

When invisible noise obscures the signal: the consequences of nonlinearity in motion detection

Abbreviated Title: Nonlinearity in Motion Detection

Authors:

- Ghaith Tarawneh^{1*} (ghaith.tarawneh@ncl.ac.uk) (+44 191 208 6246)
- Vivek Nityananda¹ (vivek.nityananda@ncl.ac.uk) (+44 191 208 6246)
- Ronny Rosner¹ (ronny.rosner@ncl.ac.uk) (+44 191 208 6246)
- Steven Errington¹ (steven.errington@ncl.ac.uk) (+44 191 208 6246)
- William Herbert¹ (williamherbert@hotmail.co.uk) (+44 191 208 6246)
- Bruce G. Cumming² (bgc@mail.nih.gov) (+1 301 402 8097)
- Jenny C. A. Read¹ (jenny.read@ncl.ac.uk) (+44 191 208 7559)
- Ignacio Serrano-Pedraza³ (iserrano@ucm.es) (+34 91 394 2340)

* Corresponding Author

Affiliations:

¹ Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom

² Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bldg 49 Room 2A50, Bethesda, MD 20892-4435, USA

³ Faculty of Psychology, Complutense University of Madrid, Madrid 28223, Spain

Contributions:

- Designed research: GT, VN, RR, JR, ISP
- Performed research: GT, SE, WH, JR, ISP
- Contributed unpublished reagents/analytic tools: GT, ISP
- Analyzed data: GT, JR, ISP
- Wrote the paper: GT, JR, ISP, BGC

Manuscript:

- Pages: 29, Figures: 7, Tables: 0, Multimedia: 0, 3D Models: 0

Acknowledgments:

- GT, VN and RR are funded by a Leverhulme Trust Research Leadership Award RL-2012-019 to JR. ISP is supported by grant PSI2014-51960-P from Ministerio de Economía y Competitividad (Spain). We are grateful to Adam Simmons for excellent insect husbandry and to Sid Henriksen for helpful comments on the manuscript.

Competing interests: The authors declare that they have no financial or non-financial competing interests.

35 1 Abstract

36 The motion energy model is the standard account of motion detection in animals from beetles to humans.
37 Despite this common basis, we show here that a difference in the early stages of visual processing between
38 mammals and insects leads this model to make radically different behavioural predictions. In insects, early
39 filtering is spatially lowpass, which makes the surprising prediction that motion detection can be impaired by
40 “invisible” noise, i.e. noise at a spatial frequency that elicits no response when presented on its own as a signal.
41 We confirm this prediction using the optomotor response of praying mantis *Sphodromantis lineola*. This does
42 not occur in mammals, where spatially bandpass early filtering means that linear systems techniques, such as
43 deriving channel sensitivity from masking functions, remain approximately valid. Counter-intuitive effects such
44 as masking by invisible noise may occur in neural circuits wherever a nonlinearity is followed by a difference
45 operation.

46 2 Introduction

47 Linear system analysis, first introduced in visual neuroscience decades ago (Campbell and Robson, 1968; Caran-
48 dini, 2006), has been highly influential and continues to be successfully applied in several domains including
49 contrast, disparity and motion perception (Anderson and Burr, 1985; Batista et al., 2013; Burge and Geisler,
50 2014; Carandini et al., 2005). This is despite the fact that neurons have many well-known nonlinearities. For
51 example, nonlinearity is fundamental in accounting for our ability to perceive the direction of moving patterns
52 (Adelson and Bergen, 1985; Clifford and Ibbotson, 2002; Emerson et al., 1992). Increasingly, contemporary
53 models in neuroscience consist of a cascade of linear-nonlinear interactions (Chichilnisky, 2001; Hunter and
54 Korenberg, 1986; Meister and Berry, 1999). At each stage of these models, inputs are pooled linearly and then
55 processed with a nonlinear operator such as divisive normalization. It is therefore somewhat surprising that
56 linear systems analyses work as well as they do.

57 In a linear system, noise injected at a frequency to which a sensory system does not respond has no effect on
58 the system’s ability to detect a signal. This property is often taken for granted in the study of perception. For
59 example, since humans cannot hear ultrasound, our ability to discriminate speech is not affected by the presence
60 of ultrasound noise. In fact, our auditory system consists of frequency-selective and independently-operating
61 linear channels so that even noise at frequencies to which we are sensitive may not affect our hearing performance,
62 if the noise is not detected by the same channel as the signal (Patterson and Nimmo-Smith, 1980). Similar
63 frequency-selective channels mediate the detection of contrast and motion in the visual system (Anderson and

64 Burr, 1985; Blakemore and Campbell, 1969; Campbell and Robson, 1968; Graham and Nachmias, 1971; Sachs
65 et al., 1971). Whether a system consists of multiple channels or not, it may seem obvious that the performance
66 of the system cannot be affected by noise at frequencies to which the system does not respond. However,
67 this property does not necessarily hold in nonlinear systems. It is possible to build a nonlinear system that is
68 unresponsive to signals at a particular frequency but whose performance is significantly affected if noise of that
69 frequency is added to a signal. Although there are many well-understood nonlinearities in vision (Badcock, 1984;
70 Burr, 1980; Burton, 1973; Chen et al., 1993; Lawton, 1984; Marr and Hildreth, 1980; Morrone and Burr, 1988;
71 Pollen et al., 1988; Zhou and Baker, 1993), interactions of this kind are often ignored (Harvey and Gervais, 1978;
72 Legge, 1976; Maffei and Fiorentini, 1973; Stromeier and Julesz, 1972). The prominent models in the domain of
73 motion perception, for example, include well-known nonlinearities but are still assumed to not respond to noise
74 outside their frequency sensitivity band (Anderson and Burr, 1989).

75 Here, we show that this assumption is not generally true for the standard models of motion perception. The
76 nonlinearity of these models means that a moving signal at a highly visible frequency can be "masked" (made
77 less detectable) by noise at frequencies outside the detector's sensitivity band (i.e. *invisible noise*). So far, this
78 effect has been neglected because it does not occur when the filtering prior to motion detection is spatially
79 bandpass, as it is in mammals. Masking techniques in humans and other mammals could therefore be applied
80 successfully while ignoring this effect. However, in insects, early filtering is lowpass, and so we predict that
81 invisible noise will be able to obscure a moving signal.

82 To test this prediction, we used the optomotor response of the praying mantis *Sphodromantis lineola*, in
83 response to drifting gratings with and without noise. We have previously shown that the optomotor response is
84 most sensitive to gratings at around 0.03 cycles per degree (cpd) and is largely insensitive to signals below 10^{-2}
85 cpd (Nityananda et al., 2015). However, we show here that noise as low as 10^{-3} cpd – an order of magnitude
86 lower – has the same effect as noise of the same amplitude presented at the optimal spatial frequency. This
87 is quite different from published results in humans (Anderson and Burr, 1985), where noise has most effect
88 when presented at spatial frequencies close to the optimal frequency of the relevant channel, and has no effect
89 when presented at frequencies to which the organism is not sensitive. However, we show that the same model
90 structure correctly predicts the qualitatively different behaviour in the two species, reflecting a difference in
91 early filtering. Thus a profound difference between the behaviour of insects and of humans actually helps to
92 confirm that both species use a similar mechanism to compute visual motion.

93 3 Results

94 3.1 Modelling biological motion detection

95 The standard models of early biological motion detection are the Hassenstein-Reichardt Detector ([Figure 1A](#)),
96 originally developed to describe behaviour in insects ([Hassenstein and Reichardt, 1956](#)), and the Motion Energy
97 Model ([Figure 1B](#)), originally developed to explain human perception ([Adelson and Bergen, 1985](#)). Both models
98 use nonlinear operators to combine the outputs of several spatial and temporal filters and obtain a direction-
99 sensitive measure of motion strength, known as motion energy, via a final opponent step ([Figure 1](#)). This
100 opponent step ensures that they respond only to directional motion, and not to non-directional changes in
101 luminance such as counterphase-modulation or flicker ([Qian et al., 1994](#)).

102 The two models are traditionally associated with particular early spatiotemporal filters. For the energy
103 model, the filters are often taken to be building blocks for two quadrature pairs of oriented linear responses
104 ([Adelson and Bergen, 1985](#)). The attraction of this assumption is that it makes leftward and rightward responses
105 to a simple moving grating constant (despite the temporal modulation of the stimulus) consistent with the exis-
106 tence of directionally-selective complex cells in primary visual cortex ([Emerson et al., 1992](#)) and psychophysical
107 evidence for directionally-selective motion detection channels in humans ([Levinson and Sekuler, 1975](#)). For the
108 Reichardt detector, the spatial filters are usually assumed to be identical but displaced in space, reflecting the
109 view that their correlates are two neighboring ommatidia in an insect's eye ([Borst, 2014](#)). These filter choices
110 originate from the studies in insects and mammals where the models have their historical roots, but are not
111 intrinsic features of the models themselves.

112 In fact, although the circuits originally proposed for the motion energy and Reichardt detectors are struc-
113 turally different ([Figure 1](#)), if the same spatiotemporally separable filters are used in each model, the output of
114 the two models is mathematically identical ([Adelson and Bergen, 1985](#); [Borst and Helmstaedter, 2015](#); [Lu and](#)
115 [Sperling, 1995](#); [Van Santen and Sperling, 1984](#)). Critically, as [Figure 1](#) shows, both models involve opponency,
116 i.e. they compute the difference between motion energy in opposite directions, either explicitly or implicitly.
117 Our discussion and conclusions will therefore apply to both models equally.

118 3.2 Opponency in motion perception

119 One feature of opponent energy models of motion detection is that the *spatiotemporal filters* and the *detector*
120 *itself as a unit* may have different spatiotemporal tuning. This can be illustrated by considering the response
121 of an motion energy detector to a single drifting sinusoidal grating with the contrast function:

$$s(x, t) = C \sin(2\pi(f_T t + f_S x) + \beta) \quad (1)$$

122 where x is the horizontal position of a point in the grating, t is time, f_T is temporal frequency, f_S is
 123 spatial frequency, β is the grating's phase and C is contrast. Following the schematics in [Figure 1](#), both models
 124 integrate this stimulus over space and then pass the results through temporal filters to generate the separable
 125 time responses:

$$A(t) = CG_{S1}G_{T1} \sin(2\pi f_T t + \beta + \phi_{S1} + \phi_{T1}) \quad (2)$$

$$A'(t) = CG_{S1}G_{T2} \sin(2\pi f_T t + \beta + \phi_{S1} + \phi_{T2})$$

$$B(t) = CG_{S2}G_{T1} \sin(2\pi f_T t + \beta + \phi_{S2} + \phi_{T1})$$

$$B'(t) = CG_{S2}G_{T2} \sin(2\pi f_T t + \beta + \phi_{S2} + \phi_{T2})$$

126 where G_{T1} , G_{T2} , ϕ_{T1} , ϕ_{T2} are the gains and phase responses of temporal filters at the stimulus temporal
 127 frequency f_T and G_{S1} , G_{S2} , ϕ_{S1} , ϕ_{S2} are likewise for the spatial filters. In the energy model ([Figure 1B](#)), these
 128 signals are combined into distinct rightward and leftward terms:

$$\text{Rightward Energy}(t) = C^2[(A + B')^2 + (A' - B)^2] \quad (3)$$

$$\text{Leftward Energy}(t) = C^2[(A - B')^2 + (A' + B)^2] \quad (4)$$

129 that are subtracted to produce the model output: opponent energy. The Reichardt detector combines the
 130 separable responses differently ([Figure 1A](#)) but produces the same output (up to a scaling factor of 4):

$$\text{Opponent Energy}(t) = C^2(AB' - BA') \quad (5)$$

131 [Figure 2](#) illustrates the Fourier spectrum of rightward, leftward and opponent energy for typical human
 132 and insect filters. The red and blue lines in [Figure 2AB](#) mark the passband of rightward and leftward energies

133 respectively (Equations 3 and 4). Figure 2A does this for filters designed to model human vision, while Figure 2B
134 is for filters designed to model insect vision; see Methods for details. Figure 2CD shows the opponent energy
135 (defined as rightward minus leftward energy, Equation 5), which is the output of the motion detector.

136 For mammals, early spatiotemporal filters are typically relatively narrow-band, with little response to DC
137 (Anderson and Burr, 1989). The rightward and leftward energies are therefore also bandpass and clearly
138 separated in Fourier space (Figure 2A), very similar to those of the input filters. The regions of Fourier space
139 where the opponent energy is positive (bounded by solid contours in Figure 2C) are simply the same regions
140 where there is rightward energy (bounded by red in Figure 2A), and similarly for negative/leftward (dotted in
141 C, blue in A). Thus, there are no frequencies that elicit a strong response from the individual filters and not
142 from the opponent model as a whole.

143 For insects, the situation is different. The two spatial inputs to a Reichardt detector are usually taken to
144 be a pair of adjacent ommatidia (Buchner, 1976; Pick and Buchner, 1979), so the spatial filter is simply the
145 angular sensitivity function of an ommatidium, which is lowpass, roughly Gaussian (Rossel, 1979; Van Santen
146 and Sperling, 1984). Accordingly, as shown in Figure 2B, insects have substantial leftward and rightward
147 energy responses at zero spatial frequency. Crucially, these are canceled out in the opponency step, meaning
148 that the Reichardt detector as a whole does not respond to whole-field changes in brightness to which individual
149 photoreceptors do respond. Thus the opponent energy terms are bandpass (Figure 2D). This means that, for
150 insects, the spatiotemporal filters and the model itself as a unit may have different spatiotemporal tuning.

Mathematically, after substituting for the filter outputs in Equation 5 and simplifying, the output of the motion detector can be expressed as

$$\text{Opponent Energy}(t) = C^2 G \sin(\phi_{S2} - \phi_{S1}) \sin(\phi_{T1} - \phi_{T2}) \quad (6)$$

151 where G is the product of the filter gains, $G = G_{S1}G_{S2}G_{T1}G_{T2}$, and the ϕ are the phases of the filter responses,
152 defined above in Equation 2. Since G is spacetime separable, it is not direction-selective. The direction-
153 selectivity is created by the phase-difference terms. Since the filters are real, the filter phase is an odd function
154 of frequency. This means that the energy is positive in the first and third Fourier quadrants and negative in
155 the second and fourth, as shown in Figure 2CD.

156 The important point for our purposes is that the frequency tuning of the motion detector as a whole reflects
157 both that of the filter gains G , and that of the phase-difference terms. For the Reichardt detector, the phase-
158 difference terms make the motion detector spatially bandpass even though its spatial filters are lowpass. In

159 the Reichardt detector, the spatial filters are identical but offset in position by a distance Δx , so the spatial
 160 phase-difference term in [Equation 6](#) is $\sin(2\pi f_S \Delta x)$. This term removes the response to the lowest frequencies,
 161 as we saw in [Figure 2D](#).

162 In the energy model, the spatial filters are usually taken to be bandpass functions like Gabors or derivatives
 163 of Gaussians, differing in their phase but not position. For such functions, the phase difference is independent
 164 of frequency, so the phase-difference terms in [Equation 6](#) just contribute an overall scaling and the frequency
 165 tuning of the motion detector is determined solely by the filter gains G . This remains approximately true even
 166 for filters which differ in position as well as phase, provided they are bandpass. We shall show that this difference
 167 in the bandwidth of their spatial filters means that the energy model and Reichardt detector are affected very
 168 differently by motion noise, despite the fact that the model architecture is mathematically identical.

169 **3.3 Response to a general stimulus**

170 We now work through what happens when noise is added to a motion signal. We consider the response of an
 171 opponent model to an arbitrary stimulus composed of a sum of N drifting gratings:

$$s(x, t) = \sum_{i=1}^N C_i \sin(2\pi(f_{Ti}t + f_{Si}x) + \beta_i). \quad (7)$$

172 Since the filters in an energy opponent motion detector are linear, the separable responses A , A' , B and B'
 173 can be expressed as a sum of the independent responses to the components present in a stimulus. The model's
 174 overall response to the compound grating in [Equation 7](#) can therefore be written as:

$$\begin{aligned} \text{Opponent Energy}(t) &= \left(\sum_{i=1}^N C_i A_i \right) \left(\sum_{j=1}^N C_j B'_j \right) - \left(\sum_{j=1}^N C_j B_j \right) \left(\sum_{i=1}^N C_i A'_i \right) \\ &= \sum_{i=1}^N \sum_{j=1}^N C_i C_j (A_i B'_j - B_j A'_i) \end{aligned} \quad (8)$$

175 where the subscripts denote responses to the components. To simplify, we extract the terms where $i = j$
 176 and re-write the expression as:

$$\text{Opponent Energy}(t) = \left(\sum_{i=1}^N C_i^2 (A_i B'_i - B_i A'_i) \right) + \left(\sum_{i=1}^N \sum_{j \neq i}^N C_i C_j (A_i B'_j - B_j A'_i) \right) \quad (9)$$

177 The response in [Equation 9](#) consists of two parts. Terms within the first sum operator (the *independent*
178 *terms*) are simply the summed responses to grating components when presented each on its own ([Equation 5](#)).

179 Obviously, frequencies which do not elicit a response when presented in isolation do not contribute to this term.

180 The remaining terms within the second sum operator represent crosstalk or *interactions* between component

181 pairs at different spatial and/or temporal frequencies. These show more subtle behaviour.

182 Interactions differ from independent terms in a number of ways. First, if two components have different
183 temporal frequencies then their interaction is a sinusoidal function of time, so has no net contribution to the
184 response when integrated over time ([Van Santen and Sperling, 1984, 1985](#)). When two components i and j have
185 the same temporal frequency, however, their interaction results in the DC response:

$$A_i B'_j - B_j A'_i = C_i C_j G(i, j) \sin(\beta_i - \beta_j + \phi_{S1i} - \phi_{S2j}) \sin(\phi_{T2i} - \phi_{T1i}) \quad (10)$$

186 where $G(i, j) = G_{S1i} G_{S2j} G_{T1i} G_{T2i}$, the product of the filter gains at the spatial and temporal frequencies
187 in question. β_i, β_j are the phases of the stimulus components ([Equation 7](#)), ϕ_{S1i}, ϕ_{S2j} are the phases of the two
188 spatial filters at the relevant frequencies, f_{Si} and f_{Sj} , and ϕ_{T1i}, ϕ_{T2i} are the phases of the two temporal filters
189 at the temporal frequency f_{Ti} . This response has a similar form to [Equation 6](#) but differs in an important way:
190 its spatial phase-difference term depends on the spatial filter phase responses *to different stimulus components*.

191 Suppose there is a spatial frequency f_{Sj} for which both spatial filters have substantial gains G_{S1j}, G_{S2j} and
192 equal phases: $\phi_{S1j} = \phi_{S2j}$. Due to opponency, this component will not elicit any response when presented in
193 isolation, because of the term $\sin(\phi_{S1j} - \phi_{S2j})$ in [Equation 6](#); it will appear invisible to the detector. Yet its
194 interaction with a visible component f_{Si} will nevertheless add a constant offset to the model's output, provided
195 only that $\sin(\beta_i - \beta_j + \phi_{S1i} - \phi_{S2j}) \neq 0$. This means that invisible noise at f_{Sj} can mask a signal at f_{Si} .

196 3.4 Early spatial filtering in insect vs mammalian motion detection

197 Does this effect actually occur in biological motion detectors? In mammals, it seems the answer is no. There, the
198 spatial filters are bandpass functions like narrow-band Gabor or derivatives of Gaussians, which have roughly
199 constant phase for all frequencies of a given sign. The two spatial filters are generally modelled as having the
200 same position but different phase, which means that there are no components for which $\phi_{S1j} = \phi_{S2j}$. If the
201 filters had different positions as well as phases, such components could exist, but this would imply some strange
202 properties of the motion detector (tuning to different directions for different frequency components) which have

203 not been reported. For realistic mammalian filters, therefore, it is not possible for components to be invisible
204 when presented in isolation and yet to affect the response to visible components.

205 However, for insect motion detectors, the spatial filters are believed to resemble Gaussians with a spatial
206 offset Δx . For a component with spatial frequency f_{Sj} , the phase difference between the two filters is $2\pi\Delta x f_{Sj}$.
207 As the spatial frequency tends to zero, so does the phase difference and thus the response of the opponent energy
208 motion detector (Equation 6). The opponent energy detector as a whole is therefore bandpass in its spatial
209 frequency tuning, as has been confirmed many times for insects (Borst, 2014; Dvorak et al., 1980; Nityananda
210 et al., 2015; O'Carroll et al., 1997; O'Carroll, DC and Bidwell, NJ and Laughlin, SB and Warrant, EJ, 1996).
211 Yet since the Gaussian filters are low-pass, the gain G_{S2j} remains high. This means that there can be a large
212 interaction term between this frequency and visible frequencies f_{Si} (Equation 10).

213 This analysis suggests that the interaction terms produced by the nonlinearity of the motion energy model
214 can indeed be safely ignored for mammals, so long as the relevant spatial filters are bandpass. However,
215 we predict that in insects, motion signals can be masked by invisible noise. This effect has not so far been
216 demonstrated.

217 3.5 Mammalian motion detection is not affected by invisible noise

218 The spatiotemporal frequency tuning of motion detectors is often estimated psychophysically by measuring
219 their responses to masked gratings. In these experiments, detecting a coherently-moving grating (the signal) is
220 made more difficult by superimposing one or more gratings with different spatial/temporal frequencies but no
221 coherent motion (the noise). The relative increase in detection threshold as a function of noise frequency (i.e.
222 the masking function) is taken as the spatiotemporal sensitivity of the individual detector (Anderson and Burr,
223 1989). This technique is important because it enables the tuning of a single channel to be inferred, even though
224 many channels contribute to the spatiotemporal sensitivity of the whole organism.

225 Figure 3 reproduces data from (Anderson and Burr, 1985) showing such an experiment in humans. The
226 reduction in sensitivity is greatest when noise is at the same spatial frequency as the signal. As noise moves
227 away from the signal frequency, either higher or lower, it has progressively less effect. In this way, Anderson
228 and Burr (1985) deduced that human motion channels are bandpass with a bandwidth of 1 to 3 octaves.

229 We model this by assuming that motion is detected when the output of an motion detector exceeds a
230 threshold (see Methods for details). Because noise carries no motion signal, it has no effect on the mean
231 detector output, but it increases its variability and hence decreases the proportion of above-threshold responses.
232 This leads to a decrease in response rate and consequently threshold elevation. The factor by which threshold

233 is elevated for noise at a given frequency forms the masking function, whose shape reflects the variability of the
234 motion detector output.

235 [Figure 4](#) shows the results of this simulation. [Figure 4A](#) shows the spatial sensitivity function of an energy
236 model motion detector, i.e. its response to single drifting gratings as a function of their spatial frequency.
237 This is also the detector's mean response in the presence of noise. However, noise elevates the variability of
238 the response, as shown in [Figure 4C](#). Accordingly, the signal contrast needed for the model to reliably detect
239 motion is increased, and we obtain the masking function shown in [Figure 4D](#). As [Anderson and Burr \(1985\)](#)
240 assumed, this accurately reflects the sensitivity of the underlying mechanisms (cf. [Figure 4D](#) and [Figure 4A](#)).

241 In particular, the bandpass filter tuning gives bandpass masking.

242 Thus in mammals, the masking function can be used to infer (approximately) the spatiotemporal sensitivity
243 of motion detection channels. This works because the initial filters are spatiotemporally bandpass ([Anderson](#)
244 [and Burr, 1985, 1989; Burr et al., 1986a,b](#)).

245 3.6 Insect motion detection is affected by invisible noise

246 As we have seen, the response of insect motion detectors to masked grating stimuli is expected to be qualitatively
247 different. The lowpass tuning of the early spatial filters in models of insect motion detection predicts
248 that low-frequency components which elicit no response when presented on their own will still influence the
249 detector's response to other frequencies.

250 This means that for insects, we predict differences between their motion masking and sensitivity functions.
251 Specifically, when the mask contains components with the same temporal frequency as the signal, we expect
252 the masking effect of noise to extend to spatial frequencies much lower than the sensitivity band of an insect
253 motion detector. In this section, we present the results of experiments in which we tested this prediction.

254 [Figure 5A](#) shows the mantis optomotor response rates we measured in our experiment as a function of
255 noise frequency. For insects, trials are slow, so we did not attempt to measure contrast thresholds for each
256 combination of signal and noise. Rather, we measured response rates at a single signal contrast, and used
257 the drop in response rate to assess the effect of noise. To facilitate comparison with the corresponding plot
258 in mammals ([Figure 3A](#)), we plot the *masking rate*, defined as $M(f_n) = (R_0 - R(f_n))/R_0$ where $R(f_n)$ is the
259 optomotor response rate at a given noise frequency and R_0 is the baseline response rate (measured without
260 adding noise).

261 As in mammals, adding noise to the stimulus causes a drop in response rate (corresponding to an increase
262 in the masking rate). Unlike mammals, however, the impact of masking on the mantis is not predicted by its

263 motion sensitivity function. For example, injecting noise near the peak spatial sensitivity (0.03 cpd, [Nityananda et al. \(2015\)](#)) unsurprisingly causes severe masking; the masking rate is 80%. In the absence of noise, with a
264 signal of contrast 0.125 at 0.0185 cpd, insects moved in the direction of the signal on $R_0 = 60\%$ of trials; after
265 adding noise with contrast 0.198 at 0.03 cpd, this dropped to $R(f_n) = 12\%$. Also unsurprisingly, injecting noise
266 at frequencies much higher than the peak has little effect. For example, noise at 0.3cpd produces masking which
267 is not significantly different from zero; this is expected given that [Nityananda et al. \(2015\)](#) found sensitivity at
268 0.3 cpd was near zero (their Fig 3b).

270 But counter-intuitively, noise injected at frequencies much lower than the peak continues to produce strong
271 masking. For example, [Nityananda et al. \(2015\)](#) found that sensitivity at 0.007 cpd, the lowest frequency they
272 tested, was 15% of the peak value. Normally, we would expect the effect of noise to be reduced correspondingly.
273 However, we find the masking rate at 0.0025 cpd is still 80%, just as severe as noise injected at the peak.

274 We tested the effect of noise on three further signal frequencies ([Figure 6](#)). The amount of masking depends
275 on the signal frequency. Since we always presented the signal grating at the same contrast, the effective
276 strength of the signal depends on the sensitivity at the signal frequency. Accordingly, noise has least effect on
277 signals at 0.037 cpd (maximum masking rate 50%, [Figure 6A](#)), and most effect at the lowest and highest signal
278 frequencies (maximum masking rate 80% for 0.0185 cpd, [Figure 5A](#), and 95% for 0.177 cpd, [Figure 6C](#)). As
279 the noise frequency increases much beyond the signal frequency, it produces progressively less masking. The
280 precise frequency at which the high frequency fall-off occurs depends on the signal frequency. This may reflect
281 the contribution of motion detectors with different selectivity for spatial frequencies

282 Critically, in every case, we found the same dependence on noise frequency: noise injected at frequencies
283 at or below the signal frequency produced essentially the same amount of masking, regardless of the precise
284 frequency it was injected at. That is, masking is low-pass, even though the insects' motion sensitivity is band-
285 pass. This is the signature interaction effect we predicted we would find in insects, due to their lowpass early
286 spatial filtering combined with the nonlinearity of the standard models of motion detection.

287 4 Discussion

288 We show that the standard model of motion detection produces nonlinear interactions between the spatial
289 components of moving stimuli. Stimuli that elicit no response can nonetheless have a powerful masking effect, if
290 the filters that precede motion detection are spatially lowpass. We show that this sort of mask does effectively
291 disrupt the optomotor response of the praying mantis. This is very different from the effects of masking noise in

292 humans, but our analysis suggests that this reflects the same motion computation in both species, computed after
293 different initial filters are applied. This highlights the fact that simple nonlinearities can have complex effects.
294 In human studies, it is commonly assumed that nonlinear interactions take place only within the sensitivity
295 band of a given channel within a system (Anderson and Burr, 1989; Daugman, 1984), where a “channel” is a
296 pool of neurons with similar tuning (Blakemore and Campbell, 1969; Campbell and Robson, 1968; De Valois
297 and Tootell, 1983; Graham and Nachmias, 1971; Sachs et al., 1971). This turns out to be a good approximation
298 only if the sensitivity band is set by the inputs to the channel, rather than by subsequent nonlinearities. This
299 is true for humans, but not in insects.

300 Here, we have analysed the standard model of motion detection. This is mathematically equivalent to both
301 the Reichardt Detector and to the Motion Energy Model, the standard accounts of motion detection in insects
302 and mammals respectively (Anderson and Burr, 1989; Hassenstein and Reichardt, 1956). The two accounts
303 have different circuitry but are mathematically equivalent when the same filters are used as inputs (Adelson
304 and Bergen, 1985; Borst and Helmstaedter, 2015; Lu and Sperling, 1995; Van Santen and Sperling, 1984).
305 We derived equations 9 and 10 showing how such motion detectors can be affected by frequency components
306 outside their sensitivity band (Chen et al., 1993). In these models, interaction terms with different temporal
307 frequencies average to zero over time, producing “pseudo-linearity” (Van Santen and Sperling, 1984). Crucially,
308 however, we show that cross-frequency interactions can survive opponency and time-averaging. When low spatial
309 frequencies are transmitted by early spatiotemporal filters, even if they are normally cancelled subsequently by
310 the opponency step, these “invisible” components can affect the response to other, visible signals.

311 For mammalian motion sensors, this effect may be a mathematical curiosity. Motion sensors are built at a
312 relatively late stage, following early neural filtering (Morgan, 1992) which is spatially bandpass for both spatial
313 and temporal frequency, even as early as the output of the retina. The opponency in models of mammalian
314 motion detection sharpens direction selectivity, but has little effect on spatial frequency tuning. In contrast,
315 current models of insect motion sensors postulate that they are constructed at a much earlier stage, directly from
316 individual ommatidia. The filters are spatially-lowpass, reflecting largely optical, rather than neural, factors
317 (Rossel, 1979; Snyder et al., 1977). Our analysis predicted that this would make insect motion detectors subject
318 to interference from “invisible” low-frequency noise. We have confirmed this behaviourally in an insect model,
319 the praying mantis.

320 Given the differences between humans and mantises, it is remarkable that the experimental data in both
321 species is so well described by a model of exactly the same structure (Figure 4, Figure 5). This model employs
322 a simple decision rule in which motion is perceived when the average activity of a group of motion detectors

323 exceeds a threshold. The only difference is the early spatiotemporal filters used for each species: spatially
324 bandpass for mammals and spatially lowpass for insects. In both cases the masking function reflects this early
325 spatial filtering. For mammals, this is the same as the spatiotemporal sensitivity of the whole organism, but
326 for insects it is not. Thus, the same circuitry results in very different behaviour.

327 Although motion perception presumably evolved independently in insects and mammals, the underlying
328 circuits may be much older. The circuit relies on two very common operations: an output nonlinearity and a
329 subtraction. These are both very common operations, so similar circuits are likely to be widespread in nervous
330 systems. These common operations can lead to very different behaviour, given only slight differences in the
331 inputs. It seems likely that other behavioural differences may be explained in equally simple ways.

332 5 Materials & Methods

333 We used a masking paradigm to test visual motion detection in the praying mantis. In the context of motion
334 detection, a “signal” is an image that moves smoothly in a given direction, to “detect the signal” is to report the
335 direction of motion and “noise” is a sequence of images with no consistent motion. mantises were placed in front
336 of a CRT screen and viewed full screen gratings drifting either leftward or rightward in each trial. In a subset
337 of trials, the moving grating elicited the optomotor response, a postural stabilization mechanism that causes
338 mantises to lean in the direction of a moving large-field stimulus. An observer coded the direction of the elicited
339 optomotor response in each trial (if any) and these responses were later used to calculate motion detection
340 probability as the proportion of trials in which mantises leaned in the same direction as the stimulus. Videos
341 of mantises responding optomotorally to a moving grating using same experimental paradigm are available
342 on (http://www.edge-cdn.net/video_839277?playerskin=37016) and (http://www.edge-cdn.net/video_839281?playerskin=37016) (supplementary material to Nityananda et al. (2015)).

344 5.1 Insects

345 The insects used in experiments were 11 individuals (6 males and 5 females) of the species *Sphodromantis lineola*.
346 Each insect was stored in a plastic box of dimensions 17 × 17 × 19 cm with a porous lid for ventilation and fed a
347 live cricket twice per week. The boxes were kept at a temperature of 25° C and were cleaned and misted with
348 water twice per week.

349 **5.2 Experimental Setup**

350 The setup consisted of a CRT monitor (HP P1130, gamma corrected with a Minolta LS-100 photometer) and a
351 5 × 5 cm Perspex base onto which mantises were placed hanging upside down facing the (horizontal and vertical)
352 middle point of the screen at a distance of 7 cm. The Perspex base was held in place by a clamp attached to a
353 retort stand and a web camera (Kinobo USB B3 HD Webcam) was placed underneath providing a view of the
354 mantis but not the screen. The monitor, Perspex base and camera were all placed inside a wooden enclosure to
355 isolate the mantis from distractions and maintain consistent dark ambient lighting during experiments.

356 The screen had physical dimensions of 40.4 × 30.2 cm and pixel dimensions of 1600 × 1200 pixels. At the
357 viewing distance of the mantis the horizontal extent of the monitor subtended a visual angle of 142°. The mean
358 luminance of the stimuli was 51.4 cd/m² and its refresh rate was 85 Hz.

359 The monitor was connected to a Dell OptiPlex 9010 (Dell, US) computer with an Nvidia Quadro K600
360 graphics card and running Microsoft Windows 7. All experiments were administered by a Matlab 2012b (Math-
361 works, Inc., Massachusetts, US) script which was initiated at the beginning of each experiment and subsequently
362 controlled the presentation of stimuli and the storage of keyed-in observer responses. The web camera was con-
363 nected and viewed by the observer on another computer to reduce processing load on the rendering computer's
364 graphics card and minimize the chance of frame drops. Stimuli were rendered using Psychophysics Toolbox
365 Version 3 (PTB-3) (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

366 **5.3 Experimental Procedure**

367 Each experiment consisted of a number of trials in which an individual mantis was presented with moving
368 gratings of signal and noise components. An experimenter observed the mantis through the camera underneath
369 and coded its response as “moved left”, “moved right” or “did not move”. The camera did not show the screen
370 and the experimenter was blind to the stimulus. There were equal repeats of left-moving and right-moving
371 gratings of each condition in all experiments. Trials were randomly interleaved by the computer. In between
372 trials a special “alignment stimulus” was presented and used to steer the mantis back to its initial body and
373 head posture as closely as possible. The alignment stimulus consisted of a chequer-like pattern which could
374 be moved in either horizontal direction via the keyboard and served to re-align the mantis by triggering the
375 optomotor response.

376 **5.4 Visual Stimulus**

377 The stimulus consisted of superimposed “signal” and “noise” vertical sinusoidal gratings. The signal grating
378 had one of the spatial frequencies 0.0185, 0.0376, 0.0885 or 0.177 cpd, a temporal frequency of 8 Hz and was
379 drifting coherently to either left or right in each trial. Signal temporal frequency was chosen to maximize the
380 optomotor response rate based on the mantis contrast sensitivity function (Nityananda et al., 2015). Noise had
381 a spatial frequency in the range 0.0012 to 0.5 cpd and its phase was randomly updated on each frame to make
382 it temporally broadband (with a Nyquist frequency of 42.5 Hz) without net coherent motion in any direction.
383 Each presentation lasted for 5 seconds.

384 Since mantises were placed very close to the screen (7 cm away), any gratings that are uniform in cycles/px
385 would have appeared significantly distorted in cycles/deg (Anderson and Burr, 1985). To correct for this we
386 applied a nonlinear horizontal transformation so that grating periods subtend the same visual angle irrespective
387 of their position on the screen. This was achieved by calculating the visual degree corresponding to each screen
388 pixel using the function:

$$\theta(x) = \text{atan}\left(\frac{x}{RD}\right) \quad (11)$$

389 where x is the horizontal pixel position relative to the center of the screen, $\theta(x)$ is its visual angle, R is the
390 horizontal screen resolution in pixels/cm and D is the viewing distance. To an observer standing more than D
391 cm away from the screen, a grating rendered with this transformation looked more compressed at the center of
392 the screen compared to the periphery. At D cm away from the screen, however, grating periods in all viewing
393 directions subtended the same visual angle and the stimulus appeared uniform (in degrees) as if rendered on a
394 cylindrical drum. This correction only works perfectly if the mantis head is in exactly the intended position at
395 the start of each trial and is most critical at the edges of the screen. As an additional precaution against spatial
396 distortion or any stimulus artifacts caused by oblique viewing we restricted all gratings to the central 85° of the
397 visual field by multiplying the stimulus luminance levels $L(x, y, t)$ with the following Butterworth window:

$$w(x) = \frac{1}{1 + (2|x|/S_w)^{2n}} \quad (12)$$

398 Where x is the horizontal pixel position relative the middle of the screen, S_w is the window’s Full Width at
399 Half Maximum (FWHM), chosen as 512 pixels in our experiment (subtending a visual angle of 85° at the viewing
400 distance of the mantis), and n is the window order (chosen as 10). This restriction minimized any spread in

401 spatial frequency at the mantis retina due to imperfections in our correction formula described by [Equation 11](#).
 402 We have previously shown that the mantis optomotor response is largely driven by the central visual field, such
 403 that a stimulus covering the central 85° should elicit around 84% of the response which would have been elicited
 404 by a stimulus covering the entire visual field ([Nityananda et al., 2017](#)).

405 With the above manipulations the presented stimulus was:

$$I(x, y, j) = 0.5 + w(x) \left(A_s \cos \left(2\pi(f_s \theta(x) + df_t t) \right) + A_n \cos \left(2\pi(f_n \theta(x) + \phi_j) \right) \right) \quad (13)$$

406 where x, y are the horizontal and vertical positions of a screen pixel, k is frame number, I is pixel luminance,
 407 in normalized units where 0 and 1 are the screen's minimum and maximum luminance levels (0.161 and 103
 408 cd/m² respectively), A_s is signal Michelson contrast (0.125), A_n is noise contrast (0.198), f_s is signal spatial
 409 frequency (0.0185, 0.0376, 0.0885 or 0.177 cpd), f_n is noise frequency (varied across trials), f_t is signal temporal
 410 frequency (8 Hz), d indicates motion direction (either 1 or -1 on each trial), ϕ_j is chosen randomly from a
 411 uniform distribution between 0 and 1 on each frame, t is time in seconds (given by $t = j/85$), and $\theta(x)$ is the
 412 pixel visual angle according to [Equation 11](#). Still frames, space-time plots and spatiotemporal Fourier amplitude
 413 spectra of the stimulus are shown in [Figure 7](#).

414 5.5 Modeling

415 Figures 4 and 5 contain simulation results from the model shown in [Figure 4](#) (Panel B). The model consists of
 416 10 opponent energy models (based on the schematics shown in [Figure 1](#) panel B), placed at different positions
 417 on a virtual retina, a linear sum and a two-sided threshold of the form:

$$\text{thresh}(x) = \begin{cases} -1, & x < -T \\ +1, & x > +T \\ 0, & \text{otherwise} \end{cases} \quad (14)$$

418 The model was simulated numerically in Matlab. The spatial resolution of simulations was 0.01 deg, time
 419 step was 1/85 seconds and each simulated presentation was 1 second long.

420 The spatial and temporal sensitivity of energy model filters were adjusted to approximate the sensitivities
 421 of insects and mammals in different simulations. For mammals ([Figure 2AC](#) and [Figure 4](#)), spatial filters were
 422 second and third derivatives of Gaussians ($\sigma = 0.08^\circ$) and temporal filters were

$$TF(t; n) = (kt)^n \exp(-kt) \left(1/n! - (kt)^2/(n+2)!\right) \quad (15)$$

423 where $n = 3$ for TF_1 , $n = 5$ for TF_2 and $k = 105$ for both filters. These filter functions and parameters
 424 were taken from the published literature on human motion perception and spatiotemporal tuning (Adelson and
 425 Bergen, 1985; Robson, 1966). For insects (Figure 2BD and Figure 5), we used Gaussian spatial filters and
 426 first-order low/high pass temporal filters:

$$TF_1(t) = \exp(-t/\tau_L) \quad (16)$$

$$TF_2(t) = \delta(t) - \exp(-t/\tau_H) \quad (17)$$

$$SF_1(x) = \exp\left(\frac{-(x - x_0 - \Delta x/2)^2}{2\sigma^2}\right) \quad (18)$$

$$SF_2(x) = \exp\left(\frac{-(x - x_0 + \Delta x/2)^2}{2\sigma^2}\right) \quad (19)$$

427 where $\tau_L = 13$ ms, $\tau_H = 40$ ms, $\Delta x = 4^\circ$, $\sigma = 2.56^\circ$. Insect filter functions and parameters were again
 428 taken from the published literature (Borst, 2014) (Rossel, 1979) (Nityananda et al., 2015). The models were
 429 normalized such that all gave a mean response of 1 to a drifting grating at the optimal spatial and temporal
 430 frequency.

431 In each simulated trial, the model was presented with a 1D version of the grating used in the experiments.
 432 Energy model outputs were summed and averaged over the duration of each presentation then passed through
 433 $\text{thresh}(x)$ to produce a direction judgment similar to the one made by human observers in our experiment and
 434 the psychophysics experiments of Anderson and Burr (1985). When simulating the model with noisy gratings,
 435 up to 500 presentations were repeated per noise frequency point.

436 In simulations of insect motion detectors, response rates were calculated as the proportion of presentations
 437 in which the direction of motion computed by the model was the same as the signal component in the stimulus.
 438 In simulations of mammalian motion detectors, we calculated detection threshold as the threshold T of the
 439 function $\text{thresh}(x)$ that resulted in the model judging motion direction correctly in 90% of the presentations.

440 References

441 Adelson EH, Bergen JR (1985) Spatiotemporal models for the perception of motion. *JOSA A* 2:284–299.

442 Anderson SJ, Burr DC (1985) Spatial and temporal selectivity of the human motion detection system. *Vision*
443 *Research* 25:1147–1154.

444 Anderson SJ, Burr DC (1989) Receptive field properties of human motion detector units inferred from spatial
445 frequency masking. *Vision Research* 29:1343–1358.

446 Badcock DR (1984) Spatial phase or luminance profile discrimination? *Vision Research* 24:613–623.

447 Batista J, Araújo H et al. (2013) Stereoscopic depth perception using a model based on the primary visual
448 cortex. *PLOS ONE* 8:e80745.

449 Blakemore Ct, Campbell F (1969) On the existence of neurones in the human visual system selectively sensitive
450 to the orientation and size of retinal images. *The Journal of physiology* 203:237.

451 Borst A (2014) Neural circuits for elementary motion detection. *Journal of neurogenetics* 28:361–373.

452 Borst A, Helmstaedter M (2015) Common circuit design in fly and mammalian motion vision. *Nature Neuro-*
453 *science* 18:1067–1076.

454 Brainard DH (1997) The psychophysics toolbox. *Spatial Vision* 10:433–436.

455 Buchner E (1976) Elementary movement detectors in an insect visual system. *Biological Cybernetics* 24:85–101.

456 Burge J, Geisler WS (2014) Optimal disparity estimation in natural stereo images. *Journal of Vision* 14:1–1.

457 Burr DC (1980) Sensitivity to spatial phase. *Vision Research* 20:391–396.

458 Burr DC, Ross J, Morrone MC (1986a) Smooth and sampled motion. *Vision Research* 26:643–652.

459 Burr D, Ross J, Morrone M (1986b) Seeing objects in motion. *Proceedings of the Royal Society of London B:*
460 *Biological Sciences* 227:249–265.

461 Burton G (1973) Evidence for non-linear response processes in the human visual system from measurements on
462 the thresholds of spatial beat frequencies. *Vision Research* 13:1211–1225.

463 Campbell FW, Robson J (1968) Application of Fourier analysis to the visibility of gratings. *Journal of Physi-*
464 *ology* 197:551.

465 Carandini M (2006) What simple and complex cells compute. *The Journal of Physiology* 577:463–466.

466 Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL, Rust NC (2005) Do we
467 know what the early visual system does? *The Journal of Neuroscience* 25:10577–10597.

468 Chen HW, Jacobson LD, Gaska JP, Pollen DA (1993) Cross-correlation analyses of nonlinear systems with
469 spatiotemporal inputs (visual neurons). *IEEE transactions on biomedical engineering* 40:1102–1113.

470 Chichilnisky E (2001) A simple white noise analysis of neuronal light responses. *Network: Computation in*
471 *Neural Systems* 12:199–213.

472 Clifford CW, Ibbotson M (2002) Fundamental mechanisms of visual motion detection: models, cells and
473 functions. *Progress in Neurobiology* 68:409–437.

474 Daugman JG (1984) Spatial visual channels in the Fourier plane. *Vision Research* 24:891–910.

475 De Valois KK, Tootell R (1983) Spatial-frequency-specific inhibition in cat striate cortex cells. *The Journal of*
476 *Physiology* 336:359.

477 Dvorak D, Srinivasan M, French A (1980) The contrast sensitivity of fly movement-detecting neurons. *Vision*
478 *Research* 20:397407.

479 Emerson RC, Bergen JR, Adelson EH (1992) Directionally selective complex cells and the computation of
480 motion energy in cat visual cortex. *Vision Research* 32:203–218.

481 Graham N, Nachmias J (1971) Detection of grating patterns containing two spatial frequencies: A comparison
482 of single-channel and multiple-channels models. *Vision Research* 11:251–IN4.

483 Harvey LO, Gervais MJ (1978) Visual texture perception and Fourier analysis. *Perception & Psy-
484 chophysics* 24:534–542.

485 Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorze-
486 ichenanalyse bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. *Zeitschrift für Naturforschung*
487 B 11:513–524.

488 Hunter I, Korenberg M (1986) The identification of nonlinear biological systems: Wiener and Hammerstein
489 cascade models. *Biological Cybernetics* 55:135–144.

490 Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C et al. (2007) What's new in Psychtoolbox-3.
491 *Perception* 36:1.

492 Lawton TB (1984) The effect of phase structures on spatial phase discrimination. *Vision Research* 24:139–148.

493 Legge GE (1976) Adaptation to a spatial impulse: implications for Fourier transform models of visual processing.

494 *Vision Research* 16:1407–1418.

495 Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement.

496 *The Journal of Physiology* 250:347–366.

497 Lu ZL, Sperling G (1995) The functional architecture of human visual motion perception. *Vision Research* 35:2697–2722.

498

499 Maffei L, Fiorentini A (1973) The visual cortex as a spatial frequency analyser. *Vision Research* 13:1255–1267.

500 Marr D, Hildreth E (1980) Theory of edge detection. *Proceedings of the Royal Society of London B: Biological Sciences* 207:187–217.

501

502 Meister M, Berry MJ (1999) The neural code of the retina. *Neuron* 22:435–450.

503 Morgan MJ (1992) Spatial filtering precedes motion detection. *Nature* 355:344–346.

504 Morrone MC, Burr D (1988) Feature detection in human vision: A phase-dependent energy model. *Proceedings of the Royal Society of London B: Biological Sciences* 235:221–245.

505

506 Nityananda V, Tarawneh G, Errington S, Serrano-Pedraza I, Read JC (2017) The optomotor response of the

507 praying mantis is driven predominantly by the central visual field. *Journal of Comparative Physiology A* in

508 press.

509 Nityananda V, Tarawneh G, Jones L, Busby N, Herbert W, Davies R, Read JC (2015) The contrast sensitivity

510 function of the praying mantis *Sphodromantis lineola*. *Journal of Comparative Physiology A* 201:741–750.

511 OCarroll D, Laughlin S, Bidwell N, Harris R (1997) Spatiotemporal properties of motion detectors matched to

512 low image velocities in hovering insects. *Vision Research* 37:34273439.

513 OCarroll, DC and Bidwell, NJ and Laughlin, SB and Warrant, EJ (1996) Insect motion detectors matched to

514 visual ecology. *Nature* 382:6366.

515 Patterson RD, Nimmo-Smith I (1980) Off-frequency listening and auditory-filter asymmetry. *The Journal of*

516 *the Acoustical Society of America* 67:229–245.

517 Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies.

518 *Spatial Vision* 10:437–442.

519 Pick B, Buchner E (1979) Visual movement detection under light-and dark-adaptation in the fly, *Musca*
520 *domestica*. *Journal of Comparative Physiology* 134:45–54.

521 Pollen DA, Gaska JP, Jacobson LD (1988) Responses of simple and complex cells to compound sine-wave
522 gratings. *Vision Research* 28:25–39.

523 Qian N, Andersen R, EH A (1994) Transparent motion perception as detection of unbalanced motion signals.
524 III. Modeling. *Journal of Neuroscience* 14:7381–7392.

525 Robson J (1966) Spatial and temporal contrast-sensitivity functions of the visual system. *Journal of the Optical
526 Society of America* 56:1141–1142.

527 Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. *Journal of
528 Comparative Physiology* 131:95–112.

529 Sachs MB, Nachmias J, Robson JG (1971) Spatial-frequency channels in human vision. *JOSA* 61:1176–1186.

530 Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. *Journal of
531 Comparative Physiology* 116:183–207.

532 Stromeier CF, Julesz B (1972) Spatial-frequency masking in vision: Critical bands and spread of masking.
533 *Journal of the Optical Society of America* 62:1221–1232.

534 Van Santen JP, Sperling G (1984) Temporal covariance model of human motion perception. *Journal of the
535 Optical Society of America A* 1:451–473.

536 Van Santen JP, Sperling G (1985) Elaborated Reichardt detectors. *JOSA A* 2:300–321.

537 Zhou YX, Baker CL (1993) A processing stream in mammalian visual cortex neurons for non-Fourier responses.
538 *Science* 261:98–98.

539 **List of Figures**

540 1	Opponent energy models of motion detection	22
541 2	Spatiotemporal filter and opponent energy tuning in an opponent motion model	23
542 3	Effect of noise on mammalian motion detectors	24
543 4	For mammalian bandpass filters, the masking function reflects sensitivity	25
544 5	For mantis motion detection, masking function does not reflect sensitivity	26
545 6	Mantis masking rate measurements at different signal frequencies	27
546 7	Masked grating visual stimuli used in the experiment	28

547 **Figures**

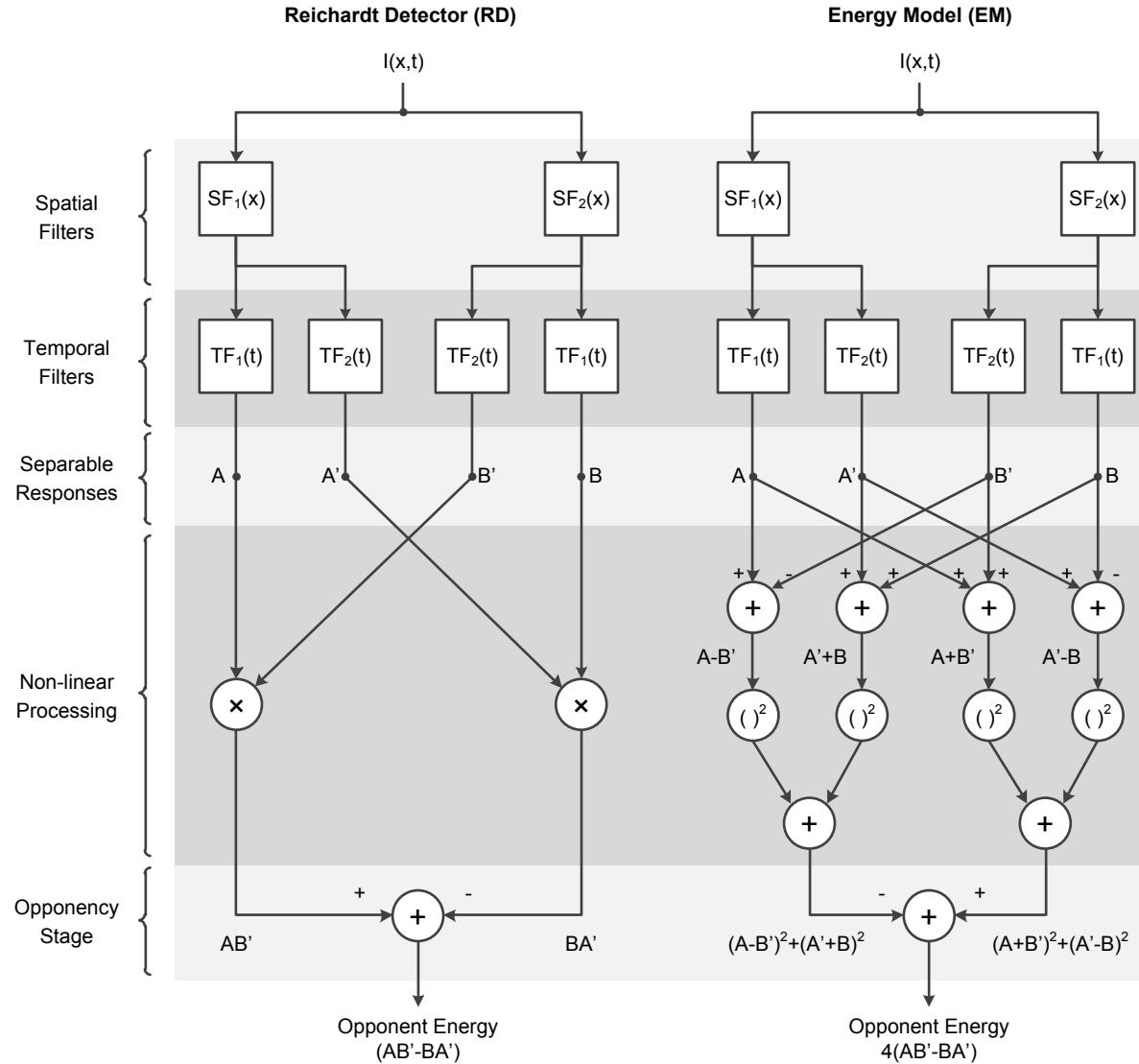


Figure 1: Opponent energy models of motion detection

The Reichardt Detector (RD) and the Energy Model (EM) are two prominent opponent models in the literature of insect and mammalian motion detection. The two models are formally equivalent when the spatial and temporal filters are separable (as shown) and so their outputs and response properties are identical even though their structures are different. Both models use the outputs of several linear spatial and temporal filters (SF_1 , SF_2 , TF_1 and TF_2) to calculate two opponent terms and then subtract them to obtain a direction-sensitive measure of motion (opponent energy). Nonlinear processing is a fundamental ingredient of calculating motion energy and so both models include nonlinear operators before the opponency stage (multiplication in the RD and squaring in the EM). (Reproduction of Fig. 18 from [Adelson and Bergen \(1985\)](#).)

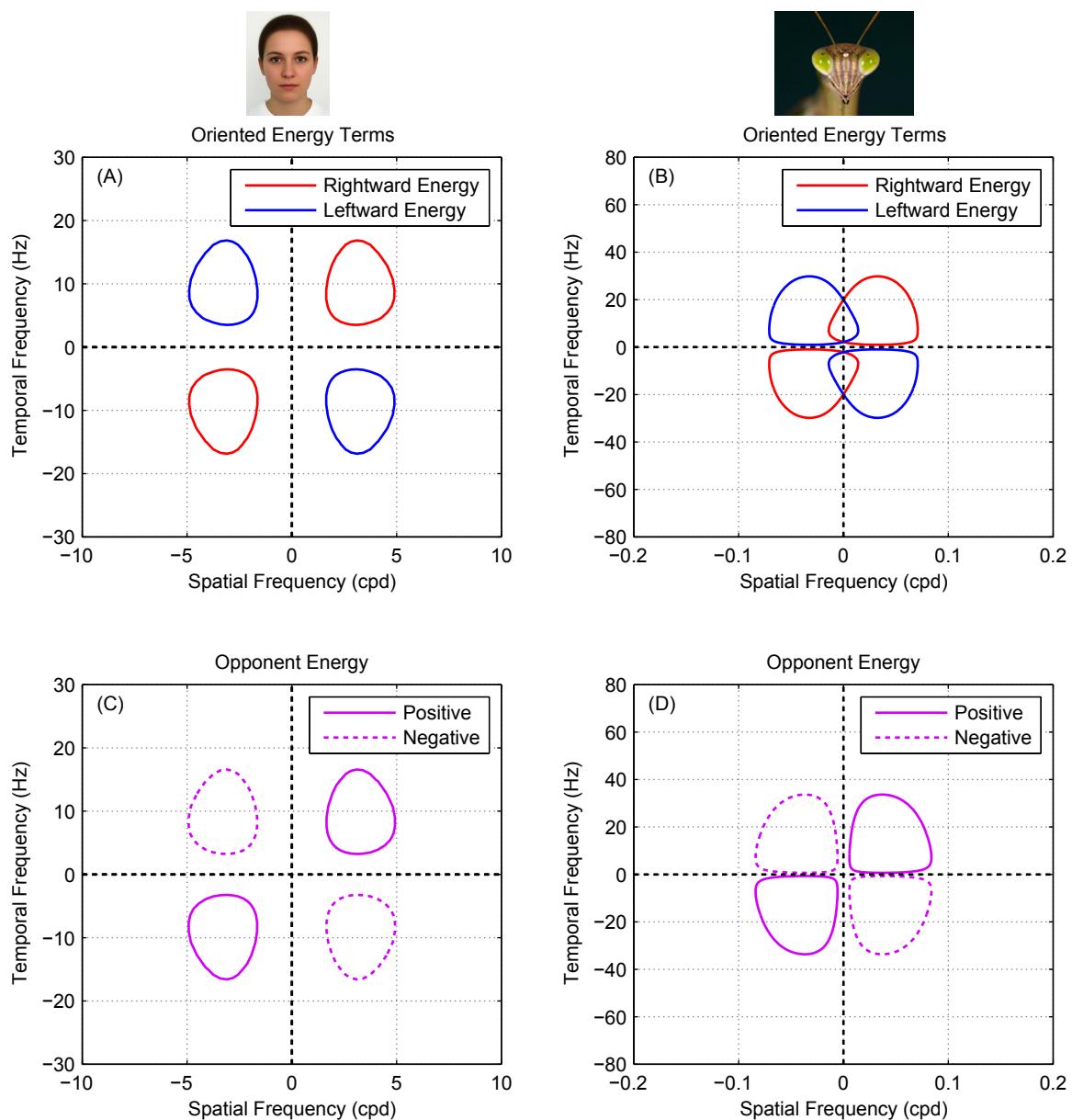


Figure 2: Spatiotemporal filter and opponent energy tuning in an opponent motion model

(A, B) Fourier spectra of rightward and leftward energies ($(A + B')^2 + (A' - B)^2$, Equation 3, and $(A - B')^2 + (A' + B)^2$, Equation 4) for example mammalian and insect opponent energy motion detectors (see Methods for details, Equations 15-19). The colored lines in each plot are 0.25 sensitivity contours. The Fourier spectra of leftward and rightward energies are very similar to the model's filters in each case: spatially bandpass in mammals and low-pass in insects. **(C, D)** Opponent energy, $AB' - A'B$, computed as the difference between rightward and leftward energies. In mammals, rightward and leftward responses do not overlap because the spatial filter are band-pass (panel A). In insects, the low-pass spatial filters cause an overlap between rightward and leftward responses (panel B) but this overlap is canceled at the opponency stage making opponent energy insensitive to low spatial frequencies (panel D).

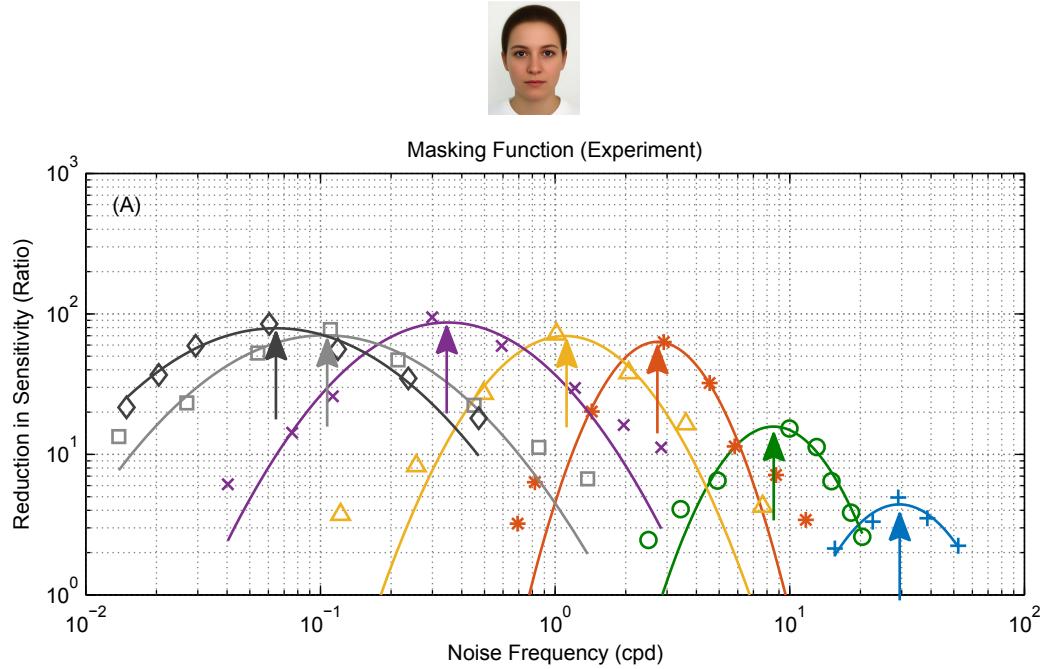


Figure 3: Effect of noise on mammalian motion detectors

Measurements showing the effect of noise on motion detection sensitivity in humans (reproduction of Fig. 1b from [Anderson and Burr \(1985\)](#)). The colored plots show responses to different signal frequencies (marked by arrows). Noise is most effective at masking the signal when its frequency is the same and less effective as its frequency changes in either direction.

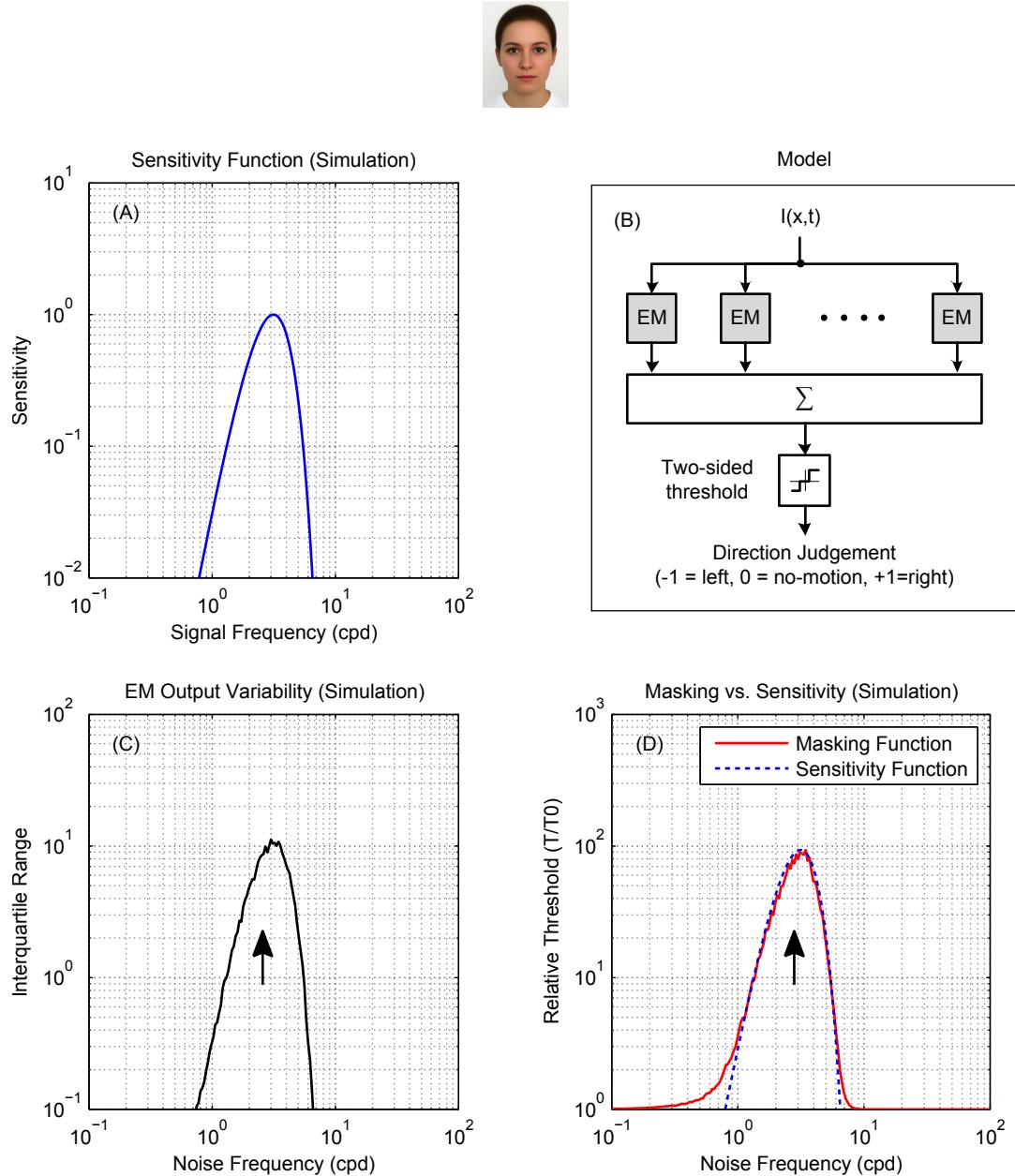


Figure 4: For mammalian bandpass filters, the masking function reflects sensitivity

(A) (B) Direction discrimination model based on an array of opponent models with the spatial tuning plotted in panel A. Opponent model outputs are pooled and passed through a two-sided threshold of value T to produce a ternary judgment of motion direction per stimulus presentation. **(C)** The variability of opponent model outputs across 500 simulated presentations (per noise frequency point) of a noisy stimulus consisting of a signal grating of 3 cpd and temporally-broadband noise. Signal frequency is marked on the plot with an arrow. Signal and noise had $\sqrt{2}$ and $20\sqrt{2}$ RMS contrast respectively. Adding noise did change the mean of opponent output but had a significant effect on its spread. Output variance was highest when noise frequency was 3 cpd and lower as noise frequency changed in either direction, closely resembling the shape of the opponent model's sensitivity function. **(D)** The masking function (red) was calculated based on these simulated results as $T(f_n)/T_0$ where $T(f_n)$ is the threshold corresponding to a 90% detection rate at each noise frequency and T_0 is the detection threshold of an unmasked grating. The sensitivity function from (A) is reproduced, scaled, for comparison (blue dotted line). The masking function is a good approximation to the sensitivity.

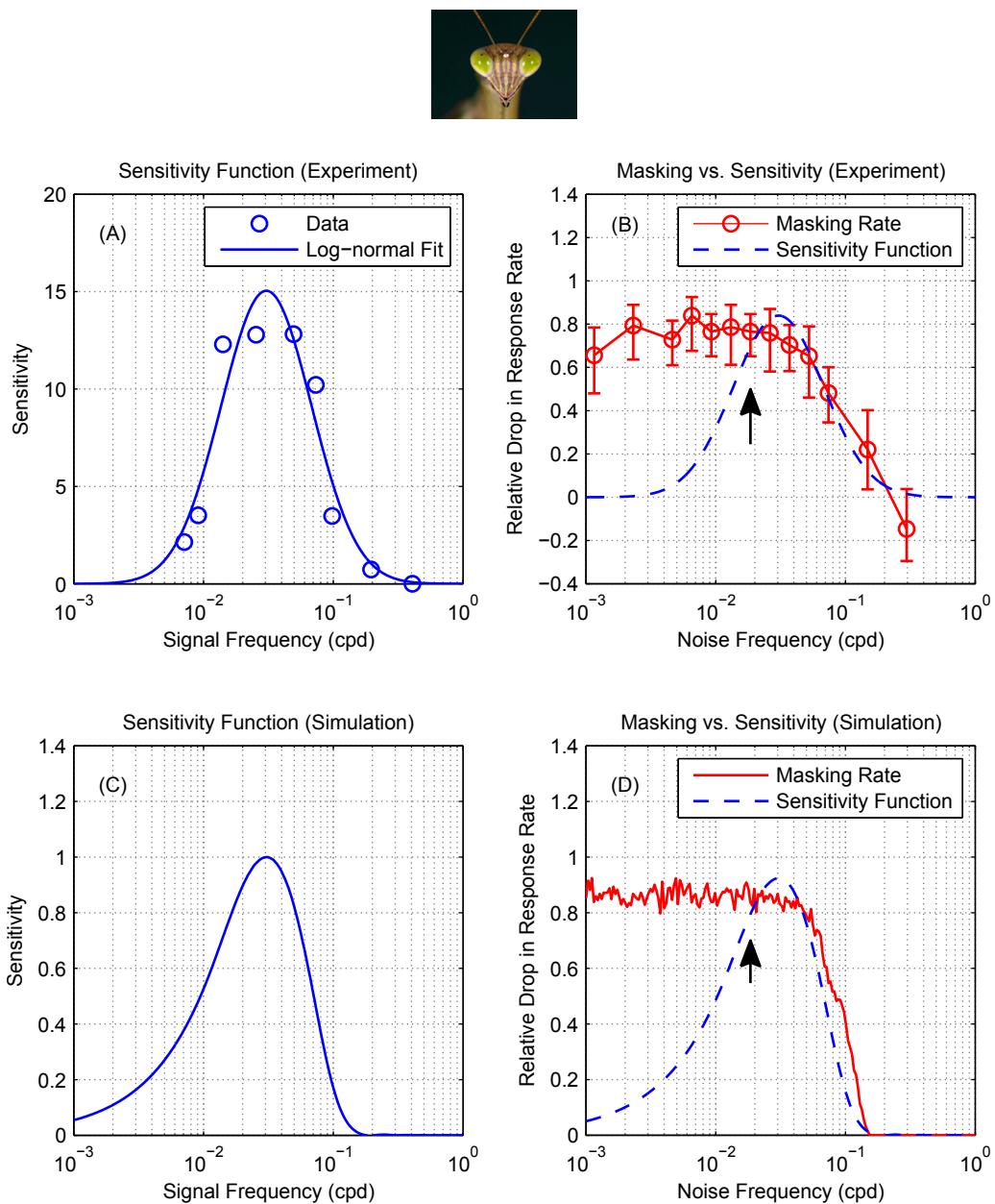


Figure 5: For mantis motion detection, masking function does not reflect sensitivity

(A) The spatial sensitivity of mantis motion detectors at 8 Hz, measured using the same experimental paradigm, showing bandpass sensitivity in the range 0.01 to 0.1 cpd (reproduction of Fig. 3a in [Nityananda et al. \(2015\)](#)). **(B)** Measurements showing the effect of noise on the detection of a moving grating in the praying mantis. Circles are masking rate M defined as $M = (R_0 - R)/R_0$ where R is the response rate (proportion of trials in which mantids responded optomotorally in the same direction as the signal grating) and R_0 is the baseline (no-noise) response rate. Error bars are 95% confidence intervals calculated using simple binomial statistics. Signal frequency (0.0185 cpd) is marked on the plot with an arrow. The response rate measured at 0.03 cpd was slightly below baseline and so the calculated masking rate was negative. **(C)** Normalized sensitivity function of a motion energy model tuned to 0.03 cpd [\(18\)](#). **(D)** Simulated masking function (red) with the simulated sensitivity function reproduced for comparison (blue dotted line, scaled to same peak). Masking and sensitivity functions in the mantis are qualitatively different: noise below the lower end of the sensitivity function (~ 0.01 cpd) continues to mask the signal.

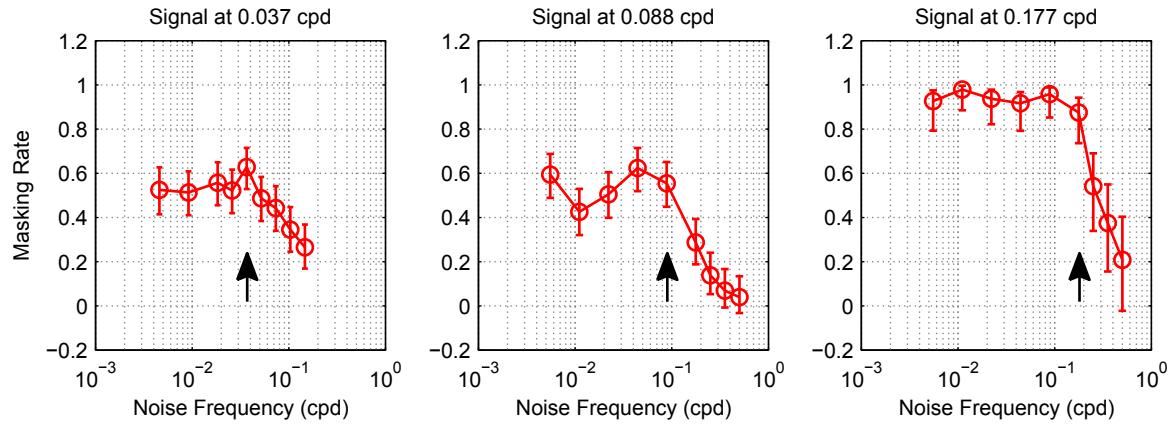


Figure 6: Mantis masking rate measurements at different signal frequencies

Measurements of masking rate versus noise frequency in the mantis (for the signal frequencies 0.037, 0.088 and 0.177 cpd) showing the same masking trends as Figure 5A (signal frequency 0.0185 cpd): noise continues to mask the signal significantly even if its frequency is below the spatial sensitivity passband of mantis motion detectors (~ 0.01 to 0.1 cpd). Circles are masking rate M defined as $M = (R_0 - R)/R_0$ where R is the response rate (proportion of trials in which mantids responded optomotorally in the same direction as the signal grating) and R_0 is the baseline (no-noise) response rate. Error bars are 95% confidence intervals calculated using simple binomial statistics. Signal frequency is marked on each plot by an arrow.

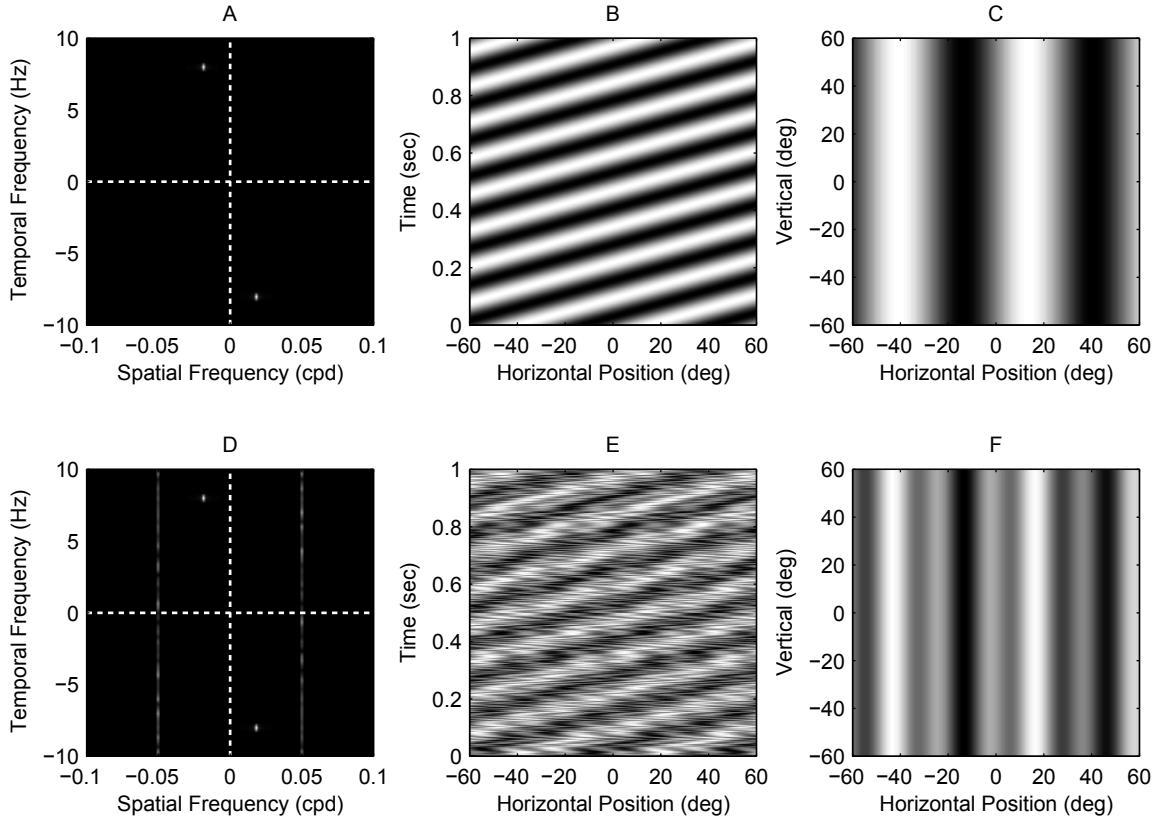


Figure 7: Masked grating visual stimuli used in the experiment

(A, D) Spatiotemporal Fourier spectra, **(B, E)** space-time plots and **(C, F)** still frames of the visual stimulus in two conditions of the experiment. Panels A,B,C represent a no-noise condition: the stimulus is a moving grating at 0.0185 cpd and 8 Hz with no added noise. Panels D,E,F represent a masked condition: the stimulus consists of the same signal grating but with non-coherent temporally-broadband noise added at 0.05 cpd. There were in total 44 conditions in the experiment (4 unmasked and 40 masked gratings). Noise was always temporally broadband and its spatial frequency varied across conditions (in the range 0.0012 to 0.5 cpd).