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Abstract

Predicting a phenotype and understanding which variables improve that prediction are two

very challenging and overlapping problems in analysis of high-dimensional data such as

those arising from genomic and brain imaging studies. It is often believed that the number

of truly important predictors is small relative to the total number of variables, making

computational approaches to variable selection and dimension reduction extremely

important. To reduce dimensionality, commonly-used two-step methods first cluster the

data in some way, and build models using cluster summaries to predict the phenotype.

It is known that important exposure variables can alter correlation patterns between

clusters of high-dimensional variables, i.e., alter network properties of the variables.

However, it is not well understood whether such altered clustering is informative in

prediction. Here, assuming there is a binary exposure with such network-altering effects,

we explore whether use of exposure-dependent clustering relationships in dimension

reduction can improve predictive modelling in a two-step framework. Hence, we propose a

modelling framework called ECLUST to test this hypothesis, and evaluate its performance

through extensive simulations.

With ECLUST, we found improved prediction and variable selection performance

compared to methods that do not consider the environment in the clustering step, or to

methods that use the original data as features. We further illustrate this modelling

framework through the analysis of three data sets from very different fields, each with high

dimensional data, a binary exposure, and a phenotype of interest. Our method is available

in the eclust CRAN package.

Keywords: gene-environment interaction, high-dimensional clustering, prediction

models, topological overlap matrix, penalized regression
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An analytic approach for interpretable predictive models in high dimensional data, in the

presence of interactions with exposures

Introduction

In this article, we consider the prediction of an outcome variable y observed on n

individuals from p variables, where p is much larger than n. Challenges in this

high-dimensional context include not only building a good predictor which will perform

well in an independent dataset, but also being able to interpret the factors that contribute

to the predictions. This latter issue can be very challenging in ultra-high dimensional

predictor sets. For example, multiple different sets of covariates may provide equivalent

measures of goodness of fit (Fan et al., 2014), and therefore how does one decide which are

important? If many variables are highly correlated, interpretation may be improved by

acknowledging the existence of an underlying or latent factor generating these patterns. In

consequence, many authors have suggested a two-step procedure where the first step is to

cluster or group variables in the design matrix in an interpretable way, and then to perform

model fitting in the second step using a summary measure of each group of variables.

There are several advantages to these two-step methods. Through the reduction of

the dimension of the model, the results are often more stable with smaller prediction

variance, and through identification of sets of correlated variables, the resulting clusters

can provide an easier route to interpretation. From a practical point of view, two-step

approaches are both flexible and easy to implement because efficient algorithms exist for

both clustering (e.g. (Müllner, 2013)) and model fitting (e.g. (Friedman et al., 2010; Yang

and Zou, 2014; Kuhn, 2008)), particularly in the case when the outcome variable is

continuous.

This two-step idea dates back to 1957 when Kendall first proposed using principal

components in regression (Kendall, 1957). Hierarchical clustering based on the correlation

of the design matrix has also been used to create groups of genes in microarray studies. For

example, at each level of a hierarchy, cluster averages have been used as new sets of
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potential predictors in both forward-backward selection (Hastie et al., 2001) or the

lasso (Park et al., 2007). Bühlmann et al. proposed a bottom-up agglomerative clustering

algorithm based on canonical correlations and used the group lasso on the derived

clusters (Bühlmann et al., 2013). A more recent proposal performs sparse regression on

cluster prototypes (Reid and Tibshirani, 2016), i.e., extracting the most representative gene

in a cluster instead of averaging them.

These two-step approaches usually group variables based on a matrix of correlations

or some transformation of the correlations. However, when there are external factors, such

as exposures, that can alter correlation patterns, a dimension reduction step that ignores

this information may be suboptimal. Many of the high-dimensional genomic data sets

currently being generated capture a possibly dynamic view of how a tissue is functioning,

and demonstrate differential patterns of coregulation or correlation under different

conditions. We illustrate this critical point with an example of a microarray gene expression

dataset available in the COPDSexualDimorphism.data package (Sathirapongsasuti, 2013)

from Bioconductor. This study measured gene expression in Chronic Obstructive

Pulmonary Disease (COPD) patients and controls in addition to their age, gender and

smoking status. To see if there was any effect of smoking status on gene expression, we

plotted the expression profiles separately for current and never smokers. To balance the

covariate profiles, we matched subjects from each group on age, gender and COPD case

status, resulting in a sample size of 7 in each group. Heatmaps in Figure 1 show gene

expression levels and the corresponding gene-gene correlation matrices as a function of

dichotomized smoking status for 2,900 genes with large variability. Evidently, there are

substantial differences in correlation patterns between the smoking groups (Figures 1a

and 1b). However, it is difficult to discern any patterns or major differences between the

groups when examining the gene expression levels directly (Figures 1c and 1d). This

example highlights two key points; 1) environmental exposures can have a widespread

effect on regulatory networks and 2) this effect may be more easily discerned by looking at
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a measure for gene similarity, relative to analyzing raw expression data. Many other

examples of altered co-regulation and phenotype associations can be found. For instance,

in a pediatric brain development study, very different correlation patterns of cortical

thickness within brain regions were observed across age groups, consistent with a process of

fine-tuning an immature brain system into a mature one (Khundrakpam et al., 2013). A

comparison of gene expression levels in bone marrow from 327 children with acute leukemia

found several differentially coexpressed genes in philadelphia positive leukemias compared

to the cytogenetically normal group (Kostka and Spang, 2004). To give a third example, an

analysis of RNA-sequencing data from The Cancer Genome Atlas (TCGA) revealed very

different correlation patterns among sets of genes in tumors grouped according to their

missense or null mutations in the TP53 tumor suppressor gene (Oros Klein et al., 2016).

Therefore, in this paper, we pose the question whether clustering or dimension

reduction that incorporates known covariate or exposure information can improve

prediction models in high dimensional genomic data settings. Substantial evidence of

dysregulation of genomic coregulation has been observed in a variety of contexts, however

we are not aware of any work that carefully examines how this might impact the

performance of prediction models. We propose a conceptual analytic strategy called

ECLUST, for prediction of a continuous or binary outcome in high dimensional contexts

while exploiting exposure-sensitive data clusters. We restrict our attention to two-step

algorithms in order to implement a covariate-driven clustering.

Specifically, we hypothesize that within two-step methods, variable grouping that

considers exposure information can lead to improved predictive accuracy and

interpretability. We use simulations to compare our proposed method to comparable

approaches that combine data reduction with predictive modelling. We are focusing our

attention primarily on the performance of alternative dimension reduction strategies within

the first step of a two-step method. Therefore, performance of each strategy is compared

for several appropriate step 2 predictive models. We then illustrate these concepts more
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concretely by analyzing three data sets. Our method and the functions used to conduct the

simulation studies have been implemented in the R package eclust (Bhatnagar, 2017),

available on CRAN. Extensive documentation of the package is available at

http://sahirbhatnagar.com/eclust/.

Methods

Assume there is a single binary environmental factor E of importance, and an n× p

high dimensional (HD) data set X (n observations, p features) of relevance. This could be

genome-wide epigenetic data, gene expression data, or brain imaging data, for example.

Assume there is a continuous or binary phenotype of interest Y and that the environment

has a widespread effect on the HD data, i.e., affects many elements of the HD data. The

primary goal is to improve prediction of Y by identifying interactions between E and X

through a carefully constructed data reduction strategy that exploits E dependent

correlation patterns. The secondary goal is to improve identification of the elements of X

that are involved; we denote this subset by S0. We hypothesize that a systems-based

perspective will be informative when exploring the factors that are associated with a

phenotype of interest, and in particular we hypothesize that incorporation of environmental

factors into predictive models in a way that retains a high dimensional perspective will

improve results and interpretation.

Potential impacts of covariate-dependent coregulation

Motivated by real world examples of differential coexpression, we first demonstrate

that environment-dependent correlations in X can induce an interaction model. Without

loss of generality, let p = 2 and the relationship between X1 and X2 depend on the

environment such that

Xi2 = ψXi1Ei + εi (1)
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where εi is an error term and ψ is a slope parameter, that is:

Xi2 =


ψXi1 + εi when Ei = 1

εi when Ei = 0

Consider the 3-predictor regression model

Yi = β0 + β1Xi1 + β2Xi2 + β3Ei + ε∗i (2)

where ε∗i is another error term which is independent of εi. At first glance (2) does not

contain any interaction terms. However, substituting (1) for Xi2 in (2) we get

Yi = β0 + β1Xi1 + β2ψ (Xi1Ei) + β3Ei + εiβ2 + ε∗i (3)

The third term in (3) resembles an interaction model, with β2ψ being the interaction

parameter. We present a second illustration showing how non-linearity can induce

interactions. Suppose

Yi = β0 + β1Xi1 + β2Xi2 + β3Ei + β3 max
text

j∈{1,2}

(
Xij − X̄i

)2
+ ε∗i (4)

Substituting (1) for Xi2 in (4) we obtain a non-linear interaction term. Equation (4)

provided partial motivation for the model used in our third simulation

scenario. Some motivation for this model and a graphical representation are presented

below in the Simulation Studies section.

Proposed framework and algorithm

We restrict attention to methods containing two phases as illustrated in Figure 2: 1a)

a clustering stage where variables are clustered based on some measure of similarity, 1b) a

dimension reduction stage where a summary measure is created for each of the clusters,

and 2) a simultaneous variable selection and regression stage on the summarized cluster

measures. Although this framework appears very similar to any two-step approach, our

hypothesis is that allowing the clustering in Step 1a to depend on the environment variable
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can lead to improvements in prediction after Step 2. Hence, methods in Step 1a are

adapted to this end, as decribed in the following sections. Our focus in this manuscript is

on the clustering and cluster representation steps. Therefore, we compare several well

known methods for variable selection and regression that are best adapted to our

simulation designs and data sets.

Step 1a: Clustering using co-expression networks that are influenced by

the environment. In agglomerative clustering, a measure of similarity between sets of

observations is required in order to decide which clusters should be combined. Common

choices include Euclidean, maximum and absolute distance. A more natural choice in

genomic or brain imaging data is to use Pearson correlation (or its absolute value) because

the derived clusters are biologically interpretable. Indeed, genes that cluster together are

correlated and thus likely to be involved in the same cellular process. Similarly, cortical

thickness measures of the brain tend to be correlated within pre-defined regions such as the

left and right hemisphere, or frontal and temporal regions (Sato et al., 2013). However, the

information on the connection between two variables, as measured by the Pearson

correlation for example, may be noisy or incomplete. Thus it is of interest to consider

alternative measures of pairwise interconnectedness. Gene co-expression networks are being

used to explore the system-level function of genes, where nodes represent genes and are

connected if they are significantly co-expressed (Zhang and Horvath, 2005), and here we

use their overlap measure (Ravasz et al., 2002) to capture connectnedness between two X

variables within each environmental condition. As was discussed earlier, genes can exhibit

very different patterns of correlation in one environment versus the other (e.g. Figure 1).

Furthermore, measures of similarity that go beyond pairwise correlations and consider the

shared connectedness between nodes can be useful in elucidating networks that are

biologically meaningful. Therefore, we propose to first look at the topological overlap

matrix (TOM) separately for exposed (E = 1) and unexposed (E = 0) individuals (see

Supplemental Section A for details on the TOM). We then seek to identify nodes
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that are very different between environments. We determine differential coexpression using

the absolute difference TOM(Xdiff) = |TOME=1 − TOME=0| (Oros Klein et al., 2016). We

then use hierarchical clustering with average linkage on the derived difference matrix to

identify these differentially co-expressed variables. Clusters are automatically chosen using

the dynamicTreeCut (Langfelder et al., 2008) algorithm. Of course, there could be other

clusters which are not sensitive to the environment. For this reason we also create a set of

clusters based on the TOM for all subjects denoted TOM(Xall). This will lead to each

covariate appearing in two clusters. In the sequel we denote the clusters derived from

TOM(Xall) as the set Call = {C1, . . . , Ck}, and those derived from TOM(Xdiff) as the set

Cdiff = {Ck+1, . . . , C`} where k < ` < p.

Step 1b: Dimension reduction via cluster representative. Once the clusters

have been identified in phase 1, we proceed to reduce the dimensionality of the overall

problem by creating a summary measure for each cluster. A low-dimensional structure, i.e.

grouping when captured in a regression model, improves predictive performance and

facilitates a model’s interpretability. We propose to summarize a cluster by a single

representative number. Specifically, we chose the average values across all measures (Park

et al., 2007; Bühlmann et al., 2013), and the first principal component (Langfelder and

Horvath, 2007). These representative measures are indexed by their cluster, i.e., the

variables to be used in our predictive models are X̃all =
{
X̃C1 , . . . , X̃Ck

}
for clusters that do

not consider E, as well as X̃diff =
{
X̃Ck+1 , . . . , X̃C`

}
for E-derived clusters. The tilde

notation on the X is to emphasize that these variables are different from the separate

variables in the original data.

Step 2: Variable Selection and Regression. Because the clustering in phase 1

is unsupervised, it is possible that the derived latent representations from phase 2 will not

be associated with the response. We therefore use penalized methods for supervised

variable selection, including the lasso (Tibshirani, 1996) and elasticnet (Zou and Hastie,

2005) for linear models, and multivariate adaptive regression splines (MARS) (Friedman,
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1991) for nonlinear models. We argue that the selected non-zero predictors in this model

will represent clusters of genes that interact with the environment and are associated with

the phenotype. Such an additive model might be insufficient for predicting the outcome. In

this case we may directly include the environment variable, the summary measures and

their interaction. In the light of our goals to improve prediction and interpretability, we

consider the following model

g(µ) = β0 +
∑̀
j=1

βjX̃Cj + βEE +
∑̀
j=1

αj
(
X̃CjE

)
+ ε (5)

where g(·) is a known link function, µ = E[Y |X, E,β,α] and X̃Cj are linear combinations

of X (from Step 1b). The primary comparison is models with X̃all only versus models with

X̃all and X̃diff. Given the context of either the simulation or the data set, we use either

linear models or non linear models. Our general approach, ECLUST, can therefore be

summarized by the algorithm in Table 1.

Simulation Studies

We have evaluated the performance of our ECLUST method in a variety of simulated

scenarios. For each simulation scenario we compared ECLUST to the following analytic

approaches 1) regression and variable selection is performed on the model which consists of

the original variables, E and their interaction with E (SEPARATE), and 2) clustering is

performed without considering the environmental exposure followed by regression and

variable selection on the cluster representations, E, and their interaction with E (CLUST).

A detailed description of the methods being compared is summarized in Table 2. We have

designed 6 simulation scenarios that illustrate different kinds of relationships between the

variables and the response. For all scenarios, we have created high dimensional data sets

with p predictors (p = 5000), and sample sizes of n = 200. We also assume that we have

two data sets for each simulation - a training data set where the parameters are estimated,

and a testing data set where prediction performance is evaluated, each of size

ntrain = ntest = 200. The number of subjects who were exposed (nE=1 = 100) and
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unexposed (nE=0 = 100) and the number of truly associated parameters (|S0| = 500)

remain fixed across the 6 simulation scenarios. Let

Y = Y ∗ + k · ε (6)

where Y ∗ is the linear predictor, the error term ε is generated from a standard normal

distribution, and k is chosen such that the signal-to-noise ratio SNR = (V ar(Y ∗)/V ar(ε))

is 0.2, 1 and 2 (e.g. the variance of the response variable Y due to ε is 1/SNR of the

variance of Y due to Y ∗).

The Design Matrix

We generated covariate data in blocks using the simulateDatExpr function from the

WGCNA package in R (version 1.51). This generates data from a latent vector: first a seed

vector is simulated, then covariates are generated with varying degree of correlation with

the seed vector in a given block. We simulated five clusters (blocks), each of size 750

variables, and labeled them by colour (turquoise, blue, red, green and yellow), while the

remaining 1250 variables were simulated as independent standard normal vectors (grey)

(Figure 3). For the unexposed observations (E = 0), only the predictors in the yellow block

were simulated with correlation, while all other covariates were independent within and

between blocks. The TOM values are very small for the yellow cluster because it is not

correlated with any of its neighbors. For the exposed observations (E = 1), all 5 blocks

contained predictors that are correlated. The blue and turquoise blocks are set to have an

average correlation of 0.6. The average correlation was varied for both green and red

clusters ρ = {0.2, 0.9} and the active set S0, that are directly associated with y, was

distributed evenly between these two blocks. Heatmaps of the TOM for this environment

dependent correlation structure are shown in Figure 3 with annotations for the true

clusters and active variables. This design matrix shows widespread changes in gene

networks in the exposed environment, and this subsequently affects the phenotype through

the two associated clusters. There are also pathways that respond to changes in the
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environment but are not associated with the response (blue and turquoise), while others

that are neither active in the disease nor affected by the environment (yellow).

The response

The first three simulation scenarios differ in how the linear predictor Y ∗ in (6) is

defined, and also in the choice of regression model used to fit the data. In simulations 1

and 2 we use lasso (Tibshirani, 1996) and elasticnet (Zou and Hastie, 2005) to fit linear

models; then we use MARS (Friedman, 1991) in simulation 3 to estimate non-linear effects.

Simulations 4, 5 and 6 use the GLM version of these models, respectively, since the

responses are binary.

Simulation 1

Simulation 1 was designed to evaluate performance when there are no explicit

interactions between X and E (see Equation (3)). We generated the linear predictor from

Y ∗ =
∑

j∈{1,...,250}
j∈ red, green block

βjXj + βEE (7)

where βj ∼ Unif [0.9, 1.1] and βE = 2. That is, only the first 250 predictors of both the red

and green blocks are active. In this setting, only the main effects model is being fit to the

simulated data.

Simulation 2

In the second scenario we explicitly simulated interactions. All non-zero main effects

also had a corresponding non-zero interaction effect with E. We generated the linear

predictor from

Y ∗ =
∑

j∈{1,...,125}
j∈ red, green block

(βjXj + αjXjE) + βEE (8)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/102475doi: bioRxiv preprint 

https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/
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where βj ∼ Unif [0.9, 1.1], αj ∼ Unif [0.4, 0.6] or αj ∼ Unif [1.9, 2.1], and βE = 2. In this

setting, both the main effects and their interactions with E are being fit to the simulated

data.

Simulation 3

In the third simulation we investigated the performance of the ECLUST approach in

the presence of non-linear effects of the predictors on the phenotype:

Y ∗i =
∑

j∈{1,...,250}
j∈ red, green block

βjXij + βEEi + αQEi · f(Qi) (9)

where

Qi = −max
text

j∈{1,...,250}
j∈ red, green block

(
Xij − X̄i

)2
(10)

f(ui) =
ui − min

i∈{1,...,n}
ui

− min
i∈{1,...,n}

ui
(11)

X̄i = 1
500

∑
j∈{1,...,250}

j∈ red, green block

Xij

The design of this simulation was partially motivated by considering the idea of

canalization, where systems operate within appropriate parameters until

sufficient perturbations accumulate (e.g. Gibson (2009)). In this third simulation,

we set βj ∼ Unif [0.9, 1.1], βE = 2 and αQ = 1. We assume the data has been appropriately

normalized, and that the correlation between any two features is greater than or equal to 0.

In simulation 3, we tried to capture the idea that an exposure could lead to coregulation or

disregulation of a cluster of X’s, which in itself directly impacts Y. Hence, we defined

coregulation as the X’s being similar in magnitude and disregulation as the X’s being very

different. The Qi term in (10) is defined such that higher values would correspond to

strong coregulation whereas lower values correspond to disregulation. For example,

suppose Qi ranges from -5 to 0. It will be -5 when there is lots of variability (disregulation)
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and 0 when there is none (strong coregulation). The function f(·) in (11) simply maps Qi

to the [0,1] range. In order to get an idea of the relationship in (9), Figure 4 displays the

response Y as a function of the first principal component of ∑j βjXij (denoted by 1st PC)

and f(Qi). We see that lower values of f(Qi) (which implies disregulation of the features)

leads to a lower Y . In this setting, although the clusters do not explicitly include

interactions between the X variables, the MARS algorithm allows for the possibility of two

way interactions between any of the variables.

Simulation 4, 5 and 6

We used the same simulation setup as above, except that we took the continuous

outcome Y , defined p = 1/(1 + exp(−Y )) and used this to generate a two-class outcome z

with Pr(z = 1) = p and Pr(z = 0) = 1− p. The true parameters were simulated as

βj ∼ Unif[log(0.9), log(1.1)], βE = log(2), αj ∼ Unif[log(0.4), log(0.6)] or

αj ∼ Unif[log(1.9), log(2.1)]. Simulations 4, 5 and 6 are the binary response versions of

simulations 1, 2 and 3, respectively.

Measures of Performance

Simulation performance was assessed with measures of model fit, prediction accuracy

and feature stability. Several measures for each of these categories, and the specific

formulae used are provided in Table 3. We simulated both a training data set and a test

data set for each simulation: all tuning parameters for model selection were selected using

the training sets only. Although most of the measures of model fit were calculated on the

test data sets, true positive rate, false positive rate and correct sparsity were calculated on

the training set only. The root mean squared error is determined by predicting the

response for the test set using the fitted model on the training set. The area under the

curve is determined using the trapezoidal rule (Robin et al., 2011). The stability of feature

importance is defined as the variability of feature weights under perturbations of the

training set, i.e., small modifications in the training set should not lead to considerable
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changes in the set of important covariates (Toloşi and Lengauer, 2011). A feature selection

algorithm produces a weight (e.g. β = (β1, . . . , βp)), a ranking (e.g.

rank(β) : r = (r1, . . . , rm)) and a subset of features (e.g. s = (s1, . . . , sp), sj = I {βj 6= 0}

where I {·} is the indicator function). In the CLUST and ECLUST methods, we defined a

predictor to be non-zero if its corresponding cluster representative weight was non-zero.

Using 10-fold cross validation (CV), we evaluated the similarity between two features and

their rankings using Pearson and Spearman correlation, respectively. For each CV fold we

re-ran the models and took the average Pearson/Spearman correlations of the
(

10
2

)
combinations of estimated coefficients vectors. To measure the similarity between two

subsets of features we took the average of the Jaccard distance in each fold. A Jaccard

distance of 1 indicates perfect agreement between two sets while no agreement will result in

a distance of 0. For MARS models we do not report the Pearson/Spearman stability

rankings due to the adaptive and functional nature of the model (there are many possible

combinations of predictors, each of which are linear basis functions).

Results

All reported results are based on 200 simulation runs. We graphically summarized

the results across simulations 1-3 for model fit (Figure 5) and feature stability (Figure 6).

The results for simulations 4-6 are shown in the Supplemental Section B, Figures

S1-S6. We restrict our attention to SNR = 1, ρ = 0.9, and αj ∼ Unif [1.9, 2.1]. The model

names are labeled as summary measure_model (e.g. avg_lasso corresponds using the

average of the features in a cluster as inputs into a lasso regression model). When there is

no summary measure appearing in the model name, that indicates that the original

variables were used (e.g. enet means all separate features were used in the elasticnet

model). In panel A of Figure 5, we plot the true positive rate against the false positive rate

for each of the 200 simulations. We see that across all simulation scenarios, the

SEPARATE method has extremely poor sensitivity compared to both CLUST and
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ECLUST, which do much better at identifying the active variables, though the resulting

models are not always sparse. The relatively few number of green points in panel A is due

to the small number of estimated clusters (Supplemental Section C, Figure S7)

leading to very little variability in performance across simulations. The better performance

of ECLUST over CLUST is noticeable as more points lie in the top left part of the plot.

The horizontal banding in panel A reflects the stability of the TOM-based clustering

approach. ECLUST also does better than CLUST in correctly determining whether a

feature is zero or nonzero (Figure 5, panel B). Importantly, across all three simulation

scenarios, ECLUST outperforms the competing methods in terms of RMSE (Figure 5,

panel C), regardless of the summary measure and modeling procedure. We present the

distribution for the effective number of variables selected in the supplemental

material (Figures S8 and S9). We see that their distributions are similar, and

in most cases, the median number of variables selected from ECLUST is less

than the median number of variables selected from CLUST.

While the approach using all separate original variables (SEPARATE) produce sparse

models, they are sensitive to small perturbations of the data across all stability measures

(Figure 6), i.e, similar datasets produce very different models. Although the median for the

CLUST approach is always slightly better than the median for ECLUST across all stability

measures, CLUST results can be much more variable, particularly when stability is

measured by the agreement between the value and the ranking of the estimated coefficients

across CV folds (Figure 6, panels B and C). The number of estimated clusters, and

therefore the number of features in the regression model, tends to be much smaller in

CLUST compared to ECLUST, and this explains its poorer performance using the stability

measures in Figure 6, since there are more coefficients to estimate. Overall, we observe that

the relative performance of ECLUST versus CLUST in terms of stability is consistent

across the two summary measures (average or principal component) and across the

penalization procedures. The complete results for different values of ρ, SNR and αj
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(when applicable) are available in the Supplemental Section D, Figures S10-S15

for Simulation 1, Figures S16 - S21 for Simulation 2, and Figures S22 - S25 for

Simulation 3. They show that these conclusions are not sensitive to the SNR, ρ or αj.

Similar conclusions are made for a binary outcome using logistic regression versions of the

lasso, elasticnet and MARS. ECLUST and CLUST also have better calibration than the

SEPARATE method for both linear and non-linear models (Supplemental Section B,

Figures S3-S6). The distributions of Hosmer-Lemeshow (HL) p-values do not

follow uniformity. This is in part due to the fact that the HL test has low power

in the presence of continuous-dichotomous variable interactions (Hosmer et al.,

1997). Upon inspection of the Q-Q plots, we see that the models have difficulty

predicting risks at the boundaries which is a known issue in most models. We

also have a small sample size of 200, which means there are on average only 20

subjects in each of the 10 bins. Furthermore, the HL test is sensitive to the

choice of bins and method of computing quantiles. Nevertheless, the improved

fit relative to the SEPARATE analysis is quite clear.

We also ran all our simulations using the Pearson correlation matrix as a measure of

similarity in order to compare its performance against the TOM. The complete results are

in the Supplemental Section E, Figures S26-S31 for Simulation 1, Figures S32 -

S37 for Simulation 2, and Figures S38 - S41 for Simulation 3. In general, we see

slightly better performance of CLUST over ECLUST when using Pearson correlations.

This result is probably due to the imprecision in the estimated correlations. The exposure

dependent similarity matrices are quite noisy, and the variability is even larger when we

examine the differences between two correlation matrices. Such large levels of variability

have a negative impact on the clustering algorithm’s ability to detecting the true clusters.
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Analysis of three data sets

In this section we demonstrate the performance of ECLUST on three high

dimensional datasets with contrasting motivations and features. In the first data set,

normal brain development is examined in conjunction with intelligence scores. In the

second data set we aim to identify molecular subtypes of ovarian cancer using gene

expression data. The investigators’ goal in the third data set is to examine the impact of

gestational diabetes mellitus (GDM) on childhood obesity in a sample of mother-child pairs

from a prospective birth cohort. The datasets comprise a range of sample sizes, and both

the amount of clustering in the HD data and the strength of the effects of the designated

exposure variables vary substantially. Due to the complex nature of these datasets, we

decided to use MARS models for step 2 of our algorithm for all 3 datasets, as outlined in

Table 1. In order to assess performance in these data sets, we have computed the 0.632

estimator (Efron, 1983) and the 95% confidence interval of the R2 and RMSE from 100

bootstrap samples. The R2 reported here is defined as the squared Pearson correlation

coefficient between the observed and predicted response (Kvålseth, 1985), and the RMSE is

defined as in Table 3. Because MARS models can result in unstable predictors (Kuhn,

2008), we also report the results of bagged MARS from B = 50 bootstrap samples, where

bagging (Breiman, 1996) refers to averaging the predictions from each of the MARS models

fit on the B bootstrap samples.

NIH MRI Study of Normal Brain Development

The NIH MRI Study of Normal Brain Development, started in 2001, was a 7 year

longitudinal multi-site project that used magnetic resonance technologies to characterize

brain maturation in 433 medically healthy, psychiatrically normal children aged 4.5-18

years (Evans et al., 2006). The goal of this study was to provide researchers with a

representative and reliable source of healthy control subject data as a basis for

understanding atypical brain development associated with a variety of developmental,
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neurological, and neuropsychiatric disorders affecting children and adults. Brain imaging

data (e.g. cortical surface thickness, intra-cranial volume), behavioural measures (e.g. IQ

scores, psychiatric interviews, behavioral ratings) and demographics (e.g. socioeconomic

status) were collected at two year intervals for three time points and are publicly available

upon request. Previous research using these data found that level of intelligence and age

correlate with cortical thickness (Shaw et al., 2006; Khundrakpam et al., 2013), but to our

knowledge no such relation between income and cortical thickness has been observed. We

therefore used this data to see the performance of ECLUST in the presence (age) and

absence (income) of an effect on the correlations in the HD data. We analyzed the 10,000

most variable regions on the cortical surface from brain scans corresponding to the first

sampled time point only. We used binary age (166 age ≤ 11.3 and 172 > 11.3) and binary

income (142 high and 133 low income) indicator as the environment variables and

standardized IQ scores as the response. We identified 22 clusters from TOM(Xall) and 57

clusters from TOM(Xdiff) when using age as the environment, and 86 clusters from

TOM(Xall) and 49 clusters from TOM(Xdiff) when using income as the environment.

Results are shown in Figure 7, panels C and D. The method which uses all individual

variables as predictors (pink), has better R2 but also worse RMSE compared to CLUST and

ECLUST, likely due to over-fitting. There is a slight benefit in performance for ECLUST

over CLUST when using age as the environment (panel D). Importantly, we observe very

similar performance between CLUST and ECLUST across all models (panel C), suggesting

very little impact on the prediction performance when including features derived both with

and without the E variable, in a situation where they are unlikely to be relevant.

Gene Expression Study of Ovarian Cancer

Differences in gene expression profiles have led to the identification of robust

molecular subtypes of ovarian cancer; these are of biological and clinical importance

because they have been shown to correlate with overall survival (Tothill et al., 2008).
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Improving prediction of survival time based on gene expression signatures can lead to

targeted therapeutic interventions (Helland et al., 2011). The proposed ECLUST algorithm

was applied to gene expression data from 511 ovarian cancer patients profiled by the

Affymetrix Human Genome U133A 2.0 Array. The data were obtained from the TCGA

Research Network: http://cancergenome.nih.gov/ and downloaded via the TCGA2STAT R

library (Wan et al., 2015). Using the 881 signature genes from Helland et al. (2011) we

grouped subjects into two groups based on the results in this paper, to create a “positive

control” environmental variable expected to have a strong effect. Specifically, we defined an

environment variable in our framework as: E = 0 for subtypes C1 and C2 (n = 253), and

E = 1 for subtypes C4 and C5 (n = 258). Overall survival time (log transformed) was used

as the response variable. Since these genes were ascertained on survival time, we expected

the method using all genes without clustering to have the best performance, and hence one

goal of this analysis was to see if ECLUST performed significantly worse as a result of

summarizing the data into a lower dimension. We found 3 clusters from TOM(Xall) and 3

clusters from TOM(Xdiff); results are shown in Figure 7, panel C. Across all models,

ECLUST performs slightly better than CLUST. Furthermore it performs almost as well as

the separate variable method, with the added advantage of dealing with a much smaller

number of predictors (881 with SEPARATE compared to 6 with ECLUST).

Gestational diabetes, epigenetics and metabolic disease

Events during pregnancy are suspected to play a role in childhood obesity

development but only little is known about the mechanisms involved. Indeed, children born

to women who had GDM in pregnancy are more likely to be overweight and

obese (Wendland et al., 2012), and evidence suggests epigenetic factors are important piece

of the puzzle (Bouchard et al., 2010, 2012). Recently, methylation changes in placenta and

cord blood were associated with GDM (Ruchat et al., 2013), and here we explore how these

changes are associated with obesity in the children at the age of about 5 years old. DNA

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/102475doi: bioRxiv preprint 

https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTIVE MODELS: INTERACTIONS WITH EXPOSURES 21

methylation in placenta was measured with the Infinium HumanMethylation450 BeadChip

(Illumina, Inc (Bibikova et al., 2011)) microarray, in a sample of 28 women, 20 of whom

had a GDM-affected pregnancy, and here, we used GDM status as our E variable, assuming

that this has widespread effects on DNA methylation and on its correlation patterns. Our

response, Y , is the standardized body mass index (BMI) in the offspring at the age of 5. In

contrast to the previous two examples, here we had no particular expectation of how

ECLUST would perform. Using the 10,000 most variable probes, we found 2 clusters from

TOM(Xall), and 75 clusters from TOM(Xdiff). The predictive model results from a MARS

analysis are shown in Figure 7, panel A. When using R2 as the measure of performance,

ECLUST outperforms both SEPARATE and CLUST methods. When using RMSE as the

measure of model performance, performance tended to be better with CLUST rather than

ECLUST perhaps in part due to the small number of clusters derived from TOM(Xall)

relative to TOM(Xdiff). Overall, the ECLUST algorithm with bagged MARS and the 1st

PC of each cluster performed best, i.e., it had a better R2 than CLUST with comparable

RMSE. The sample size here is very small, and therefore the stability of the model fits is

limited stability. The probes in these clusters mapped to 164 genes and these genes were

selected to conduct pathway analyses using the Ingenuity Pathway Analysis (IPA) software

(Ingenuity System). IPA compares the selected genes to a reference list of genes included in

many biological pathways using a hypergeometric test. Smaller p values are evidence for

over-represented gene ontology categories in the input gene list. The results are

summarized in Table 4 and provide some biological validation of our ECLUST method. For

example, the Hepatic system is involved with the metabolism of glucose and lipids (Saltiel

and Kahn, 2001), and behavior and neurodevelopment are associated with obesity (Epstein

et al., 2004). Furthermore, it is interesting that embryonic and organ development

pathways are involved since GDM is associated with macrosomia (Ehrenberg et al., 2004).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/102475doi: bioRxiv preprint 

https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTIVE MODELS: INTERACTIONS WITH EXPOSURES 22

Discussion

The challenge of precision medicine is to appropriately fit treatments or

recommendations to each individual. Data such as gene expression, DNA methylation

levels, or magnetic resonance imaging (MRI) signals are examples of HD measurements

that capture multiple aspects of how a tissue is functioning. These data often show

patterns associated with disease, and major investments are being made in the genomics

research community to generate such HD data. Analytic tools increasing prediction

accuracy are needed to maximize the productivity of these investments. However, the

effects of exposures have usually been overlooked, but these are crucial since they can lead

to ways to intervene. Hence, it is essential to have a clear understanding of how exposures

modify HD measures, and how the combination leads to disease. Existing methods for

prediction (of disease), that are based on HD data and interactions with exposures, fall far

short of being able to obtain this clear understanding. Most methods have low power and

poor interpretability, and furthermore, modelling and interpretation problems are

exacerbated when there is interest in interactions. In general, power to estimate

interactions is low, and the number of possible interactions could be enormous. Therefore,

here we have proposed a strategy to leverage situations where a covariate (e.g. an

exposure) has a wide-spread effect on one or more HD measures, e.g. GDM on methylation

levels. We have shown that this expected pattern can be used to construct

dimension-reduced predictor variables that inherently capture the systemic covariate

effects. These dimension-reduced variables, constructed without using the phenotype, can

then be used in predictive models of any type. In contrast to some common analysis

strategies that model the effects of individual predictors on outcome, our approach makes a

step towards a systems-based perspective that we believe will be more informative when

exploring the factors that are associated with disease or a phenotype of interest. We have

shown, through simulations and real data analysis, that incorporation of environmental

factors into predictive models in a way that retains a high dimensional perspective can

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/102475doi: bioRxiv preprint 

https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTIVE MODELS: INTERACTIONS WITH EXPOSURES 23

improve results and interpretation for both linear and non linear effects.

We proposed two key methodological steps necessary to maximize predictive model

interpretability when using HD data and a binary exposure: (1) dimension reduction of HD

data built on exposure sensitivity, and (2) implementation of penalized prediction models.

In the first step, we proposed to identify exposure-sensitive HD pairs by contrasting the

TOM between exposed and unexposed individuals; then we cluster the elements in these

HD pairs to find exposure-sensitive co-regulated sets. New dimension-reduced variables

that capture exposure-sensitive features (e.g. the first principal component of each cluster)

were then defined. In the second step we implemented linear and non-linear variable

selection methods using the dimension-reduced variables to ensure stability of the

predictive model. The ECLUST method has been implemented in the eclust (Bhatnagar,

2017) R package publicly available on CRAN. Our method along with computationally

efficient algorithms, allows for the analysis of up to 10,000 variables at a time on a laptop

computer.

The methods that we have proposed here are currently only applicable when three

data elements are available. Specifically a binary environmental exposure, a high

dimensional dataset that can be affected by the exposure, and a single phenotype. When

comparing the TOM and Pearson correlations as a measure of similarity, our simulations

showed that the performance of ECLUST was worse with correlations. This speaks to the

potential of developing a better measure than the difference of two matrices. For example,

we are currently exploring ways in which to handle continuous exposures or multiple

exposures. The best way to construct an exposure-sensitive distance matrix that can be

used for clustering is not obvious in these situations. One possible solution relies on a

non-parametric smoothing based approach where weighted correlations are calculated.

These weights can be derived from a kernel-based summary of the exposure covariates

(e.g. (Qiu et al., 2016)). Then, contrasting unweighted and weighted matrices will allow

construction of covariate-sensitive clusters. The choice of summary measure for each
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cluster also warrants further study. While principal components and averages are well

understood and easy to implement, the main shortcoming is that they involve all original

variables in the group. As the size of the groups increase, the interpretability of these

measures decreases. Non-negative matrix factorization (Lee and Seung, 2001) and sparse

principal component analysis (SPCA) (Witten et al., 2009) are alternatives which find

sparse and potentially interpretable factors. Furthermore, structured SPCA (Jenatton

et al., 2009) goes beyond restricting the cardinality of the contributing factors by imposing

some a priori structural constraints deemed relevant to model the data at hand.

We are all aware that our exposures and environments impact our health and risks of

disease, however detecting how the environment acts is extremely difficult. Furthermore, it

is very challenging to develop reliable and understandable ways of predicting the risk of

disease in individuals, based on high dimensional data such as genomic or imaging

measures, and this challenge is exacerbated when there are environmental exposures that

lead to many subtle alterations in the genomic measurements. Hence, we have developed an

algorithm and an easy-to use software package to transform analysis of how environmental

exposures impact human health, through an innovative signal-extracting approach for high

dimensional measurements. Evidently, the model fitting here is performed using existing

methods; our goal is to illustrate the potential of improved dimension reduction in

two-stage methods, in order to generate discussion and new perspectives. If such an

approach can lead to more interpretable results that identify gene-environment interactions

and their effects on diseases and traits, the resulting understanding of how exposures

influence the high-volume measurements now available in precision medicine will have

important implications for health management and drug discovery.

Availability of data and material

1. NIH MRI Study of Normal Brain Development data are available in the Pediatric

MRI Data Repository, https://pediatricmri.nih.gov/
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2. Gene Expression Study of Ovarian Cancer data are available in the Genomic Data

Commons repository, https://gdc.cancer.gov/, and were downloaded via the

TCGA2STAT R library Wan et al. (2015)

3. Gestational diabetes, epigenetics and metabolic disease: the clinical data, similarity

matrices and cluster summaries are available at Zenodo [10.5281/zenodo.259222].

The raw analysed during the current study are not publicly available due to reasons

of confidentiality, although specific collaborations with LB can be requested.
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Additional Files

Additional file 1 – Supplemental Methods and Simulation Results

Contains the following sections:

A Description of Topological Overlap Matrix - detailed description of the TOM

B Binary Outcome Simulation Results - results of simulations 4, 5 and 6

C Analysis of Clusters - number of estimated clusters by different measures of

similarity
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D Simulation Results Using TOM as a Measure of Similarity - detailed

simulation results using TOM as a measure of similarity

E Simulation Results Using Pearson Correlations as a Measure of Similarity

- detailed simulation results using Pearson Correlations as a measure of similarity

F Visual Representation of Similarity Matrices - similarity matrices based on

Pearson’s correlation coefficient
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Table 1

Details of ECLUST algorithm

Step Description, Softwarea and Reference

1a) i) Calculate TOM separately for observations with E = 0 and E = 1 using

WGCNA::TOMsimilarityFromExpr (Langfelder and Horvath, 2008)

ii) Euclidean distance matrix of |TOME=1 − TOME=0| using stats::dist

iii) Run the dynamicTreeCut algorithm (Langfelder et al., 2008, 2016) on the distance

matrix to determine the number of clusters and cluster membership using

dynamicTreeCut::cutreeDynamic with minClusterSize = 50

1b) i) 1st PC or average for each cluster using stat::prcomp or base::mean

ii) Penalized regression model: create a design matrix of the derived cluster

representatives and their interactions with E using stats::model.matrix

iii) MARS model: create a design matrix of the derived cluster representatives and E

2) i) For linear models, run penalized regression on design matrix from step 1b) using

glmnet::cv.glmnet (Friedman et al., 2010). Elasticnet mixing parameter alpha=1

corresponds to the lasso and alpha=0.5 corresponds to the value we used in our

simulations for elasticnet. The tuning parameter alpha is selected by minimizing 10

fold cross-validated mean squared error (MSE).

ii) For non-linear effects, run MARS on the design matrix from step 1b) using

earth::earth (Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani.,

2011) with pruning method pmethod = "backward" and maximum number of model

terms nk = 1000. The degree=1,2 is chosen using 10 fold cross validation (CV), and

within each fold the number of terms in the model is the one that minimizes the

generalized cross validated (GCV) error.
aAll functions are implemented in R (R Core Team, 2016). The naming convention is as follows:

package_name::package_function. Default settings used for all functions unless indicated otherwise.
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Table 2

Summary of methods used in simulation study

General Approach Summary

Measure of

Feature

Clusters

Descriptiona,b

SEPARATE NA Regression of the original predictors {X1, . . . , Xp} on

the response i.e. no transformation of the predictors is

being done here

CLUST 1st PC,

average

Create clusters of predictors without using the

environment variable {C1, . . . , Ck}. Use the summary

measure of each cluster as inputs of the regression

model.

ECLUST 1st PC,

average

Create clusters of predictors using the environment

variable {Ck+1, . . . , C`} where k < ` < p, as well as

clusters without the environment variable

{C1, . . . , Ck}. Use summary measures of {C1, . . . , C`}

as inputs of the regression model.
aSimulations 1 and 2 used lasso and elasticnet for the linear models, and simulation 3 used MARS for

estimating non-linear effects bSimulations 4, 5 and 6 convert the continuous response generated in

simulations 1, 2 and 3, respectively, into a binary response cPC: principal component
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Table 3

Measures of Performance

Measure Formula

Model Fit

True Positive Rate (TPR) |Ŝ ∈ S0|/|S0|

False Positive Rate (TPR) |Ŝ /∈ S0|/|j /∈ S0|

Correct Sparsity (Witten et al., 2014) 1
p

∑p
j=1 Aj

Aj =



1 if β̂j = βj = 0

1 if β̂j 6= 0, βj 6= 0

0 if else

Prediction Accuracy

Root Mean Squared Error (RMSE) ‖Ytest − µ̂(Xtest)‖2

Area Under the Curve (AUC) Trapezoidal rule

Hosmer-Lemeshow Test (G = 10) χ2 test statistic

Feature Stability using K-fold Cross-Validation on training set (Kalousis et al., 2007)

Pearson Correlation (ρ) (Pearson, 1895)
(
K
2

)−1 ∑
i,j∈{1,...,K},i6=j

cov(β̂(i),β̂(j))
σ
β̂(i)

σ
β̂(j)

Spearman Correlation (r) (Spearman, 1904)
(
K
2

)−1 ∑
i,j∈{1,...,K},i6=j

1− 6∑
m

(
rm(i)−rm(j)

)2

p(p2−1)


Jaccard Distance (Jaccard, 1912) |Ŝ(i)∩Ŝ(j)|

|Ŝ(i)∪Ŝ(j)|

aµ̂: fitting procedure on the training set bS0: index of active set =
{
j;β0

j 6= 0
} cŜ: index of the set of

non-zero estimated coefficients =
{
j; β̂j 6= 0

}
d|A|: is the cardinality of set A

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2017. ; https://doi.org/10.1101/102475doi: bioRxiv preprint 

https://doi.org/10.1101/102475
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTIVE MODELS: INTERACTIONS WITH EXPOSURES 36

Table 4

Ingenuity Pathway Analysis Results – top-ranked diseases and disorders, and physiological

system development and function epigentically affected by gestational diabetes mellitus and

associated with childhood body mass index

Category Name p values na

Diseases and Disorders Hepatic System Disease [9.61e−7 – 5.17e−7] 75

Physiological System Devel-

opment and Function

Behavior [1.35e−2 – 7.82e−8] 33

Embryonic Development [1.35e−2 – 2.63e−8] 26

Nervous System Development

and Function
[ 1.35e−2 – 2.63e−8] 43

Organ Development [1.35e−2 – 2.63e−8] 20

Organismal Development [1.35e−2 – 2.63e−8] 34
anumber of genes involved in each pathway
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Figure 1 . Heatmaps of correlations between genes (top) and gene expression data (bottom

- rows are genes and columns are subjects), stratified by smoking status from a microarray

study of COPD (Sathirapongsasuti, 2013). The 20% most variable genes are displayed

(2,900 genes). There are 7 subjects in each group, matched on COPD case status, gender

and age. Data available on Bioconductor in the COPDSexualDimorphism.data package.
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Figure 2 . Overview of our proposed method. 1a) A measure of similarity is calculated

separately for both groups and clustering is performed on a linear combination of these two

matrices. 1b) We reduce the dimension of each cluster by taking a summary measure. 2)

Variable selection and regression is performed on the cluster representatives, E and their

interaction with E.
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Figure 3 . Topological overlap matrices (TOM) of simulated predictors based on subjects

with (a) E = 0, (b) E = 1, (c) their absolute difference and (d) all subjects. Dendrograms

are from hierarchical clustering (average linkage) of one minus the TOM for a, b, and d

and the euclidean distance for c. Some variables in the red and green clusters are

associated with the outcome variable. The module annotation represents the true cluster

membership for each predictor, and the active annotation represents the truly associated

predictors with the response.
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Figure 4 . Visualization of the relationship between the response, the first principal

component of the main effects and f(Qi) in (9) for E = 0 (left) and E = 1 (right) in

simulation scenario 3. This graphic also depicts the intuition behind model (4).
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Figure 5 . Model fit results from simulations 1, 2 and 3 with SNR = 1, ρ = 0.9, and

αj ∼ Unif [1.9, 2.1]. SEPARATE results are in pink, CLUST in green and ECLUST in blue.
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Figure 6 . Stability results from simulations 1, 2 and 3 for SNR = 1, ρ = 0.9, and

αj ∼ Unif [1.9, 2.1]. SEPARATE results are in pink, CLUST in green and ECLUST in blue.
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Figure 7 . Model fit measures from analysis of three data sets: (A) Gestational diabetes

birth-cohort (B) TCGA Ovarian Cancer study (C) NIH MRI Study with income as the

environment variable (D) NIH MRI Study with age as the environment variable
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