

Genetic and transgenic reagents for *Drosophila simulans*, *D. mauritiana*, *D. yakuba*, *D. santomea* and *D. virilis*

David L. Stern^{1*}, Justin Crocker¹, Yun Ding¹, Nicolas Frankel², Gretchen Kappes³, Elizabeth Kim¹, Ryan Kuzmickas⁴, Andrew Lemire¹, Joshua D. Mast⁵ and Serge Picard⁶

¹ Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA

² Departamento de Ecología, Genética y Evolución, IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina

³ Current address unknown

⁴ Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA

⁶ Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, NJ 08544

*Address correspondence and requests for reagents to sternd@janelia.hhmi.org

18 **Abstract**

19 Species of the *Drosophila melanogaster* species subgroup, including the species *D. simulans*, *D.*
20 *mauritiana*, *D. yakuba*, and *D. santomea*, have long served as model systems for studying
21 evolution. Studies in these species have been limited, however, by a paucity of genetic and
22 transgenic reagents. Here we describe a collection of transgenic and genetic strains generated to
23 facilitate genetic studies within and between these species. We have generated many strains of
24 each species containing mapped *piggyBac* transposons including an *enhanced yellow fluorescent*
25 *protein* gene expressed in the eyes and a *phiC31 attP* site-specific integration site. We have
26 tested a subset of these lines for integration efficiency and reporter gene expression levels. We
27 have also generated a smaller collection of other lines expressing other genetically encoded
28 fluorescent molecules in the eyes and a number of other transgenic reagents that will be useful
29 for functional studies in these species. In addition, we have mapped the insertion locations of 58
30 transposable elements in *D. virilis* that will be useful for genetic mapping studies.

31 **Keywords:** *Drosophila*, genetics, transgenics, phi-C31 integrase, speciation, evolution

32 Ever since Alfred Sturtevant discovered *Drosophila simulans*, the sister species to *D.*
33 *melanogaster*, in 1919, species of the *Drosophila melanogaster* species subgroup have played a
34 central role in studies of evolution and speciation (Powell 1997; Barbash 2010). Most species of
35 the subgroup display superficially similar anatomy, although all species can be distinguished by
36 both qualitative and quantitative anatomical differences (Orgogozo and Stern 2009). In addition,
37 the species display enormous variation in ecology and behavior, with some having evolved into
38 ecological specialists on unusual food sources (R'Kha *et al.* 1991; Yassin *et al.* 2016).

39 One of the major advantages of this subgroup for evolutionary studies is that many of the
40 species can be crossed to *D. melanogaster* to generate sterile hybrids and some can be crossed to
41 each other to generate fertile hybrid females (Powell 1997). An unusual and important feature of
42 these fertile pairs is that strains of each species can be found that share synteny across all
43 chromosomes (Lemeunier and Ashburner 1976; Moehring *et al.* 2006a). This allows
44 comprehensive genetic interrogation of the entire genome through recombination mapping. This
45 is an uncommon feature for fertile pairs of *Drosophila* species; most species that have been
46 examined exhibit major chromosomal inversions that are fixed between species (Powell 1997).

47 The combination of relatively straightforward genetics with diversity in anatomy, physiology
48 and behavior has encouraged many groups to perform genetic analyses of these species (e.g. Liu
49 *et al.* 1996; True *et al.* 1997; Macdonald and Goldstein 1999; Gleason and Ritchie 2004;
50 Moehring *et al.* 2004, 2006a; b; Carbone *et al.* 2005; Gleason *et al.* 2005; Orgogozo *et al.* 2006;
51 Cande *et al.* 2012; Arif *et al.* 2013; Peluffo *et al.* 2015). In the vast majority of cases, however,
52 these studies have stopped after quantitative trait locus (QTL) mapping of traits of interest. One
53 factor that has limited further genetic study of these traits is a limited set of genetic markers,
54 which can facilitate fine-scale mapping. John True and Cathy Laurie established a large
55 collection of strains carrying *P-element* transposons marked with a w^+ mini-gene in a w^-
56 background of *D. mauritiana* (True *et al.* 1996a; b). These have been used for introgression
57 studies (True *et al.* 1996b; Coyne and Charlesworth 1997; Tao *et al.* 2003a; b; Masly and
58 Presgraves 2007; Masly *et al.* 2011; Arif *et al.* 2013; Tanaka *et al.* 2015; Tang and Presgraves
59 2015) and for high-resolution mapping studies (McGregor *et al.* 2007; Araripe *et al.* 2010),
60 demonstrating the utility of dominant genetic markers for evolutionary studies. One limitation of
61 these strains is that the w^+ marker is known to induce behavioral artifacts (Zhang and Odenwald

62 1995; Campbell and Nash 2001; Xiao and Robertson 2016). We have also observed that
63 mutations in the *white* gene and some w^+ rescue constructs cause males to generate abnormal
64 courtship song (unpublished data). Other pigmentation genes that are commonly used in *D.*
65 *melanogaster* are also known to disrupt normal behavior (Bastock 1956; Kyriacou *et al.* 1978;
66 Drapeau *et al.* 2006; Suh and Jackson 2007). It would be preferable, therefore, to employ
67 dominant genetic markers that do not interfere with normal eye color or pigmentation.

68 We were motivated by the phenotypic variability and genetic accessibility of these species to
69 establish a set of reagents that would allow, simultaneously, a platform for site-specific
70 transgenesis (Groth *et al.* 2004) and reagents useful for genetic mapping studies. We therefore
71 set out to establish a collection of strains carrying transposable elements marked with innocuous
72 dominant markers for four of the most commonly studied species of the *D. melanogaster* species
73 subgroup: *D. simulans*, *D. mauritiana*, *D. yakuba* and *D. santomea*. We chose the *piggyBac*
74 transposable element to minimize bias of insertion sites relative to gene start sites (Thibault *et al.*
75 2004) and integrated transposable elements carrying *enhanced yellow fluorescent protein (EYFP)*
76 and *DsRed* driven by a *3XP3* enhancer that is designed to drive expression in the eyes (Horn *et*
77 *al.* 2003). A large subset of the lines described here also include a phiC31 *attP* landing site to
78 facilitate site-specific transgene integration. Here we describe the establishment and mapping of
79 many lines of each species carrying *pBac{3XP3::EYFP,attP}* and *pBac{3XP3::DsRed}* (Horn *et*
80 *al.* 2003). We have characterized a subset of the *pBac{3XP3::EYFP,attP}* lines from each
81 species for phiC31 integration efficiency of plasmids containing an *attB* sequence. In addition,
82 we have integrated transgenes carrying the *even-skipped* stripe 2 enhancer to characterize
83 embryonic expression generated by a subset of *attP* landing sites. We have employed
84 CRISPR/Cas9 to knock out the *3XP3::EYFP* gene in a subset of lines to facilitate integration of

85 reagents for neurogenetics. We also describe several other genetic and transgenic reagents that
86 may be useful to the community, including the map positions for *pBac* transposons integrated in
87 the *D. virilis* genome.

88 **Methods**

89

90 **Transposable elements employed:** We used *piggyBac* transposable elements (Horn *et al.*
91 2003) to mobilize markers to random locations within the genomes of *D. simulans* white[501]
92 (San Diego Species Stock Center stock number 14021-0251.011), *D. simulans* yellow[1] white[1]
93 (San Diego Species Stock Center stock number 14021-0251.013), *D. mauritiana* white⁻ (San
94 Diego Species Stock Center stock number 14021-0241.60), *D. yakuba* white⁻ (San Diego Species
95 Stock Center stock number 14021-0261.02), *D. santomea* STO CAGO 1482 (provided by Peter
96 Andolfatto), and *D. virilis* w[50112] (San Diego Species Stock Center number 15010-1051.53).
97 We constructed *pBac*{3XP3::EYFP-attP} by cloning a BglII fragment containing the attP site
98 from *pM*{3XP3-RFPattP'} (Bischof *et al.* 2007) into the single BglII site of
99 *pBac*{3XP3::EYFPafm} (Horn and Wimmer 2000).

100 We constructed *pBac* plasmids carrying a source of *P*-element transposase marked with
101 3XP3::EYFP or 3XP3::DsRed as follows. We digested the plasmid pACNNTNPII-S129A (Beall
102 *et al.* 2002) with EcoRI and NotI and cloned the ~5kb fragment resulting from digestion into
103 pSLFa1180fa (Horn and Wimmer 2000). This plasmid was digested with AscI or FseI and the
104 ~5kb fragment was cloned into the AscI or FseI restriction sites of *pBac*{3XP3::DsRed} or
105 *pBac*{3XP3::EGFP,attP} (Horn and Wimmer 2000) to generate *pBac*{*Pactin*::*Ptrsps*,
106 3XP3::DsRed} and *pBac*{*Pactin*::*Ptrsps* 3XP3::EGFP,attP}, respectively. These plasmids were
107 injected into strains of *D. simulans* and *D. mauritiana*. We also injected *pBac*{3XP3::DsRed}

108 (Horn *et al.* 2003) into strains of *D. simulans*, *D. mauritiana*, *D. yakuba*, and *D. santomea*. The
109 complete sequences of *pBac{3XP3::EYFP-attP}*, *pBac{3XP3::DsRed}* and *phsp-pBac* are
110 provided as Supplementary Material. These plasmids were co-injected with 250 ng/uL *phsp-*
111 *pBac* (Handler and Harrell 1999), a heat-shock inducible source of *piggyBac* transposase, and
112 one hour after injection embryos were heat shocked at 37°C for one hour. All embryo injections
113 were performed by Rainbow Transgenic Flies Inc. G0 flies were backcrossed to un-injected flies
114 of the same strain and G1 flies were screened for fluorescence in their eyes.

115 Fluorescence could be detected easily in the compound eyes and ommatidia in all of the *white*⁻
116 strains (*D. simulans*, *D. mauritiana*, *D. yakuba*, and *D. virilis*) using any dissecting microscope
117 we tried with epi-fluorescence capability (Figure 1a). In flies with wild-type eye coloration,
118 fluorescence in the compound eye is limited to a small spot of about ten ommatidia (Figure 1b).
119 However, we found that fluorescence was very weak, and usually unobservable, in the eyes of
120 flies with wild-type eye coloration using a Leica 165 FC stereomicroscope. This microscope uses
121 “TripleBeam Technology” to deliver excitation light along a separate light path from the
122 emission light. Unfortunately, the excitation light in this system appears to illuminate ommatidia
123 adjacent to the ommatidia that are viewed for the emission light. Fluorescence can still be
124 detected in the ocelli of these flies with this microscope, although this requires a bit more
125 patience than when using a standard epi-fluorescence microscope to screen for fluorescence in
126 the compound eyes.

127 **Mapping of transposable element insertion sites:** We mapped the genomic insertion sites of
128 all *pBac* elements using both inverse PCR (Ochman *et al.* 1988) and TagMap (Stern 2016).
129 Inverse PCR (iPCR) was not ideal for our project for several reasons. First, many isolated strains
130 appeared to contain multiple insertion events, even though they were isolated from single G0

131 animals. These multiple events could sometimes be detected by segregation of offspring with
132 multiple strengths of fluorescence in the eyes. In these cases, sometimes iPCR produced
133 uninterpretable sequences and sometimes apparently only a single insertion event amplified.
134 Second, many iPCR sequences were too short to allow unambiguous mapping to the genome.
135 Third, sometimes iPCR reactions failed for no obvious reason. For all of these reasons, it was
136 difficult to unambiguously map all of the *pBac* insertions with iPCR. We therefore developed
137 and applied TagMap (Stern 2016) to map the insertion positions of all *pBac* elements. TagMap
138 combines genome fragmentation and tagging using Tn5 transposase with a selective PCR to
139 amplify sequences flanking a region of interest. This method provides high-throughput, accurate
140 mapping of transposon insertions. Tagmap provided transposon insertion positions for all but a
141 few strains. Transposable element insertion sites in the *D. simulans* and *D. mauritiana* strains
142 were mapped to *D. simulans* genome release 2 (Hu *et al.* 2013), available from
143 ftp://ftp.flybase.net/genomes/Drosophila_simulans/dsim_r2.01_FB2015_01/. Insertion sites in *D.*
144 *yakuba* and *D. santomea* were mapped to *D. yakuba* genome release 1.3 (Clark *et al.* 2007),
145 available from ftp://ftp.flybase.net/genomes/Drosophila_yakuba/dyak_r1.3_FB2014_03/. The
146 actual genomes used for mapping and the mapped positions of the transposable elements are
147 provided in the Geneious files supplied as Supplementary Files.

148 **Mapping *pBac* transposon insertion sites in *D. virilis*:** We previously generated multiple
149 *pBac(enhancer-lacZ)* insertions into *D. virilis* to study the *svb* gene (Frankel *et al.* 2012).
150 However, none of these *pBac* (*enhancer-lacZ*) insertions have been mapped previously. These
151 reagents may be useful for genetic mapping studies. We have therefore mapped positions of
152 these inserts using TagMap. The larger scaffolds from the *D. virilis* CAF1 assembly project
153 (<http://insects.eugenesc.org/species/data/dvir/>) (Clark *et al.* 2007) have been mapped to Muller

154 elements (Schaeffer *et al.* 2008). We combined this information with genetic linkage data to
155 assemble approximately 159 Mbp of the *D. virilis* genome into the six Muller arms (unpublished
156 data). We mapped insertion sites to this unpublished version of the *D. virilis* genome.

157 **Generation of a *D. santomea* white- allele:** We began to generate this collection of reagents
158 prior to the availability of a *white*⁻ strain of *D. santomea*. However, soon after CRISPR/Cas9-
159 mediated genome editing became available, we generated a *white*⁻ strain derived from *D.*
160 *santomea* STO-CAGO 1482 as follows. *In vitro* transcribed Cas9 mRNA, generated with an
161 EcoRI digested T7-*Cas9* template plasmid and the mMESSAGE mMACHINE T7 Transcription
162 Kit (ThermoFisher Scientific), together with two gRNAs targeting the third exon of the *white*
163 gene were injected into pre-blastoderm embryos by Rainbow Transgenics. The sequence for the
164 T7-*Cas9* plasmid is provided as Supplementary Data. The gRNAs were generated by separate *in*
165 *vitro* transcription reactions, using the MEGAscript T7 Transcription Kit (ThermoFisher
166 Scientific), of PCR amplified products of the following forward and reverse primers: Forward
167 primer CRISPRF-san-w12, 5' GAA ATT AAT ACG ACT CAC TAT AGG CAA CCT GTA
168 GAC GCC AGT TTT AGA GCT AGA AAT AGC; Forward primer CRISPRF-san-w17, 5'
169 GAA ATT AAT ACG ACT CAC TAT AGG GCC ACG CGC TGC CGA TGT TTT AGA GCT
170 AGA AAT AGC; Reverse primer gRNA-scaffold, 5' AAA AGC ACC GAC TCG GTG CCA
171 CTT TTT CAA GTT GAT AAC GGA CTA GCC TTA TTT TAA CTT GCT ATT TCT AGC
172 TCT AAA AC. All PCR reactions described in this paper were performed using Phusion High
173 Fidelity DNA Polymerase (NEB) using standard conditions. Injected G0 flies were brother-sister
174 mated and G1 flies were screened for white eyes. Once we identified a *white*⁻ strain, we
175 backcrossed the *pBac{3XP3::EYFP-attP}* markers generated previously in *D. santomea* STO-
176 CAGO 1482 to the *white*⁻ strain. The *pBac* insertion sites in these new *white*⁻ strains were then

177 re-mapped with TagMap.

178 **Testing phiC31-mediated integration efficiency:** Different *attP* landing sites provide
179 different efficiencies of integration of *attB*-containing plasmids (Bischof *et al.* 2007). We
180 performed a preliminary screen of integration efficiency on a subset of the *attP* landing sites we
181 generated. Pre-blastoderm embryos were co-injected with 250 ng/uL of plasmids containing *attB*
182 sites and 250 ng/uL pBS130 (Gohl *et al.* 2011), a heat-shock inducible source of phiC31
183 integrase, and one hour after injection were incubated at 37°C for one hour. G0 offspring were
184 backcrossed to the parental line and G1 offspring were screened for the relevant integration
185 marker. We performed this screen using a heterogeneous collection of plasmids that we are
186 integrating for other purposes. Therefore, the integration efficiencies we report are not strictly
187 comparable between sites. Nonetheless, we were able to identify a subset of sites that provide
188 reasonable integration efficiency and which can be made homozygous after integration of
189 transgenes. We report these statistics for all sites that we have tested (Supplementary File:
190 Strains and Integration Efficiencies.xlsx).

191 **Testing expression patterns and levels of transgenes integrated in different *attP* sites:**

192 Different *attP* landing sites drive different levels and patterns of transgene expression (Pfeiffer *et*
193 *al.* 2010). We have tested a subset of the *attP* sites in our collection for embryonic expression of
194 an integrated *D. melanogaster* *even-skipped* stripe 2 enhancer (Small *et al.* 1992). A plasmid
195 containing the *D. melanogaster* *eveS2-placZ* was co-injected with 250 ng/uL pBS130 into
196 approximately ten *pBac{3XP3::EYFP-attP}* strains of each species. We isolated transgenic lines
197 for seven *D. simulans*, four *D. mauritiana*, two *D. yakuba* strains, and four *D. santomea* strains.
198 We performed mRNA fluorescent in situ hybridization (FISH) and imaged mid-stage 5 embryos
199 on a Leica TCS SPE confocal microscope. (Antibody staining is less sensitive at these stages

200 than FISH due to slow production of reporter gene protein products.) Embryos of all samples
201 were scanned with equal laser power to allow quantitative comparisons of expression patterns
202 between strains.

203 We performed staining experiments for all sites from each species in parallel; embryo
204 collection, fixation, hybridization, image acquisition, and processing were performed side-by-
205 side under identical conditions. Confocal exposures were identical for each series. Image series
206 were acquired in a single day, to minimize signal loss. Sum projections of confocal stacks were
207 assembled, embryos were scaled to match sizes, background was subtracted using a 50-pixel
208 rolling-ball radius and fluorescence intensity was analyzed using ImageJ software
209 (<http://rsb.info.nih.gov/ij/>).

210 **Killing *EYFP* expression from *attP* landing sites:** Expression of the *EYFP* genes associated
211 with the *attP* sites may conflict with some potential uses of the *attP* landing sites, for example
212 for integration of transgenes driving *GFP*-derivatives, such as *GCaMP*, in the brain. We have
213 therefore started generating *pBac{3XP3::EYFP-attP}* strains where we have killed the *EYFP*
214 activity using CRISPR-Cas9 mediated targeted mutagenesis. We first built a derivative of the
215 *pCFD4-U61-U63* tandem gRNAs plasmid (Port *et al.* 2014) where we replaced the *vermillion*
216 marker with a *3XP3::DsRed* dominant marker. The *vermillion* marker was removed by HindIII
217 digestion of *pCFD4-U61-U63* and isolation of the 5,253 bp band. The *3XP3::DsRed* cassette was
218 amplified from a *pUC57{3xP3::DsRed}* plasmid using the following primers: 5' TAC GAC
219 TCA CTA TAG GGC GAA TTG GGT ACA CCA GTG AAT TCG AGC TCG GT, 5' TTG
220 GAT GCA GCC TCG AGA TCG ATG ATA TCA ATT ACG CCA AGC TTG CAT GC. The
221 PCR product and vector backbone were assembled with Gibson assembly (Gibson *et al.* 2009)
222 following http://openwetware.org/wiki/Gibson_Assembly to generate *p{CFD4-3xP3::DsRed-*

223 *BbsI*}. To remove the *BbsI* restriction site from *DsRed*, which conflicts with the *BbsI* restriction
224 site used for cloning gRNA sequences, we digested this plasmid with *NcoI* and isolated the ~6kb
225 fragment, PCR amplified this region with primers that eliminated the *BbsI* restriction site
226 (Forward primer: 5' CGG GCC CGG GAT CCA CCG GTC GCC ACC ATG GTG CGC TCC
227 TCC AAG AAC GTC A, Reverse primer: 5' CGC TCG GTG GAG GCC TCC CAG CCC ATG
228 GTT TTC TTC TGC ATT ACG GGG CC), and Gibson cloned the PCR product into the plasmid
229 backbone. This yielded plasmid *p{CFD4-3xP3::DsRed}*.

230 To make a plasmid for mutating *EYFP* in fly lines, we digested *p{CFD4-3xP3::DsRed}* with
231 *BbsI* and gel purified the 5,913 bp fragment. A gBlocks Gene Fragment (IDT) (5' CAA GTA
232 CAT ATT CTG CAA GAG TAC AGT ATA TAT AGG AAA GAT ATC CGG GTG AAC TTC
233 GGG TGG TGC AGA TGA ACT TCA GTT TTA GAG CTA GAA ATA GCA AGT TAA AAT
234 AAG GCT AGT CCG TTA TCA ACT TG), which contained a gRNA sequence targeting *EYFP*
235 that was previously validated by direct injection of gRNA was synthesized and Gibson
236 assembled with the *BbsI* digested fragment of *p{CFD4-3xP3::DsRed}* to make *p{CFD4-EYFP-3xP3::DsRed}*.
237

238 This plasmid contains *attB* and can be integrated into *attP* sites. We tested this by integrating
239 this plasmid into the *attP* site of *D. simulans* line 930. This plasmid is a potent source of gRNA
240 targeting *EYFP*, which we confirmed by crossing this line to a transgenic strain carrying *nos-*
241 *Cas9*. We have generated transgenic strains of *Drosophila simulans*, *D. mauritiana*, and *D.*
242 *yakuba* carrying *nos-Cas9* (Addgene plasmid 62208 described in Port *et al.* 2014) and details of
243 these lines are provided as Supplemental Data.

244 To knock out *EYFP* in specific strains carrying *pBac{3XP3::EYFP-attP}*, we co-injected 500
245 ng/uL *in vitro* transcribed Cas9 mRNA and 250 ng/uL *p{CFD4-EYFP-3xP3::DsRed}*. G0

246 individuals were brother-sister mated and we screened for reduction or loss of *EYFP* expression
247 in G1 progeny. Individuals displaying reduced or no *EYFP* expression were crossed to generate
248 strains homozygous for *EYFP*⁻.

249 **Data and Reagent Availability:** Plasmid *pBac{3XP3::EYFP-attP}* is available from David
250 Stern upon request. The p{CFD4} derivative plasmids have been deposited with Addgene
251 (plasmid IDs 86863 – 86864). All fly stocks are maintained in the Stern lab at Janelia Research
252 Campus and all requests for fly stocks should be directed to David Stern. The raw iPCR and
253 TagMap data are available upon request from David Stern. We continue to produce new fly
254 strains based on the reagents described in this paper. An Excel sheet containing information
255 about all strains in this paper and any new lines is available at
256 http://research.janelia.org/sternlab/Strains_and_Integration_Efficiencies.xlsx. Geneious files
257 containing genomic insertion sites for all transgenes will be updated with new strains and are
258 available at the following sites:
259 http://research.janelia.org/sternlab/D.simulans_mauritiana_insertions.geneious;
260 http://research.janelia.org/sternlab/D.yakuba_santomea_insertions.geneious;
261 http://research.janelia.org/sternlab/D.virilis_insertions.geneious. All of these files can be
262 accessed via our lab web page at <https://www.janelia.org/lab/stern-lab/tools---reagents---data>.

263 **Results**

264
265 **Generation and mapping of *pBac{3XP3::EYFP-attP}* strains:** We generated many strains
266 carrying *pBac{3XP3::EYFP-attP}* and *pBac{3XP3::DsRed}* insertions, mapped these, and culled
267 the collection to unique lines that could be maintained as homozygotes. The final collection
268 includes 184 *D. simulans* lines, 122 *D. mauritiana* lines, 104 *D. yakuba* lines, 64 *D. santomea*

269 lines, and nine *D. virilis* lines. Maps indicating the insertion site locations are shown in Figures
270 2-6 and are provided as searchable Geneious files (<http://www.geneious.com/>) in Supplementary
271 Material. Details of the transgenic strains are provided in Supplementary Data: Strains and
272 Integration Efficiencies.xlsx.

273 **Mapping *pBac* transposon insertion sites in *D. virilis*:** To assist with genetic experiments in *D.*
274 *virilis*, we mapped the insertion locations for all *pBac* lines generated in our lab for a previously
275 published study (Frankel *et al.* 2012). We mapped 58 transposon insertions from 39
276 *pBac(enhancer-lacZ)* strains plus nine new *pBac{3XP3::EYFP-attP}* strains. Some strains
277 contained multiple insertions and some insertions mapped to contigs that are not currently
278 associated with Muller arm chromosomes. These results are shown in Figure 6 and available in a
279 Geneious file and Supplementary Data: Strains and Integration Efficiencies.xlsx.

280 **Testing phiC31-mediated integration efficiency:** We tested efficiency of integration of *attB*
281 plasmids into *attP* landing sites of multiple strains of each species. There are strong differences
282 in integration efficiencies between landing sites. Some landing sites in *D. simulans*, *D.*
283 *mauritiana*, *D. santomea* and *D. yakuba* supported integration of *attB* plasmids, although many
284 landing sites did not support integration at reasonable frequency. Details of integration
285 efficiencies for each line are provided in Supplementary Data: Strains and Integration
286 Efficiencies.xlsx.

287 In addition, we tested nine *D. virilis* strains carrying *pBac{3XP3::EYFP-attP}* for integration
288 of the *eveS2-placZ* plasmid, which contains an *attB* site. We screened approximately 100 fertile
289 G0 offspring for each of these nine strains and did not recover any integrants. This is a surprising
290 result and we do not yet know whether this failure of *attB* integration is specific to these lines or
291 reflects a general low efficiency of *attP-attB* integration in *D. virilis*.

292 **Testing expression patterns of transgenes integrated in different *attP* sites:** We integrated
293 a *D. melanogaster eveS2-placZ* plasmid into multiple *attP* landing site strains of each species to
294 examine variability in expression at different landing sites. Levels of reporter gene expression
295 varied between strains (Figure 7). In *D. simulans*, *D. mauritiana*, and *D. yakuba*, we identified at
296 least one strain that drove strong and temporal-spatially accurate levels of *eveS2* expression.
297 However, of the four landing sites we tested in *D. santomea*, none provided strong expression of
298 *eveS2* (Figure 7 & 8). *eveS2* transgenes often drive weak, spatially diffuse expression prior to
299 stage 5, and all of the *D. santomea* strains displayed similar diffuse, weak expression at early
300 stages. We also observed ectopic expression of the *eveS2* transgene in *D. santomea* 2092 (Figure
301 8h). It is not clear if the poor expression of *eveS2* in these *D. santomea* landing sites reflects
302 differential regulation of the *D. melanogaster eveS2* enhancer in *D. santomea* or suppression of
303 expression caused by position effects of these specific landing sites.

304 **Unmarked attP landing sites:** To facilitate integration of plasmids expressing fluorescent
305 proteins that overlap with the excitation and emission spectra of EYFP, we have generated a
306 subset of strains in which we induced null mutations in the *EYFP* gene marking the *attP* landing
307 sites. These strains were generated by CRISPR/Cas9-induced mutagenesis. All strains were
308 sequenced to ensure that the mutations did not disrupt the *attP* landing site. We have so far
309 generated two strains in *D. mauritiana*, and three strains in each of *D. santomea*, *D. simulans* and
310 *D. yakuba* (Supplementary Material).

311 **Discussion**

312
313 We have generated a collection of transgenic strains that will be useful for multiple kinds of
314 experiments. First, the *3XP3::EYFP-attP* strains provide a collection of *attP* landing sites for

315 each species that will facilitate transgenic assays in these species. Integration efficiencies vary
316 widely between strains and our experiments provide some guidance to identify landing sites with
317 the highest efficiency of integration. Second, these transgenes carry markers that will be useful
318 for genetic mapping experiments. Several published studies have already used these reagents and
319 illustrate the power of these strains for genetic studies (Andolfatto *et al.* 2011; Ereyilmaz and
320 Stern 2013; Ding *et al.* 2016).

321 We have generated transgenic strains using these *attP* landing sites and found that they show
322 variation in embryonic expression patterns (Figures 7 & 8). These results provide a rough guide
323 to which strains may be useful for experiments that require low or high levels of embryonic
324 expression. However, these results may not be predictive of transgene expression patterns at
325 other developmental stages and in other tissues and we strongly encourage colleagues to test a
326 variety of landing sites for their experiments and report their experiences to us. We plan to
327 continue to maintain a database reporting on integration efficiencies and expression patterns and
328 we will periodically update the Excel file associated with this manuscript.

329 This collection of reagents complements the existing resources available for studying species
330 of the genus *Drosophila*, including the availability of multiple genome sequences (Clark *et al.*
331 2007) and BAC resources (Song *et al.* 2011). This resource will accelerate research on gene
332 function in diverse *Drosophila* species and the study of evolution in the genus *Drosophila*.

333

334 **Conflict of Interest:**

335 The authors declare no competing financial interests.

336 **Acknowledgements:**

337 We thank Peter Andolfatto and an anonymous referee for helpful comments that improved this
338 paper. Most fly stocks were provided by the San Diego Species Stock Center and *D. santomea*
339 STO CAGO 1482 was kindly provided by Peter Andolfatto. We thank Ernst Wimmer for
340 providing the original *piggyBac* reporter plasmids.

341 **Author Contributions:**

342 DLS conceived of the project. NF made *pBac{3XP3::EYFP-attP}*. DLS, YD, GK and JDM
343 screened injected flies for integration events. YD, RK, AL, J-YK and SP performed iPCR
344 experiments. JYK prepared DNA samples for TagMap. DLS performed TagMap. AL and SP
345 sequenced the TagMap libraries. DLS, YD, GK, and JYK performed the genetics. JC performed
346 the embryo *in situ* hybridization experiments. DLS wrote the paper.

347
348

349 **References**

350

351 Andolfatto P., Davison D., Ereyilmaz D., Hu T. T., Mast J., Sunayama-Morita T., Stern D. L.,
352 2011 Multiplexed shotgun genotyping for rapid and efficient genetic mapping. *Genome*
353 *Res.* **21**: 610–7.

354 Araripe L. O., Montenegro H., Lemos B., Hartl D. L., 2010 Fine-scale genetic mapping of a
355 hybrid sterility factor between *Drosophila simulans* and *D. mauritiana*: the varied and
356 elusive functions of “speciation genes”. *BMC Evol. Biol.* **10**: 385.

357 Arif S., Hilbrant M., Hopfen C., Almudi I., Nunes M. D. S., Posnien N., Kuncheria L., Tanaka

358 K., Mitteroecker P., Schlötterer C., McGregor A. P., 2013 Genetic and developmental
359 analysis of differences in eye and face morphology between *Drosophila simulans* and
360 *Drosophila mauritiana*. *Evol. Dev.* **15**: 257–267.

361 Barbash D. A., 2010 Ninety years of *Drosophila melanogaster* hybrids. *Genetics* **186**: 1–8.

362 Bastock M., 1956 A Gene Mutation Which Changes a Behavior Pattern. *Evolution (N. Y.)* **10**:
363 421–439.

364 Beall E. L., Mahoney M. B., Rio D. C., 2002 Identification and analysis of a hyperactive mutant
365 form of *Drosophila* P-element transposase. *Genetics* **162**: 217–227.

366 Bischof J., Maeda R. K., Hediger M., Karch F., Basler K., 2007 An optimized transgenesis
367 system for *Drosophila* using germ-line-specific phiC31 integrases. *Proc Natl Acad Sci U S*
368 *A* **104**: 3312–3317.

369 Campbell J. L., Nash H. A., 2001 Volatile general anesthetics reveal a neurobiological role for
370 the white and brown genes of *Drosophila melanogaster*. *J. Neurobiol.* **49**: 339–349.

371 Cande J., Andolfatto P., Prud'homme B., Stern D. L., Gompel N., 2012 Evolution of multiple
372 additive loci caused divergence between *Drosophila yakuba* and *D. santomea* in wing
373 rowing during male courtship. *PLoS One* **7**: e43888.

374 Carbone M. A., Llopis A., deAngelis M., Coyne J. A., Mackay T. F., 2005 Quantitative trait
375 loci affecting the difference in pigmentation between *Drosophila yakuba* and *D. santomea*.
376 *Genetics* **171**: 211–225.

377 Clark A. G., Eisen M. B., Smith D. R., Bergman C. M., Oliver B., Markow T. A., Kaufman T.
378 C., Kellis M., Gelbart W., Iyer V. N., Pollard D. a, Sackton T. B., Larracuente A. M., Singh

379 N. D., Abad J. P., Abt D. N., Adryan B., Aguade M., Akashi H., Anderson W. W., Aquadro
380 C. F., Ardell D. H., Arguello R., Artieri C. G., Barbash D. a, Barker D., Barsanti P.,
381 Batterham P., Batzoglou S., Begun D., Bhutkar A., Blanco E., Bosak S. A., Bradley R. K.,
382 Brand A. D., Brent M. R., Brooks A. N., Brown R. H., Butlin R. K., Caggese C., Calvi B.
383 R., Bernardo de Carvalho A., Caspi A., Castrezana S., Celniker S. E., Chang J. L., Chapple
384 C., Chatterji S., Chinwalla A., Civetta A., Clifton S. W., Comeron J. M., Costello J. C.,
385 Coyne J. a, Daub J., David R. G., Delcher A. L., Delehaunty K., Do C. B., Ebling H.,
386 Edwards K., Eickbush T., Evans J. D., Filipski A., Findeiss S., Freyhult E., Fulton L.,
387 Fulton R., Garcia A. C. L., Gardiner A., Garfield D. a, Garvin B. E., Gibson G., Gilbert D.,
388 Gnerre S., Godfrey J., Good R., Gotea V., Gravely B., Greenberg A. J., Griffiths-Jones S.,
389 Gross S., Guigo R., Gustafson E. a, Haerty W., Hahn M. W., Halligan D. L., Halpern A. L.,
390 Halter G. M., Han M. V, Heger A., Hillier L., Hinrichs A. S., Holmes I., Hoskins R. a,
391 Hubisz M. J., Hultmark D., Huntley M. a, Jaffe D. B., Jagadeeshan S., Jeck W. R., Johnson
392 J., Jones C. D., Jordan W. C., Karpen G. H., Kataoka E., Keightley P. D., Kheradpour P.,
393 Kirkness E. F., Koerich L. B., Kristiansen K., Kudrna D., Kulathinal R. J., Kumar S., Kwok
394 R., Lander E., Langley C. H., Lapoint R., Lazzaro B. P., Lee S.-J. J., Levesque L., Li R.,
395 Lin C.-F. F., Lin M. F., Lindblad-Toh K., Llopart A., Long M., Low L., Lozovsky E., Lu J.,
396 Luo M., Machado C. a, Makalowski W., Marzo M., Matsuda M., Matzkin L., McAllister B.,
397 McBride C. S., McKernan B., McKernan K., Mendez-Lago M., Minx P., Mollenhauer M.
398 U., Montooth K., Mount S. M., Mu X., Myers E., Negre B., Newfeld S., Nielsen R., Noor
399 M. a F., O'Grady P., Pachter L., Papaceit M., Parisi M. J. M. J., Parts L., Pedersen J. S.,
400 Pesole G., Phillippe A. M., Ponting C. P., Pop M., Porcelli D., Powell J. R., Prohaska S.,
401 Pruitt K., Puig M., Quesneville H., Ram K. R., Rand D., Rasmussen M. D., Reed L. K.,

402 Reenan R., Reily A., Remington K. a, Rieger T. T., Ritchie M. G., Robin C., Rogers Y.-H.
403 H., Rohde C., Rozas J., Rubenfield M. J., Ruiz A., Russo S., Salzberg S. L., Sanchez-Gracia
404 A., Saranga D. J., Sato H., Schaeffer S. W., Schatz M. C., Schlenke T., Schwartz R.,
405 Segarra C., Singh R. S., Sirot L., Sirota M., Sisneros N. B., Smith C. D., Smith T. F., Spieth
406 J., Stage D. E., Stark A., Stephan W., Strausberg R. L., Strempe S., Sturgill D., Sutton G.
407 G., Tao W., Teichmann S., Tobari Y. N., Tomimura Y., Tsolas J. M., Valente V. L. S.,
408 Venter E., Venter J. C., Vicario S., Vieira F. G., Vilella A. J., Villasante A., Walenz B.,
409 Wang J., Wasserman M., Watts T., Wilson D., Wilson R. K., Wing R. a, Wolfner M. F.,
410 Wong A., Wong G. K.-S., Wu C.-I. I., Wu G., Yamamoto D., Yang H.-P. P., Yang S.-P. P.,
411 Yorke J. A., Yoshida K., Zdobnov E., Zhang P., Zhang Y., Zimin A. V, Baldwin J.,
412 Abdouelleil A., Abdulkadir J., Abebe A., Abera B., Abreu J., Acer S. C., Aftuck L.,
413 Alexander A., An P., Anderson E., Anderson S., Arachi H., Azer M., Bachantsang P., Barry
414 A., Bayul T., Berlin A., Bessette D., Bloom T., Blye J., Boguslavskiy L., Bonnet C.,
415 Boukhalter B., Bourzgui I., Brown A., Cahill P., Channer S., Cheshatsang Y., Chuda L.,
416 Citroen M., Collymore A., Cooke P., Costello M., D'Aco K., Daza R., Haan G. De, DeGray
417 S., DeMaso C., Dhargay N., Dooley K., Dooley E., Doricent M., Dorje P., Dorjee K., Dupes
418 A., Elong R., Falk J., Farina A., Faro S., Ferguson D., Fisher S., Foley C. D., Franke A.,
419 Friedrich D., Gadbois L., Gearin G., Gearin C. R., Giannoukos G., Goode T., Graham J.,
420 Grandbois E., Grewal S., Gyaltzen K., Hafez N., Hagos B., Hall J., Henson C., Hollinger
421 A., Honan T., Huard M. D., Hughes L., Hurlula B., Husby M. E., Kamat A., Kanga B.,
422 Kashin S., Khazanovich D., Kisner P., Lance K., Lara M., Lee W., Lennon N., Letendre F.,
423 LeVine R., Lipovsky A., Liu X., Liu J., Liu S., Lokyitsang T., Lokyitsang Y., Lubonja R.,
424 Lui A., MacDonald P., Magnisalis V., Maru K., Matthews C., McCusker W., McDonough

425 S., Mehta T., Meldrim J., Meneus L., Mihai O., Mihalev A., Mihova T., Mittelman R.,
426 Mlenga V., Montmayeur A., Mulrain L., Navidi A., Naylor J., Negash T., Nguyen T.,
427 Nguyen N., Nicol R., Norbu C., Norbu N., Novod N., O'Neill B., Osman S., Markiewicz E.,
428 Oyono O. L., Patti C., Phunkhang P., Pierre F., Priest M., Raghuraman S., Rege F., Reyes
429 R., Rise C., Rogov P., Ross K., Ryan E., Settipalli S., Shea T., Sherpa N., Shi L., Shih D.,
430 Sparrow T., Spaulding J., Stalker J., Stange-Thomann N., Stavropoulos S., Stone C., Strader
431 C., Tesfaye S., Thomson T., Thoulutsang Y., Thoulutsang D., Topham K., Topping I.,
432 Tsamla T., Vassiliev H., Vo A., Wangchuk T., Wangdi T., Weiand M., Wilkinson J.,
433 Wilson A., Yadav S., Young G., Yu Q., Zembek L., Zhong D., Zimmer A., Zwirko Z.,
434 Alvarez P., Brockman W., Butler J., Chin C., Grabherr M., Kleber M., Mauceli E.,
435 MacCallum I., 2007 Evolution of genes and genomes on the *Drosophila* phylogeny. *Nature*
436 **450**: 203–18.

437 Coyne J. A., Charlesworth B., 1997 Genetics of a Pheromonal Difference Affecting Sexual
438 Isolation Between *Drosophila mauritiana* and *D. sechellia*. *Genetics* **145**: 1015–1030.

439 Ding Y., Berrocal A., Morita T., Longden K. D., Stern D. L., 2016 Natural courtship song
440 variation caused by an intronic retroelement in an ion channel gene. *Nature* **536**: 329–332.

441 Drapeau M. D., Cyran S. A., Viering M. M., Geyer P. K., Long A. D., 2006 A cis-regulatory
442 sequence within the yellow locus of *Drosophila melanogaster* required for normal male
443 mating success. *Genetics* **172**: 1009–1030.

444 Erezyilmaz D. F., Stern D. L., 2013 Pupariation Site Preference Within and Between *Drosophila*
445 Sibling Species. *Evolution (N. Y.)*. **67**: 2714–2727.

446 Frankel N., Wang S., Stern D. L., 2012 Conserved regulatory architecture underlies parallel

447 genetic changes and convergent phenotypic evolution. *Proc. Natl. Acad. Sci. U. S. A.* **109**:
448 20975–9.

449 Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Iii C. A. H., Smith H. O., America N.,
450 Hutchison C. a, 2009 Enzymatic assembly of DNA molecules up to several hundred
451 kilobases. *Nat. Methods* **6**: 343–5.

452 Gleason J. M., Ritchie M. G., 2004 Do quantitative trait loci (QTL) for a courtship song
453 difference between *Drosophila simulans* and *D. sechellia* coincide with candidate genes and
454 intraspecific QTL? *Genetics* **166**: 1303–1311.

455 Gleason J. M., Jallon J. M., Rouault J. D., Ritchie M. G., 2005 Quantitative trait loci for cuticular
456 hydrocarbons associated with sexual isolation between *Drosophila simulans* and *D.*
457 *sechellia*. *Genetics* **171**: 1789–1798.

458 Gohl D. M., Silies M. A., Gao X. J., Bhalerao S., J. F. L., Lin C.-C., Potter C. J., Clandinin T. R.,
459 2011 A versatile in vivo system for directed dissection of gene expression patterns. *Nat*
460 *Methods* **8**: 231–237.

461 Groth A. C., Fish M., Nusse R., Calos M. P., 2004 Construction of Transgenic *Drosophila* by
462 Using the Site-Specific Integrase From Phage {phi}C31. *Genetics* **166**: 1775–1782.

463 Handler A. M., Harrell R. A. 2nd, 1999 Germline transformation of *Drosophila melanogaster*
464 with the piggyBac transposon vector. *Insect Mol. Biol.* **8**: 449–457.

465 Horn C., Wimmer E. a, 2000 A versatile vector set for animal transgenesis. *Dev. Genes Evol.*
466 **210**: 630–7.

467 Horn C., Offen N., Nystedt S., Hacker U., Wimmer E. A., 2003 piggyBac-Based Insertional

468 Mutagenesis and Enhancer Detection as a Tool for Functional Insect Genomics. *Genetics*
469 **163**: 647–661.

470 Hu T. T., Eisen M. B., Thornton K. R., Andolfatto P., 2013 A second-generation assembly of the
471 *Drosophila simulans* genome provides new insights into patterns of lineage-specific
472 divergence. *Genome Res.* **23**: 89–98.

473 Kyriacou C. P. P., Burnet B., Connolly K., 1978 The behavioural basis of overdominance in
474 competitive mating success at the ebony locus of *Drosophila melanogaster*. *Anim. Behav.*
475 **26**: 1195–1206.

476 Lemeunier F., Ashburner M. a, 1976 Relationships within the melanogaster species subgroup of
477 the genus *Drosophila* (Sophophora). II. Phylogenetic relationships between six species
478 based upon polytene chromosome banding sequences. *Proc. R. Soc. Lond. B. Biol. Sci.* **193**:
479 275–94.

480 Liu J., Nercer J. M., Stam L. F., Gibson G. C., Zeng Z.-B. B., Laurie C. C., Mercer J. M., Stam
481 L. F., Gibson G. C., Zeng Z.-B. B., Laurie C. C., 1996 Genetic analysis of a morphological
482 shape difference in the male genitalia of *Drosophila simulans* and *D-mauritiana*. *Genetics*
483 **142**: 1129–1145.

484 Macdonald S. J., Goldstein D. B., 1999 A quantitative genetic analysis of male sexual traits
485 distinguishing the sibling species *Drosophila simulans* and *D. sechellia*. *Genetics* **153**:
486 1683–1699.

487 Masly J. P., Presgraves D. C., 2007 High-resolution genome-wide dissection of the two rules of
488 speciation in *Drosophila*. *PLoS Biol* **5**: e243.

489 Masly J. P., Dalton J. E., Srivastava S., Chen L., Arbeitman M. N., 2011 The genetic basis of
490 rapidly evolving male genital morphology in *Drosophila*. *Genetics* **189**: 357–374.

491 McGregor A. P., Orgogozo V., Delon I., Zanet J., Srinivasan D. G., Payre F., Stern D. L., 2007
492 Morphological evolution through multiple cis-regulatory mutations at a single gene. *Nature*
493 **448**: 587–590.

494 Moehring A. J., Li J., Schug M. D., Smith S. G., deAngelis M., Mackay T. F., Coyne J. A., 2004
495 Quantitative trait loci for sexual isolation between *Drosophila simulans* and *D. mauritiana*.
496 *Genetics* **167**: 1265–1274.

497 Moehring A. J., Llopart A., Elwyn S., Coyne J. A., Mackay T. F., 2006a The genetic basis of
498 prezygotic reproductive isolation between *Drosophila santomea* and *D. yakuba* due to
499 mating preference. *Genetics* **173**: 215–223.

500 Moehring A. J., Llopart A., Elwyn S., Coyne J. A., Mackay T. F., 2006b The genetic basis of
501 postzygotic reproductive isolation between *Drosophila santomea* and *D. yakuba* due to
502 hybrid male sterility. *Genetics* **173**: 225–233.

503 Ochman H., Gerber A. S., Hartl D. L., 1988 Genetic applications of an inverse polymerase chain
504 reaction. *Genetics* **120**: 621–623.

505 Orgogozo V., Broman K. W., Stern D. L., 2006 High-resolution quantitative trait locus mapping
506 reveals sign epistasis controlling ovariole number between two *Drosophila* species.
507 *Genetics* **173**: 197–205.

508 Orgogozo V., Stern D. L., 2009 How different are recently diverged species? *Fly (Austin)*. **3**:
509 117.

510 Peluffo A. E., Nuez I., Debat V., Savisaar R., Stern D. L., Orgogozo V., 2015 A Major Locus
511 Controls a Genital Shape Difference Involved in Reproductive Isolation Between
512 *Drosophila yakuba* and *Drosophila santomea*. *G3 (Bethesda)*.: g3.115.023481-.

513 Pfeiffer B. D., Ngo T. T., Hibbard K. L., Murphy C., Jenett A., Truman J. W., Rubin G. M., 2010
514 Refinement of tools for targeted gene expression in *Drosophila*. *Genetics* **186**: 735–755.

515 Port F., Chen H., Lee T., Bullock S. L., 2014 Optimized CRISPR / Cas tools for efficient
516 germline and somatic genome engineering in *Drosophila*. *PNAS*.

517 Powell J. R., 1997 *Progress and prospects in evolutionary biology: The Drosophila model*.
518 Oxford University Press, Oxford.

519 R'Kha S., Capy P., David J. R., 1991 Host-plant specialization in the *Drosophila melanogaster*
520 species complex: a physiological, behavioral, and genetical analysis. *Proc. Natl. Acad. Sci.*
521 U. S. A.

522 **88**: 1835–9.

523 Schaeffer S. W., Bhutkar A., McAllister B. F., Matsuda M., Matzkin L. M., O'Grady P. M.,
524 Rohde C., Valente V. L. S., Aguad?? M., Anderson W. W., Edwards K., Garcia A. C. L.,
525 Goodman J., Hartigan J., Kataoka E., Lapoint R. T., Lozovsky E. R., Machado C. A., Noor
526 M. A. F., Papaceit M., Reed L. K., Richards S., Rieger T. T., Russo S. M., Sato H., Segarra
527 C., Smith D. R., Smith T. F., Strelets V., Tobari Y. N., Tomimura Y., Wasserman M., Watts
528 T., Wilson R., Yoshida K., Markow T. A., Gelbart W. M., Kaufman T. C., 2008 Polytene
529 chromosomal maps of 11 *drosophila* species: The order of genomic scaffolds inferred from
genetic and physical maps. *Genetics* **179**: 1601–1655.

530 Small S., Blair A., Levine M., 1992 Regulation of even-skipped stripe 2 in the *Drosophila*

531 embryo. *EMBO J.* **11**: 4047–4057.

532 Song X., Goicoechea J. L., Ammiraju J. S. S., Luo M., He R., Lin J., Lee S. J., Sisneros N.,
533 Watts T., Kudrna D. A., Golser W., Ashley E., Collura K., Braidotti M., Yu Y., Matzkin L.
534 M., McAllister B. F., Markow T. A., Wing R. A., 2011 The 19 genomes of *Drosophila*: A
535 BAC library resource for genus-wide and genome-scale comparative evolutionary research.
536 *Genetics* **187**: 1023–1030.

537 Stern D. L., 2016 Tagmentation-Based Mapping (TagMap) of Mobile DNA Genomic Insertion
538 Sites. *bioRxiv*: 1–7.

539 Suh J., Jackson F. R., 2007 *Drosophila* Ebony Activity Is Required in Glia for the Circadian
540 Regulation of Locomotor Activity. *Neuron* **55**: 435–447.

541 Tanaka K. M., Hopfen C., Herbert M. R., Schlotterer C., Stern D. L., Masly J. P., McGregor a.
542 P., Nunes M. D. S., 2015 Genetic Architecture and Functional Characterization of Genes
543 Underlying the Rapid Diversification of Male External Genitalia Between *Drosophila*
544 *simulans* and *Drosophila mauritiana*. *Genetics* **200**: 357–369.

545 Tang S., Presgraves D. C., 2015 Lineage-specific evolution of the complex Nup160 hybrid
546 incompatibility between *Drosophila melanogaster* and its sister species. *Genetics* **200**:
547 1245–1254.

548 Tao Y., Chen S., Hartl D. L., Laurie C. C., 2003a Genetic dissection of hybrid incompatibilities
549 between *Drosophila simulans* and *D. mauritiana*. I. Differential accumulation of hybrid
550 male sterility effects on the X and autosomes. *Genetics* **164**: 1383–1397.

551 Tao Y., Zeng Z. B., Li J., Hartl D. L., Laurie C. C., 2003b Genetic dissection of hybrid

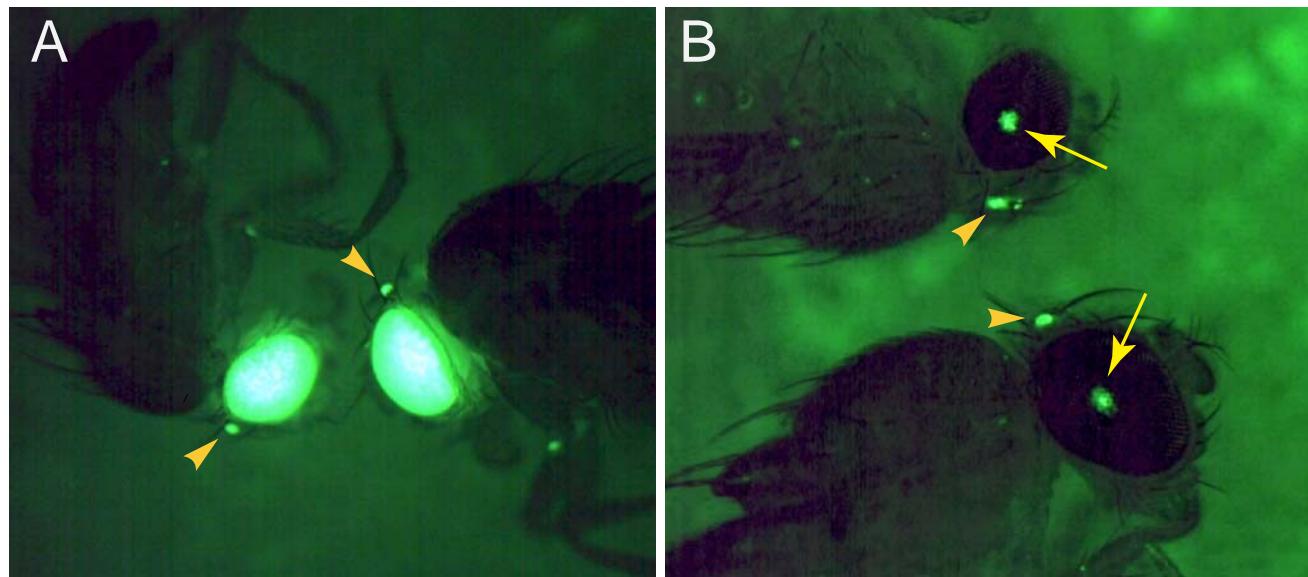
552 incompatibilities between *Drosophila simulans* and *D. mauritiana*. II. Mapping hybrid male
553 sterility loci on the third chromosome. *Genetics* **164**: 1399–1418.

554 Thibault S. T., Singer M. A., Miyazaki W. Y., Milash B., Dompe N. A., Singh C. M., Buchholz
555 R., Demsky M., Fawcett R., Francis-Lang H. L., Ryner L., Cheung L. M., Chong A.,
556 Erickson C., Fisher W. W., Greer K., Hartouni S. R., Howie E., Jakkula L., Joo D., Killpack
557 K., Laufer A., Mazzotta J., Smith R. D., Stevens L. M., Stuber C., Tan L. R., Ventura R.,
558 Woo A., Zakrajsek I., Zhao L., Chen F., Swimmer C., Kopczynski C., Duyk G., Winberg
559 M. L., Margolis J., 2004 A complementary transposon tool kit for *Drosophila melanogaster*
560 using P and piggyBac. *Nat Genet* **36**: 283–287.

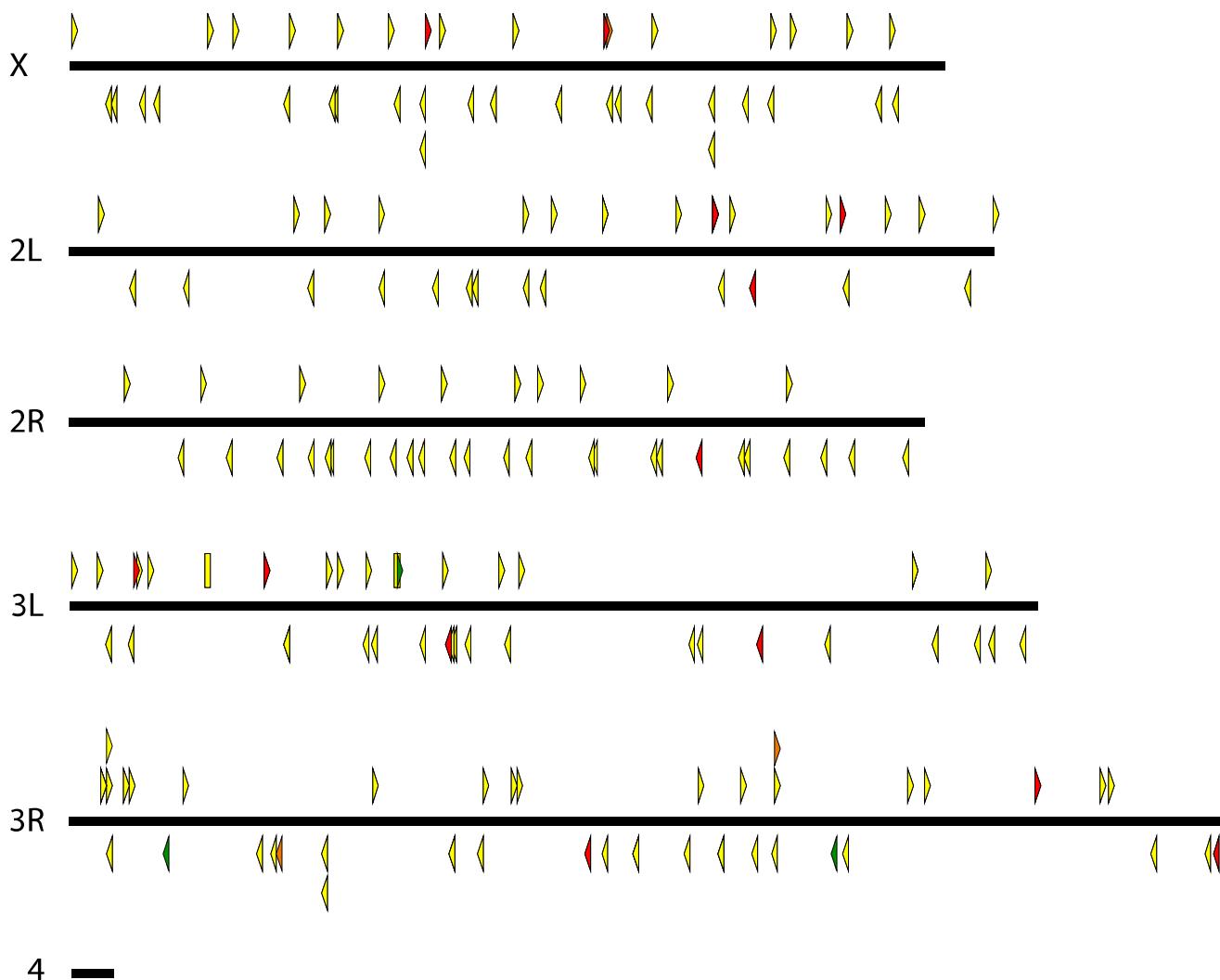
561 True J. R., Mercer J. M., Laurie C. C., 1996a Differences in crossover frequency and distribution
562 among three sibling species of *Drosophila*. *Genetics* **142**: 507–523.

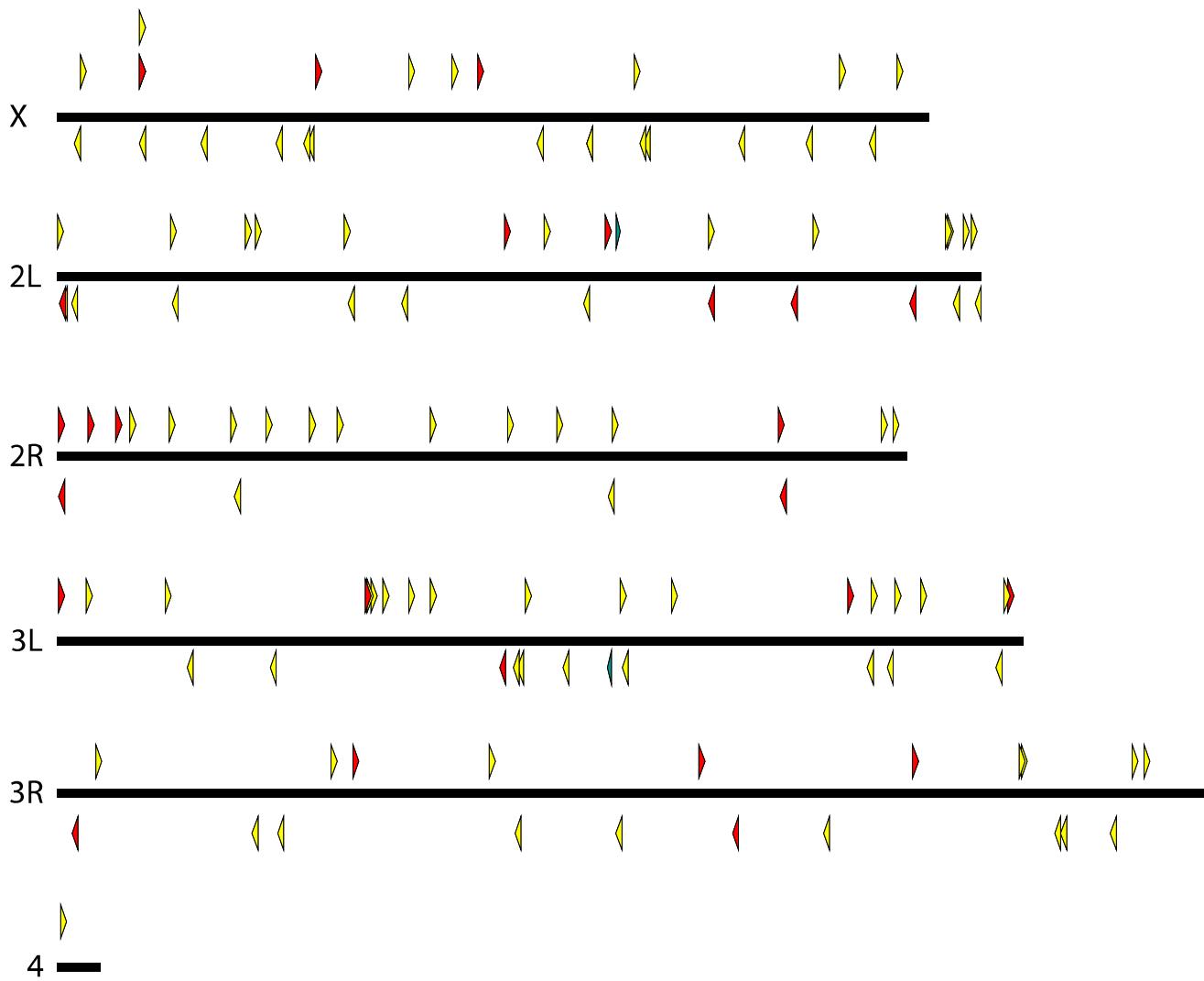
563 True J. R., Weir B. S., Laurie C. C., 1996b A genome-wide survey of hybrid incompatibility
564 factors by the introgression of marked segments of *Drosophila mauritiana* chromosomes
565 into *Drosophila simulans*. *Genetics* **142**: 819–837.

566 True J. R., Liu J., Stam L. F., Zeng Z.-B. Z.-B., Laurie C. C., 1997 Quantitative genetic analysis
567 of divergence in male secondary sexual traits between *Drosophila simulans* and *Drosophila*
568 *mauritiana*. *Evolution (N. Y.)*. **51**: 816–832.

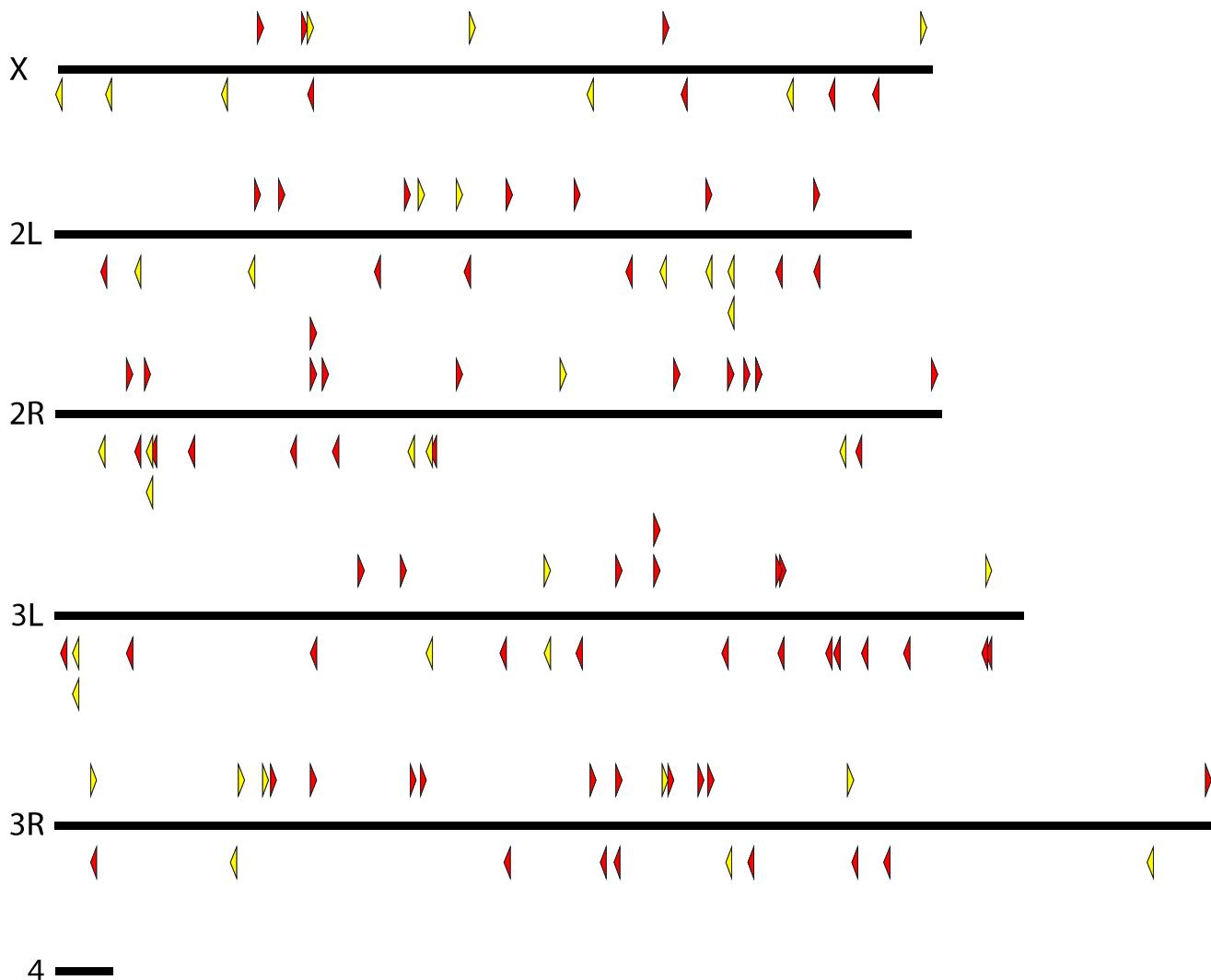

569 Xiao C., Robertson R. M., 2016 Timing of locomotor recovery from anoxia modulated by the
570 white gene in *Drosophila*. *Genetics* **203**: 787–797.

571 Yassin A., Debat V., Bastide H., Gidaszewski N., David J. R., Pool J. E., 2016 Recurrent
572 specialization on a toxic fruit in an island *Drosophila* population. *Proc. Natl. Acad. Sci. U.*


573 S. A.: 201522559.


574 Zhang S. D., Odenwald W. F., 1995 Misexpression of the white (w) gene triggers male-male
575 courtship in *Drosophila*. *Proc. Natl. Acad. Sci.* **92**: 5525–5529.

77 576


Figure 1. Appearance of EYFP fluorescence in fly eyes. (A) In flies carrying a *w'* mutation, fluorescence is often intense and observable throughout the compound eye and in the (arrowheads). (B) In flies carrying wild-type eye coloration, fluorescence is observed in the compound eye as small dots including about 10 ommatidia (arrows) and in the ocelli (arrowheads).

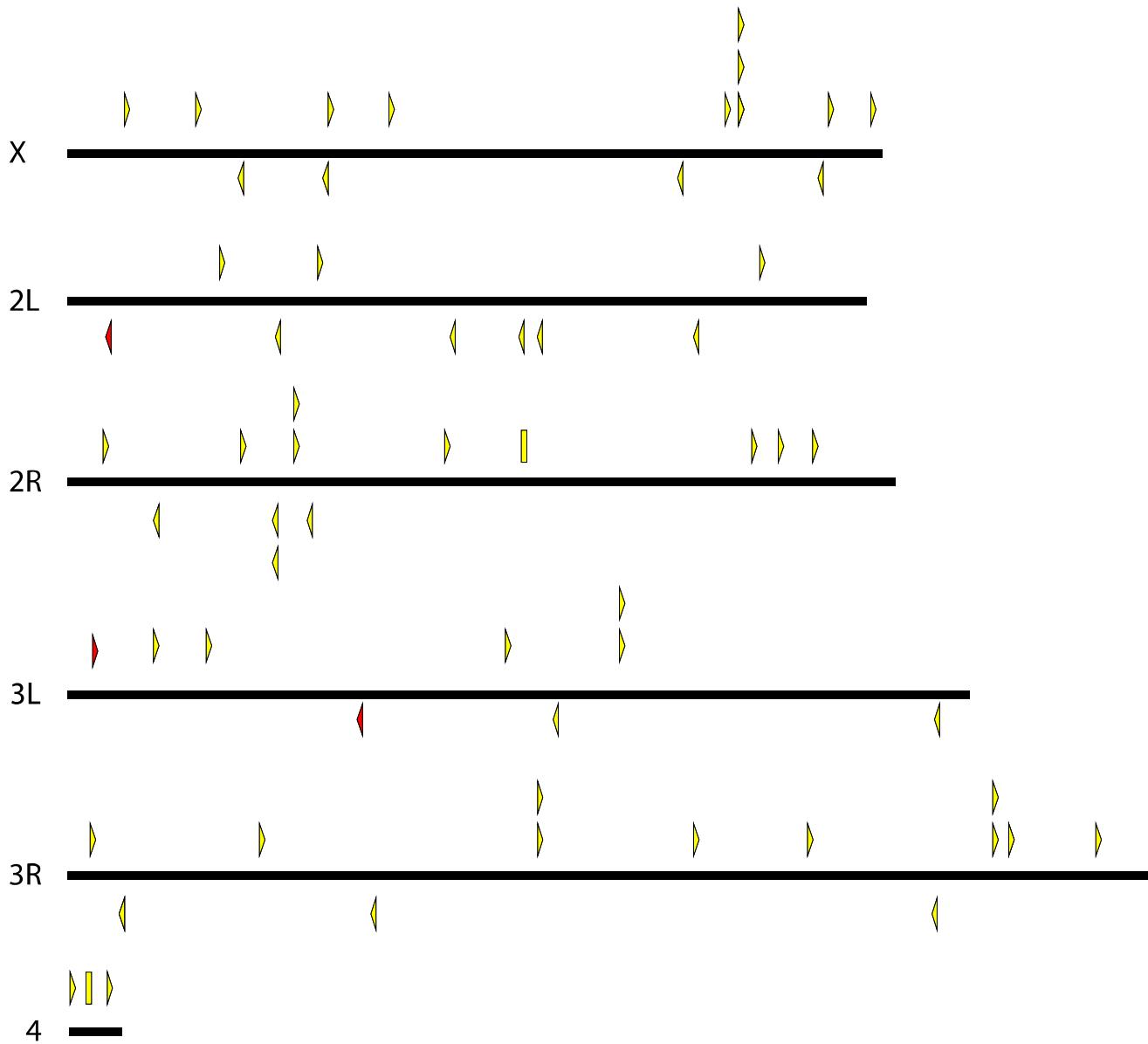
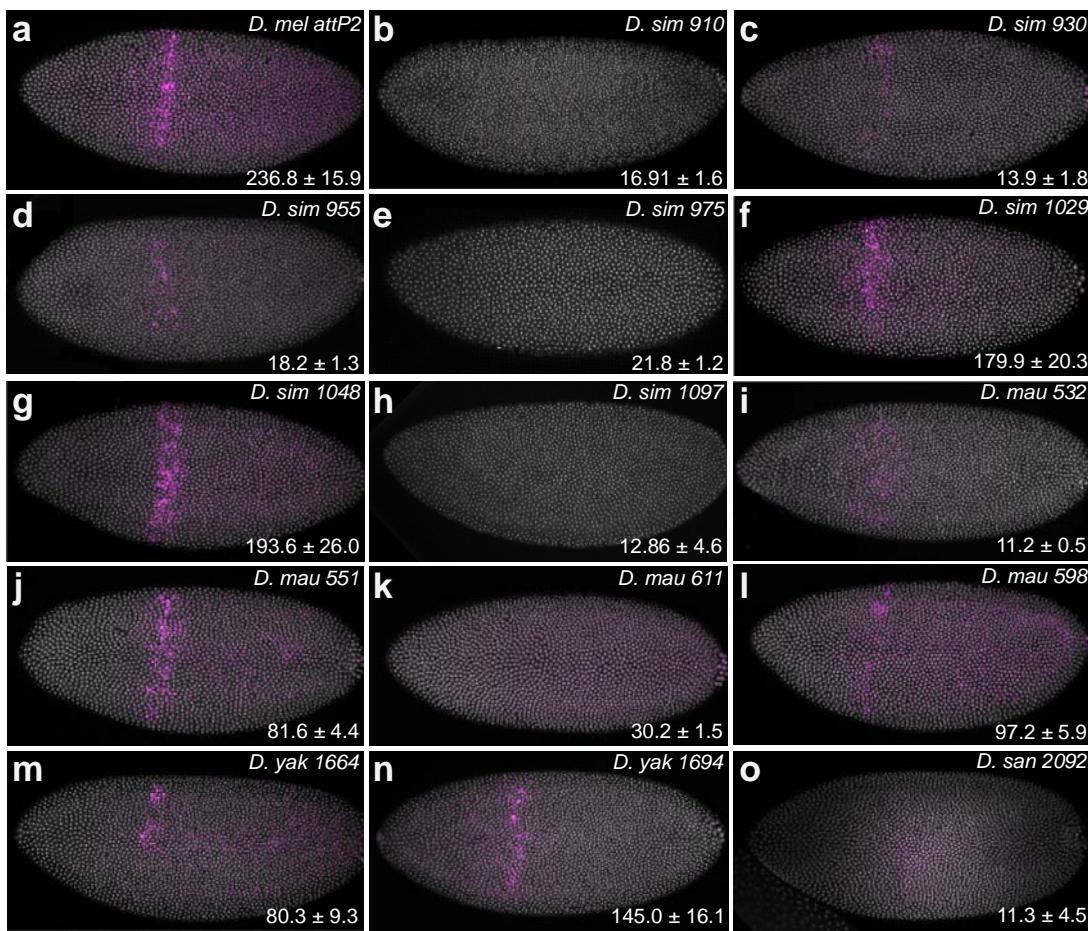


Figure 3. Genomic insertion sites of *pBac* transposable elements in *D. mauritiana*. All details as in Figure 2 legend.

83


Figure 4. Genomic insertion sites of *pBac* transposable elements in *D. yakuba*. All details as in Figure 2 legend.

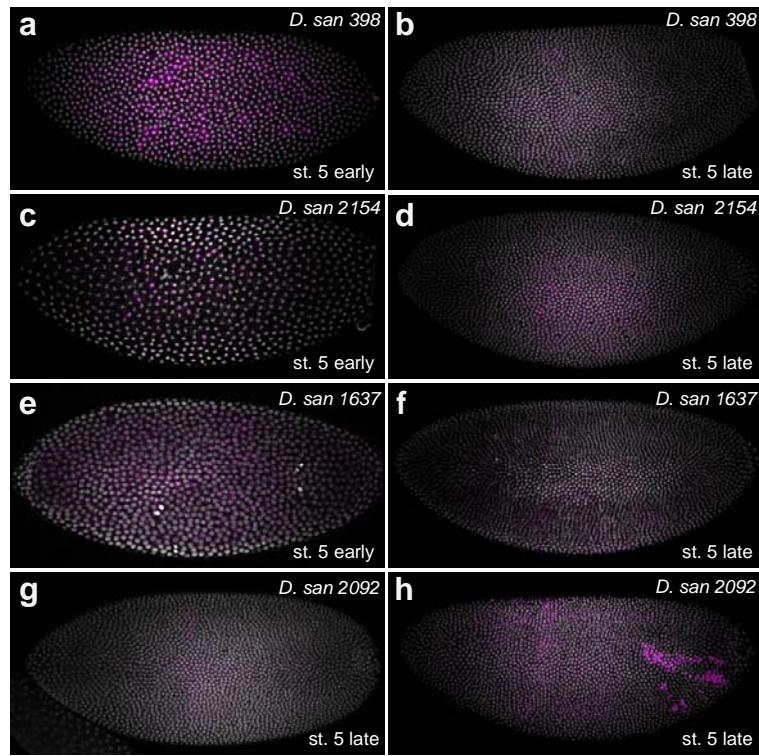

Figure 5. Genomic insertion sites of *pBac* transposable elements in *D. santomea*. All details as in Figure 2 legend.

Figure 6. Genomic insertion sites of *pBac* transposable elements in *D. virilis*. Each triangle represents a unique *pBac* element insertion. Some strains carry multiple insertion events. *pBac* insertions oriented forward are indicated above each chromosome and point to the right and reverse insertions are indicated below each chromosome and point to the left. Yellow and orange indicate elements carrying *3XP3::EYFP* and *w⁺*, respectively.

Figure 7. Variation in transgene expression supported by different *attP* landing sites in four species. An *eveS2* transgene driving expression in the *even-skipped* stripe 2 domain of early embryos was inserted into multiple *attP* sites of each of four species: *D. simulans*, *D. mauritiana*, *D. yakuba*, and *D. santomea*. *eveS2* expression is shown in purple and DNA was counterstained with DAPI and shown in white. Expression levels in the stripe 2 domain were quantified in ten embryos of each strain and the mean \pm standard deviation are reported in the bottom right corner of each panel in arbitrary units of fluorescence intensity. (a) As a control, we stained a line containing the same plasmid inserted into the *attP2* site of *D. melanogaster*. (b-n) Seven *attP* strains of *D. simulans* (b-h), four *attP* strains of *D. mauritiana* (i-l), and two *attP* strains of *D. yakuba* (m, n) support different levels of *eveS2* expression. (n) Strain 1694 contains two *attP* landing sites and we have not determined which landing site contains the *eveS2* transgene or whether both do. (o) None of the four *D. santomea* *attP* strains we tested supported high levels of spatio-temporally correct *eveS2* expression. The strain displaying the strongest expression (2092) is shown here.

Figure 8. Four *D. santomea* attP landing sites do not support spatio-temporally correct *eveS2* transgene expression.
(a-g) In early stage 5 embryonic stages, the lines displayed variable levels of diffuse expression, as is often observed with *eveS2* transgenes (a, c, e). However, at late stage 5, none of the lines drove strong expression in the stripe 2 region (b, d, f, g). (h) Strain 2092 sometimes displayed strong ectopic expression outside of the stripe 2 domain.

91 Table 1. Number of *attP* strains of each of five species that did not or did support integration of *attB* plasmids.

92 Details are available in Supplementary File: Strains and Integration Efficiencies.xlsx.

Species	Number of strains with zero integrants	Number of strains with at least one integrant
<i>D. mauritiana</i>	14	21
<i>D. simulans</i>	13	29
<i>D. santomea</i>	1	8
<i>D. yakuba</i>	1	19
<i>D. virilis</i>	9	0