gao15_train, respectively).

To further evaluate the prediction performance of TITER in a scenario
with an unlimited ratio of positive and negative samples, from the 400
test transcripts, we also constructed another test dataset (denoted by
Gao15_test_extended), in which we identified all possible initiation codon
sites before the last TIS of each transcript when searching for negative
samples. Notably, as QTI-seq identified versatile TISs in terms of both
codon composition and positions, our constructed training and test datasets
also reflected this versatility, which thus enabled TITER to capture diverse
sequence features of translation initiation that exist in vivo. In particular,
we found that in the QTI-seq data derived from (Gao et al., 2015), besides
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Fig. 2. Statistics of the translation initiation sites in the Gao15 dataset. (a) Codon
composition of TISs, in which only those codons with a fraction > 1% are shown. (b)
Fractions of different types of TISs.

the canonical aTISs and the conventional AUG TISs, there also exist a
large number of alternative TISs (i.e., uTISs and dTISs) and non-AUG
TISs (e.g., CUG, GUG and UUG) (Fig. 2). This observation underscores
the necessity of modeling the universal rules of translation initiation.

2.2 Modeling the preference of codon composition of TISs

It has been experimentally validated that there is a significant preference
of codon composition among TISs (Lee et al., 2012; Gao et al., 2015).
For example, the AUG codon generally plays a dominant role (>50%)
at the TISs (Fig. 2(a)). Interestingly, other codons that differ from AUG
at the first nucleotide (nt), including CUG, GUG and UUG, also greatly
contribute to translation initiation (∼25%; Fig. 2(a)). Here, we collectively
denote these four codons by NUG, in which “N” stands for any possible
nucleotide. With this prior knowledge on codon preference, we propose to
explicitly model the preference of codon composition of TISs by

CodonScore(c) = log+

(
# of c′s at TISs

# of TISs

/
# of c′s in background

# of background codons

)
,

(1)
in which CodonScore(c) is defined as the preference of codon
composition for a certain codon c, # denotes the number of the
entities in the defined category and the background is defined as the
upstream 1/3 segment of the transcripts, following the same principle
as in (Gao et al., 2015). In particular, we denote the function between
the parentheses on the right-hand side of Eq. 1 by f(c). Then we define
log+(x) = log(x) if log(x) > 0, log+(x) = αx otherwise, where
α = min{log(f(c))| log(f(c)) > 0, c is a codon}. This definition is
introduced as we notice that for those codons that are less similar with
the canonical AUG start codon, their abundance in the QTI-seq dataset is
actually lower than the background, leading to a negative CodonScore
value if we only use the log(x) form. Although these codons only account
for ∼10% in the Gao15 dataset, to avoid the over-devaluation of the
CodonScores for these codons due to the nature of logarithm function,
we propose to use a linear model to define the CodonScore for these
codons. In particular, the top five codons with the highest CodonScores
value are AUG, CUG, GUG, UUG and ACG (Supplementary Fig. 1),
which is consistent with the statistics shown in Fig. 2(a).

2.3 Modeling the contextual features of TISs

It has been indicated that the contextual sequences around the TISs can
influence the likelihood of translation initiation (Kozak, 1989; Noderer
et al., 2014). For example, the upstream and downstream sequences of
the canonical AUG TISs exhibit a consensus motif called the Kozak
sequence (Kozak, 1989). This observation underlies the rationale of
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Fig. 3. Schematic illustration of (a) the hybrid deep neural network architecture and (b) the
bootstrapping-based technique used in TITER. See the main text for more details.

modeling the translation initiation events by encoding the contextual
sequence features surrounding TISs.

Here, we develop a deep neural network to systematically model
the sequence features of TISs (Fig. 3(a)). In particular, each TIS is
extended both upstream and downstream by 100 nts, which yields the
contextual profile of a translation initiation event and is denoted by
s = (n1, ..., n203), where ni denotes the nucleotide at the ith position.
To characterize the local motifs of the extended sequence s, we first
encode the nucleotides using the one-hot encoding technique (Pedregosa
et al., 2011), that is, a nucleotide of a particular type (A, U, C, or G) is
encoded by a binary vector of length four, in which the corresponding
position is one while the others are zeros, after indexing all four types of
nucleotides. Then we employ multiple convolution operators (denoted by
conv(·)) to scan the encoded sequence profile and detect the local motifs
around each TIS. After that, the pooling operators (denoted by pool(·))
are used to identify the activated motifs and also reduce the dimensions of
hidden features. Note that the conventional convolution-pooling structures
are order insensitive, as they only detect whether certain motifs exist
regardless of their positions or orders. To further characterize the motif
order that may also contribute to translation initiation, we also stack a
long short-term memory (LSTM) network (denoted by LSTM(·)) upon
the convolution-pooling module, which takes the pooled feature vectors
as input and models the long-term dependencies between different motifs.
Finally, the outputs of the LSTM at all positions are concatenated and
fed into a logistic regression layer (denoted by logist(·)) to compute the
probability of translation initiation for the input sequence. Indeed, when
considering the LSTM outputs at all positions, we also implement the
attention mechanism that has been widely used in deep learning (Denil
et al., 2012; Larochelle and Hinton, 2010) to leverage the relevance of
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each position to the final prediction. Altogether, by fully exploiting both
sequence composition and motif orders, the hybrid convolutional and
recurrent neural network in TITER computes the following score,

ContextScore(s) = logist(LSTM(pool(conv(encode(s))))). (2)

The sequence profiles of non-TISs (i.e., the negative samples) can
be modeled in the same manner. Note that a similar hybrid neural
network architecture has also been implemented in (Quang and Xie, 2016;
Hassanzadeh and Wang, 2016) for different tasks, i.e., predicting the
functional effects of noncoding mutations and the DNA binding protein
targets, respectively.

2.4 Model training and model selection

Given the training samples {(si, yi)}i, the loss function of our deep
learning framework is defined as the sum of the negative log likelihoods
(NLLs), i.e.,

loss = −
∑
i

log(yiContextScore(si)+

(1− yi)(1− ContextScore(si))),
(3)

where yi indicates whether si is the sequence profile of a TIS or not. We
use the standard error backpropagation algorithm (Rumelhart et al., 1986)
and the batch gradient descent method (Bengio, 2012) to train the hybrid
neural network and search for the network weights that minimize the loss
function of Eq. 3. Several regularization techniques, including the max-
norm constraints on weights (Srebro et al., 2005), dropout (Srivastava et al.,
2014) and early stopping (Bengio, 2012), are also employed to optimize
the training process and address the overfitting problem.

Our hybrid deep neural network architecture and various optimization
techniques used in the training process have introduced several
hyperparameters, e.g., the kernel size, kernel number and max-norm of
weights, that need to be determined. A proper hyperparameter calibration
procedure can help yield better solutions to the optimization problem
in Eq. 3. Here, we use the tree-structured Parzen estimator (TPE)
approach (Bergstra et al., 2011) to calibrate the hyperparamters in our
model, including kernel size, kernel number and max-norm of weights
in the convolution layer, pooling length of the max-pooling layer, output
dimension of the LSTM layer, dropout rate, and the optimizer algorithm.
In particular, we first use all the positive training samples and an equal
number of randomly-selected negative training samples to optimize the
hyperparameters based on TPE (with 100 evaluations), and then choose
the hyperparameters that achieve the minimum loss to further train our
final models (Supplementary Table 1).

We realize that the task of predicting TISs is an imbalanced
classification problem (i.e., much more negative samples than positive
ones), for which the standard training procedure designed for balanced
samples cannot be appied directly. On the other hand, making use of
more negative samples in the training process can lead to a more robust
model with less variance in prediction (Wallace et al., 2011). To tackle
this imbalance problem, here we employ a bootstrapping-based technique
(Fig. 3(b)) derived from the theory established in (Wallace et al., 2011).
Briefly, we first construct several groups of bootstrap samples (denoted
by Si) from the original imbalanced population S, by randomly selecting
samples with replacement. Then for each groupSi, we balance the samples
by downsampling, i.e., randomly selecting an equal number of positive
and negative samples from Si, which yields a balanced dataset Bi. After
that, a hybrid deep neural network Ni is trained based on each dataset
Bi independently, resulting in an ensemble of binary classifiers {Ni}.
Given an input sequence s, its final prediction score is averaged over the

prediction scores output by all classifiers, i.e.,

ContextScore(s) =
1

n

n∑
i=1

Ni(s), (4)

in which n is the total number of the constructed balanced datasets in
{Bi} (which is also equivalent to the total number of trained classifiers
in {Ni}). We apply this bootstrapping-based technique to our training
dataset and train 32 independent deep neural networks. After that, their
prediction scores are averaged and used as the final estimated probability
of translation initiation for the given input sequence profile.

Due to the nature of non-convex optimization, random weight
initialization can influence the search results of the gradient descent
algorithm (Bengio, 2012). This initialization bias may also introduce
variance to our modeling and further affect the prediction performance. In
TITER, the aforementioned bootstrapping-based technique can alleviate
such an initialization bias in addition to the sample bias, as the network
weights have been initialized independently for each balanced sample
group before the training process.

The hybrid deep neural network of TITER has been implemented using
the Keras library1, and the Tesla K20c GPUs have been used to speed up
the training process. The TPE algorithm for hyperparameter calibration
has been implemented based on Hyperas2, a Python library for optimizing
hyperparameters of the models implemented based on Keras.

2.5 Integrating the preference of codon composition and
the contextual features of TISs

As the neural network in the binary classification scenario mainly
discriminates the positive and negative samples based on the contextual
sequence features, it may be less sensitive to the difference in the preference
of codon composition of TISs. To improve the sensitivity of our method
and to make a tradeoff between these two complementary information,
here we integrate both CodonScore and ContextScore to derive the
final score representing the likelihood of translation initiation, i.e.,

TISScore(s) = CodonScore(s)× ContextScore(s), (5)

where s denotes the sequence profile of a codon site of interest, and a high
TISScore is outputted only if both ContextScore and CodonScore
are large enough. Basically, the final score is obtained by weighting
between the contributions of the prior preference of codon composition
and the sequence contexts to translation initiation.

3 Results

3.1 TITER accurately predicts TISs

Here, we performed extensive tests to show that TITER greatly
outperformed the state-of-the-art methods in predicting TISs, including
WRENT (Chew et al., 2016) and PreTIS (Reuter et al., 2016). Note that
WRENT cannot compute the initiation scores for those non-AUG codons,
while PreTIS only focuses on the 5’ UTR for the near-cognate codons (i.e.,
the codons differing from AUG by one nucleotide).

After hyperparameter calibration, we first tested our method using
a five-fold cross-validation procedure and evaluated its prediction
performance based on both the areas under the receiver operating
characteristic (AUROC) and the precision recall (AUPR) curves. We
found that without using the recurrent layer and the bootstrapping-
based technique in our framework, the prediction performance dropped

1 https://keras.io/
2 https://github.com/maxpumperla/hyperas/

.CC-BY-NC 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 12, 2017. ; https://doi.org/10.1101/103374doi: bioRxiv preprint 

https://doi.org/10.1101/103374
http://creativecommons.org/licenses/by-nc/4.0/


“titer_ismb” — 2017/5/9 — page 5 — #5

Deep learning for predicting translation initiation 5

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver operating characteristic curves 
 on Gao15_test and Gao15_test_extended datasets

preTITER Gao15_test: 0.891

preTITER Gao15_test AUG sites: 0.920

preTITER Gao15_test non-AUG sites: 0.843

WRENT Gao15_test AUG sites: 0.746

preTITER Gao15_test_extended: 0.848

TITER Gao15_test_extended: 0.891

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Precision-recall curves 
 on Gao15_test and Gao15_test_extended datasets

preTITER Gao15_test: 0.601

preTITER Gao15_test AUG sites: 0.708

preTITER Gao15_test non-AUG sites: 0.440

WRENT Gao15_test AUG sites: 0.249

preTITER Gao15_test_extended: 0.525

TITER Gao15_test_extended: 0.618

(b)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Receiver operating characteristic curves 
 on Calviello16 dataset

TITER: 0.716
WRENT: 0.526
PreTIS: 0.677

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Precision-recall curves on Calviello16 dataset

TITER: 0.404
WRENT: 0.228
PreTIS: 0.366

(d)

Fig. 4. Prediction performance on different test datasets. (a-b) Comparison of prediction performance between different methods on the Gao15 dataset evaluated by (a) ROC and (b) PR
curves, respectively. (c-d) Comparison of prediction performance between different methods on the Calviello16 dataset evaluated by (c) ROC and (d) PR curves, respectively. “preTITER”
denotes a preliminary version of our deep learning framework that only considered the context features of TISs.

dramatically compared to that of the proposed model (Supplementary
Fig. 2), especially for the AUPR score (with drop in AUPR by ∼ 10%),
demonstrating the important contributions of these techniques to reduce
the modeling variance and boost the prediction accuracy. Also, our model
yielded better prediction performance on the AUG codons than non-AUG
ones (Supplementary Fig. 2). This indicated that the sequence features of
AUG TISs may provide more predictive information in our framework
than those of non-AUG TISs. In addition, we observed that even for the
AUG sites, our method greatly outperformed WRENT, with increases in
AUROC and AUPR scores by 20.9% and 47.0%, respectively.

We also performed additional tests on an independent dataset involving
400 transcripts derived from the Gao15 dataset (see Methods). We first
validated the prediction performance of TITER on the Gao15_test dataset,
in which the positive and negative samples were selected in the same
way as in the construction of our training data, resulting in 935 TISs
and 9,098 non-TISs. Test results revealed comparable or even superior
prediction performance on this dataset compared to the previous cross-
validation results (Figs. 4(a) and 4(b), Supplementary Fig. 2), which
further validated that our model did not suffer from the overfitting problem.
Similarly, our method also achieved better prediction performance on
AUG sites than non-AUG ones, and greatly outperformed WRENT on
AUG codons with increases in AUROC and AUPR scores by 17.4%

and 46.1%, respectively (Figs. 4(a) and 4(b)). Furthermore, we tested
TITER on a more natural and realistic setting, in which we considered all
negative samples (i.e., non-TISs) surrounding the positive ones (i.e., TISs)
in a transcript. By mainly focusing on those codons with relatively high
probability of translation initiation (i.e., CodonScore > 1, including
AUG, CUG, GUG, UUG and ACG), we selected all the non-TISs of the
same triplet before the last TISs for each transcript as negative samples
to construct the Gao15_test_extended dataset, which resulted in 767
positive and 9,914 negative samples in total. Test results showed that
TITER also yielded excellent prediction performance with AUROC and
AURP scores of 89.1% and 61.8%, respectively (Figs. 4(a) and 4(b)).
Specifically, the prediction performance was improved after incorporating
the prior knowledge on the preference of codon composition of TISs (i.e.,
CodonScore), with an increase of AUPR score by 9.3% (Figs. 4(a)
and 4(b)), which thus demonstrated the necessity of our integrative
modeling.

To further validate the generalization of our framework across
different datasets and organisms, we additionally evaluated the prediction
performance of TITER on an additional dataset of mouse (denoted by
Gao15_mouse), which was also derived from Gao et al. (2015). All
the data preprocess procedures were the same as those for the human
data (i.e., the Gao15 dataset). In particular, we randomly selected 360
transcripts as the test data and used the remaining transcripts as our training
data. The final prediction performance was evaluated on the test data.

Based on the same hyperparameter values calibrated on the Gao15 dataset
(Supplementary Table 1), we found that the prediction performance of
TITER on the mouse data was comparable or even superior to that on the
human data, demonstrating the generalization capacity of our framework
(Supplementary Fig. 4).

To facilitate the comparison between TITER and PreTIS, we also
constructed a separated uTIS test dataset (denoted by Calviello16).
Specifically, this dataset included AUG TISs identified by RiboTaper (Calviello
et al., 2016), a statistical method to define the open reading frames
(ORFs) through the three-nucleotide periodicity of the ribosome profiling
data. The TISs from the transcripts and their isoforms used for training
either TITER and PreTIS were excluded, resulting in 383 available
transcripts. Furthermore, since the feature engineering of PreTIS required
the transcript harboring the TIS of interest to have an orthologous mouse
sequence and to be at least 99 nts downstream from its transcript start site,
we also excluded all the samples that failed to meet these requirements
(∼164 transcripts), leaving 253 transcripts available for the test. The
positive and negative samples were labeled using the same method as
described in (Reuter et al., 2016), resulting in an imbalanced dataset
containing 227 positive and 864 negative samples. Tests on the Calviello16
dataset showed that TITER still greatly outperformed both WRENT and
PreTIS in this independent dataset, with increases in AUROC by 19.0%

and 3.9%, respectively, and in AUPR by 17.6% and 3.8%, respectively
(Figs. 4(c) and 4(d)). Note that here the comparison only focused on the
AUG codons since RiboTaper only identified the ORFs starting with AUG.
In addition, TITER yielded excellent prediction performance on the Gao15
dataset when considering uTISs (still outperforming PreTIS) and dTISs
separately (Supplementary Fig. 5).

3.2 TITER captures the sequence motifs of different TIS
codons

The hybrid deep neural network of TITER can be easily extended to
generate the sequence motifs of different TIS codons. Based on the similar
idea to that used in (Simonyan et al., 2013), here we generated the sequence
motifs of a particular TIS codon by optimizing the following problem:

arg min
sl,sr

(ContexScore(sl ⊕ c⊕ sr)− 1)2, (6)

in which sl, sr and c stand for the left sequence, the right sequence and
the TIS codon of interest, respectively, and ⊕ represents the sequence
concatenation operation. Basically, the above formulation minimizes the
difference between the predicted and the positive labels, and finds the
optimal sequence with the highest probability of being a TIS for that
particular codon. By fixing the weights of a trained neural network, we
can optimize the above problem using the gradient descent technique.
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Fig. 5. The sequence motifs generated by TITER for (a) AUG (ATG), (b) CUG (CTG), (c) GUG (GTG) and (d) UUG (TTG) TIS codons, respectively. The final position weight matrix
(PWM) for each TIS codon was calculated by averaging the optimal input sequences computed by the ensemble of 32 deep neural networks in TITER. The base sequence motifs were
visualized using Seq2Logo v2.0 (Thomsen and Nielsen, 2012). All the sequence motifs were visualized in the cDNA setting.

Table 1. Results on estimating translation efficiency (TE) from the TITER prediction scores, using a linear regression model with different
combinations of features.

Feature set Feature coefficients in regression (mean±std) Spearman’s correlation r P value MSE

aTIS 1.833± 0.034 0.234 1.077e−72 3.081

aTIS+uTIS 1.774± 0.040, −0.126± 0.005 0.245 3.801e−79 3.063

aTIS+AUG 1.709± 0.038, −0.029± 0.005 0.234 2.712e−72 3.078

aTIS+uTIS+lofUTR 1.744± 0.037, −0.122± 0.005, −0.0001± 3.634e−5 0.236 2.228e−73 3.063

“MSE” denotes the mean square error. “aTIS” represents the predicted TISScore for the aTIS, “uTIS” represents the sum of TISScores of all the eligible
uTISs, “AUG” represents the number of AUGs in the upstream region of the aTIS, and “lofUTR” represents the length of the 5’ UTR. The mean and
the standard deviation (std) of the feature coefficients in the regression model in a 10-fold cross-validation procedure were calculated.

Here, we mainly focused on the motif of a region covering both
upstream and downstream 10 nts from the TIS codon of interest. In
particular, for the canonical AUG start codon, our generated motif was
quite similar to the Kozak sequence, i.e., (gcc)gccRccAUGG, which was
previously validated to be consensus for aTISs (Kozak, 1989) (Fig. 5(a)).
In the Kozak sequence, a lower case indicates a commonly occurred base, a
upper case denotes a highly conserved base, and the sequence in a bracket
is of uncertain significance. However, simply depending on the Kozak
sequence or similar methods like WRENT cannot accurately identify the
experimentally-verified AUG TISs (Fig. 4), as the prior knowledge on
the sequence motif surrounding the annotated AUG TISs may lead to a
biased estimation, which may also explain the slight difference between
our generated sequence motif and the Kozak sequence (Fig. 5(a)). Note that
the Kozak sequence and the position weight matrix (PWM) based methods
(e.g., WRENT) simply assume the independence between different base
positions, which largely simplifies the sequence features contributing to
translation initiation. In contrast, the deep neural network of TITER can
capture more abundant information, such as the correlation between bases
in distinct positions, which is generally also relevant to the prediction of
translation initiation.

We also generated the sequence motifs for other three NUG TIS
codons, including CUG, GUG and UUG. Interestingly, we found that these
codons own specific motifs different from that of AUG, especially in the
upstream region, indicating that there may exist a different mechanism for
alternative translation initiation (Figs. 5(b), 5(c) and 5(d)). Moreover, we
observed that these three codons exhibit an (AU)-rich motif in their local
downstream regions. As the (AU)-rich regions of mRNAs are commonly
associated with high free energy and weak secondary structure (Waterman
and Smith, 1978; Lehninger et al., 2008), this implied that the unstructured
regions may assist the translation initiation and the following translation
elongation process, which can also be supported by known evidence from
the previous study (Chew et al., 2016).

3.3 Prediction of TITER correlates with translation
efficiency

Previous studies have shown that translation initiation at aTISs and uTISs
can play important functional roles in regulating gene expression (Ferreira
et al., 2013; Chew et al., 2016; Hinnebusch et al., 2016; Calvo et al., 2009).
In particular, it has been believed that the strength of translation initiation
signals at aTISs can positively correlate with translation efficiency,
while the occurrence of uTISs may repress the expression of the main
ORFs (Ferreira et al., 2013; Chew et al., 2016; Hinnebusch et al., 2016;
Calvo et al., 2009; Jackson et al., 2010; Sonenberg and Hinnebusch, 2009;
Hershey et al., 2012). Here, we were particularly interested in investigating
the contributions of the predicted TISScores at aTISs and uTISs to the
translation efficiency of the main ORFs.

Here, we defined the score of translation efficiency (TE) as the
logarithm of the protein expression level divided by the corresponding
mRNA expression level. Specifically, the tandem mass spectrometry
(MS/MS) data and the mRNA-seq data of HEK293 cell line were obtained
from the previously published studies (Geiger et al., 2012; Nam et al.,
2014) and were used to derive the levels of protein and mRNA expression,
respectively. The iBAQ normalized intensity and the RPKM value were
averaged among different replicates for protein and mRNA expression,
respectively. We only considered those proteins that were detected in at
least two out of three replicates in the MS/MS data. The Uniprot IDs of
the genes measured by mass spectrometry were matched to the Ensembl
transcript IDs by the Uniprot Retrieve/ID mapping interface (Consortium,
2015). As the current tandem mass spectrum technique cannot accurately
distinguish isoforms, our analysis was carried out on the gene level as
in Calvo et al. (2009). Specifically, for a Uniprot ID that was mapped to
multiple transcripts, we selected the transcript with the largest expression
value measured by mRNA-seq. The final dataset of matched proteins and
mRNAs contained 5,752 genes in total. Consistent with the previous
report (Lundberg et al., 2010), we also observed a certain level of
correlation between protein and mRNA expression levels (Spearman’s
correlation coefficient r = 0.67), validating the quality of this dataset
to some extent. For uTISs, we followed the same definition of uORF
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as described in (Calvo et al., 2009), in which a uORF is defined as a
continuous segment of codons that has a start codon in the 5’ UTR, a stop
codon before the end of the main ORF and a minimum length of nine nts
(including the stop codon).

We first employed a linear regression model (implemented based
on the scikit-learn library (Pedregosa et al., 2011)) to predict the TE
value from the TISScore of aTIS for each transcript. We applied a 10-
fold cross-validation procedure to evaluate the correlation between the
predicted and the experimentally-derived values. Test results showed that
the predicted TE values based on the TISScores of aTISs computed
by TITER well correlated with the experimentally-derived TE values
(Spearman’s correlation coefficient r = 0.234; Table 1), indicating
that TISScore can provide predictive power to estimate the strength of
translation initiation. Note that there are a variety of biological processes
between translation initiation and the final translated protein products that
were not included in our modeling, e.g., translation elongation and protein
folding, which may explain the weakness of the observed correlation
in this test. We further integrated the TISScores of those uTISs that
were confidently predicted to form a uORF and with CodonScore > 1

and ContextScore > 0.95 into the regression model. Interestingly,
after integrating the TISScores of uTISs, the correlation between the
predicted and experimentally-derived TE values increased from 0.234 to
0.245 (Table 1). In particular, the feature coefficients in the regression
model for the TISScores of eligible uTISs were negative, indicating the
repressive effect of uORF on the protein expression. Such an increase in
correlation was limited, which was consistent with the previous report that
the repressive effect of uORF on protein expression level is relatively weak
in human (Chew et al., 2016). To further validate the effectiveness of the
TISScore, we also performed the same prediction task by replacing the
TISScores of uTISs with the number of AUG codons in the 5’ UTR.
We found that with this feature replacement, the difference in correlation
was almost negligible (Table 1), which thus demonstrated the necessity
of considering the contextual sequence features of TISs in the prediction
model. We also considered the length of 5’ UTR (which is presumably
related to the number of undetected uORFs) in the regression model to
test whether those undetected uORFs are influencing TE other than the
detected TISs. Test results showed that this additional feature did not affect
the prediction performance largely (Table 1), implying that very unlikely
our method can suffer from the false negative issue.

3.4 TITER quantifies mutational effects on translation
initiation

Previously, several studies have identified mutations that are putative
to affect translation efficiency through the alteration in the sequence
contexts of TISs (Noderer et al., 2014; Kozak, 2002; Wolf et al., 2011)
or the introduction of extra uORFs (Hinnebusch et al., 2016; Barbosa
et al., 2013; Calvo et al., 2009). As TITER has been shown to be
able to accurately predict bona fide TISs in human transcriptome, we
further explored its ability to quantify the mutational effects that may be
related to the physiological and pathological conditions. In particular, we
selected two sets of mutations that have been validated through different
quantitative reporter assays in (Noderer et al., 2014) and (Calvo et al.,
2009), respectively, and then evaluated how the changes of the predicted
scores associated with the mutations can reflect their functional effects in
vivo.

Through flow cytometry, Noderer et al. (Noderer et al., 2014)
quantitatively measured the effects of seven mutations derived from the
COSMIC database (Forbes et al., 2015) and observed consistent effects
with other known tumor expression patterns (Fig. 6(a)). Specifically, they
employed a dual fluorescence vector with a GFP reporter under the control
of a specific TIS context as well as an independent IRES-driven RFP

reporter as the internal standard, and the final result was reported with
the GFP/RFP ratio. As the experiments were performed by expressing the
reporter from a plasmid, we fed the plasmid sequences containing each TIS
into the TITER framework, and calculated the changes of the predicted
scores (i.e., ContextScore) along with the mutations. As expected, the
changes of ContextScores were in good agreement with the changes
of the experimentally-measured GFP/RFP ratios (Fig. 6(b); Pearson’s
correlation coefficient r = 0.83), indicating that TITER was able to
capture the TIS contexts that are related to translation efficiency, even
though the mutation information was not included in our training data.

In another study, Calvo et al. (Calvo et al., 2009) carried out a series of
luciferase assays to demonstrate the effects of the additionally introduced
non-overlapping uORFs on protein expression of clotting factor XII (FXII).
Their study involved six sequence variants that were associated with the
non-overlapping uORFs (Fig. 6(c)). Similar to the above analysis, the
sequence contexts of individual TISs, including both aTISs and uTISs,
were fed into the TITER framework as input. We observed a good
correlation even when only considering the changes of the prediction
scores for aTISs (Pearson’s correlation coefficient r = 0.75). Notably,
the correlation was further improved (Pearson’s correlation coefficient
r = 0.85), when the ContextScores of uTISs were included through
a linear leaky scanning model proposed by Ferreira et al. (Ferreira et al.,
2013) (Fig. 6(d)), i.e.,

̂ContextScorea = (1−k×ContextScoreu)×ContextScorea, (7)

where ̂ContextScore stands for the calibrated ContextScore, “a” and
“u” denote the “annotated” and “upstream” TISs, respectively, and k is
the model parameter. Note that here we set k = 0.86 based on the
previous result of the synthetic reporter assay reported in (Ferreira et al.,
2013). Together with our previous genome-wide analysis, these results
demonstrated the ability of TITER to quantitatively evaluate the repressive
effects of uTIS/uORF on protein expression.

To further confirm that the signal differences presented above were
not due to the experimental bias and truly reflected the physiological or
pathological effects, we also performed two additional analyses where
the input sequences were changed to the corresponding sequences of the
real transcripts. As expected, the changes of ContextScores for the
transcript sequences still maintained a good consistency with the changes
of experimental signals in both studies, with only a moderate fluctuation
in the correlation, which thus further validated the biological relevance of
our results (Supplementary Fig. 3).

4 Discussion
The prediction of translation initiation sites (TISs) has long been
considered an important task in the studies of gene expression
regulation (Jackson et al., 2010; Sonenberg and Hinnebusch, 2009;
Hershey et al., 2012). For years, progress has been made on the
the identification of the contextual sequence features that can prompt
translation initiation, with the focus on the AUG start codon of the main
ORFs (Kozak, 1989; Zien et al., 2000; Hatzigeorgiou, 2002; Zur and Tuller,
2013; Chew et al., 2016). However, the existence of alternative initiation
codons and multiple initiation positions in vivo further complicate this
prediction problem. Herein, we have developed a deep learning based
framework, called TITER, that can automatically extract intrinsic sequence
features from the experimentally identified TISs. By integrating both the
preference of codon composition and the contextual sequence information,
our unified framework was able to accurately predict various types of TISs.
The subsequent motif analysis has expanded our current understanding of
the sequence contexts of favored TIS codons. Furthermore, additional
analyses of gene expression and mutations showed that TITER can be
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Fig. 6. The prediction scores of TITER correlate with the experimentally-measured mutational effects. (a) and (c) Illustrations of different mutations in the tests derived from studies (Noderer
et al., 2014) and (Calvo et al., 2009), respectively, in which the base sequences were shown in the cDNA setting. The single nucleotide variants (SNVs) were underlined, and the wild type
ATGs and the emerging ATGs were colored in red and blue, respectively. (b) and (d) The correlations between the prediction scores of TITER and the experimentally-measured mutational
effects in the previous studies (Noderer et al., 2014) and (Calvo et al., 2009), respectively.

applied to accurately estimate the probability of translation initiation in
various biological scenarios.

Recently, Reuter et al. proposed a linear model, called PreTIS, that
was trained based on ribosome profiling data and can predict both AUG
and non-AUG TISs in the 5’ UTR (Reuter et al., 2016). However, the
application of this method is limited by the codon position (i.e., at least 99
nts downstream from the transcript start site and in the 5’ UTR) and the
existence of mouse orthologous. Since TITER does not rely on any explicit
feature engineering, it possesses the generality of using any input sequence
for prediction. Moreover, the extensive tests have shown that TITER can
greatly outperform PreTIS, further demonstrating the superiority of our
method.

Previously, a number of techniques based on ribosome profiling have
been developed to identify and characterize the translation initiation
sites. In particular, Lee et al. developed the GTI-seq technique, which
employed an initiation-specific small molecule ribosome inhibitor, called
lactimidomycin (LTM), to capture TISs with both AUG and alternative
codons on a genome-wide scale (Lee et al., 2012). As an updated version
of this method, Gao et al. proposed a dual inhibition technique, called
QTI-seq, to address the limitation of the previous method regarding the
amplification of ribosome signals on TISs and the inflation of signals
at the 5’ ends of transcripts, which achieved a quantitative profiling
of initiating ribosomes (Gao et al., 2015). Moreover, they also applied
stringent mapping protocol and statistical test to increase the fidelity
of the identified TISs (Gao et al., 2015). Therefore, in our study we
mainly chose the dataset generated from (Gao et al., 2015) to facilitate
the training and test of TITER. With the careful selection of data source
and the accurate prediction performance on various test settings, we believe
that TITER will be useful for the community to investigate probable
TISs and further expand our understanding of the mechanisms underlying
translation initiation.
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