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1 Abstract35

The motion energy model is the standard account of motion detection in animals from beetles to humans.36

Despite this common basis, we show here that a difference in the early stages of visual processing between37

mammals and insects leads this model to make radically different behavioural predictions. In insects, early38

filtering is spatially lowpass, which makes the surprising prediction that motion detection can be impaired by39

“invisible” noise, i.e. noise at a spatial frequency that elicits no response when presented on its own as a signal.40

We confirm this prediction using the optomotor response of praying mantis Sphodromantis lineola. This does41

not occur in mammals, where spatially bandpass early filtering means that linear systems techniques, such as42

deriving channel sensitivity from masking functions, remain approximately valid. Counter-intuitive effects such43

as masking by invisible noise may occur in neural circuits wherever a nonlinearity is followed by a difference44

operation.45

2 Introduction46

Linear system analysis, first introduced in visual neuroscience decades ago (Campbell and Robson, 1968; Caran-47

dini, 2006), has been highly influential and continues to be successfully applied in several domains including48

contrast, disparity and motion perception (Anderson and Burr, 1985; Batista et al., 2013; Burge and Geisler,49

2014; Carandini et al., 2005). This is despite the fact that neurons have many well-known nonlinearities. For50

example, nonlinearity is fundamental in accounting for our ability to perceive the direction of moving patterns51

(Adelson and Bergen, 1985; Clifford and Ibbotson, 2002; Emerson et al., 1992). Increasingly, contemporary52

models in neuroscience consist of a cascade of linear-nonlinear interactions (Chichilnisky, 2001; Hunter and53

Korenberg, 1986; Meister and Berry, 1999). At each stage of these models, inputs are pooled linearly and then54

processed with a nonlinear operator such as divisive normalization. It is therefore somewhat surprising that55

linear systems analyses work as well as they do.56

In a linear system, noise injected at a frequency to which a sensory system does not respond has no effect on57

the system’s ability to detect a signal. This property is often taken for granted in the study of perception. For58

example, since humans cannot hear ultrasound, our ability to discriminate speech is not affected by the presence59

of ultrasound noise. In fact, our auditory system consists of frequency-selective and independently-operating60

linear channels so that even noise at frequencies to which we are sensitive may not affect our hearing performance,61

if the noise is not detected by the same channel as the signal (Patterson and Nimmo-Smith, 1980). Similar62

frequency-selective channels mediate the detection of contrast and motion in the visual system (Anderson and63
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Burr, 1985; Blakemore and Campbell, 1969; Campbell and Robson, 1968; Graham and Nachmias, 1971; Sachs64

et al., 1971). Whether a system consists of multiple channels or not, it may seem obvious that the performance65

of the system cannot be affected by noise at frequencies to which the system does not respond. However,66

this property does not necessarily hold in nonlinear systems. It is possible to build a nonlinear system that is67

unresponsive to signals at a particular frequency but whose performance is significantly affected if noise of that68

frequency is added to a signal. Although there are many well-understood nonlinearities in vision (Badcock, 1984;69

Burr, 1980; Burton, 1973; Chen et al., 1993; Lawton, 1984; Marr and Hildreth, 1980; Morrone and Burr, 1988;70

Pollen et al., 1988; Zhou and Baker, 1993), interactions of this kind are often ignored (Harvey and Gervais, 1978;71

Legge, 1976; Maffei and Fiorentini, 1973; Stromeyer and Julesz, 1972). The prominent models in the domain of72

motion perception, for example, include well-known nonlinearities but are still assumed to not respond to noise73

outside their frequency sensitivity band (Anderson and Burr, 1989).74

Here, we show that this assumption is not generally true for the standard models of motion perception. The75

nonlinearity of these models means that a moving signal at a highly visible frequency can be ”‘masked”’ (made76

less detectable) by noise at frequencies outside the detector’s sensitivity band (i.e. invisible noise). So far, this77

effect has been neglected because it does not occur when the filtering prior to motion detection is spatially78

bandpass, as it is in mammals. Masking techniques in humans and other mammals could therefore be applied79

successfully while ignoring this effect. However, in insects, early filtering is lowpass, and so we predict that80

invisible noise will be able to obscure a moving signal.81

To test this prediction, we used the optomotor response of the praying mantis Sphodromantis lineola, in82

response to drifting gratings with and without noise. We have previously shown that the optomotor response is83

most sensitive to gratings at around 0.03 cycles per degree (cpd) and is largely insensitive to signals below 10−284

cpd (Nityananda et al., 2015). However, we show here that noise as low as 10−3 cpd – an order of magnitude85

lower – has the same effect as noise of the same amplitude presented at the optimal spatial frequency. This86

is quite different from published results in humans (Anderson and Burr, 1985), where noise has most effect87

when presented at spatial frequencies close to the optimal frequency of the relevant channel, and has no effect88

when presented at frequencies to which the organism is not sensitive. However, we show that the same model89

structure correctly predicts the qualitatively different behaviour in the two species, reflecting a difference in90

early filtering. Thus a profound difference between the behaviour of insects and of humans actually helps to91

confirm that both species use a similar mechanism to compute visual motion.92
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3 Results93

3.1 Modelling biological motion detection94

The standard models of early biological motion detection are the Hassenstein-Reichardt Detector (Figure 1A),95

originally developed to describe behaviour in insects (Hassenstein and Reichardt, 1956), and the Motion Energy96

Model (Figure 1B), originally developed to explain human perception(Adelson and Bergen, 1985). Both models97

use nonlinear operators to combine the outputs of several spatial and temporal filters and obtain a direction-98

sensitive measure of motion strength, known as motion energy, via a final opponent step (Figure 1). This99

opponent step ensures that they respond only to directional motion, and not to non-directional changes in100

luminance such as counterphase-modulation or flicker (Qian et al., 1994).101

The two models are traditionally associated with particular early spatiotemporal filters. For the energy102

model, the filters are often taken to be building blocks for two quadrature pairs of oriented linear responses103

(Adelson and Bergen, 1985). The attraction of this assumption is that it makes leftward and rightward responses104

to a simple moving grating constant (despite the temporal modulation of the stimulus) consistent with the exis-105

tence of directionally-selective complex cells in primary visual cortex (Emerson et al., 1992) and psychophysical106

evidence for directionally-selective motion detection channels in humans (Levinson and Sekuler, 1975). For the107

Reichardt detector, the spatial filters are usually assumed to be identical but displaced in space, reflecting the108

view that their correlates are two neighboring ommatidia in an insect’s eye (Borst, 2014). These filter choices109

originate from the studies in insects and mammals where the models have their historical roots, but are not110

intrinsic features of the models themselves.111

In fact, although the circuits originally proposed for the motion energy and Reichardt detectors are struc-112

turally different (Figure 1), if the same spatiotemporally separable filters are used in each model, the output of113

the two models is mathematically identical (Adelson and Bergen, 1985; Borst and Helmstaedter, 2015; Lu and114

Sperling, 1995; Van Santen and Sperling, 1984). Critically, as Figure 1 shows, both models involve opponency,115

i.e. they compute the difference between motion energy in opposite directions, either explicitly or implicitly.116

Our discussion and conclusions will therefore apply to both models equally.117

3.2 Opponency in motion perception118

One feature of opponent energy models of motion detection is that the spatiotemporal filters and the detector119

itself as a unit may have different spatiotemporal tuning. This can be illustrated by considering the response120

of an motion energy detector to a single drifting sinusoidal grating with the contrast function:121
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s(x, t) = C sin
(
2π(fT t+ fSx) + β

)
(1)

where x is the horizontal position of a point in the grating, t is time, fT is temporal frequency, fS is122

spatial frequency, β is the grating’s phase and C is contrast. Following the schematics in Figure 1, both models123

integrate this stimulus over space and then pass the results through temporal filters to generate the separable124

time responses:125

A(t) = CGS1GT1 sin
(
2πfT t+ β + φS1 + φT1

)
(2)

A′(t) = CGS1GT2 sin
(
2πfT t+ β + φS1 + φT2

)
B(t) = CGS2GT1 sin

(
2πfT t+ β + φS2 + φT1

)
B′(t) = CGS2GT2 sin

(
2πfT t+ β + φS2 + φT2

)

where GT1, GT2, φT1, φT2 are the gains and phase responses of temporal filters at the stimulus temporal126

frequency fT and GS1, GS2, φS1, φS2 are likewise for the spatial filters. In the energy model (Figure 1B), these127

signals are combined into distinct rightward and leftward terms:128

Rightward Energy(t) = C2[(A+B′)2 + (A′ −B)2] (3)

Leftward Energy(t) = C2[(A−B′)2 + (A′ +B)2] (4)

that are subtracted to produce the model output: opponent energy. The Reichardt detector combines the129

separable responses differently (Figure 1A) but produces the same output (up to a scaling factor of 4):130

Opponent Energy(t) = C2(AB′ −BA′) (5)

Figure 2 illustrates the Fourier spectrum of rightward, leftward and opponent energy for typical human131

and insect filters. The red and blue lines in Figure 2AB mark the passband of rightward and leftward energies132
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respectively (Equations 3 and 4). Figure 2A does this for filters designed to model human vision, while Figure 2B133

is for filters designed to model insect vision; see Methods for details. Figure 2CD shows the opponent energy134

(defined as rightward minus leftward energy, Equation 5), which is the output of the motion detector.135

For mammals, early spatiotemporal filters are typically relatively narrow-band, with little response to DC136

(Anderson and Burr, 1989). The rightward and leftward energies are therefore also bandpass and clearly137

separated in Fourier space (Figure 2A), very similar to those of the input filters. The regions of Fourier space138

where the opponent energy is positive (bounded by solid contours in Figure 2C) are simply the same regions139

where there is rightward energy (bounded by red in Figure 2A), and similarly for negative/leftward (dotted in140

C, blue in A). Thus, there are no frequencies that elicit a strong response from the individual filters and not141

from the opponent model as a whole.142

For insects, the situation is different. The two spatial inputs to a Reichardt detector are usually taken to143

be a pair of adjacent ommatidia (Buchner, 1976; Pick and Buchner, 1979), so the spatial filter is simply the144

angular sensitivity function of an ommatidium, which is lowpass, roughly Gaussian (Rossel, 1979; Van Santen145

and Sperling, 1984). Accordingly, as shown in Figure 2B, insects have substantial leftward and rightward146

energy responses at zero spatial frequency. Crucially, these are canceled out in the opponency step, meaning147

that the Reichardt detector as a whole does not respond to whole-field changes in brightness to which individual148

photoreceptors do respond. Thus the opponent energy terms are bandpass (Figure 2D). This means that, for149

insects, the spatiotemporal filters and the model itself as a unit may have different spatiotemporal tuning.150

Mathematically, after substituting for the filter outputs in Equation 5 and simplifying, the output of the

motion detector can be expressed as

Opponent Energy(t) = C2G sin(φS2 − φS1) sin(φT1 − φT2) (6)

where G is the product of the filter gains, G = GS1GS2GT1GT2, and the φ are the phases of the filter responses,151

defined above in Equation 2. Since G is spacetime separable, it is not direction-selective. The direction-152

selectivity is created by the phase-difference terms. Since the filters are real, the filter phase is an odd function153

of frequency. This means that the energy is positive in the first and third Fourier quadrants and negative in154

the second and fourth, as shown in Figure 2CD.155

The important point for our purposes is that the frequency tuning of the motion detector as a whole reflects156

both that of the filter gains G, and that of the phase-difference terms. For the Reichardt detector, the phase-157

difference terms make the motion detector spatially bandpass even though its spatial filters are lowpass. In158
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the Reichardt detector, the spatial filters are identical but offset in position by a distance ∆x, so the spatial159

phase-difference term in Equation 6 is sin(2πfS∆x). This term removes the response to the lowest frequencies,160

as we saw in Figure 2D.161

In the energy model, the spatial filters are usually taken to be bandpass functions like Gabors or derivatives162

of Gaussians, differing in their phase but not position. For such functions, the phase difference is independent163

of frequency, so the phase-difference terms in Equation 6 just contribute an overall scaling and the frequency164

tuning of the motion detector is determined solely by the filter gains G. This remains approximately true even165

for filters which differ in position as well as phase, provided they are bandpass. We shall show that this difference166

in the bandwidth of their spatial filters means that the energy model and Reichardt detector are affected very167

differently by motion noise, despite the fact that the model architecture is mathematically identical.168

3.3 Response to a general stimulus169

We now work through what happens when noise is added to a motion signal. We consider the response of an170

opponent model to an arbitrary stimulus composed of a sum of N drifting gratings:171

s(x, t) =

N∑
i=1

Ci sin
(
2π(fTit+ fSix) + βi

)
. (7)

Since the filters in an energy opponent motion detector are linear, the separable responses A, A′, B and B′172

can be expressed as a sum of the independent responses to the components present in a stimulus. The model’s173

overall response to the compound grating in Equation 7 can therefore be written as:174

Opponent Energy(t) =
( N∑
i=1

CiAi

)( N∑
j=1

CjB
′
j

)
−
( N∑
j=1

CjBj

)( N∑
i=1

CiA
′
i

)
=

N∑
i=1

N∑
j=1

CiCj(AiB
′
j −BjA

′
i) (8)

where the subscripts denote responses to the components. To simplify, we extract the terms where i = j175

and re-write the expression as:176

Opponent Energy(t) =
( N∑

i=1

C2
i (AiB

′
i −BiA

′
i)
)

+
( N∑

i=1

N∑
j 6=i

CiCj(AiB
′
j −BjA

′
i)
)

(9)
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The response in Equation 9 consists of two parts. Terms within the first sum operator (the independent177

terms) are simply the summed responses to grating components when presented each on its own (Equation 5).178

Obviously, frequencies which do not elicit a response when presented in isolation do not contribute to this term.179

The remaining terms within the second sum operator represent crosstalk or interactions between component180

pairs at different spatial and/or temporal frequencies. These show more subtle behaviour.181

Interactions differ from independent terms in a number of ways. First, if two components have different182

temporal frequencies then their interaction is a sinusoidal function of time, so has no net contribution to the183

response when integrated over time (Van Santen and Sperling, 1984, 1985). When two components i and j have184

the same temporal frequency, however, their interaction results in the DC response:185

AiB
′
j −BjA

′
i = CiCjG(i, j) sin(βi − βj + φS1i − φS2j) sin(φT2i − φT1i) (10)

where G(i, j) = GS1iGS2jGT1iGT2i , the product of the filter gains at the spatial and temporal frequencies186

in question. βi, βj are the phases of the stimulus components (Equation 7), φS1i, φS2j are the phases of the two187

spatial filters at the relevant frequencies,fSi and fSj , and φT1i, φT2i are the phases of the two temporal filters188

at the temporal frequency fTi. This response has a similar form to Equation 6 but differs in an important way:189

its spatial phase-difference term depends on the spatial filter phase responses to different stimulus components.190

Suppose there is a spatial frequency fSj for which both spatial filters have substantial gains GS1j , GS2j and191

equal phases: φS1j = φS2j . Due to opponency, this component will not elicit any response when presented in192

isolation, because of the term sin(φS1j − φS2j) in Equation 6; it will appear invisible to the detector. Yet its193

interaction with a visible component fSi will nevertheless add a constant offset to the model’s output, provided194

only that sin(βi − βj + φS1i − φS2j) 6= 0. This means that invisible noise at fSj can mask a signal at fSi.195

3.4 Early spatial filtering in insect vs mammalian motion detection196

Does this effect actually occur in biological motion detectors? In mammals, it seems the answer is no. There, the197

spatial filters are bandpass functions like narrow-band Gabors or derivatives of Gaussians, which have roughly198

constant phase for all frequencies of a given sign. The two spatial filters are generally modelled as having the199

same position but different phase, which means that there are no components for which φS1j = φS2j . If the200

filters had different positions as well as phases, such components could exist, but this would imply some strange201

properties of the motion detector (tuning to different directions for different frequency components) which have202
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not been reported. For realistic mammalian filters, therefore, it is not possible for components to be invisible203

when presented in isolation and yet to affect the response to visible components.204

However, for insect motion detectors, the spatial filters are believed to resemble Gaussians with a spatial205

offset ∆x. For a component with spatial frequency fSj , the phase difference between the two filters is 2π∆xfSj .206

As the spatial frequency tends to zero, so does the phase difference and thus the response of the opponent energy207

motion detector (Equation 6). The opponent energy detector as a whole is therefore bandpass in its spatial208

frequency tuning, as has been confirmed many times for insects (Borst, 2014; Dvorak et al., 1980; Nityananda209

et al., 2015; OCarroll et al., 1997; OCarroll, DC and Bidwell, NJ and Laughlin, SB and Warrant, EJ, 1996).210

Yet since the Gaussian filters are low-pass, the gain GS2j remains high. This means that there can be a large211

interaction term between this frequency and visible frequencies fSi (Equation 10).212

This analysis suggests that the interaction terms produced by the nonlinearity of the motion energy model213

can indeed be safely ignored for mammals, so long as the relevant spatial filters are bandpass. However,214

we predict that in insects, motion signals can be masked by invisible noise. This effect has not so far been215

demonstrated.216

3.5 Mammalian motion detection is not affected by invisible noise217

The spatiotemporal frequency tuning of motion detectors is often estimated psychophysically by measuring218

their responses to masked gratings. In these experiments, detecting a coherently-moving grating (the signal) is219

made more difficult by superimposing one or more gratings with different spatial/temporal frequencies but no220

coherent motion (the noise). The relative increase in detection threshold as a function of noise frequency (i.e.221

the masking function) is taken as the spatiotemporal sensitivity of the individual detector (Anderson and Burr,222

1989). This technique is important because it enables the tuning of a single channel to be inferred, even though223

many channels contribute to the spatiotemporal sensitivity of the whole organism.224

Figure 3 reproduces data from (Anderson and Burr, 1985) showing such an experiment in humans. The225

reduction in sensitivity is greatest when noise is at the same spatial frequency as the signal. As noise moves226

away from the signal frequency, either higher or lower, it has progressively less effect. In this way, Anderson227

and Burr (1985) deduced that human motion channels are bandpass with a bandwidth of 1 to 3 octaves.228

We model this by assuming that motion is detected when the output of an motion detector exceeds a229

threshold (see Methods for details). Because noise carries no motion signal, it has no effect on the mean230

detector output, but it increases its variability and hence decreases the proportion of above-threshold responses.231

This leads to a decrease in response rate and consequently threshold elevation. The factor by which threshold232

8
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is elevated for noise at a given frequency forms the masking function, whose shape reflects the variability of the233

motion detector output.234

Figure 4 shows the results of this simulation. Figure 4A shows the spatial sensitivity function of an energy235

model motion detector, i.e. its response to single drifting gratings as a function of their spatial frequency.236

This is also the detector’s mean response in the presence of noise. However, noise elevates the variability of237

the response, as shown in Figure 4C. Accordingly, the signal contrast needed for the model to reliably detect238

motion is increased, and we obtain the masking function shown in Figure 4D. As Anderson and Burr (1985)239

assumed, this accurately reflects the sensitivity of the underlying mechanisms (cf. Figure 4D and Figure 4A).240

In particular, the bandpass filter tuning gives bandpass masking.241

Thus in mammals, the masking function can be used to infer (approximately) the spatiotemporal sensitivity242

of motion detection channels. This works because the initial filters are spatiotemporally bandpass (Anderson243

and Burr, 1985, 1989; Burr et al., 1986a,b).244

3.6 Insect motion detection is affected by invisible noise245

As we have seen, the response of insect motion detectors to masked grating stimuli is is expected to be quali-246

tatively different. The lowpass tuning of the early spatial filters in models of insect motion detection predicts247

that low-frequency components which elicit no response when presented on their own will still influence the248

detector’s response to other frequencies.249

This means that for insects, we predict differences between their motion masking and sensitivity functions.250

Specifically, when the mask contains components with the same temporal frequency as the signal, we expect251

the masking effect of noise to extend to spatial frequencies much lower than the sensitivity band of an insect252

motion detector. In this section, we present the results of experiments in which we tested this prediction.253

Figure 5A shows the mantis optomotor response rates we measured in our experiment as a function of254

noise frequency. For insects, trials are slow, so we did not attempt to measure contrast thresholds for each255

combination of signal and noise. Rather, we measured response rates at a single signal contrast, and used256

the drop in response rate to assess the effect of noise. To facilitate comparison with the corresponding plot257

in mammals (Figure 3A), we plot the masking rate, defined as M(fn) = (R0 − R(fn))/R0 where R(fn) is the258

optomotor response rate at a given noise frequency and R0 is the baseline response rate (measured without259

adding noise).260

As in mammals, adding noise to the stimulus causes a drop in response rate (corresponding to an increase261

in the masking rate). Unlike mammals, however, the impact of masking on the mantis is not predicted by its262
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motion sensitivity function. For example, injecting noise near the peak spatial sensitivity (0.03 cpd, Nityananda263

et al. (2015)) unsurprisingly causes severe masking; the masking rate is 80%. In the absence of noise, with a264

signal of contrast 0.125 at 0.0185 cpd, insects moved in the direction of the signal on R0 = 60% of trials; after265

adding noise with contrast 0.198 at 0.03 cpd, this dropped to R(fn) = 12%. Also unsurprisingly, injecting noise266

at frequencies much higher than the peak has little effect. For example, noise at 0.3cpd produces masking which267

is not significantly different from zero; this is expected given that Nityananda et al. (2015) found sensitivity at268

0.3 cpd was near zero (their Fig 3b).269

But counter-intuitively, noise injected at frequencies much lower than the peak continues to produce strong270

masking. For example, Nityananda et al. (2015) found that sensitivity at 0.007 cpd, the lowest frequency they271

tested, was 15% of the peak value. Normally, we would expect the effect of noise to be reduced correspondingly.272

However, we find the masking rate at 0.0025 cpd is still 80%, just as severe as noise injected at the peak.273

We tested the effect of noise on three further signal frequencies (Figure 6). The amount of masking depends274

on the signal frequency. Since we always presented the signal grating at the same contrast, the effective275

strength of the signal depends on the sensitivity at the signal frequency. Accordingly, noise has least effect on276

signals at 0.037 cpd (maximum masking rate 50%, Figure 6A), and most effect at the lowest and highest signal277

frequencies (maximum masking rate 80% for 0.0185 cpd, Figure 5A, and 95% for 0.177 cpd, Figure 6C). As278

the noise frequency increases much beyond the signal frequency, it produces progressively less masking. The279

precise frequency at which the high frequency fall-off occurs depends on the signal frequency. This may reflect280

the contribution of motion detectors with different selectivity for spatial frequencies281

Critically, in every case, we found the same dependence on noise frequency: noise injected at frequencies282

at or below the signal frequency produced essentially the same amount of masking, regardless of the precise283

frequency it was injected at. That is, masking is low-pass, even though the insects’ motion sensitivity is band-284

pass. This is the signature interaction effect we predicted we would find in insects, due to their lowpass early285

spatial filtering combined with the nonlinearity of the standard models of motion detection.286

4 Discussion287

We show that the standard model of motion detection produces nonlinear interactions between the spatial288

components of moving stimuli. Stimuli that elicit no response can nonetheless have a powerful masking effect, if289

the filters that precede motion detection are spatially lowpass. We show that this sort of mask does effectively290

disrupt the optomotor response of the praying mantis. This is very different from the effects of masking noise in291
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humans, but our analysis suggests that this reflects the same motion computation in both species, computed after292

different initial filters are applied. This highlights the fact that simple nonlinearities can have complex effects.293

In human studies, it is commonly assumed that nonlinear interactions take place only within the sensitivity294

band of a given channel within a system (Anderson and Burr, 1989; Daugman, 1984), where a “channel” is a295

pool of neurons with similar tuning (Blakemore and Campbell, 1969; Campbell and Robson, 1968; De Valois296

and Tootell, 1983; Graham and Nachmias, 1971; Sachs et al., 1971). This turns out to be a good approximation297

only if the sensitivity band is set by the inputs to the channel, rather than by subsequent nonlinearities. This298

is true for humans, but not in insects.299

Here, we have analysed the standard model of motion detection. This is mathematically equivalent to both300

the Reichardt Detector and to the Motion Energy Model, the standard accounts of motion detection in insects301

and mammals respectively (Anderson and Burr, 1989; Hassenstein and Reichardt, 1956). The two accounts302

have different circuitry but are mathematically equivalent when the same filters are used as inputs (Adelson303

and Bergen, 1985; Borst and Helmstaedter, 2015; Lu and Sperling, 1995; Van Santen and Sperling, 1984).304

We derived equations 9 and 10 showing how such motion detectors can be affected by frequency components305

outside their sensitivity band (Chen et al., 1993). In these models, interaction terms with different temporal306

frequencies average to zero over time, producing “pseudo-linearity” (Van Santen and Sperling, 1984). Crucially,307

however, we show that cross-frequency interactions can survive opponency and time-averaging. When low spatial308

frequencies are transmitted by early spatiotemporal filters, even if they are normally cancelled subsequently by309

the opponency step, these “invisible” components can affect the response to other, visible signals.310

For mammalian motion sensors, this effect may be a mathematical curiosity. Motion sensors are built at a311

relatively late stage, following early neural filtering (Morgan, 1992) which is spatially bandpass for both spatial312

and temporal frequency, even as early as the output of the retina. The opponency in models of mammalian313

motion detection sharpens direction selectivity, but has little effect on spatial frequency tuning. In contrast,314

current models of insect motion sensors postulate that they are constructed at a much earlier stage, directly from315

individual ommatidia. The filters are spatially-lowpass, reflecting largely optical, rather than neural, factors316

(Rossel, 1979; Snyder et al., 1977). Our analysis predicted that this would make insect motion detectors subject317

to interference from “invisible” low-frequency noise. We have confirmed this behaviourally in an insect model,318

the praying mantis.319

Given the differences between humans and mantises, it is remarkable that the experimental data in both320

species is so well described by a model of exactly the same structure (Figure 4, Figure 5). This model employs321

a simple decision rule in which motion is perceived when the average activity of a group of motion detectors322
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exceeds a threshold. The only difference is the early spatiotemporal filters used for each species: spatially323

bandpass for mammals and spatially lowpass for insects. In both cases the masking function reflects this early324

spatial filtering. For mammals, this is the same as the spatiotemporal sensitivity of the whole organism, but325

for insects it is not. Thus, the same circuitry results in very different behaviour.326

Although motion perception presumably evolved independently in insects and mammals, the underlying327

circuits may be much older. The circuit relies on two very common operations: an output nonlinearity and a328

subtraction. These are both very common operations, so similar circuits are likely to be widespread in nervous329

systems. These common operations can lead to very different behaviour, given only slight differences in the330

inputs. It seems likely that other behavioural differences may be explained in equally simple ways.331

5 Materials & Methods332

We used a masking paradigm to test visual motion detection in the praying mantis. In the context of motion333

detection, a “signal” is an image that moves smoothly in a given direction, to “detect the signal” is to report the334

direction of motion and “noise” is a sequence of images with no consistent motion. mantises were placed in front335

of a CRT screen and viewed full screen gratings drifting either leftward or rightward in each trial. In a subset336

of trials, the moving grating elicited the optomotor response, a postural stabilization mechanism that causes337

mantises to lean in the direction of a moving large-field stimulus. An observer coded the direction of the elicited338

optomotor response in each trial (if any) and these responses were later used to calculate motion detection339

probability as the proportion of trials in which mantises leaned in the same direction as the stimulus. Videos340

of mantises responding optomotorally to a moving grating using same experimental paradigm are available341

on (http://www.edge-cdn.net/video_839277?playerskin=37016) and (http://www.edge-cdn.net/video_342

839281?playerskin=37016) (supplementary material to Nityananda et al. (2015)).343

5.1 Insects344

The insects used in experiments were 11 individuals (6 males and 5 females) of the species Sphodromantis lineola.345

Each insect was stored in a plastic box of dimensions 17×17×19 cm with a porous lid for ventilation and fed a346

live cricket twice per week. The boxes were kept at a temperature of 25◦ C and were cleaned and misted with347

water twice per week.348
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5.2 Experimental Setup349

The setup consisted of a CRT monitor (HP P1130, gamma corrected with a Minolta LS-100 photometer) and a350

5×5 cm Perspex base onto which mantises were placed hanging upside down facing the (horizontal and vertical)351

middle point of the screen at a distance of 7 cm. The Perspex base was held in place by a clamp attached to a352

retort stand and a web camera (Kinobo USB B3 HD Webcam) was placed underneath providing a view of the353

mantis but not the screen. The monitor, Perspex base and camera were all placed inside a wooden enclosure to354

isolate the mantis from distractions and maintain consistent dark ambient lighting during experiments.355

The screen had physical dimensions of 40.4 × 30.2 cm and pixel dimensions of 1600 × 1200 pixels. At the356

viewing distance of the mantis the horizontal extent of the monitor subtended a visual angle of 142◦. The mean357

luminance of the stimuli was 51.4 cd/m2 and its refresh rate was 85 Hz.358

The monitor was connected to a Dell OptiPlex 9010 (Dell, US) computer with an Nvidia Quadro K600359

graphics card and running Microsoft Windows 7. All experiments were administered by a Matlab 2012b (Math-360

works, Inc., Massachusetts, US) script which was initiated at the beginning of each experiment and subsequently361

controlled the presentation of stimuli and the storage of keyed-in observer responses. The web camera was con-362

nected and viewed by the observer on another computer to reduce processing load on the rendering computer’s363

graphics card and minimize the chance of frame drops. Stimuli were rendered using Psychophysics Toolbox364

Version 3 (PTB-3) (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).365

5.3 Experimental Procedure366

Each experiment consisted of a number of trials in which an individual mantis was presented with moving367

gratings of signal and noise components. An experimenter observed the mantis through the camera underneath368

and coded its response as “moved left”, “moved right” or “did not move”. The camera did not show the screen369

and the experimenter was blind to the stimulus. There were equal repeats of left-moving and right-moving370

gratings of each condition in all experiments. Trials were randomly interleaved by the computer. In between371

trials a special “alignment stimulus” was presented and used to steer the mantis back to its initial body and372

head posture as closely as possible. The alignment stimulus consisted of a chequer-like pattern which could373

be moved in either horizontal direction via the keyboard and served to re-align the mantis by triggering the374

optomotor response.375
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5.4 Visual Stimulus376

The stimulus consisted of superimposed “signal” and “noise” vertical sinusoidal gratings. The signal grating377

had one of the spatial frequencies 0.0185, 0.0376, 0.0885 or 0.177 cpd, a temporal frequency of 8 Hz and was378

drifting coherently to either left or right in each trial. Signal temporal frequency was chosen to maximize the379

optomotor response rate based on the mantis contrast sensitivity function (Nityananda et al., 2015). Noise had380

a spatial frequency in the range 0.0012 to 0.5 cpd and its phase was randomly updated on each frame to make381

it temporally broadband (with a Nyquist frequency of 42.5 Hz) without net coherent motion in any direction.382

Each presentation lasted for 5 seconds.383

Since mantises were placed very close to the screen (7 cm away), any gratings that are uniform in cycles/px384

would have appeared significantly distorted in cycles/deg (Anderson and Burr, 1985). To correct for this we385

applied a nonlinear horizontal transformation so that grating periods subtend the same visual angle irrespective386

of their position on the screen. This was achieved by calculating the visual degree corresponding to each screen387

pixel using the function:388

θ(x) = atan(
x

RD
) (11)

where x is the horizontal pixel position relative to the center of the screen, θ(x) is its visual angle, R is the389

horizontal screen resolution in pixels/cm and D is the viewing distance. To an observer standing more than D390

cm away from the screen, a grating rendered with this transformation looked more compressed at the center of391

the screen compared to the periphery. At D cm away from the screen, however, grating periods in all viewing392

directions subtended the same visual angle and the stimulus appeared uniform (in degrees) as if rendered on a393

cylindrical drum. This correction only works perfectly if the mantis head is in exactly the intended position at394

the start of each trial and is most critical at the edges of the screen. As an additional precaution against spatial395

distortion or any stimulus artifacts caused by oblique viewing we restricted all gratings to the central 85◦of the396

visual field by multiplying the stimulus luminance levels L(x, y, t) with the following Butterworth window:397

w(x) =
1

1 + (2|x|/Sw)2n
(12)

Where x is the horizontal pixel position relative the middle of the screen, Sw is the window’s Full Width at398

Half Maximum (FWHM), chosen as 512 pixels in our experiment (subtending a visual angle of 85◦at the viewing399

distance of the mantis), and n is the window order (chosen as 10). This restriction minimized any spread in400
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spatial frequency at the mantis retina due to imperfections in our correction formula described by Equation 11.401

We have previously shown that the mantis optomotor response is largely driven by the central visual field, such402

that a stimulus covering the central 85◦should elicit around 84% of the response which would have been elicited403

by a stimulus covering the entire visual field (Nityananda et al., 2017).404

With the above manipulations the presented stimulus was:405

I(x, y, j) = 0.5 + w(x)

(
As cos

(
2π
(
fsθ(x) + dftt

))
+An cos

(
2π
(
fnθ(x) + φj

)))
(13)

where x, y are the horizontal and vertical positions of a screen pixel, k is frame number, I is pixel luminance,406

in normalized units where 0 and 1 are the screen’s minimum and maximum luminance levels (0.161 and 103407

cd/m2 respectively), As is signal Michelson contrast (0.125), An is noise contrast (0.198), fs is signal spatial408

frequency (0.0185, 0.0376, 0.0885 or 0.177 cpd), fn is noise frequency (varied across trials), ft is signal temporal409

frequency (8 Hz), d indicates motion direction (either 1 or -1 on each trial), φj is chosen randomly from a410

uniform distribution between 0 and 1 on each frame, t is time in seconds (given by t = j/85), and θ(x) is the411

pixel visual angle according to Equation 11. Still frames, space-time plots and spatiotemporal Fourier amplitude412

spectra of the stimulus are shown in Figure 7.413

5.5 Modeling414

Figures 4 and 5 contain simulation results from the model shown in Figure 4 (Panel B). The model consists of415

10 opponent energy models (based on the schematics shown in Figure 1 panel B), placed at different positions416

on a virtual retina, a linear sum and a two-sided threshold of the form:417

thresh(x) =



−1, x < −T

+1, x > +T

0, otherwise

(14)

The model was simulated numerically in Matlab. The spatial resolution of simulations was 0.01 deg, time418

step was 1/85 seconds and each simulated presentation was 1 second long.419

The spatial and temporal sensitivity of energy model filters were adjusted to approximate the sensitivities420

of insects and mammals in different simulations. For mammals (Figure 2AC and Figure 4), spatial filters were421

second and third derivatives of Gaussians (σ = 0.08◦) and temporal filters were422
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TF (t;n) = (kt)n exp(−kt)
(
1/n!− (kt)2/(n+ 2)!

)
(15)

where n = 3 for TF1, n = 5 for TF2 and k = 105 for both filters. These filter functions and parameters423

were taken from the published literature on human motion perception and spatiotemporal tuning (Adelson and424

Bergen, 1985; Robson, 1966). For insects (Figure 2BD and Figure 5), we used Gaussian spatial filters and425

first-order low/high pass temporal filters:426

TF1(t) = exp(−t/τL) (16)

TF2(t) = δ(t)− exp(−t/τH) (17)

SF1(x) = exp
(−(x− x0 −∆x/2)2

2σ2

)
(18)

SF2(x) = exp
(−(x− x0 + ∆x/2)2

2σ2

)
(19)

where τL = 13 ms, τH = 40 ms, ∆x = 4◦, σ = 2.56◦. Insect filter functions and parameters were again427

taken from the published literature (Borst, 2014) (Rossel, 1979) (Nityananda et al., 2015). The models were428

normalized such that all gave a mean response of 1 to a drifting grating at the optimal spatial and temporal429

frequency.430

In each simulated trial, the model was presented with a 1D version of the grating used in the experiments.431

Energy model outputs were summed and averaged over the duration of each presentation then passed through432

thresh(x) to produce a direction judgment similar to the one made by human observers in our experiment and433

the psychophysics experiments of Anderson and Burr (1985). When simulating the model with noisy gratings,434

up to 500 presentations were repeated per noise frequency point.435

In simulations of insect motion detectors, response rates were calculated as the proportion of presentations436

in which the direction of motion computed by the model was the same as the signal component in the stimulus.437

In simulations of mammalian motion detectors, we calculated detection threshold as the threshold T of the438

function thresh(x) that resulted in the model judging motion direction correctly in 90% of the presentations.439
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Figure 1: Opponent energy models of motion detection

The Reichardt Detector (RD) and the Energy Model (EM) are two prominent opponent models in the literature
of insect and mammalian motion detection. The two models are formally equivalent when the spatial and
temporal filters are separable (as shown) and so their outputs and response properties are identical even though
their structures are different. Both models use the outputs of several linear spatial and temporal filters (SF1,
SF2, TF1 and TF2) to calculate two opponent terms and then subtract them to obtain a direction-sensitive
measure of motion (opponent energy). Nonlinear processing is a fundamental ingredient of calculating motion
energy and so both models include nonlinear operators before the opponency stage (multiplication in the RD
and squaring in the EM). (Reproduction of Fig. 18 from Adelson and Bergen (1985).)
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Figure 2: Spatiotemporal filter and opponent energy tuning in an opponent motion model

(A, B) Fourier spectra of rightward and leftward energies ((A+B′)2 + (A′−B)2, Equation 3, and (A−B′)2 +
(A′ +B)2, Equation 4) for example mammalian and insect opponent energy motion detectors (see Methods for
details, Equations 15-19 ). The colored lines in each plot are 0.25 sensitivity contours. The Fourier spectra
of leftward and rightward energies are very similar to the model’s filters in each case: spatially bandpass in
mammals and low-pass in insects. (C, D) Opponent energy, AB′ − A′B, computed as the difference between
rightward and leftward energies. In mammals, rightward and leftward responses do not overlap because the
spatial filter are band-pass (panel A). In insects, the low-pass spatial filters cause an overlap between rightward
and leftward responses (panel B) but this overlap is canceled at the opponency stage making opponent energy
insensitive to low spatial frequencies (panel D).
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Figure 3: Effect of noise on mammalian motion detectors

Measurements showing the effect of noise on motion detection sensitivity in humans (reproduction of Fig. 1b
from Anderson and Burr (1985)). The colored plots show responses to different signal frequencies (marked by
arrows). Noise is most effective at masking the signal when its frequency is the same and less effective as its
frequency changes in either direction.
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Figure 4: For mammalian bandpass filters, the masking function reflects sensitivity

(A) (B) Direction discrimination model based on an array of opponent models with the spatial tuning plotted in
panel A. Opponent model outputs are pooled and passed through a two-sided threshold of value T to produce a
ternary judgment of motion direction per stimulus presentation. (C) The variability of opponent model outputs
across 500 simulated presentations (per noise frequency point) of a noisy stimulus consisting of a signal grating
of 3 cpd and temporally-broadband noise. Signal frequency is marked on the plot with an arrow. Signal and
noise had

√
2 and 20

√
2 RMS contrast respectively. Adding noise did change the mean of opponent output but

had a significant effect on its spread. Output variance was highest when noise frequency was 3 cpd and lower
as noise frequency changed in either direction, closely resembling the shape of the opponent model’s sensitivity
function. (D) The masking function (red) was calculated based on these simulated results as T (fn)/T0 where
T (fn) is the threshold corresponding to a 90% detection rate at each noise frequency and T0 is the detection
threshold of an unmasked grating. The sensitivity function from (A) is reproduced, scaled, for comparison (blue
dotted line). The masking function is a good approximation to the sensitivity.

25

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2017. ; https://doi.org/10.1101/098459doi: bioRxiv preprint 

https://doi.org/10.1101/098459
http://creativecommons.org/licenses/by/4.0/


10
−3

10
−2

10
−1

10
0

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Noise Frequency (cpd)
R

el
at

iv
e 

D
ro

p 
in

 R
es

po
ns

e 
R

at
e

Masking vs. Sensitivity (Experiment)

(B) Masking Rate
Sensitivity Function

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

Signal Frequency (cpd)

S
en

si
tiv

ity
Sensitivity Function (Experiment)

(A) Data
Log−normal Fit

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Frequency (cpd)

S
en

si
tiv

ity

Sensitivity Function (Simulation)

(C)

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Noise Frequency (cpd)

R
el

at
iv

e 
D

ro
p 

in
 R

es
po

ns
e 

R
at

e

Masking vs. Sensitivity (Simulation)

(D) Masking Rate
Sensitivity Function

Figure 5: For mantis motion detection, masking function does not reflect sensitivity

(A) The spatial sensitivity of mantis motion detectors at 8 Hz, measured using the same experimental paradigm,
showing bandpass sensitivity in the range 0.01 to 0.1 cpd (reproduction of Fig. 3a in Nityananda et al. (2015)).
(B) Measurements showing the effect of noise on the detection of a moving grating in the praying mantis.
Circles are masking rate M defined as M = (R0 − R)/R0 where R is the response rate (proportion of trials
in which mantids responded optomotorally in the same direction as the signal grating) and R0 is the baseline
(no-noise) response rate. Error bars are 95% confidence intervals calculated using simple binomial statistics.
Signal frequency (0.0185 cpd) is marked on the plot with an arrow. The response rate measured at 0.03 cpd was
slightly below baseline and so the calculated masking rate was negative. (C) Normalized sensitivity function
of a motion energy model tuned to 0.03 cpd (18). (D) Simulated masking function (red) with the simulated
sensitivity function reproduced for comparison (blue dotted line, scaled to same peak). Masking and sensitivity
functions in the mantis are qualitatively different: noise below the lower end of the sensitivity function (∼ 0.01
cpd) continues to mask the signal.
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Figure 6: Mantis masking rate measurements at different signal frequencies

Measurements of masking rate versus noise frequency in the mantis (for the signal frequencies 0.037, 0.088 and
0.177 cpd) showing the same masking trends as Figure 5A (signal frequency 0.0185 cpd): noise continues to
mask the signal significantly even if its frequency is below the spatial sensitivity passband of mantis motion
detectors (∼ 0.01 to 0.1 cpd). Circles are masking rate M defined as M = (R0−R)/R0 where R is the response
rate (proportion of trials in which mantids responded optomotorally in the same direction as the signal grating)
and R0 is the baseline (no-noise) response rate. Error bars are 95% confidence intervals calculated using simple
binomial statistics. Signal frequency is marked on each plot by an arrow.
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Figure 7: Masked grating visual stimuli used in the experiment

(A, D) Spatiotemporal Fourier spectra, (B, E) space-time plots and (C, F) still frames of the visual stimulus in
two conditions of the experiment. Panels A,B,C represent a no-noise condition: the stimulus is a moving grating
at 0.0185 cpd and 8 Hz with no added noise. Panels D,E,F represent a masked condition: the stimulus consists
of the same signal grating but with non-coherent temporally-broadband noise added at 0.05 cpd. There were
in total 44 conditions in the experiment (4 unmasked and 40 masked gratings). Noise was always temporally
broadband and its spatial frequency varied across conditions (in the range 0.0012 to 0.5 cpd).
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