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Abstract 

Hi-C is a powerful technology for studying genome-wide chromatin interactions. However, current 

methods for assessing Hi-C data reproducibility can produce misleading results because they ignore 

spatial features in Hi-C data, such as domain structure and distance dependence. We present HiCRep, a 

framework for assessing the reproducibility of Hi-C data that systematically accounts for these features. 

In particular, we introduce a novel similarity measure, the stratum adjusted correlation coefficient (SCC), 

for quantifying the similarity between Hi-C interaction matrices.  Not only does it provide a statistically 

sound and reliable evaluation of reproducibility, SCC can also be used to quantify differences between 

Hi-C contact matrices and to determine the optimal sequencing depth for a desired resolution. The 

measure consistently shows higher accuracy than existing approaches in distinguishing subtle differences 

in reproducibility and depicting interrelationships of cell lineages. The proposed measure is 

straightforward to interpret and easy to compute, making it well-suited for providing standardized, 

interpretable, automatable, and scalable quality control. The freely available R package HiCRep 

implements our approach. 
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Introduction 

The three-dimensional (3D) genome organization across a wide range of length scales is important for 

proper cellular functions (Dekker et al. 2013; Sexton and Cavalli 2015; Bickmore 2013). At large 

distances, non-random hierarchical territories of chromosomes inside the cell nucleus are tightly linked 

with gene regulation (Misteli 2010). At a finer resolution, the interactions between distal regulatory 

elements and their target genes are essential for orchestrating correct gene expression across time and 

space (e.g. different tissues). A progression of high-throughput methods based on chromatin conformation 

capture (3C) (Dekker 2002) has emerged, including 4C (Simonis et al. 2006), 5C (Dostie et al. 2006), Hi-

C (Lieberman-aiden et al. 2009), ChIA-PET (Li et al. 2010), Capture Hi-C (Hughes et al. 2014; Mifsud et 

al. 2015), and HiChIP (Mumbach et al. 2016). These methods offer an unprecedented opportunity to 

study higher-order chromatin structure at various scales. Among them, the Hi-C technology and its 

variants are of particular interest due to their relatively unbiased genome-wide coverage and ability to 

measure chromatin interaction intensities between any two given genomic loci. 

However, the analysis and interpretation of Hi-C data are still in their early stages. In particular, 

no sound statistical metric to evaluate the quality of Hi-C data has been developed. When biological 

replicates are not available, investigators often rely on either visual inspection of the Hi-C interaction 

heatmap or examination of the ratio of long-range interaction read pairs over the total sequenced reads 

(Dixon et al. 2012, 2015; Jin et al. 2013), but neither of these approaches is supported by robust statistics. 

When two or more biological replicates are available, it is a common practice to use either Pearson or 

Spearman correlation coefficients between the two Hi-C data matrices as a metric for data quality 

(Imakaev et al. 2012; Hu et al. 2012; Gorkin et al. 2014; Rao et al. 2014; Ay and Noble 2015; Servant et 

al. 2015; Dixon et al. 2015). However, Hi-C data have certain unique characteristics, including domain 

structures, such as topological association domain (TAD) and A/B compartments, and distance 

dependence, which refers to the fact that the chromatin interaction frequencies between two genomic loci, 
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on average, decrease substantially as their genomic distance increases. Standard correlation approaches do 

not take into consideration these structures and may lead to incorrect conclusions. As we will 

demonstrate, two unrelated biological samples can have a high Pearson correlation coefficient, while two 

visually similar replicates can have a low Spearman correlation coefficient. It is also not uncommon to 

observe higher Pearson and Spearman correlations between unrelated samples than those between real 

biological replicates.  

In this work, we develop HiCRep, a novel framework for assessing the reproducibility of Hi-C 

data that takes into account the unique spatial features of the data. HiCRep first minimizes the effect of 

noise and biases by smoothing the Hi-C matrix, and then it addresses the distance-dependence effect by 

stratifying Hi-C data according to their genomic distance. In particular, we develop a stratum-adjusted 

correlation coefficient (SCC) as a similarity measure of Hi-C interaction matrices. SCC shares the similar 

range and interpretation as the standard correlation coefficients, making it easily interpretable. It can be 

used to assess the reproducibility of replicate samples or quantify the distance between Hi-C matrices 

from different cell types. Our framework also estimates confidence intervals for SCC, making it possible 

to infer statistical significance of the difference in reproducibility measurements. We applied our method 

to three different groups of publicly available Hi-C data sets to illustrate its power in distinguishing subtle 

differences between closely related cell lines and biological replicates and resolving interrelationship 

between different cell lineages or tissues.  

Results 

Spatial patterns in Hi-C data and their influence on reproducibility assessment     

Unlike many other genomic data types, Hi-C data exhibits unique spatial patterns. One prominent pattern 

is the strong decay of interaction frequency as genomic distance increases between interaction loci, i.e. 

the distance dependence. This pattern is generally thought to result from non-specific interactions, which 

are more likely to occur between loci at closer genomic distance than those at a greater distance (Lajoie et 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/101386doi: bioRxiv preprint 

https://doi.org/10.1101/101386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

al. 2015; Fudenberg and Mirny 2012). It is found consistently in every Hi-C matrix and is one of the most 

dominant patterns in the matrix of interaction frequencies measured by Hi-C (Lajoie et al. 2015). This 

dependence on distance generates strong but spurious association between Hi-C matrices even when the 

samples are unrelated, as revealed by the high Pearson correlation between any two Hi-C matrices. As an 

example, we computed the Pearson correlations of Hi-C contact matrices between two biological 

replicates and between two unrelated cell lines, hESC and IMR90 (Dixon et al. 2012). Though samples 

from the same cell line are expected to be much more correlated to each other than samples from 

unrelated cell lines, the Pearson correlation shows little difference between samples from different cell 

types (a hESC sample and an IMR90 sample, ρ=0.92) and biological replicates in hESC (ρ = 0.91)(Fig. 

1A). Further investigation shows that the dependence pattern between the contact intensity and distance 

(Fig. 1B) is highly similar in hESC and IMR90, which creates the high, spurious correlation between the 

Hi-C samples from these two cell lines. Therefore, the Pearson correlation coefficient cannot distinguish 

real biological replicates from unrelated samples.  

Another important pattern of Hi-C data is the domain structure in contact maps. These structures 

represent contiguous regions in which loci tend to interact more frequently with each other than with 

outside regions. While the interactions within the structures can be highly variable between different cell 

types, the domain structures, such as topologically associating domains (TADs), are stable across cell 

types (Dixon et al. 2012; Rapkin et al. 2012; Nagano et al. 2013). Therefore, we expect a higher 

reproducibility at the domain level than at the individual contact level. This difference should be reflected 

in the reproducibility assessment. However, both Pearson and Spearman correlation coefficients only 

consider point interactions, and do not take domain structures into account. A consequence of this is that 

Spearman correlation can be driven to low values by the stochastic variation in the point interactions and 

overlook the similarity in domain structures. As a result, two biological replicates that have highly similar 

domain structures may have a low Spearman correlation coefficient; conversely, a sample may have a 

higher Spearman correlation with an unrelated sample than with its biological replicates when the 
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stochastic variation is high. For instance, despite the high similarity between the biological replicates in 

IMR90 and hESC, their Spearman correlations are only 0.47 and 0.37, respectively. However, the 

Spearman correlation between an IMR90 sample and a hESC sample (0.44) is higher than the correlation 

between the two hESC replicates (0.37), even though there are many differences in the domain structures 

of the two cell lines. Therefore, we need a more sophisticated evaluation metric to incorporate both 

structural aspects of variation for a better assessment of the reproducibility of Hi-C data.  

Overview of the HiCRep method 

We develop a novel two-stage approach to evaluate the reproducibility of Hi-C data (Fig. 2). The first 

stage is smoothing the raw contact matrix in order to reduce local noise in the contact map and to make 

domain structures more visible. The smoothing is accomplished by applying a 2D mean filter, which 

replaces the read count of each contact in the contact map with the average counts of all contacts in its 

neighborhood. In the second stage, we apply a stratification approach to account for the pronounced 

distance dependence in the Hi-C data. This stage proceeds in two steps. First we stratify the smoothed 

chromatin interactions according to their genomic distance, and then we apply a novel stratum-adjusted 

correlation coefficient statistic (SCC) to assess the reproducibility of the Hi-C matrices. The SCC statistic 

is calculated by computing a Pearson correlation coefficient for each stratum (Fig. 2) and then 

aggregating the stratum-specific correlation coefficients using a weighted average, with the weights 

derived from the generalized Cochran-Mantel-Haenszel (CMH) statistic (Mantel 1963; Agresti 2012).  

The value of SCC ranges from -1 to 1 and can be interpreted in a way similar to the standard correlation. 

A great advantage of our approach is that we can derive the asymptotic variance of SCC and use it to 

assess statistical significance when comparing reproducibility from different samples. More detailed 

descriptions of the HiCRep method and the SCC statistic are presented in the Methods section. 

Distinguishing pseudo, real and non-replicates 

We first evaluated the performance of our method on samples whose expected levels of reproducibility 
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are known: pseudo-replicates (PR), biological replicates (BR) and non-replicates (NR). Biological 

replicates refer to two independent Hi-C experiments performed on the same cell types. Non-replicates 

refer to Hi-C experiments performed on different cell types. Pseudo replicates are generated by pooling 

reads from biological replicates together and randomly partitioning them into two equal portions. The 

difference between two pseudo-replicates only reflects sampling variation, without biological or technical 

variation. Therefore, we expect the reproducibility of pseudo-replicates to be the highest, followed by 

biological replicates and then non-replicates.  

For testing, we first generated PR, BR and NR using Hi-C data in the hESC and IMR90 cell lines (Dixon 

et al. 2012) (details in Methods). We compared the performance of our method with Pearson correlation 

and Spearman correlation and investigated whether these metrics can distinguish PR, BR and NR (Fig. 

3A and Supplemental Table S1). For the hESC dataset, our method correctly ranks the reproducibility of 

the three types of replicate pairs (PR>BR>NR), whereas Pearson and Spearman correlations both 

incorrectly rank BR lower than one or more of the NRs. For the IMR90 dataset, although all three 

methods infer the correct order of reproducibility, SCC separates BR from NR by a much larger margin 

(SCC: 0.19) than the other metrics (Pearson: 0.02 and Spearman: 0.03).  

The sequencing depths differ substantially for the hESC (replicate 1:  60M; replicate 2: 271M) 

and IMR90 (replicate 1: 201M; replicate 2: 153M) datasets. To ensure that these differences were not 

confounding our evaluations, we subsampled all the replicates to 60 million reads and repeated the same 

analysis. As shown in Fig. 3A (blue dots), even with the same number of reads, Pearson and Spearman 

correlations still fail to distinguish real replicates from all non-replicates. On the contrary, our method 

consistently ordered the reproducibility of replicates correctly, indicating that it can capture the intrinsic 

differences between the samples, even those that differ in sequencing depth. 

We expanded this analysis to a larger Hi-C dataset recently released by the ENCODE Project 

Consortium (The ENCODE Project Consortium, 2012). This dataset consists of Hi-C data from eleven 
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cancer cell lines, with two biological replicates for each cell type (details are in Methods). For each cell 

type, we formed twenty non-replicate pairs with the remaining ten cell types and computed SCC, Pearson 

and Spearman correlations for BR and all NRs. As shown in Fig. 3B and Supplemental Table S2, SCC 

clearly distinguishes BRs from NRs (a p-value = 1.665 × 10-15, one-sided Kolmogorov-Smirnov test), 

while the other two methods fail to do so (Pearson: p-value = 0.084; Spearman: p-value = 0.254, K-S 

test). Because the sequencing depth of the Hi-C data varies across cell types, we also examined the 

separation between BRs and NRs for each cell type. As shown in Fig. 3C, SCC separates the BRs and 

NRs for all the cell types by a margin of at least 0.1, whereas the other two methods fail to separate them 

in more than half of the cell types (Supplemental Fig. S1). Furthermore, SCC illustrates a desirable 

correspondence to the sequencing depth. When the average sequencing depth between the biological 

replicates is relatively low (<30M), SCC monotonically increases with the sequencing depth; this 

behavior likely reflects insufficient coverage at the lower sequencing depths. In contrast, the value for 

SCC remains high and stable for greater sequencing depths (Fig. 3C), reflecting saturation of 

reproducibility and likely sufficient coverage. We investigate this property further in a later section. 

Evaluating biological relevance by constructing cell lineages 

Next we used HiCRep to infer the interrelationship between cell types on a cell lineage. Because this 

assessment requires the reproducibility measure to quantify the subtle differences between closely related 

cells, it serves as a biologically relevant approach to evaluating the accuracy of the reproducibility 

measure. More importantly, it also evaluates the potential of our method as a measure for quantifying the 

similarities or differences of Hi-C matrices in different cell or tissue types.  

For this analysis, we used the Hi-C data in human embryonic stem (ES) cells and in four cell 

lineages derived from them (Dixon et al. 2015), namely, mesendoderm (ME), mesenchymal stem cells 

(MS), neural progenitor cells (NP), and trophoblast-like cells (TB), with two biological replicates for each 

cell type. Using the A/B compartments in Hi-C data, Dixon et al. (2015) inferred the distance to the 

parental ES cell from the nearest to the farthest as ME, NP, TB and MS (Fig. 4A left).  Importantly, the 
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same relationships were also supported by our analysis of the previously published gene expression data 

(Xie et al. 2013) in the same cell types (Fig. 4A right).  

We first calculated the pairwise similarities between the ten samples (two replicates in each cell 

type) using SCC, Pearson and Spearman correlations (Supplemental Table S3). As shown in 

Supplemental Fig. S2, SCC again provided the best separation between real replicates and non-replicates 

among all three methods of comparison.  

Next, we reconstructed the relationships among the cell lineages by performing hierarchical 

clustering based on the pairwise similarity scores. As shown in Fig. 4B, the dendrogram constructed 

based on SCC precisely depicts the interrelationships: all the biological replicates are grouped together as 

terminal clusters, and the relationships between cell lines exactly follow the tree structure in (Dixon et al. 

2015) and (Xie et al. 2013) (Fig. 4A). The same results are obtained using the bias corrected interaction 

matrices (Supplemental Fig. 3A). In contrast, the dendrograms constructed based on Pearson (Fig. 4C) 

and Spearman correlation coefficients (Fig. 4D) group several non-replicates together and infer different 

relationships between some cell lines. For example, when using Pearson correlation, two ME replicates 

are not clustered together and NP is unexpectedly placed as the least related cell type to ES cells. When 

using Spearman correlation, an ES replicate is clustered with an ME replicate and again NP is 

unexpectedly predicted as the least related cell type to ES cells. 

To further delineate how data smoothing contributes to HiCRep’s performance, we also computed SCC 

on unsmoothed Hi-C matrices and Pearson and Spearman correlation coefficients on the smoothed Hi-C 

matrices obtained from our smoothing procedure. As shown in Supplemental Fig. S3B, we observed that 

the SCC analysis on unsmoothed data no longer recapitulates the expected relationships among cell 

lineages, indicating that the smoothing stage is an indispensable component of HiCRep. Furthermore, we 

observed that our smoothing procedure improves the performance of Pearson and Spearman based 

approaches (Supplemental Fig. S3 C-D), confirming its effectiveness. However, the improvement on 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/101386doi: bioRxiv preprint 

https://doi.org/10.1101/101386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

Pearson and Spearman based approaches is not to the level achieved by SCC  (Supplemental Fig. S3 C-

D). For example, the tree based on Pearson incorrectly groups the ES cell and ME cell replicates together, 

and the tree based on Spearman incorrectly places the NP cell closest to ES cell. In addition, the Pearson 

correlation based on the smoothed matrices shows very little difference (range = (0.96, 1)) across cell 

lines, making it harder to distinguish closely related samples. Together, this indicates that neither SCC 

nor smoothing by itself can satisfactorily address the reproducibility issue, and both components are 

necessary for HiCRep to quantify biologically relevant differences between Hi-C contact maps.  

We further expanded this analysis using the recently published Hi-C data in fourteen human 

primary tissues and two cell lines (Schmitt et al. 2016) (Supplemental Table S4). Because biological 

replicates are not available for all the samples, our analysis focused on quantifying the relationships 

between tissues or cells.  Again, the lineage constructed based on SCC reasonably depicted the tissue and 

germ layer origins of the samples (Fig. 5A): hippocampus and cortex were grouped together; right 

ventricle and left ventricle were grouped together; endodermal tissues such as pancreas, lung, and small 

bowel were placed in the same lineage. Neither Pearson nor Spearman correlation performed as well as 

SCC did. For example, right and left ventricles were not grouped together by Spearman correlation (Fig. 

5C).  These results confirm the potential of our method as a measure for quantifying the difference in Hi-

C data between cell or tissue types. 

HiCRep is robust to different choices of resolution 

Depending on the sequencing depth, Hi-C data analysis may be performed at different resolutions. A 

good reproducibility measure should perform well despite the choice of resolution. To evaluate the 

robustness of our method, we repeated the clustering analysis for the human ES and ES-derived cell 

lineages using data processed at several different resolutions (i.e., 10Kb, 25Kb, 40Kb, 100Kb, 500Kb, 

1Mb). Again, as shown in Fig. 6 and Supplemental Table S5, SCC accurately inferred the expected 

relationships between ES and its derived cell lines at all resolutions considered, whereas Pearson and 
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Spearman correlations inferred the expected relationships only at 500Kb and 1Mb. Furthermore, unlike 

Pearson and Spearman correlations, whose values drastically change at different resolutions, the values of 

SCC remain in a consistent range across all resolutions. The complete trees inferred by SCC at different 

resolutions (Supplemental Fig. S4) all agree with the expected relationship. These results confirm the 

robustness of our method to the choice of resolution. 

Detecting differences in reproducibility due to sequencing depth 

Sequencing depth is known to affect the signal-to-noise ratio and the reproducibility of Hi-C data (Lajoie 

et al. 2015). Insufficient coverage can reduce the reproducibility of a Hi-C experiment. As a quality 

control tool, a reproducibility measure is expected to be able to detect the differences in reproducibility 

due to sequencing depth. To evaluate the sensitivity of our method to sequencing depth, we downsampled 

all the samples in the H1 ES cell lineage (Dixon et al. 2015) to create a series of subsamples with 

different sequencing depths (25%, 50% and 75% of the original sequencing depth). We then computed 

SCC for all subsamples. As shown in Fig. 7A and Supplemental Table S6, SCC monotonically decreases 

with sequencing depth in all data sets. This confirms that our method can reflect the change of 

reproducibility between replicate experiments due to sequencing depth.  

Furthermore, we investigate whether the reproducibility between Hi-C experiments inferred by SCC 

reflects the reproducibility at the level of significant contacts. To proceed, we identified significant 

contacts in these subsamples using Fit-Hi-C (q-value cutoff=0.05) (Ay et al. 2014). For each subsample, 

we computed the reproducibility at the level of significant contacts using the Jaccard index, i.e. the ratio 

of the number of shared significant contacts over the number of significant contacts identified in either 

replicate. As shown in Fig. 7B and Supplemental Table S6, the Jaccard index monotonically increases 

with the SCC score in each cell line. In addition, the cell line (NP), which has a significantly lower SCC 

score than other cell lines also shows a significantly lower level of shared significant contacts. This 

confirms that our method can also reflect the change of reproducibility due to sequencing depth at the 
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level of significant contacts. 

 
Guiding the selection of the optimal sequencing depth  

Having established that SCC can reflect the change of reproducibility due to the change of sequencing 

depth, we propose to use the saturation of SCC as a criterion to determine the most cost-effective 

sequencing depth that achieves a reasonable reproducibility. To illustrate how to use our method to 

determine the optimal sequencing depth, we created subsamples at a series of reduced sequencing depths 

from the Hi-C data in the H1 ES cell in (Dixon et al. 2015) (original depth=500M) by down-sampling. As 

shown in Fig. 7C and Supplemental Table S7, SCC initially increases rapidly with the increase of 

sequencing depth when the number of total reads is less than 200 million (slope of line from 10% to 40% 

depth is 0.0591 per 100M). It continues to increase at a reduced rate (slope of line from 40% to 70% 

depth is 0.01 per 100M), and eventually reaches a plateau (slope of line from 70% to 100% depth is 0.002 

per 100M). To determine the lowest sequencing level that achieves similar reproducibility as the original 

data, we computed the 99% confidence intervals of SCC at each sequencing depths. Starting at 350M 

(70% of the original depth), the confidence intervals of SCC between two adjacent depth levels overlap 

with each other and the difference of SCC from that of the original depth is less than 0.004.  This 

indicates that the reduced samples can achieve a similar level of reproducibility as the original one by 

using about 70% of the original depth for this dataset. Further increase of sequencing depth beyond this 

point does not significantly improve reproducibility.  

  As a comparison, we performed a similar analysis using a dataset with relatively low sequencing 

depth (30M Hi-C reads from the A549 cell line). We observe that all the reduced samples have a 

significantly lower reproducibility than the original sample at the 99% significance level and show a steep 

increase of SCC throughout all downsample levels (Fig. 7C and Supplemental Table S7). From the 90% 

depth to the original depth, there is still an increase of SCC of 0.01, compared with 0.0015 for the hESC 

dataset, suggesting that this dataset may not reach saturation in reproducibility at its original sequencing 
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depth. For this dataset, further increase of sequencing depth may improve reproducibility. 

Discussion 

Although there has been a dramatic increase in the scope and complexity of Hi-C experiments, analytical 

tools for data quality control have been lacking. Current approaches for assessing Hi-C data 

reproducibility may lead to incorrect conclusions because they fail to take into consideration the unique 

spatial characteristics of Hi-C data. In this work, we developed a new method, HiCRep, for assessing the 

reproducibility of Hi-C contact frequency maps. By effectively taking account of the spatial features of 

Hi-C data, our reproducibility measure overcomes the limitations of Pearson and Spearman correlations 

and can differentiate the reproducibility of samples at a fine level.  The empirical evaluation showed that 

our method distinguished subtle differences between closely related cell lines, biological replicates and 

pseudo replicates, and it produced robust results at different resolutions.  

The SCC statistic has several properties that make it well-suited as a reproducibility measure for 

providing standardized, interpretable, automatable and scalable quality control. First, this statistic has a 

fixed scale of [-1, 1], which makes it easy to standardize the quality control process and compare 

reproducibility across samples. Second, it is intuitive and easy to interpret. It can be interpreted as a 

weighted average correlation coefficient over different interaction distances. This straightforward 

interpretation makes it accessible to experimentalists. Third, our statistic is fast to compute and is directly 

applicable to the raw contact matrix. It is easily scalable for monitoring data quality for a large number of 

experiments.  Furthermore, we also provide an estimator for the variance of this statistics, such that the 

statistical significance of the difference in reproducibility can be inferred. Using this estimator, we 

establish a procedure to determine the sufficiency of sequencing depth.   

In summary, we develop a novel method to accurately evaluate the reproducibility of Hi-C 

experiments. The presented method is a first step toward ensuring high reproducibility of Hi-C data. We 
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also show that this method can be used as a similarity measure for quantifying the differences in Hi-C 

data between different cell and tissue types. Thus, HiCRep is a valuable tool for the study of 3D genome 

organization.  

 

 

Methods 

Datasets 

The datasets analyzed in this study were obtained from the public domain, as described below. Hi-C data 

sets used in this project can be visualized in the 3D genome browser (http://3dgenome.org).  

We obtained the Hi-C data of human embryonic stem cells (hESCs) and human IMR90 fibroblasts from 

(Dixon et al. 2012) (GEO accession number: GSE35156). Each cell type has two biological replicates. 

We obtained the Hi-C data of human embryonic stem (ES) cells and four human ES-cell-derived lineages, 

mesendoderm (ME), mesenchymal stem (MS) cells, neural progenitor (NP) cells and trophoblast-like 

(TB) cells from (Dixon et al. 2015) (GEO accession number: GSE52457). Each cell type has two 

biological replicates. 

We obtained the Hi-C data of eleven human cancer cell lines from the ENCODE data portal (Sloan et al. 

2016)   (https://www.encodeproject.org/matrix/?type=Experiment&status=released&assay_slims=3D+ 

chromatin+structure&award.project=ENCODE&assay_title=Hi-C). This dataset was produced by Dekker 

lab. It includes cell lines of G401, A549, CAKi2, PANC1, RPMI7951, T47D, NCIH460, SKMEL5, 

LNCaP, SKNMC and SKNDZ. Each cell line has two biological replicates. The sequencing depths of the 

datasets can be found in Supplemental Table S8. 

We obtained the Hi-C data of fourteen human primary tissues from (Schmitt et al. 2016) and (Leung et al. 

2015). The tissues include adrenal gland (GSM2322539), bladder (GSM2322540, GSM2322541), 
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dorsolateral prefrontal cortex (GSM2322542), hippocampus (GSM2322543), lung (GSM2322544), ovary 

(GSM2322546), pancreas (GSM2322547), psoas muscle (GSM2322551), right ventricle (GSM2322554), 

small bowel (GSM2322555), spleen (GSM2322556), liver (GSM1419084), left ventricle (GSM1419085), 

and aorta (GSM1419086). The tissues were collected from four donors, each of which provides a subset 

of tissues. To minimize variation due to individual difference, we used the samples from the two donors 

with the largest number of tissues. If one tissue sample consists of multiple replicates from a single donor, 

the replicates were merged into a single dataset. We obtained the GM12878 cell data from (Selvaraj et al. 

2013) (GSM1181867, GSM1181867) and the IMR90 cell data from (Dixon et al. 2012) (GSM862724, 

GSM892307).  

Data Preprocessing 

We generated the Hi-C contact matrix using the pipeline from (Dixon et al. 2015). Briefly, the paired-end 

reads were first aligned to the hg19 reference genome assembly using BWA (Li and Durbin 2009). The 

unmapped reads were filtered, and potential PCR duplicates were removed using Picardtools 

(https://broadinstitute.github.io/picard/). We analyzed Hi-C reads mapped to human genome assembly 

hg19 because many of the published datasets were mapped to this assembly and this assembly has the 

deepest annotation of candidate functional noncoding sequences. While the human genome assembly 

GRCh38 has improved contiguity in local regions, both assemblies are high quality. Thus genome-wide 

analyses such as our assessments of reproducibility are not expected to differ significantly when the Hi-C 

reads are aligned to different assemblies. Importantly, our evaluation of reproducibility is not dependent 

on the exact locations to which reads map, but rather it uses the distances between two interacting 

sequences. Thus our metrics should be stable across similar assemblies.  

For most analysis, we used 40kb bins. To obtain contact maps at this resolution, we divided the genome 

into 40kb bins as in (Dixon et al. 2015) and obtained the interaction frequency by counting the number of 

reads falling into each pair of bins.  
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Our analysis only considered the intra-chromosomal interactions and only used the contacts within the 

range of 0-5Mb in the reproducibility assessment. This range was chosen based on the observation that 

most of the A/B compartments have an interaction size of about 5Mb, and interactions over 5Mb in 

distance are rare (< 5% of reads) and highly stochastic. To evaluate the effect of this parameter, we 

constructed the ES and its derived cell lineages using interactions in several ranges, including 0-4Mb, 0-

5Mb, 0-6Mb, 0-8Mb, and 0-10Mb (Fig. 4B for 0-5Mb and Supplemental Fig. S5 for others). The ranges 

of 0-4Mb, 0-5Mb and 0-6Mb gave the best results, confirming that 0-5Mb is a reasonable choice. Only 

the bins with at least one count in at least one of the samples are kept for computing Pearson and 

Spearman correlations. All the datasets were preprocessed using the same procedure. 

Our method is applicable to both raw and bias corrected data. However, to ensure the reproducibility 

assessment is free of assumptions made in the bias correction procedures (Imakaev et al. 2012; Hu et al. 

2012; Cournac et al. 2012) and faithfully reflects the nature of the raw data, we chose to apply our method 

directly to raw data without bias correction. For the ES and its derived cell lines, we also applied our 

method to the biased corrected matrices, in addition to the raw data, as a comparison. The bias correction 

was performed using the Iterative Correction and Eigenvector decomposition procedure (ICE) (Imakaev 

et al. 2012).   

2D mean filter smoothing 

Because the space of interactions surveyed by Hi-C experiments is very large, achieving sufficient 

coverage is still challenging. When samples are not sufficiently sequenced, the local variation introduced 

by under-sampling can make it difficult to capture large domain structures.   

To handle this issue, we first smooth the contact map before assessing reproducibility. Although 

smoothing will reduce the individual spatial resolution, it can improve the contiguity of the regions with 

elevated interaction, consequently enhancing the domain structures. It has been found effective in 

commonly-used Hi-C normalization methods (Imakaev et al. 2012; Yaffe and Tanay 2011).  
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We use a 2D mean filter to smooth the contact map. The filter replaces the read count of each contact in 

the contact map with the mean counts of all contacts in its genomic neighborhood. This filter is fast to 

compute and is effective for smoothing rectangular shapes (Davies 2012) like domain structures in Hi-C 

data.  Specifically, let nnC ×  denote a nn×
 contact map and cij denote the counts of the interaction 

between loci i and j. Given a span size h>0, the smoothed contact map after passing an hth 2D mean filter 

is defined as follows: 

( )2

),min(

),1max(

),min(

),1max(

21
)(
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him
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hjl ml
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A visualization of the smoothing effect with different window sizes is shown in Supplemental Fig. S6.  

Selection of smoothing parameter  

The span size h is a tuning parameter controlling the smoothing level. A very small h might not reduce 

enough local variation to enhance the boundaries of domain structures, while a large h will make the 

boundaries of domain structures blurry and limit the spatial resolution. Therefore, the optimal h should be 

adaptively chosen from the data.  

To select h objectively, we developed a heuristic procedure to search for the optimal choice.  Our 

procedure is designed based on the observation that the correlation between contact maps of replicate 

samples first increases with the level of smoothness and then plateaus when sufficient smoothness is 

reached. To proceed, we used a pair of reasonably deeply sequenced interaction maps as the training data. 

We randomly sampled 10% of the data ten times. For each subsample, we computed the stratum-adjusted 

correlation coefficient (SCC, described in a later section) at a series of h’s in the ascending order and 

recorded the smallest h at which the increment of SCC was less than 0.01. The mode of h among the ten 

subsamples was selected as the final span size. The detailed steps are shown in Algorithm 1 

(Supplemental File S1).  
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Because the level of local variation in a contact map depends on the resolution used to process the data, 

the span size required to achieve sufficient smoothness varies according to resolution. Hence, a proper h 

for each resolution needs to be trained separately. However, at a given resolution, it is desirable to use the 

same h for all datasets, so that the downstream reproducibility assessment can be compared on the same 

basis. To reduce the chance of over-smoothing due to sparseness caused by insufficient coverage when 

training h, we used a deeply sequenced data set as training data. 

Here we obtained h in our analysis from the Human H1 ESC dataset (Dixon et al. 2015). This dataset was 

deeply sequenced (330M and 740M reads for its two replicates) and had a reasonable quality (Dixon et al. 

2015), making it suitable as training data. We processed the data using a series of resolutions (10Kb, 

25Kb, 40Kb, 100Kb, 500Kb and 1Mb), and then selected h for each resolution using the procedure 

described above.  We obtained h=20, 11, 5, 3, 1, and 0 for the resolution of 10Kb, 25Kb, 40Kb, 100Kb, 

500Kb and 1Mb, respectively.  These values were used throughout our study for all datasets at the 

corresponding resolutions.  The robustness of our procedure was assessed using the Human H1 ESC 

dataset and four derived cell lines (details are in the Results section).  

Stratification by distance 

To take proper account of the distance effect in reproducibility assessment, we stratify the contacts by the 

genomic distance between their interaction loci. Specifically, let Xn×n be an n×n smoothed contact map at 

a resolution of bin size b. We compute the interaction distance for each contact xij as dij = |j - i|×b and then 

stratify the contacts by dij into K strata, Xk = {xij: (k-1)b < dij ≤ kb}, k = 1, … K.  Here we consider the 

interaction distance of 0-5Mb. This leads to K = 125 for the bin size b = 40kb. If xij is 0 in both samples, 

then it is excluded from the reproducibility assessment. 

Stratum-adjusted correlation coefficient (SCC)   

Our reproducibility statistic is motivated from the generalized Cochran-Mantel-Haenszel (CMH) statistic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2017. ; https://doi.org/10.1101/101386doi: bioRxiv preprint 

https://doi.org/10.1101/101386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

 

M2. The CMH statistic is a stratum-adjusted summary statistic for testing if two variables are associated 

while being stratified by the third variable (Agresti 2012), for example, the association between treatment 

and response stratified by age. Though originally developed for categorical data, it is also applicable to 

continuous data (Mantel 1963) and can detect consistent linear association across strata. However, the 

magnitude of M2 depends on the sample size; therefore, it cannot be used directly as a measure of the 

strength of the association. When there is no stratification, the CMH statistic is related to the Pearson 

correlation coefficient ρ as M2 = ρ2(N-1), where N is the number of observations (Agresti 2012). This 

relationship allows the strength of association summarized by M2 to be represented using a measure that 

has a fixed scale and is comparable across different samples. However, ρ does not involve stratification. 

This motivates us to derive a stratum-adjusted correlation coefficient (SCC) to summarize the strength of 

association from the CMH statistic when there is stratification.  

Derivation of stratum-adjusted correlation coefficient (SCC) 

Let (X, Y) denote a pair of samples with N observations. The observations are stratified into K strata, and 

each stratum has Nk observations such that NN
K

k k =∑ =1
. Denote the observations in stratum k as 

),( 11 kk
yx , …, ),(

kk NN yx  and the corresponding random variables as (Xk, Yk), respectively. In our 

context, ),(
kk ii yx  are the smoothed counts of the ith contact on the kth stratum in the two contact maps X 

and Y. Let ∑ =
= k

kk

N

i iik yxT
1

,  the CMH statistics is defined as 
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where )( kTE and )( kTVar  are the mean and variance of kT  under the hypothesis that Xk and Yk  are 

conditionally independent given the stratum,   
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To derive the stratum-adjusted correlation coefficient from the CMH statistic, write the Pearson 

correlation coefficient kρ for the kth stratum as
k
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From (8), it can be seen that 
2

sρ  reflects the strength of association in M2. This strength relates to M2 in

a similar way as the Pearson correlation to M2 in the case without stratification.  As shown in (7), sρ is a

weighted average of the stratum-specific correlation coefficients, with weights 
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assigned according to the variance and sample size of a stratum. We call  the stratum-adjusted

correlation coefficient (SCC). Similar to standard correlation coefficients, it satisfies 11 ≤≤− sρ . A

value of 1=sρ corresponds to a perfect positive correlation, a value of 1=sρ corresponds to a perfect

negative correlation, and a value of 0=sρ  corresponds to no correlation.  

The variance of sρ can be computed as  
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where ( )kρvar  is the asymptotic variance for the Pearson correlation coefficient in a single stratum and

can be computed using Fisher transformation (Fisher 1921) as follows. Let kr be the sample version of

kρ  and kZ  be the Fisher transformation of kr , i.e. 
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The idea of obtaining an average correlation coefficient based on the CMH statistic has been explored in 

(Rubenstein and Davis 1999) in the context of contingency tables with ordered categories. However, its 

derivation has several errors, which lead to a different statistic that ignores the sample size differences in 

different strata.    

Variance stabilized weights  

The downside for Equation (7) is that it is based on the implicit assumption in the CMH statistic that the 

dynamic ranges of X and Y are constant across strata. However, in Hi-C data, the read counts for contacts 

with short interaction distances have a much larger dynamic range than those with long interaction 

distances. As a result, the weights for the strata with large dynamic ranges will dominate (7), due to the 

large values of their ��� . To normalize the dynamic range, we rank the contact counts in each stratum 

separately and then normalize the ranks by the total number of observations �� in each stratum, such that 

all strata share a similar dynamic range. We then compute ���  in the weights in (7) and (9) using the 

normalized ranks, instead of the actual counts, i.e.  
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The stratum-specific correlation kρ  is still computed using actual values rather than ranks, as actual 

values have better sensitivity than ranks when there are a large number of low counts.  

Software availability 

We have implemented our method as an R package (R Core Team 2016). It is publicly available as the 

HiCRep package on GitHub (https://github.com/qunhualilab/hicrep) and the Supplemental Materials.  
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Figure captions 

Figure 1. An illustration example. (A) Hi-C contact maps of the biological replicates of hESC and 

IMR90. (B) Relationship between genomic distance and the average contact frequency for the samples in 

(A). Data is from chromosome 22: 32000000 – 40000000. 

Figure 2. A schematic representation of our method. 

Figure 3. Discrimination of pseudo replicates (PR), biological replicates (BR) and non-replicates (NR). 

(A) Reproducibility scores for the illustration example (hESC and IMR90 cell lines) in Fig. 1. Red dots 

are the results in the original samples, and blue dots are the results after equalizing the sequencing depth 

in all samples. (B-C) Reproducibility scores for the BR and NR in the ENCODE 11 cancer cell lines. The 

triangle represents the score for a BR and the boxplot represents the distribution of the scores for NRs.  

(B) Reproducibility scores for BRs and NRs in all cell types.  (C) SCC for BRs and the corresponding 

NRs in each cell type. From left to right, the cell lines are ordered according to the average sequencing 

depths of the biological replicates.  

Figure 4. Estimating interrelationship between the ten samples in the human H1 ESC lineage. (A) The 

heatmap and lineage relationship between the ES cell and its five derived cells based on  A/B 

compartments in Hi-C data (Dixon et al. 2015) and RNA-seq data in (Xie et al. 2013). (B-D) Estimated 

interrelationship based on the pairwise similarity score calculated using (B) SCC (C) Pearson correlation 

and (D) Spearman correlation. Heatmaps show the similarity scores. Dendrograms are resulted from a 

hierarchical clustering analysis based on the similarity scores. For easy visualization, the cell lines in the 

heatmaps are ordered according to their known distances to ES cells in (A). A decreasing trend of scores 

is expected from left to right (from bottom to top, respectively) if the estimated interrelationship agrees 

with the known lineage.   
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Figure 5. Estimated interrelationship for fourteen human primary tissues and two cell lines in (Schmitt et 

al. 2016). The dendrograms are resulted from a hierarchical clustering analysis based on the pairwise 

similarity calculated using (A) SCC, (B) Pearson correlation and (C) Spearman correlation.  

Figure 6. Estimated similarity between the human H1 ES cell and its derived cells at different resolutions. 

(A) SCC, (B) Pearson correlation coefficient, and (C) Spearman correlation coefficient. 

Figure 7. Detecting the change of reproducibility due to sequencing depth using SCC. (A) SCC of 

downsampled biological replicates (25%, 50%, 75%, 100% of the original sequencing depth) for the five 

cell lines on the H1 ES cell lineage. (B) Relationship between SCC and Jaccard index, which measures 

the proportion of shared significant contacts identified by Fit-Hi-C between replicates for samples in (A). 

(C) Saturation curves of SCC for datasets with different coverages. Plotted is the SCC at different 

subsamples (10%-90%) of the original samples with 90% confidence intervals. The blue dots represent 

H1 human ESC data (original sequencing depth=500M).  The red dots represent the A549 data (original 

sequencing depth=30M).   
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