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Abstract

Background: Genome-wide association studies (GWAS) have identified hundreds of loci
influencing complex human traits, however, their biological mechanism of action remains mostly
unknown. Recent accumulation of functional genomics (‘omics’) including metabolomics data
opens up opportunities to provide a new insight into the functional role of specific changes in the
genome. Functional genomic data are characterized by high dimensionality, presence of (strong)
statistical dependencies between traits, and, potentially, complex genetic control. Therefore,
analysis of such data asks for development of specific statistical genetic methods.

Results: We propose a network-based, conditional approach to evaluate the impact of genetic
variants on omics phenotypes (conditional GWAS, cGWAS). For each trait of interest, based on
biological network, we select a set of other traits to be used as covariates in GWAS. The network
could be reconstructed either from biological pathway databases or directly from the data. We
evaluated our approach using data from a population-based KORA study (n=1,784, 1.7 M SNPs)
with measured metabolomics data (151 metabolites) and demonstrated that our approach allows
for identification of up to five additional loci not detected by conventional GWAS. We show that
this gain in power is achieved through increased precision of genetic effect estimates, and in
presence of specific ‘contra-intuitive’ pleiotropic scenarios (when genetic and environmental
sources of covariance are acting in opposite manner). We justify existence of such scenarios, and
discuss possible applications of our method beyond metabolomics.

Conclusions: We demonstrate that in context of metabolomics network-based, conditional
genome-wide association analysis is able to dramatically increase power of identification of loci
with specific ‘contra-intuitive’ pleiotropic architecture. Our method has modest computational
costs, can utilize summary level GWAS data, and is applicable to other omics data types. We
anticipate that application of our method to new and existing data sets will facilitate progress in

understanding genetic bases of control of molecular and complex phenotypes.
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Short abstract

We propose a network-based, conditional approach for genome-wide analysis of multivariate
omics phenotypes. Our methods can incorporate prior biological knowledge about biological
pathways from external sources. We evaluated our approach using metabolomics data and
demonstrated that our approach has bigger power and allows for identification of additional loci.
We show that gain in power is achieved through increased precision of genetic effect estimates,
and in presence of specific ‘contra-intuitive’ pleiotropic scenarios (when genetic and
environmental sources of covariance are acting in opposite manner). We justify existence of such

scenarios, and discuss possible applications of our method beyond metabolomics.
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Background

Genome-wide association studies (GWAS) is one of the most popular methods of identification of
alleles that affect complex traits, including risk of common human diseases. In the past decade,
GWAS allowed identification of thousands of loci, leading to a significant progress in
understanding of genetic bases of control of complex human traits [1]. However, this had limited
impact onto development of biomarkers and therapeutic agents, as most of the time the observation
of association to a genomic region provides a starting point, but not yet a direct answer to the
question of biological function affected by variation in the identified region. Recent accumulation
of functional genomics data, which includes information on levels of gene expression
(transcriptome), metabolites (metabolome), proteins (proteome) and glycosylation (glycome),
could give a new insight into the functional role of specific changes in the genome [2,3]. Such data
require special statistical methods for their analysis, because of their characteristically high
dimensionality (ranging from few dozens to thousands and even to millions of measurements for
each person), and presence of statistical dependencies reflecting biological relationships between
individual omics components. Development of methods for omics data analysis is of current
importance as the progress of molecular biology techniques continues and new types of functional
genomic data become available.
Conventional univariate GWAS (UGWAS) ignore dependencies between different omics traits,
which confounds biological interpretation of results and may lead to loss of statistical power. It
was shown that utilizing multivariate phenotype representation increases statistical power, and
leads to richer findings in the association tests compared to the univariate analysis [4—7]. Despite
large number of methodological works, only few empirical multivariate GWAS have been
published for humans. Among these which should be noted in relation to our work, Inouye et al.
[8] performed multivariate GWAS of 130 NMR metabolites (grouped in 11 sets) in ~6600
individuals. The study demonstrated that multivariate analysis doubles the number of loci detected
in this sample; among loci discovered via multivariate analysis seven were novel and did not
appear before in other GWAS of related traits. While no replication of novel loci was performed
in the original study, we compared results reported by Inouye et al. with recently published
univariate GWAS of NMR metabolomics, which used sample size of up to 24,925 individuals [9].
We found that for three out of seven SNPs reported in the original work, p-value was < 5x107! for
at least one metabolite. This provides empirical evidence for the value of multivariate methods in
genomics of metabolic traits.

Here we propose a (knowledge-based) network-driven conditional genome-wide

association analysis that exploits information from biologically related traits. To demonstrate our
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methodology, we performed proof-of-principle study directly comparing the power of univariate
GWAS and the proposed method using metabolomics data (151 metabolites, Biocrates assay) from
the KORA F4 study (n=1785).
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Results and Discussion

Network-based conditional analysis of genetic associations

We start with theoretical justification and identification of specific scenarios under which
adjustment for a biologically relevant covariate increases power of association analysis. Let us
consider a trait of interest, y, covariate ¢ and genotype g. Without loss of generality, assume that
they are distributed with mean zero and standard deviation of one. Their joint distribution is
specified by a set of three correlation coefficients, p. Given specific parameter values, the value

of “univariate™ test statistic for association between y and g has the value T? = n p3, /0, where

n is the sample size and o7 = 1 — pj; is the residual variance of y. For the conditional test, 772 =

n Brg/0Z = n(pyy — BycPcg)/oé, Where B denote partial coefficients of regression from the
conditional model and o2 is the residual variance of y. Consequently, the log-ratio of these test

statistics can be partitioned into two components

) o252

We shall call the first summand of (1) as ‘noise’ component and the second summand as
the ‘pleiotropic’ component. Because the noise component (c2/c?)>1 always, any possible
reduction in the ratio between univariate and conditional test is determined by the sign and the
magnitude of the term B,..p.4/py4. When this product is negative, there is always increase in
power of conditional analysis.

We can re-write fy,cpcq/Pyg 8S BycPyc, Where pj. = pgc/pyq IS @ quantity which in a
Mendelian randomization analysis is interpreted as the effect of the covariate on the trait free of
non-genetic confounders [10]. Note that while p;, is reflecting the covariance between the trait
and the covariate, which is induced by the effect of the genotype, S, is related to ‘purely
environmental’ sources of covariance between y and ¢. We can conclude that when genotype-
induced and environmental correlations are consistent in sign, the product g,,.py. is positive and

hence the contribution of the second term of (1) into relative power is negative. On the contrary, a

‘surprising” product (where the sign is inconsistent and hence fB,.py. is negative) contribute

positively to the relative power of conditional model.
In the context of complex polygenic traits, one expects that genetic and environmental

correlations are consistent in sign. This is well reflected in animal breeding literature, and for a

recent human example, one can see [11]. Under this scenario it would be desirable that p., (effect

of genotype onto covariate) is very small, while g,,. (which makes contribution into reduction of
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a2 compared to o) is large. However, in the context of specific locus affecting an activity of an
enzyme involved in a biochemical reaction, the ‘surprising’ inconsistency between f,,. and p;,.
may be not so surprising. Indeed, consider an allele, which is associated with increased activity of
an enzyme converting substrate A into product B. It is expected that A and B are positively
correlated, and that the allele is in positive correlation with level of product B and in negative
correlation with the substrate A. This is exactly a scenario which would lead to the positive value
of the second term in (1), hence providing additional increase in power on the top of noise
reduction.

We can readily extend the formula (1) to a case when k covariates are included in the

conditional model. Denoting coefficients of correlation between g and covariate i as pg; and partial

coefficients of regression of y onto covariate i as 3;, we have

2
T? ol 1%
log 77 = log (75 ) + log | [1=—=> ipy @)
u c vy =

Above considerations allow us to hypothesize that a conditional GWAS (cGWAS), where
covariates selected are biochemical, one-reaction-step neighbors of the target trait may provide
increased power by exploiting both noise reduction and possible ‘surprising’ pleiotropy. In this
work, we set off to empirically verify this hypothesis by investigating of human metabolomics
data.

When proper covariates are selected, the methodology of cGWAS using individual-level
data becomes rather trivial, and boils down to running a GWAS in which one jointly estimates the
effect of an SNP and of specific covariates. The cGWAS method is less trivial in case one would
like to exploit summary-level univariate GWAS data, for example these data which are available
from previously published studies. Formulation of cGWAS on the level of summary GWAS
statistics is possible, and we describe this method in Supplementary Note 1.

The question of selection of proper covariates is very important because it has direct consequences
on the chances of finding the ‘surprising’ pleiotropic scenarios. In case biological/biochemical
relations between the traits of interest are known and summarized in some database(s), this
knowledge can be used directly by e.qg. taking all direct neighbors as covariates. Alternatively, the
network may be reconstructed in a hypothesis-free, empirical manner from the same or external
data by e.g. using Gaussian graphical models (GGM) approach [12]; then some threshold may be

applied to select the covariates.

Comparison between cGWAS and uGWAS using human metabolomics data
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We compared cGWAS and uGWAS methods using individual-level genetic and metabolomics
data from KORA F4 study (1,784 individuals measured for 151 metabolite, Biocrates assay, and
imputed at 1,717,498 SNPs).

First, we explored the potential of cGWAS where covariates were selected based on known
biochemical network. Thus our analysis was restricted to a subset of 105 metabolites for which the
one-reaction-step immediate biochemical neighbors were available [12]. This biochemical
network incorporates only lipid metabolites, and pathway reactions cover two groups of pathways:
(1) Fatty acid biosynthesis reactions which apply to the metabolite classes lyso-PC, diacyl-PC,
acyl-alkyl-PC and sphingomyelins; (2) B-oxidation reactions representing fatty acid degradation
to model reactions between the acyl-carnitines. The B-oxidation model consists of a linear chain
of C2 degradation steps (C10-C8-C6 etc.). Number of covariates varied from one to four with
mean of 2.48 and median 2.

Table 1 shows 11 loci which were significant in either cGWAS or uGWAS analysis and
fall into known regions (see Supplementary Note 2). Of these, ten loci were identifiable by
CcGWAS and nine were identifiable by uGWAS. Compared to uGWAS, one locus (ETFDH) was
lost, but two additional loci were identified (ACSL1 for PC ae C42:5, and PKD2L1 for
lysoPC a C16:1). It is interesting to note that for ACSL1 (SNP rs4862429 effect onto PC ae C42:5,
with cGWAS p=7e-11), the uGWAS p-value was 0.7. This is expected under the model of
‘surprising’ pleiotropy.

To test whether use of cGWAS increases average power of association analysis, we
contrasted the average of cGWAS and uGWAS maximal chi-squared test statistics for loci from
Table 1. The ratio of average maximal test statistic between cGWAS and uGWAS was 1.59.
However, the Wilcoxon paired sample test contrasting the best cGWAS vs. the best uUGWAS
values of chi-squared test statistic, was only marginally significant (p=0.067).

For the SNPs listed in Table 1, we applied formula (2) to partition the log-ratio of the
cGWAS and uGWAS test statistics into ‘noise’ and ‘pleiotropic’ components. Figure 1 shows that
the trend in the ratio is mainly determined by the second (‘pleiotropic’) summand. One can see
that, with the exception of locus SLC22A4, SNP-trait pairs for which cGWAS had increased power
are these where the second term of (1) is positive or close to zero. In contrast, the SNP-trait
combinations which were lost in cGWAS, had strong negative contribution from the ‘pleiotropic’
term of (2).

It is interesting to investigate the variance-covariance structure of loci with positive and
negative pleiotropic term. We selected two loci where the pleiotropic component’s contribution to
power was positive (rs174547 at FADS1 locus) and negative (rs8396 at ETFDH). We show
corresponding correlations between SNP and trait and covariates involved, together with partial
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coefficients from conditional regression of the trait onto SNP and covariates in Figure 2. For
FADSLI locus (Figure 2A), the correlation between SNP and the trait (lysoPC a C20:4) and the
covariate (lysoPC a C20:3) are in opposite directions, while the trait and the covariate are
positively correlated (both based on correlation and partial correlation). As a consequence, we can
see that the value of partial regression coefficient between the SNP and lysoPC a C20:4,
conditional on lysoPC a C20:3 is greater than coefficient of regression without covariates. This
makes biological sense as FADS1 is coding the fatty acid desaturase enzyme, while these two traits
differ from each other by one double bond. It appears that this case suits perfectly the biochemical
scenario under which we expect increased power of conditional analysis.

In the second example (Figure 2B, ETFDH), we observe that conditional regression of C10
onto rs8396 and two covariates (C8 and C12, medium-chain acylcarnitines) leads to smaller SNP
coefficient compared to unconditional regression; this happens because all terms of
Zﬁ;lﬁipgi /pyg are positive. The ETFDH gene, prioritised as the best candidate by DEPICT
(FDR<5%), encodes for electron transfer flavoprotein dehydrogenase that is involved into fatty
acid oxidation in the mitochondria. During this process the acyl group is transferred from long
chain acylcarnitines to form long-chain acetyl-CoA, which is then catabolized. ETF
dehydrogenase takes part in the catabolic process by transferring electrons from Acyl-CoA
dehydrogenase into the oxidative phosphorylation pathway. Thus, the ETFDH gene should act on
all kinds of long-chain acylcarnitines in the same direction and we can expect that pleotropic
influence of this gene onto the acylcarnitines in our example (C8, C10, C12) will be unidirectional.
Presence unidirectional genetic effects and positive correlations between these acylcarnitines
makes second term of equation (2) negative, which leads to the decreased power of genetic
association analysis.

Above analysis provide a real-life example that use of biochemical neighbors to adjust
genetic association analysis of target trait allows for (sometimes very sharp) increase of power for
the genetic variants which act in ‘surprising’ pleiotropic manner; our analysis also suggests that
cGWAS may increase GWAS power on average, although this increase is not uniform and heavily
depends on pleiotropic relations between involved locus and the traits.

While use of known biochemical network for covariate selection has many attractive
properties, it may be somewhat unpractical, because our biochemical knowledge is yet fragmented.
Therefore, next we have investigated the potential of cGWAS method where covariates are
selected using data-driven approach. The metabolites network was reconstructed using Gaussian
Graphical Models based on partial correlations. For a target metabolite, covariates were selected
based on significant partial correlations. For that, we have chosen threshold proposed previously

in [12]: p-value<(0.01/Number of calculated partial correlations), which corresponds to a cut-off

9


https://doi.org/10.1101/096982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096982; this version posted December 27, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

245
246
247
248

249
250

251
252
253
254
255
256
257

available under aCC-BY-NC-ND 4.0 International license.

p-value<8.83x107. The network used in our analysis is presented in Supplementary Figure 1.
For the clarity of notation, hereafter we will call cGWAS using known biochemical network as
BN-cGWAS, and cGWAS which is based on GGM selection of covariates as GGM-cGWAS.

Decomposition plot
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Figure 1. Decomposition of Chi-squared ratio for cGWAS and uGWAS method into
pleiotropic and noise components. The stars correspond to the sum of components that is Chi-
squared ratio (y=x line). Pleiotropic component is represented by squares, noise component — by
triangles. Dashed lines correspond to regression lines for the two component. Dark green vertical
lines indicate SNP-trait combinations that were significant in cGWAS and not significant in
UGWAS; dark red line indicates the SNP-trait combinations which was significant in uGWAS

only.
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(A) FADS1 locus (B) ETFDH locus
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Figure 2. Correlations (above diagonal) and partial coefficients of regression of the trait of interest
(below diagonal) for FADS1 and ETFDH loci, representing scenarios in which pleiotropic term of

(2) is strongly positive and negative respectively.

To contrast GGM-cGWAS and BN-cGWAS, we first used the same set of metabolites which was
utilized by BN-cGWAS to run GGM-cGWAS. The results are presented in Supplementary Table
1. We found 16 SNP-trait pairs clustered to 10 loci that could be detected by GGM-cGWAS or
BN-cGWAS. The number of covariates included into GGM-cGWAS analysis, was larger (from 2
to 18, with mean of 8.5) than that in BN-cCGWAS. Therefore, we expected that GGM-cGWAS
may gain relative power compared to BN-cGWAS because of noise reduction (term 1 of equation
(2)); however, we it may also be expected that GGM-cGWAS may lose power because of less
likely occurrence of ‘surprise’ pleiotropy (term 2 of equation (2)).

For the best SNP-trait pairs detected by GGM-cGWAS or BN-cCGWAS, we computed the
components of equation (2) and contrasted them using Wilcoxon paired samples test. The noise
component of (2) was always greater for GGM-cGWAS (mean difference of 0.66, p=3x10°). For
GGM-cGWAS, the second ‘pleiotropic’ component of equation (2) was on average smaller than
that for the BN-cGWAS (mean difference -0.54, p=0.013); still, for three GGM-cGWAS SNP-
trait pairs out of 16 the pleiotropic component was positive. Average Chi-squared statistics was
33% smaller for GGM-cGWAS that for BN-cGWAS indicating average loss of power (although
this loss was not significant, Wilcoxon paired test p=0.5), but at the same time it still was 22%
bigger than uGWAS (Wilcoxon paired test p=0.8). We conclude that while GGM-cGWAS is in a

way imperfect proxy to use of real biochemical network, it may still have increased power because

11
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of even further reduced target trait residual variance, and some potential to detect ‘surprising’
pleiotropy.

To explore the potential of cGWAS under realistic conditions to a full extent, we analyzed
all 151 available metabolites using GGM-cGWAS and contrasted the results to u~GWAS (Table 2
and Supplementary Figure 2). In total, uUGWAS was able to detect 15 loci at genome-wide
significance level defined as p<5x108/151 = 3.3x101°. Applying GGM-cGWAS, we identified 19
significant loci at the same threshold. Expectedly, we observed that compared to uUGWAS the
precision of genetic effect estimation increased (Table 2, Supplementary Figure 3). The overlap
between uGWAS and GGM-cGWAS findings was 14 loci, with GGM-cGWAS losing one locus
(for C5:1-DC at rs2943644), but identifying five new loci not identified by uGWAS. Three of the
five new loci were affecting amino acids, and two — acylcarnitines. Note that loci identified by
BN-cGWAS (covariates selected via biochemical network) are a subset of 19 loci identified by
GGM-cGWAS.

We have investigated the literature results available for the loci described in Table 2 (see
Supplementary Note 2 for details). From 20 loci we report in this study, 15 were genome-wide
significant in recent large (n=7,478) meta-analysis of Biocrates metabolomics data by Draisma et
al. [13]. For 11 of 15 loci, we observed significant association for exactly the same SNP-metabolite
pair. However, not all metabolites analyzed in this study were analyzed by Draisma et al. [13];
still, for the residual three loci the top association was with a metabolite within the same class as
in our study and one from different lipid classes (see Supplementary Table 2). For the other five
loci, which did not show significant association in work of Draisma et al. [13], we have checked
if these were significant and replicated in work of Tsepilov et al. [14]. It should be noted though
that in work [14], the same KORA F4 data set was used as discovery, and the analysis concerned
the ratios of metabolites. Out of five loci, two were significant and replicated in [14], and in all
two cases, the metabolite analyzed in this work was the part of the ratio analyzed by Tsepilov et
al.. One of five was published before for the same trait in other studies [15,16]. We did not find
previous evidence for association with metabolites for rs2943644 (LOC646736) and rs17112944
(LOC728755). Therefore, we are inclined to consider observed associations with rs17112944 and

rs2943644 as potential false positives; these two loci are excluded from further consideration.
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Table 1. Eleven loci found by cGWAS and uGWAS on metabolites for which at least one one-reaction-step neighbor was available. Best SNP -

Metabolite pair is shown for each locus. chr:pos corresponds to the physical position of SNP; EAF - effect allele frequency, beta(se) - estimated effect

and standard error of the SNP; effA/refA - effect/reference alleles; P-value - p-value of the additive model; Gene - the most probable (according to

DEPICT) associated gene in the region; Ncov — number of covariates used in cGWAS.

UGWAS cGWAS
Locus SNP Metabolite chr:pos Gene effAlrefA EAF beta(se) P-value beta(se) P-value Neov
GWAS & cGWAS
1 s211718 C8 1:75879263 ACADM T/IC 0,30 -0.45(0.034) 3,26E-37 -0.10(0.012) 4,83E-17 1
1 rs211718 C12 1:75879263 ACADM TIC 0,30 -0.04(0.036) 2,19E-01 0.20(0.014) 1,67E-40 3
2 rs7705189 PC ae C42:5 5:131651257 SLC22A4 G/IA 0,47 0.15(0.034) 8,65E-06 0.06(0.009) 1,49E-10 3
2 rs419291 C5 5:131661254 SLC22A4 TIC 0,38 0.26(0.035) 7,03E-14 0.17(0.029) 1,01E-08 1
3 rs9368564 PC aa C42:5 6:11168269 ELOVL2 G/IA 0,25 -0.29(0.039) 1,14E-13 -0.15(0.024) 1,63E-10 3
4 rs12356193 Cco 10:61083359 SLC16A9 G/IA 0,17 -0.51(0.046) 1,84E-27 -0.42(0.042) 1,67E-22 1
5 rs174547 lysoPC a C20:4 11:61327359 FADS1 CIT 0,70 0.61(0.033) 1,24E-69 0.66(0.024) 2,96E-141 1
6 rs2066938 C4 12:119644998 ACADS G/IA 0,27 0.73(0.033) 2,42E-93 0.72(0.032) 2,13E-100 1
7 rs10873201 PC ae C36:5 14:67036352 PLEKHH1 T/IC 0,45 -0.26(0.034) 4,37E-14 -0.21(0.018) 2,38E-30 2
7 rs1077989 PC ae C32:2 14:67045575 PLEKHH1 C/IA 0,46 -0.30(0.034) 2,23E-18 -0.06(0.016) 5,33E-05 3
8 rs4814176 PC ae C40:2 20:12907398 SPTLC3 TIC 0,36 0.24(0.035) 5,74E-12 0.25(0.023) 1,58E-25 4
Only uGWAS
9 rs8396 C10 4:159850267 ETFDH CIT 0,71 0.26(0.037) 2,11E-12 0.05(0.011) 6,67E-07 2
Only cGWAS
10 rs4862429 PC ae C42:5 4:186006834 ACSL1 TIC 0,31 0.02(0.037) 6,62E-01 -0.06(0.010) 6,57E-11 3
11 rs603424 lysoPC a C16:1 10:102065469 PKD2L1 AIG 0,80 0.23(0.042) 5,34E-08 0.21(0.031) 1,39E-11 1
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Table 2. Twenty loci found by cGWAS and uGWAS approaches. Best SNP - Metabolite pair is shown for each locus. chr:pos corresponds to the

physical position of SNP; EAF - effect allele frequency, beta(se) - estimated effect and standard error of SNP; effA/refA - effect/reference alleles; P-

value - p-value of the additive model; Gene - the most probable (according to DEPICT) associated gene in the region; Ncov — number of covariates for

cGWAS.
UGWAS cGWAS
Locus SNP Metabolite chr:pos Gene effAlrefA | EAF beta(se) P-value beta(se) P-value Neov
UGWAS & cGWAS
1 rs211718 C6 (C4:1-DC) 1:75,879,263 ACADM T/IC 0.30 -0.48(0.034) 4.64E-42 -0.13(0.017) 2.00E-13 7
1 1s7552404 C6 (C4:1-DC) 1:75,908,534 ACADM G/IA 0.30 -0.48(0.034) 3.10E-42 -0.12(0.017) 3.25E-13 7
2 rs483180 Ser 1:120,069,028 PHGDH GIC 0.30 -0.24(0.037) 3.34E-11 -0.24(0.028) 1.50E-17 2
2 rs477992 Ser 1:120,059,099 PHGDH AIG 0.70 0.24(0.037) 5.15E-11 0.24(0.028) 5.82E-18 2
3 rs2286963 C9 2:210,768,295 ACADL GIT 0.63 -0.49(0.032) 1.10E-49 -0.48(0.027) 1.48E-67 3
4 rs8396 C10 4:159,850,267 ETFDH C/IT 0.71 0.26(0.037) 2.02E-12 0.04(0.010) 1.49E-05 8
4 rs8396 C7-DC 4:159,850,267 ETFDH CIT 0.71 -0.09(0.037) 1.67E-02 -0.13(0.020) 3.29E-11 8
5 rs419291 C5 5:131,661,254 SLC22A4 T/IC 0.38 0.26(0.035) 7.03E-14 0.17(0.026) 2.28E-10 3
5 rs270613 C5 5:131,668,482 SLC22A4 AIG 0.61 -0.26(0.035) 7.93E-14 -0.17(0.026) 8.48E-11 3
6 rs9393903 PC aa C42:5 6:11,150,895 ELOVL2 AIG 0.75 0.29(0.039) 2.19E-13 0.18(0.020) 451E-19 6
6 rs9368564 PC aa C42:5 6:11,168,269 ELOVL2 G/A 0.25 -0.29(0.039) 1.14E-13 -0.19(0.021) 7.84E-19 6
7 rs816411 Ser 756,138,983 PHKG1 CIT 0.51 -0.22(0.034) 2.15E-10 -0.19(0.026) 5.16E-13 2
7 rs1894832 Ser 7:56,144,740 PHKG1 CIT 0.51 0.21(0.034) 3.23E-10 0.19(0.026) 1.69E-13 2
8 rs12356193 Co 10:61,083,359 SLC16A9 G/A 0.17 -0.51(0.046) 1.84E-27 -0.27(0.034) 9.72E-16 3
9 rs174547 lysoPC a C20:4 11:61,327,359 FADS1 CIT 0.70 0.61(0.033) 1.44E-69 0.07(0.011) 1.41E-10 9
9 rs174556 PC ae C44:4 11:61,337,211 FADS1 T/IC 0.27 0.09(0.038) 1.55E-02 0.21(0.014) 3.16E-46 3
10 rs2066938 C4 12:119,644,998 ACADS G/IA 0.27 0.73(0.033) 5.87E-94 0.71(0.025) 1.31E-151 2
11 rs12879147 PC aa C28:1 14:63,297,349 SYNE2 AIG 0.85 -0.46(0.050) 2.07E-19 -0.12(0.019) 5.94E-11 14
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11 rs17101394 SM(OH) C14:1 14:63,302,139 SYNE2 AIG 0.83 -0.32(0.050) 1.00E-10 -0.10(0.011) 1.17E-17 7
12 rs1077989 PC ae C36:5 14:67,045,575 PLEKHH1 C/IA 0.46 -0.26(0.034) 3.42E-14 -0.08(0.010) 8.25E-16 10
12 rs1077989 PC ae C32.2 14:67,045,575 PLEKHH1 C/IA 0.46 -0.30(0.034) 2.23E-18 -0.05(0.016) 1.31E-03 6
13 rs4814176 SM(OH).C22:1 20:12,907,398 SPTLC3 TIC 0.36 0.03(0.035) 451E-01 -0.07(0.009) 1.10E-16 10
13 rs4814176 SM(OH) C24:1 20:12,907,398 SPTLC3 TIC 0.36 0.24(0.035) 5.40E-12 0.09(0.013) 3.04E-11 9
14 rs5746636 Pro 22:17,276,301 PRODH TIG 0.24 -0.31(0.039) 3.00E-15 -0.32(0.034) 1.91E-20 2
Only uGWAS
15 rs2943644 C5:1-DC 2:226,754,586 LOC646736 CIT 0.68 0.32(0.042) 5.14E-14 0.09(0.022) 3.58E-05 5
Only cGWAS
16 rs1374804 Gly 3:127,391,188 ALDH1L1 AIG 0.64 0.20(0.036) 1.88E-08 0.21(0.030) 8.08E-13 3
17 rs4862429 PC ae C42:5 4:186,006,834 ACSL1 TIC 0.31 0.02(0.037) 6.62E-01 -0.06(0.008) 1.25E-12 8
18 rs603424 C16:1 10:102,065,469 PKD2L1 AIG 0.80 0.16(0.042) 9.51E-05 0.14(0.018) 1.32E-13 9
19 rs2657879 Gln 12:55,151,605 GLS2 GIA 0.21 -0.24(0.042) 2.82E-08 -0.27(0.031) 9.37E-18 5
20 rs17112944 C6:1 14:27,179,297 LOC728755 AIG 0.90 -0.28(0.059) 2.09E-06 -0.21(0.032) 1.38E-10 9
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Conclusions

We have developed a new approach for network-based conditional genome-wide association study
for metabolomics data (conditional GWAS, cGWAS). For each metabolite trait, we select a set of
other metabolites, to be used as covariates in GWAS. The selection of covariates could be done in
a mechanistic way, e.g. based on known biological relations between traits of interest; or in a data-
driven way, e.g. based on partial correlations. The method has modest computational costs and can
exploit either individual- or summary-level GWAS data. It has a potential to increase the power
of genetic association analysis because of reduced noise and ability to detect specific pleiotropic
scenarios, hardly detectable via standard single-trait GWAS.

We have applied cGWAS approach to analysis of 151 metabolomics traits (Biocrates
panel) in large (n=1,784) population-based KORA cohort. While conventional uGWAS identified
15 loci in this data set, cGWAS was able to identify up to 5 additional loci. At the same time, we
have observed that for some loci the power of cGWAS was decreased. We found that in cGWAS
power is always gained because of increased precision of genetic effect estimation, but it may be
decreased or increased in presence of specific pleiotropic association scenarios.

We show that conditional analysis has especially high power under scenarios when locus-
specific genotypic and environmental sources of covariance between the trait and its covariates
are ‘surprising’ (acting in opposite direction). This type of pleiotropy is not unexpected for
metabolic traits, and we provide an empirical demonstration of existence of such scenarios in this
work. This is further demonstrated by the fact that the power gain from the pleiotropic component
was higher when we used a mechanistic way of covariate selection (one-reaction-step neighbors
from a biochemical network), as opposed to data-driven network (based on Gaussian Graphical
Model). We may expect that with increased knowledge of biological networks the mechanistic
way of covariate selection may become preferable.

However, when genotypic and environmental sources of covariance are consistent,
CcGWAS may lose power even compared with standard GWAS without biological covariates. One
may argue that a joint analysis testing effects of genotype on the set of traits simultaneously may
be a better solution, which maintains power across wide range of scenarios. While we are not
arguing with this viewpoint, we must emphasize one aspect which makes conditional analysis
attractive; namely, better interpretability of the obtained results in terms of effect of genotype on
specific trait. The latter may be important in the next step when we may try to relate obtained
results with these obtained previously for other traits in other GWAS, e.g. using methods described
by [17-19].
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Presence of highly correlated traits and different pleiotropic scenarios are not unique for
metabolomics. Therefore, we expect that cGWAS may be a powerful approach for investigation
of other omics traits. Low computational costs and possibility of analysis based on summary-level
data makes cGWAS a promising approach to investigate new and re-analyze existing omics data

sets in order to provide deeper understanding of functional genomics.
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Materials and Methods

KORA study

The KORA cohort (Cooperative Health Research in the region of Augsburg) are population-based
studies from the region of Augsburg in Southern Germany [20]. The KORA F4 is the follow-up
survey (from 2006 to 2008) of the base line survey KORA S4 that was conducted from 1999 to
2001. All study protocols were approved by the ethics committee of the Bavarian Medical
Chamber (Bayerische Landesérztekammer), and all participants gave written informed consent.
Concentrations of 163 metabolites were quantified in 3,061 serum samples of KORA F4
participants using flow injection electrospray ionization tandem mass spectrometry and the
AbsolutelDQ™ p150 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) [21]. After quality
control 151 metabolite measurements were used in analysis. Details of the methods and quality
control of the metabolite measurements and details of the metabolite nomenclatures were given
previously [21]. Metabolite nomenclatures could be found in Supplementary Table 3.
Genotyping was performed with the Affymetrix 6.0 SNP array (534,174 SNP markers after
quality control) with further imputation using HapMap2 (release 22) as reference panel resulting
in a total of 1,717,498 SNPs (details given in KoLz et al. 2009 [22]). For 1,785 individuals both

metabolite concentrations and genotypes were available in the KORA F4 study.

Statistical analysis

Calculation of partial correlations and their p-values were performed using “ppcor” [23] R library.
Graphical representations were made by “ggm” [24] R library. Similar to previous work [12], we
considered partial correlation coefficient as significant if correlation’s p-value was less than
0.01/(151*150/2) (8.83x107).

For the GWAS analysis we used OmicABEL software [25]. All traits were first adjusted
for sex, age and batch effect, and then residuals were transformed using inverse-normal
transformation [26] prior to GWAS. The genotypes from KORA F4 were used. Only SNPs that
had a call rate > 0.95, R? > 0.3, Hardy-Weinberg equilibrium (HWE) p > 10 and MAF > 0.1
(1,717,498 SNPs in total) were considered in analysis. The genomic control method was applied
to correct for a possible inflation of the test statistics. Lambda for all traits was between 1.00 and
1.03. To define independent loci, we have selected all genome-wide significant SNP-trait pairs,
and identified the groups which were separated by >500kb. For regions of association, the most
associated SNP-trait pair (as indicated by the lowest p-value) was selected to represent this locus.

cGWAS and uGWAS results were considered to come from different loci if top SNPs were
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separated by >500kb. The threshold for GWAS analysis for 151 traits was p-value=5e-
8/151=3.31x102°,

When partitioning log(cGWAS/UGWAS) test statistic into noise and pleiotropic
components (equation (2), Figure 1), we used all known loci that were significant in either cGWAS
or uGWAS analyses. If locus included two SNP-trait pairs and traits were different we included
both. If locus consisted two SNP-trait pairs and traits were the same, we included the one with
lowest uGWAS p-value. When comparing the pleiotropic and noise components, the Wilcoxon
paired samples test was used to perform statistical significance testing. For contrasting values of
chi-squared test statistics, we employed similar procedure, with the exception that if results from
specific analysis for specific locus were not genome-wide significant, for this method we have
selected the maximal chi-squared test statistic from the +/-500kb region centered at the top

association detected by the alternative method.

In silico functional annotation

We conducted functional annotation of the novel discoveries. For prioritizing genes in associated
regions, gene set enrichment and tissue/cell type enrichment analyses, we used the DEPICT
software v. 140721 [27] with following parameters: flag_loci = 1; flag_genes = 1; flag_genesets
=1, flag_tissues = 1; param_ncores = 2 , and further manual annotation (h37 assembly). All 27
SNPs clustered in 20 loci found by cGWAS and uGWAS (Table 2) were included into analysis. If
several genes were proposed for a SNP by DEPICT we selected the gene with the lowest nominal
DEPICT P-value. In most of the cases the results of manual annotation matched with the results
of DEPICT annotation (see Supplementary Note 2). Additionally, we have looked up each SNP
using the Phenoscanner [28] database to check whether it was previously reported to be associated
with metabolic traits with p-value lower than 5x10° and proxy r? =0.7.
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