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1 Abstract

2 Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational
s bottleneck in the process of analyzing microbial communities. Although this has been an active
4« area of research, it has been difficult to overcome the time and memory demands while improving
s the quality of the OTU assignments. Here we developed a new OTU assignment algorithm that
s iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient
7 (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust,
s we compared it to ten other algorithms using 16S rRNA gene sequences from two simulated and
s four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and
10 16.5% higher than the OTUs generated when we used the average neighbor and distance-based
11 greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6-times
12 faster than the average neighbor algorithm and just as fast as distance-based greedy clustering
13 with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time
12 and memory required to perform the algorithm scaled quadratically with the number of unique
15 sequences in the dataset. The significant improvement in the quality of the OTU assignments over
16 previously existing methods will significantly enhance downstream analysis by limiting the splitting
17 of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU.
18 The development of the OptiClust algorithm represents a significant advance that is likely to have

19 humerous other applications.

2 Importance

21 The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing
22 has expanded our knowledge of the biogeography of microorganisms. An important step in
23 this analysis is the assignment of sequences into taxonomic groups based on their similarity to
24 Sequences in a database or based on their similarity to each other, irrespective of a database. In
25 this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks

26 10 optimize a metric of assignment quality by shuffling sequences between taxonomic groups.
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27 We found that OptiClust produces more robust assignments and does so in a rapid and memory
25 efficient manner. This advance will allow for a more robust analysis of microbial communities and

20 the factors that shape them.
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s Introduction

st Amplicon-based sequencing has provided incredible insights into Earth’s microbial biodiversity (1,
2 2). It has become common for studies to include sequencing millions of 16S rRNA gene sequences
33 across hundreds of samples (3, 4). This is three to four orders of magnitude greater sequencing
s« depth than was previously achieved using Sanger sequencing (5, 6). The increased sequencing
35 depth has revealed novel taxonomic diversity that is not adequately represented in reference
s databases (1, 3). However, the advance has forced re-engineering of methods to overcome the
37 rate and memory limiting steps in computational pipelines that process raw sequences through
s the generation of tables containing the number of sequences in different taxa for each sample
s (7-10). A critical component to these pipelines has been the assignment of amplicon sequences to
40 taxonomic units that are ether defined based on similarity to a reference or operationally based on

4 the similarity of the sequences to each other within the dataset (11, 12).

«2 A growing number of algorithms have been developed to cluster sequences into OTUs. These
43 algorithms can be classified into three general categories. The first category of algorithms has been
44 termed closed-reference or phylotyping (13, 14). Sequences are compared to a reference collection
4s and clustered based on the reference sequences that they are similar to. This approach is fast;
4 however, the method struggles when a sequence is similar to multiple reference sequences that may
47 have different taxonomies and when it is not similar to sequences in the reference (15). The second
48 category of algorithms has been called de novo because they assign sequences to OTUs without
49 the use of a reference (14). These include hierarchical algorithms such as nearest, furthest, and
so average neighbor (16) and algorithms that employ heuristics such as abundance or distance-based
51 greedy clustering as implemented in USEARCH (17) or VSEARCH (18), Sumaclust, OTUCLUST
52 (19), and Swarm (20). De novo methods are agglomerative and tend to be more computationally
s3 intense. It has proven difficult to know which method generates the best assignments. A third
s« category of algorithm is open reference clustering, which is a hybrid approach (3, 14). Here
55 sequences are assigned to OTUs using closed-reference clustering and sequences that are not
se within a threshold of a reference sequence are then clustered using a de novo approach. This

s7 category blends the strengths and weaknesses of the other method and adds the complication that
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ss closed-reference and de novo clustering use different OTU definitions. These three categories of
s9 algorithms take different approaches to handling large datasets to minimize the time and memory

s requirements while attempting to assign sequences to meaningful OTUs.

st Several metrics have emerged for assessing the quality of OTU assignment algorithms. These have
s2 included the time and memory required to run the algorithm (3, 20—-22), agreement between OTU
ss assignments and the sequences’ taxonomy (20, 22—-32), sensitivity of an algorithm to stochastic
s« processes (33), the number of OTUs generated by the algorithm (23, 34), and the ability to
65 regenerate the assignments made by other algorithms (3, 35). Unfortunately, these methods fail
ss to directly quantify the quality of the OTU assignments. An algorithm may complete with minimal
7 time and memory requirements or generate an idealized number of OTUs, but the composition of
es the OTUs could be incorrect. These metrics also tend to be subjective. For instance, a method
so Mmay appear to recapitulate the taxonomy of a synthetic community with known taxonomic structure,
70 but do a poor job when applied to real communities with poorly defined taxonomic structure or for
71 sequences that are prone to misclassification. As an alternative, we developed an approach to
72 objectively benchmark the clustering quality of OTU assignments (13, 15, 36). This approach counts
73 the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives
74 (FN) based on the pairwise distances. Sequence pairs that are within the user-specified threshold
75 and are clustered together represent TPs and those in different OTUs are FNs. Those sequence
76 pairs that have a distance larger than the threshold and are not clustered in the same OTU are TNs
77 and those in the same OTU are FPs. These values can be synthesized into a single correlation
78 coefficient, the Matthews correlation coefficient (MCC), which measures the correlation between
79 observed and predicted classifications and is robust to cases where there is an uneven distribution
so across the confusion matrix (37). Consistently, the average neighbor algorithm was identified as
st among the best or the best algorithm. Other hierarchical algorithms such as furthest and nearest
s2 heighbor, which do not permit the formation of FPs or FNs, respectively, fared significantly worse.
83 The distance-based greedy clustering as implemented in VSEARCH has also performed well. The
s« computational resources required to complete the average neighbor algorithm can be significant for
85 large datasets and so there is a need for an algorithm that efficiently produces consistently high

ss quality OTU assignments.
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&7 These benchmarking efforts have assessed the quality of the clusters after the completion of the
ss algorithm. In the current study we developed and benchmarked a new de novo clustering algorithm
so that uses real time calculation of the MCC to direct the progress of the clustering. The result is
o0 the OptiClust algorithm, which produces significantly better sequence assignments while making

o1 efficient use of computational resources.

o Results

o3 OptiClust algorithm. The OptiClust algorithm uses the pairs of sequences that are within a desired
s« threshold of each other (e.g. 0.03), a list of all sequence names in the dataset, and the metric that
o5 should be used to assess clustering quality. A detailed description of the algorithm is provided for a
9 toy dataset in the Supplementary Material. Briefly, the algorithm starts by placing each sequence
o7 either within its own OTU or into a single OTU. The algorithm proceeds by interrogating each
98 Sequence and re-calculating the metric for the cases where the sequence stays in its current OTU,
% is moved to each of the other OTUs, or is moved into a new OTU. The location that results in the
100 best clustering quality indicates whether the sequence should remain in its current OTU or be
101 moved to a different or new OTU. Each iteration consists of interrogating every sequence in the
102 dataset. Although numerous options are available for optimizing the clusters and for assessing
103 the quality of the clusters within the mothur-based implementation of the algorithm (e.g. sensitivity,
104 specificity, accuracy, F1-score, etc.), the default metric for optimization and assessment is MCC
105 because it includes all four parameters from the confusion matrix (Figure S1; Table S1). The
106 algorithm continues until the optimization metric stabilizes or until it reaches a defined stopping

107 criteria.

10s OptiClust-generated OTUs are more robust than those from other methods. To evaluate the
100 OptiClust algorithm and compare its performance to other algorithms, we utilized six datasets
1o including two synthetic communities and four previously published large datasets generated from
111 soil, marine, human, and murine samples (Table 1). When we seeded the OptiClust algorithm with
112 each sequence in a separate OTU and ran the algorithm until complete convergence, the MCC

13 values averaged 15.2 and 16.5% higher than the OTUs using average neighbor and distance-based
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1a  greedy clustering (DGC) with VSEARCH, respectively (Figure 1; Table S1). The number of OTUs
ns formed by the various methods was negatively correlated with their MCC value (p=-0.47; p<0.001).
116 The OptiClust algorithm was considerably faster than the hierarchical algorithms and somewhat
117 slower than the heuristic-based algorithms. Across the six datasets, the OptiClust algorithm was
18 94.6-times faster than average neighbor and just as fast as DGC with VSEARCH. The human
119 dataset was a challenge for a number of the algorithms. OTUCLUST and SumacClust were unable
120 1o cluster the human dataset in less than 50 hours and the average neighbor algorithm required
121 more than 45 GB of RAM. The USEARCH-based methods were unable to cluster the human data
122 using the 32-bit free version of the software that limits the amount of RAM to approximately 3.5 GB.
123 These data demonstrate that OptiClust generated significantly more robust OTU assignments than
124 existing methods across a diverse collection of datasets with performance that was comparable to

125 popular methods.

126 OptiClust stopping criteria. By default, the mothur-based implementation of the algorithm stops
127 when the optimization metric changes by less than 0.0001; however, this can be altered by the user.
128 This implementation also allows the user to stop the algorithm if a maximum number of iterations is
129 exceeded. By default mothur uses a maximum value of 100 iterations. The justification for allowing
130 incomplete convergence was based on the observation that numerous iterations are performed
131 that extend the time required to complete the clustering with minimal improvement in clustering
132 (Figure S2). We evaluated the results of clustering to partial convergence (i.e. a change in the
133 MCC value that was less than 0.0001) or until complete convergence of the MCC value (i.e. until it
134 did not change between iterations) when seeding the algorithm with each sequence in a separate
135 OTU (Figure 1). The small difference in MCC values between the output from partial and complete
136 convergence resulted in a difference in the median number of OTUs that ranged between 1.5 and
137 17.0 OTUs. This represented a difference of less than 0.15%. Among the four natural datasets,
138 between 3 and 6 were needed to achieve partial convergence and between 8 and 12 iterations
139 were needed to reach full convergence. The additional steps required between 1.4 and 1.7 times
10 longer to complete the algorithm. These results suggest that achieving full convergence of the
141 optimization metric adds computational effort; however, considering full convergence took between

122 2 and 17 minutes the extra effort was relatively small. Although the mothur’s default setting is partial
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143 convergence, the remainder of our analysis used complete convergence to be more conservative.

124 Effect of seeding OTUs on OptiClust performance. By default the mothur implementation of
15 the OptiClust algorithm starts with each sequence in a separate OTU. An alternative approach
16 is to start with all of the sequences in a single OTU. We found that the MCC values for clusters
147 generated seeding OptiClust with the sequences as a single OTU were between 0 and 11.5% lower
148 than when seeding the algorithm with sequences in separate OTUs (Figure 1). Interestingly, with
149 the exception of the human dataset (0.2% more OTUs), the number of OTUs was as much as 7.0%
150 lower (mice) than when the algorithm was seeded with sequence in separate OTUs. Finally, the
151 amount of time required to cluster the data when the algorithm was seeded with a single OTU was
152 between 1.5 and 2.9-times longer than if sequences were seeded as separate OTUs. This analysis
153 demonstrates that seeding the algorithm with sequences as separate OTUs resulted in the best

154 OTU assignments in the shortest amount of time.

155 OptiClust-generated OTUs are as stable as those from other algorithms. One concern that
156 many have with de novo clustering algorithms is that their output is sensitive to the initial order of
157 the sequences because each algorithm must break ties where a sequence could be assigned to
158 multiple OTUs. An additional concern specific to the OptiClust algorithm is that it may stabilize
150 at a local optimum. To evaluate these concerns we compared the results obtained using ten
160 randomizations of the order that sequences were given to the algorithm. The median coefficient
161 Of variation across the six datasets for MCC values obtained from the replicate clusterings using
12 OptiClust was 0.1% (Figure 1). We also measured the coefficient of variation for the number of
1es  OTUs across the six datasets for each method. The median coefficient of variation for the number of
16« OTUs generated using OptiClust was 0.1%. Confirming our previous results (15), all of the methods
165 we tested were stable to stochastic processes. Of the methods that involved randomization, the
16 coefficient of variation for MCC values was considerably smaller with OptiClust than the other
167 methods and the coefficient of variation for the number of OTUs was comparable to the other
1es methods. The variation observed in clustering quality suggested that the algorithm does not appear
160 10 converge to a locally optimum MCC value. More importantly, the random variation does yield

170 output of a similarly high quality.
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171 Time and memory required to complete Optimization-based clustering scales efficiently.
172 Although not as important as the quality of clustering, the amount of time and memory required
173 10 assign sequences to OTUs is a legitimate concern. We observed that the time required to
174 complete the OptiClust algorithm (Figure 1C) paralleled the number of pairwise distances that were
175 smaller than 0.03 (Table 1). To further evaluate how the speed and memory usage scaled with the
176 number of sequences in the dataset, we measured the time required and maximum RAM usage
177 to cluster 20, 40, 60, 80, and 100% of the unique sequences from each of the natural datasets
178 using the OptiClust algorithm (Figure 2). Within each iteration of the algorithm, each sequence is
179 compared to every other sequence and each comparison requires a recalculation of the confusion
10 matrix. This would result in a worst case algorithmic complexity on the order of N3, where N is the
181 humber of unique sequences. Because the algorithm only needs to keep track of the sequence
182 pairs that are within the threshold of each other, it is likely that the implementation of the algorithm
183 is more efficient. To empirically determine the algorithmic complexity, we fit a power law function
184 1o the data in Figure 2A. We observed power coefficients between 1.7 and 2.5 for the marine and
185 human datasets, respectively. The algorithm requires storing a matrix that contains the pairs of
186 sequences that are close to each other as well as a matrix that indicates which sequences are
&7 clustered together. The memory required to store these matrices is on the order of N2, where N is
188 the number of unique sequences. In fact, when we fit a power law function to the data in Figure 2B,
189 the power coefficients were 1.9. Using the four natural community datasets, doubling the number
190 Of sequences in a dataset would increase the time required to cluster the data by 4 to 8-fold and
191 increase the RAM required by 4-fold. It is possible that future improvements to the implementation

192 Of the algorithm could improve this performance.

1ea  Cluster splitting heuristic generates OTUs that are as good as non-split approach. We
194 previously described a heuristic to accelerate OTU assignments where sequences were first
195 classified to taxonomic groups and within each taxon sequences were assigned to OTUs using
196 the average neighbor clustering algorithm (13). This method is similar to open reference clustering
197 except that in our approach all sequences are subjected to de novo clustering following classification
198 Whereas in open reference clustering only those sequences that cannot be classified are subjected

199 to de novo clustering. Our cluster splitting approach accelerated the clustering and reduced the
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200 memory requirements because the number of unique sequences was effectively reduced by splitting
201 Sequences across taxonomic groups. Furthermore, because sequences in different taxonomic
202 groups are assumed to belong to different OTUs they are independent, which permits parallelization
203 and additional reduction in computation time. Reduction in clustering quality is encountered in this
204 approach if there are errors in classification or if two sequences within the desired threshold belong
205 1o different taxonomic groups. It is expected that these errors would increase as the taxonomic level
206 goes from kingdom to genus. To characterize the clustering quality, we classified each sequence
207 at each taxonomic level and calculated the MCC values using OptiClust, average neighbor, and
208 DGC with VSEARCH when splitting at each taxonomic level (Figure 3). For each method, the MCC
200 Values decreased as the taxonomic resolution increased; however, the decrease in MCC was not
210 as large as the difference between clustering methods. As the resolution of the taxonomic levels
211 increased, the clustering quality remained high, relative to clusters formed from the entire dataset
212 (i.e. kingdom-level). The MCC values when splitting the datasets at the class and genus levels
213 were within 98.0 and 93.0%, respectively, of the MCC values obtained from the entire dataset.
214 These decreases in MCC value resulted in the formation of as many as 4.7 and 22.5% more OTUs,
215 respectively, than were observed from the entire dataset. These errors were due to the generation
216 Of additional false negatives due to splitting similar sequences into different taxonomic groups. For
217 the datasets included in the current analysis, the use of the cluster splitting heuristic was probably
218 Not worth the loss in clustering quality. However, as datasets become larger, it may be necessary to

219 Use the heuristic to clustering the data into OTUs.

2»0 Discussion

221 Myriad methods have been proposed for assigning 16S rRNA gene sequences to OTUs. Each claim
222 improved performance based on speed, memory usage, representation of taxonomic information,
223 and number of OTUs. Each of these metrics is subjective and do not actually indicate the quality
224 Of the clustering. This led us to propose using the MCC as a metric for assessing the quality of
225 clustering, post hoc. Here, we described a new clustering method that seeks to optimize clustering

26 based on an objective criterion that measures clustering quality in real time. In the OptiClust

10
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227 algorithm, clustering is driven by optimizing a metric that assesses whether any two sequences
228 should be grouped into the same OTU. The result is clusters that are significantly more robust and
20 is efficient in the time and memory required to cluster the sequences into OTUs. This makes it
230 more tractable to analyze large datasets without sacrificing clustering quality as was previously

231 necessary using heuristic methods.

232 The cluster optimization procedure is dependent on the metric that is chosen for optimization. We
233 employed the MCC because it includes the four values from a confusion matrix. Other algorithms
23« such as the furthest neighbor and nearest neighbor algorithms minimize the number of FP and
235 FN, respectively; however, these suffer because the number of FN and FP are not controlled,
235 respectively (13, 16). Alternatively, one could optimize based on the sensitivity, specificity, or
237 accuracy, which are each based on two values from the confusion matrix or they could optimize
238 based on the F1-score, which is based on three values from the confusion matrix. Because these
239 metrics do not balance all four parameters equally, it is likely that one parameter will dominate in the
240 Optimization procedure. For example, optimizing for sensitivity could lead to a large number of FPs.
241 More FPs increases the number of OTUs while more FNs collapses OTUs together. It is difficult to
222 know which is worse since community richness and diversity are linked to the number of OTUs. In
243 addition, increasing the number of FNs would overstate the differences between communities while
244 increasing the number of FPs would overstate their similarity. Therefore, it is important to jointly
2¢s  minimize the number of FPs and FNs. With this in mind, we decided to optimize utilizing the MCC.
26 It is possible that other metrics that balance the four parameters could be developed and employed

247 for optimization of the clustering.

245 The OptiClust algorithm is relatively simple. For each sequence it effectively asks whether the MCC
249 value will increase if the sequence is moved to a different OTU including creating a new OTU. If the
250 value does not change, it remains in the current OTU. The algorithm repeats until the MCC value
251 stabilizes. Assuming that the algorithm is seeded with each sequence in a separate OTU, it does
252 not appear that the algorithm converges to a local optimum. Furthermore, execution of the algorithm
253 with different random number generator seeds produces OTU assignments of consistently high
254 quality. Future improvements to the implementation of the algorithm could provide optimization to

255 further improve its speed and susceptibility to find a local optimum. Users are encouraged to repeat

11
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256 the OTU assignment several times to confirm that they have found the best OTU assignments.

257 Our previous MCC-based analysis of clustering algorithms indicated that the average neighbor
258 algorithm consistently produced the best OTU assignments with the DGC-based method using
259 USEARCH also producing robust OTU assignments. The challenge in using the average neighbor
260 algorithm is that it requires a large amount of RAM and is computationally demanding. This led to
261 the development of a splitting approach that divides the clustering across distinct taxonomic groups
262 (18). The improved performance provided by the OptiClust algorithm likely makes such splitting
263 Unnecessary for most current datasets. We have demonstrated that although the OTU assignments
264 made at the genus level are still better than that of other methods, the quality is not as good as that
265 found without splitting. The loss of quality is likely due to misclassification because of limitations
266 In the clustering algorithms and reference databases. The practical significance of such small
267 differences in clustering quality remain to be determined; however, based on the current analysis, it
268 does appear that the number of OTUs is artificially inflated. Regardless, the best clustering quality

260 Should be pursued given the available computer resources.

270 The time and memory required to execute the OptiClust algorithm scaled proportionally to the
271 number of unique sequences raised to the second power. The power for the time requirement is
272 affected by the similarity of the sequences in the dataset with datasets containing more similar
273 sequences having a higher power. Also, the number of unique sequences is the basis for both the
274 amount of time and memory required to complete the algorithm. Both the similarity of sequences
275 and number of unique sequences can be driven by the sequencing error since any errors will
276 increase the number of unique sequences and these sequences will be closely related to the
277 perfect sequence. This underscores the importance of reducing the noise in the sequence data (7).
278 If sequencing errors are not remediated and are relatively randomly distributed, then it is likely that

279 the algorithm will require an unnecessary amount of time and RAM to complete.

280 The rapid expansion in sequencing capacity has demanded that the algorithms used to assign
231 16S rRNA gene sequences to OTUs be efficient while maintaining robust assignments. Although
252 database-based approaches have been proposed to facilitate this analysis, they are limited by

253 their limited coverage of bacterial taxonomy and by the inconsistent process used to name taxa.

12
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23« The ability to assign sequences to OTUs using an algorithm that optimizes clustering by directly
285 Measuring quality will significantly enhance downstream analysis. The development of the OptiClust

286 algorithm represents a significant advance that is likely to have numerous other applications.

257 Materials and Methods

238 Sequence data and processing steps. To evaluate the OptiClust and the other algorithms we
289 created two synthetic sequence collections and four sequence collections generated from previously
200 published studies. The V4 region of the 16S rRNA gene was used from all datasets because it
201 i a popular region that can be fully sequenced with two-fold coverage using the commonly used
202 MiSeq sequencer from lllumina (7). The method for generating the simulated datasets followed
203 the approach used by Kopylova et al. (34) and Schloss (36). Briefly, we randomly selected
204 10,000 uniques V4 fragments from 16S rRNA gene sequences that were unique from the SILVA
205 non-redundant database (38). A community with an even relative abundance profile was generated
206 by specifying that each sequence had a frequency of 100 reads. A community with a staggered
297 relative abundance profile was generated by specifying that the abundance of each sequence was
208 @ randomly drawn integer sampled from a uniform distribution between 1 and 200. Sequence
209 collections collected from human feces (39), murine feces (40), soil (41), and seawater (42) were
30 used to characterize the algorithms’ performance with natural communities. These sequence
301 collections were all generated using paired 150 or 250 nt reads of the V4 region. We re-processed
sz all of the reads using a common analysis pipeline that included quality score-based error correction
a3 (7), alignment against a SILVA reference database (38, 43), screening for chimeras using UCHIME
s4 (9), and classification using a naive Bayesian classifier with the RDP training set requiring an 80%

s0s confidence score (10).

ss Implementation of clustering algorithms. In addition to the OptiClust algorithm we evaluated
307 ten different de novo clustering algorithms. These included three hierarchical algorithms, average
308 neighbor, nearest neighbor, and furthest neighbor, which are implemented in mothur (v.1.39.0)
a9 (11). Seven heuristic methods were also used including abundance-based greedy clustering

a0 (AGC) and (distance-based greedy clustering) DGC as implemented in USEARCH (v.6.1) (17) and

13
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st VSEARCH (v.2.3.3) ((18)], OTUCLUST (v.0.1) (19), SumacClust (v.1.0.20), and Swarm (v.2.1.9)
sz (20). With the exception of Swarm each of these methods uses distance-based thresholds to report
s13 OTU assignments. We also evalauted the ability of OptiClust to optimize to metrics other than
s« MCC. These included accuracy, F1-score, negative predictive value, positive predictive value, false
315 discovery rate, senitivity, specificity, the sum of TPs and TNs, the sum of FPs and FNs, and the

st number of FNs, FPs, TNs, and TPs (Figure S1; Table S1).

stz Benchmarking. We evaluated the quality of the sequence clustering, reproducibility of the
s1s clustering, the speed of clustering, and the amount of memory required to complete the clustering.
a9 To assess the quality of the clusters generated by each method, we counted the cells within a
320 confusion matrix that indicated how well the clusterings represented the distances between the pair
321 Oof sequences (13). Pairs of sequences that were in the same OTU and had a distance less than
a2 3% were true positives (TPs), those that were in different OTUs and had a distance greater than
323 3% were true negatives (TNs), those that were in the same OTU and had a distance greater than
324 3% Wwere false positives (FPs), and those that were in different OTUs and had a distance less than
35 3% were false negatives (FNs). To synthesize the matrix into a single metric we used the Matthews

a6 correlation coefficient using the sens.spec command in mothur using the following equations.

TP xTN —FPxFN
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

327 10 assess the reproducibility of the algorithms we randomized the starting order of each sequence
328 collection ten times and ran each algorithm on each randomized collection. We then measured the
29 MCC for each randomization and quantified their percent coefficient of variation (% CV; 100 times

s0 the ratio of the standard deviation to the mean).

331 1o assess how the the memory and time requirements scaled with the number of sequences
332 included in each sequence collection, we randomly subsampled 20, 40, 60, or 80% of the unique
333 Sequences in each collection. We obtained 10 subsamples at each depth for each dataset and ran
a4 each collection (N= 50 = 5 sequencing depths x 10 replicates) through each of the algorithms. We

s3s  Used the timeout script to quantify the maximum RAM used and the amount of time required to
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as process each sequence collection (https://github.com/pshved/timeout). We limited each algorithm

37 1o 45 GB of RAM and 50 hours using a single processor.

s Data and code availability. The workflow utilized commands in GNU make (v.3.81), GNU bash
a9 (v.4.1.2), mothur (v.1.39.0) (11), and R (v.3.3.2) (44). Within R we utilized the wesanderson (v.0.3.2)
a0 (45), dplyr (v.0.5.0) (46), tidyr (v.0.6.0) (47), cowplot (v.0.6.3) (48), and ggplot2 (v.2.2.0.9000) (49)
a1 packages. A reproducible version of this manuscript and analysis is available at https://github.com/

a2 SchlossLab/Westcott_OptiClust_ mSphere_2017.
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Table 1. Description of datasets used to evaluate the OptiClust algorithm and compare its

performance to other algorithms. Each dataset contains sequences from the V4 region of the

16S rRNA gene. The number of distances for each dataset are those that were less than or equal to

0.03. The number of OTUs were determined using the OptiClust algorithm. The even and staggered

datasets were generated by extracting the V4 region from full length reference sequences and

the datasets from the natural communities were generated by sequencing the V4 region using a

lllumina MiSeq with either paired 150 or 250 nt reads.

Dataset (Ref.) Read Length Samples Total Seqs. Unique Seqs. Distances OTUs
Soil (41) 150 18 948,243 143,677 11,775,167 40,216
Marine (42) 250 7 1,384,988 75,923 12,908,857 25,787
Mice (40) 250 360 2,825,495 32,447 6,988,306 2,658
Human (39) 250 489 20,951,841 121,281 38,544,315 11,648
Even (34, 36) NA NA 1,155,800 11,558 29,694 7,651

Staggered (34, 36) NA NA 1,156,550 11,558 29,694 7,653
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354

355 Figure 1. Comparison of de novo clustering algorithms. Plot of MCC (A), number of OTUs
36 (B), and execution times (C) for the comparison of de novo clustering algorithms when applied to
357 four natural and two synthetic datasets. The first three columns of each figure contain the results
ass  Of clustering the datasets (i) seeding the algorithm with one sequence per OTU and allowing the
359 algorithm to proceed until the MCC value no longer changed; (ii) seeding the algorithm with one
0 sequence per OTU and allowing the algorithm to proceed until the MCC changed by less than
st 0.0001; (iii) seeding the algorithm with all of the sequences in one OTU and allowing the algorithm
32 1o proceed until the MCC value no longer changed. The human dataset could not be clustered by
ss the average neighbor, Sumaclust, USEARCH, or OTUCLUST with less than 45 GB of RAM or 50
ss4 hours of execution time. The median of 10 re-orderings of the data is presented for each method
ses and dataset. The range of observed values is indicated by the error bars, which are typically smaller

a6 than the plotting symbol.
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Figure 2. OptiClust performance The average execution time (A) and memory usage (B) required
to cluster the four natural datasets. The confidence intervals indicate the range between the
minimum and maximum values. The y-axis is scaled by the square root to demonstrate the
relationship between the time and memory requirements relative to the number of unique sequences

squared.
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a4 Figure 3. Effects of taxonomically splitting the datasets on clustering quality. The datasets
azs  were split at each taxonomic level based on their classification using a naive Bayesian classifier

a7e and clustered using average neighbor, VSEARCH-based DGC, and OptiClust.
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a7s Figure S1. The OptiClust algorithm is able to effectively cluster sequences into OTUs by
s79  Minimizing or maximizing numerous metrics. Plot of MCC (A), number of OTUs (B), and
a0 execution times (C) for the comparison of output from the OptiClust algorithm when to minimizing or
31 Maximizing a variety of parameters when applied to four natural and two synthetic datasets. Within
sz mothur, OTU assignments can also be made using other metrics including minimizing false positives
sss  and maximizing the specificity, positive predictive value, and true negatives; however, these all
ss4 resulted in sequences being assigned to separate OTUs, which resulted in no false positives and
sss  the maximum number of true negatives. The error bars indicate the range of values observed for

sss 10 replicates.
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sss  Figure S2. The OptiClust algorithm rapidly converges to optimize the Matthews correlation
s coefficient. The six datasets were clustered into OTUs using the OptiClust algorithm seeking to

390 Maximize the Matthews correlation coefficient. This was repeated 10 times for each dataset.
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Supplemental text. Worked example of how OptiClust algorithm clusters sequences into OTUs.

Table S1. Summary of the average number of true positives, true negatives, false positives,
false negatives and the resulting Matthews correlation coefficient for each of the clustering
methods that were analyzed in this study for each of the six datasets. Blank values indicate

that those conditions could not be completed in 50 hours with 45 GB of RAM.

22


https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ss  References

s7 1. Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC. 2016. Status of the archaeal and
s9s bacterial census: An update. mBio 7:€00201-16. doi:10.1128/mbio.00201-16.

a9 2. Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity. Proceedings of the

a0 National Academy of Sciences 113:5970-5975. doi:10.1073/pnas.1521291113.

s1 3. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, Chase
w02 J, McDonald D, Gonzalez A, Robbins-Pianka A, Clemente JC, Gilbert JA, Huse SM,
203 Zhou H-W, Knight R, Caporaso JG. 2014. Subsampled open-reference clustering creates
s04 consistent, comprehensive OTU definitions and scales to billions of sequences. Peerd 2:e545.

s05 d0i:10.7717/peerj.545.

a0s 4. Consortium THMP. 2012. Structure, function and diversity of the healthy human microbiome.

407 Nature 486:207—214. doi:10.1038/nature11234.

a8 5. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson
w09  KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308:1635-1638.

4210 6. Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ, Sukharnikov LO, Roe BA,
a1 Davis JP, Schloss PD, Bailey VL, Krumholz LR. 2008. Novelty and uniqueness patterns of
s12 rare members of the soil biosphere. Applied and Environmental Microbiology 74:5422-5428.

s13 doi:10.1128/aem.00410-08.

a4 7. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a
415 dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on
s6 the MiSeq lllumina sequencing platform. Applied and Environmental Microbiology 79:5112-5120.
417 doi:10.1128/aem.01043-13.

s 8. Schloss PD. 2009. A high-throughput DNA sequence aligner for microbial ecology studies.
a9 PLOS ONE 4:e8230. doi:10.1371/journal.pone.0008230.

20 9. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity

23


https://doi.org/10.1128/mbio.00201-16
https://doi.org/10.1073/pnas.1521291113
https://doi.org/10.7717/peerj.545
https://doi.org/10.1038/nature11234
https://doi.org/10.1128/aem.00410-08
https://doi.org/10.1128/aem.01043-13
https://doi.org/10.1371/journal.pone.0008230
https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

21 and speed of chimera detection. Bioinformatics 27:2194-2200. doi:10.1093/bioinformatics/btr381.

22 10. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive bayesian classifier for rapid assignment
s23  Of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology

s24  13:5261-5267. doi:10.1128/aem.00062-07.

a5 11. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
26 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF.
227 2009. Introducing mothur: Open-source, platform-independent, community-supported software
a8 for describing and comparing microbial communities. Applied and Environmental Microbiology

a9 195:7537—-7541. doi:10.1128/aem.01541-09.

a0 12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
w31 Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig
132 JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR,
a3 Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME
s34 allows analysis of high-throughput community sequencing data. Nature Methods 7:335-336.

435 doi:10.1038/nmeth.f.303.

w6 13. Schloss PD, Westcott SL. 2011. Assessing and improving methods used in operational
s37 taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and

a8 Environmental Microbiology 77:3219-3226. doi:10.1128/aem.02810-10.

139 14. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y, Xu
a0 Z, Ursell LK, Lauber C, Zhou H, Song SJ, Huntley J, Ackermann GL, Berg-Lyons D, Holmes
a1 S, Caporaso JG, Knight R. 2013. Advancing our understanding of the human microbiome using

a2 QIIME, pp. 371-444. In Methods in enzymology. Elsevier BV.

a3 15. Westcott SL, Schloss PD. 2015. De novo clustering methods outperform reference-based
a4 methods for assigning 16S rRNA gene sequences to operational taxonomic units. Peerd 3:€1487.

a5 d0i:10.7717/peerj.1487.

s 16. Schloss PD, Handelsman J. 2005. Introducing DOTUR, a computer program for defining

24


https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1128/aem.00062-07
https://doi.org/10.1128/aem.01541-09
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1128/aem.02810-10
https://doi.org/10.7717/peerj.1487
https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a7 Operational taxonomic units and estimating species richness. Applied and Environmental

a4s  Microbiology 71:1501-1506.

a9 17. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics
50 26:2460-2461. doi:10.1093/bioinformatics/btq461.

st 18. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source
52 tool for metagenomics. Peerd 4:€2584. doi:10.7717/peerj.2584.

3 19. Albanese D, Fontana P, Filippo CD, Cavalieri D, Donati C. 2015. MICCA: A complete
154 and accurate software for taxonomic profiling of metagenomic data. Scientific Reports 5:9743.

455 doi:10.1038/srep09743.

6 20. Mahé F, Rognes T, Quince C, Vargas C de, Dunthorn M. 2014. Swarm: Robust and fast
ss7  clustering method for amplicon-based studies. Peerd 2:€593. doi:10.7717/peer].593.

s 21.8unY, Cai Y, Liu L, YuF, Farrell ML, McKendree W, Farmerie W. 2009. ESPRIT: Estimating
159 species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Research

w0 37:€76—€76. doi:10.1093/nar/gkp285.

w1 22. Cai Y, Sun Y. 2011. ESPRIT-tree: Hierarchical clustering analysis of millions of 16S
s2 TRNA pyrosequences in quasilinear computational time. Nucleic Acids Research 39:e95—-e95.

s63  d0i:10.1093/nar/gkr349.

w4 23. Edgar RC. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads.
a5 Nature Methods 10:996—998. doi:10.1038/nmeth.2604.

w6 24. Mahé F, Rognes T, Quince C, Vargas C de, Dunthorn M. 2015. Swarm v2: Highly-scalable
s67  and high-resolution amplicon clustering. Peerd 3:€1420. doi:10.7717/peerj.1420.

w8 25. Barriuso J, Valverde JR, Mellado RP. 2011. Estimation of bacterial diversity using next
w9 generation sequencing of 16S rDNA: A comparison of different workflows. BMC Bioinformatics

a0 12:473. doi:10.1186/1471-2105-12-473.

sn 26. Bonder MJ, Abeln S, Zaura E, Brandt BW. 2012. Comparing clustering and pre-processing

25


https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1038/srep09743
https://doi.org/10.7717/peerj.593
https://doi.org/10.1093/nar/gkp285
https://doi.org/10.1093/nar/gkr349
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.7717/peerj.1420
https://doi.org/10.1186/1471-2105-12-473
https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a2 in taxonomy analysis. Bioinformatics 28:2891-2897. doi:10.1093/bioinformatics/bts552.

a3 27. Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. 2013. A comparison of methods for
a74  Clustering 16S rRNA sequences into OTUs. PLOS ONE 8:e70837. doi:10.1371/journal.pone.0070837.

a5 28. Huse SM, Welch DM, Morrison HG, Sogin ML. 2010. Ironing out the wrinkles in the
476 rare biosphere through improved OTU clustering. Environmental Microbiology 12:1889-1898.
477 0d0i:10.1111/].1462-2920.2010.02193.x.

a7s 29. May A, Abeln S, Crielaard W, Heringa J, Brandt BW. 2014. Unraveling the outcome of 16S
a9 TDNA-based taxonomy analysis through mock data and simulations. Bioinformatics 30:1530—1538.

40 d0i:10.1093/bioinformatics/btu085.

1 30. Sun Y, Cai Y, Huse SM, Knight R, Farmerie WG, Wang X, Mai V. 2011. A large-scale
a2 benchmark study of existing algorithms for taxonomy-independent microbial community analysis.

83 Briefings in Bioinformatics 13:107—121. doi:10.1093/bib/bbr009.

s8¢ 31. White JR, Navlakha S, Nagarajan N, Ghodsi M-R, Kingsford C, Pop M. 2010. Alignment and
sss  Clustering of phylogenetic markers - implications for microbial diversity studies. BMC Bioinformatics

s 11:152. doi:10.1186/1471-2105-11-152.

w7 32. Al-Ghalith GA, Montassier E, Ward HN, Knights D. 2016. NINJA-OPS: Fast accurate
s marker gene alignment using concatenated ribosomes. PLOS Computational Biology 12:e1004658.

a8 d0i:10.1371/journal.pcbi.1004658.

s0 33. He Y, Caporaso JG, Jiang X-T, Sheng H-F, Huse SM, Rideout JR, Edgar RC, Kopylova E,
s91 Walters WA, Knight R, Zhou H-W. 2015. Stability of operational taxonomic units: An important but
a2 neglected property for analyzing microbial diversity. Microbiome 3. doi:10.1186/s40168-015-0081-x.

13 34. Kopylova E, Navas-Molina JA, Mercier C, Xu ZZ, Mahé F, He Y, Zhou H-W, Rognes T,
s94 Caporaso JG, Knight R. 2016. Open-source sequence clustering methods improve the state of

a5 the art. mSystems 1:e00003—-15. doi:10.1128/msystems.00003-15.

w96 35. Schmidt TSB, Rodrigues JFM, Mering C von. 2014. Limits to robustness and

26


https://doi.org/10.1093/bioinformatics/bts552
https://doi.org/10.1371/journal.pone.0070837
https://doi.org/10.1111/j.1462-2920.2010.02193.x
https://doi.org/10.1093/bioinformatics/btu085
https://doi.org/10.1093/bib/bbr009
https://doi.org/10.1186/1471-2105-11-152
https://doi.org/10.1371/journal.pcbi.1004658
https://doi.org/10.1186/s40168-015-0081-x
https://doi.org/10.1128/msystems.00003-15
https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

se7  reproducibility in the demarcation of operational taxonomic units. Environ Microbiol 17:1689—-1706.

08 d0i:10.1111/1462-2920.12610.

a9 36. Schloss PD. 2016. Application of a database-independent approach to assess
soo the quality of operational taxonomic unit picking methods. mSystems 1:€00027-16.

sot - doi:10.1128/msystems.00027-16.

s2 37. Matthews B. 1975. Comparison of the predicted and observed secondary structure of
s3 t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405:442—-451.
s« doi:10.1016/0005-2795(75)90109-9.

sos  38. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. 2007. SILVA:
sos A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data

so7  compatible with ARB. Nucleic Acids Research 35:7188-7196. doi:10.1093/nar/gkm864.

sos  39. Baxter NT, Ruffin MT, Rogers MAM, Schloss PD. 2016. Microbiota-based model improves
so0 the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine 8.

sto doi:10.1186/s13073-016-0290-3.

st 40. Schloss PD, Schubert AM, Zackular JP, Iverson KD, Young VB, Petrosino JF. 2012.
sz Stabilization of the murine gut microbiome following weaning. Gut Microbes 3:383-393.

513 d0i:10.4161/gmic.21008.

s+ 41. Johnston ER, Rodriguez-R LM, Luo C, Yuan MM, Wu L, He Z, Schuur EAG, Luo Y, Tiedje
si5s JM, Zhou J, Konstantinidis KT. 2016. Metagenomics reveals pervasive bacterial populations
st and reduced community diversity across the alaska tundra ecosystem. Front Microbiol 7.

st7 doi:10.3389/fmicb.2016.00579.

sis 42. Henson MW, Pitre DM, Weckhorst JL, Lanclos VC, Webber AT, Thrash JC. 2016. Artificial
si9  seawater media facilitate cultivating members of the microbial majority from the gulf of mexico.

s20 mMSphere 1:@00028-16. doi:10.1128/msphere.00028-16.

s21 43. Schloss PD. 2010. The effects of alignment quality, distance calculation method, sequence

s22 filtering, and region on the analysis of 16S rRNA gene-based studies. PLOS Comput Biol

27


https://doi.org/10.1111/1462-2920.12610
https://doi.org/10.1128/msystems.00027-16
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.1186/s13073-016-0290-3
https://doi.org/10.4161/gmic.21008
https://doi.org/10.3389/fmicb.2016.00579
https://doi.org/10.1128/msphere.00028-16
https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

523

524

525

527

529

530

aCC-BY 4.0 International license.

6:€1000844. doi:10.1371/journal.pcbi.1000844.

44. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria.

45. Ram K, Wickham H. 2015. wesanderson: A wes anderson palette generator.

46. Wickham H, Francois R. 2016. dplyr: A grammar of data manipulation.

47. Wickham H. 2016. tidyr: Easily tidy data with ‘spread()’ and ‘gather()‘ functions.

48. Wilke CO. cowplot: Streamlined plot theme and plot annotations for ’ggplot2’.

49. Wickham H. 2009. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.

28


https://doi.org/10.1371/journal.pcbi.1000844
https://doi.org/10.1101/096537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/096537; this version posted February 9, 2017. The copyright holder for this preprint (which was not
Table S1CeS{fAMAST OF (R & BrAYE At P RS BESARNR YA HaRn ALY AR POLiTIPER IS REE4H R St fHE resulting
Matthews correlation coefficient for each of the clustering methods that were analyzed in this study for each of the six
datasets. Blank values indicate that those conditions could not be completed in 50 hours with 45 GB of RAM.

True True False False

Dataset Method N, mcc
T =) r =)
Soil MCC (separate OTUs) 5136712 10312528053 1247993 2555568 0.7328
Soil TP +TN 4770846 10312976362 799684 2921434 0.7287
Soil Accuracy 4771037 10312974895 801151 2921243 0.7286
Soil FPs + FNs 4768761 10312976641 799405 2923519 0.7285
Soil MCC (single OTU) 5399187 10311962308 1813738 2293093 0.7247
Soil F1-score 5453578 10311862032 1914014 2238702 0.7244
Soil VSEARCH (w/AGC) 5953502 10305863000 7913046 1738778 0.5760
Soil VSEARCH (w/AGC) 6684050 10301990342 11785704 1008230 0.5603
Soil Sumaclust 6689597 10301700186 12075860 1002683 0.5563
Soil Average Neighbor 6746206 10300797169 12978877 946074 0.5472
Soil USEARCH (w/DGC) 4851924 10308165644 5610402 2840356 0.5404
Soil USEARCH (w/AGC) 5592316 10304608407 9167639 2099964 0.5244
Soil OTUCLUST 6714016 6909706980 18444775 978264 0.4819
Soil Negative Predictive Value 7382082 10286785610 26990436 310198 0.4534
Soil FN 7438201 10283907614 29868432 254079 0.4386
Soil Nearest Neighbor 1571726 10313677482 98564 6120554 0.4383
Soil Sensitivity 7440261 10283040048 30735998 252019 0.4335
Soil Furthest Neighbor 501819 10313776046 0 7190461 0.2553
Soil Swarm 237705 10313770690 5356 7454575 0.1738
Marine F1-score 7914666 2870997648 1894417 1306272 0.8317
Marine MCC (separate OTUs) 7670655 2871231788 1660277 1550283 0.8266
Marine MCC (single OTU) 7428998 2871482154 1409911 1791940 0.8223
Marine FPs + FNs 7264205 2871683595 1208470 1956733 0.8214
Marine TP+ TN 7211154 2871739258 1152807 2009784 0.8206
Marine Accuracy 7119498 2871802386 1089679 2101440 0.8178
Marine VSEARCH (w/AGC) 8566881 2865055591 7836474 654057 0.6954
Marine VSEARCH (w/AGC) 8867443 2862976753 9915312 353495 0.6725
Marine Sumaclust 8867317 2862856105 10035960 353621 0.6703
Marine USEARCH (w/DGC) 6929948 2867522405 5369660 2290990 0.6494
Marine Average Neighbor 8914621 2861348612 11543453 306317 0.6476
Marine USEARCH (w/AGC) 7352302 2865419824 7472241 1868636 0.6274
Marine Nearest Neighbor 3742329 2872622032 270033 5478609 0.6144
Marine OTUCLUST 8945456 1834755673 15224413 275482 0.5965
Marine Negative Predictive Value 9131188 2853099098 19792967 89750 0.5572
Marine Sensitivity 9136046 2852367594 20524471 84892 0.5504
Marine FN 9143826 2852250720 20641345 77112 0.5498
Marine Furthest Neighbor 620264 2872892065 0 8600674 0.2589
Marine Swarm 149810 2872888019 4046 9071128 0.1256
Mice MCC (separate OTUs) 4829770 520373752 491600 692559 0.8898
Mice F1-score 4850792 520347542 517810 671537 0.8897
Mice FPs + FNs 4771312 520439019 426333 751016 0.8895
Mice TP +TN 4770937 520439150 426202 751392 0.8894
Mice Accuracy 4769575 520440407 424945 752754 0.8894
Mice MCC (single OTU) 4879087 518832093 2033259 643242 0.7873
Mice VSEARCH (W/AGC) 5100191 517549332 3316020 422138 0.7450
Mice USEARCH (w/DGC) 4905962 517883072 2982280 616367 0.7402
Mice Average Neighbor 5326219 516873116 3992236 196110 0.7393
Mice Sumaclust 5317976 516662498 4202854 204353 0.7301
Mice VSEARCH (w/AGC) 5322737 516622070 4243282 199592 0.7290
Mice USEARCH (w/AGC) 5243162 516749770 4115582 279167 0.7260
Mice Negative Predictive Value 5426962 515767988 5097364 95366 0.7082
Mice Sensitivity 5439118 515571271 5294081 83211 0.7028
Mice FN 5451490 515436798 5428554 70839 0.6996
Mice OTUCLUST 5297141 469202414 5087312 225188 0.6953
Mice Nearest Neighbor 1482308 520843906 21446 4040021 0.5122
Mice Swarm 1237099 520494387 370965 4285230 0.4123
Mice Furthest Neighbor 665512 520865352 0 4856816 0.3455
Human F1-score 26073348 7321213423 2922678 4270391 0.8785
Human MCC (separate OTUs) 25861724 7321423671 2712430 4482015 0.8778
Human FPs + FNs 25512998 7321813377 2322724 4830740 0.8774
Human MCC (single OTU) 25680854 7321538561 2597540 4662885 0.8762
Human TP +TN 25399667 7321870325 2265776 4944072 0.8762
Human Accuracy 25352243 7321910658 2225443 4991496 0.8759
Human VSEARCH (w/AGC) 26845545 7309824393 14311708 3498194 0.7585
Human VSEARCH (w/AGC) 28561130 7301551637 22584464 1782609 0.7237
Human Negative Predictive Value 29719012 7292417394 31718707 624727 0.6867
Human Sensitivity 29818923 7288099634 36036467 524816 0.6657
Human FN 29888157 7287209148 36926953 455582 0.6623
Human Nearest Neighbor 8062473 7323981460 154641 22281266 0.5097
Human Swarm 4358052 7323725163 410938 25985688 0.3615
Human Furthest Neighbor 2637845 7324136101 0 27705894 0.2942
Human Average Neighbor
Human OTUCLUST
Human Sumaclust
Human USEARCH (w/AGC)
Human USEARCH (w/DGC)
Even MCC (separate OTUs) 17174 66762945 2465 5319 0.8171
Even F1-score 17586 66762397 3013 4907 0.8169
Even MCC (single OTU) 17174 66762930 2480 5319 0.8168
Even TP+ TN 16378 66763755 1655 6115 0.8132
Even Accuracy 16349 66763784 1626 6144 0.8130
Even FPs + FNs 16312 66763795 1615 6181 0.8123
Even Average Neighbor 15607 66763393 2017 6886 0.7838
Even Nearest Neighbor 12448 66764886 524 10046 0.7287
Even USEARCH (w/DGC) 12950 66762468 2942 9544 0.6847
Even Negative Predictive Value 20746 66744250 21160 1747 0.6768
Even VSEARCH (w/AGC) 12340 66762579 2831 10153 0.6679
Even VSEARCH (W/AGC) 12340 66762579 2831 10153 0.6679
Even Furthest Neighbor 9434 66765410 0 13059 0.6475
Even Sumaclust 12559 66761243 4167 9934 0.6474
Even FN 21047 66738879 26531 1446 0.6436
Even Sensitivity 21106 66735974 29436 1387 0.6299
Even USEARCH (w/AGC) 11260 66761521 3889 11233 0.6096
Even OTUCLUST 16844 66725346 18107 5649 0.6007
Even Swarm 520 66765401 9 21973 0.1507
Staggered MCC (separate OTUs) 17069 66763106 2304 5424 0.8176
Staggered F1-score 17584 66762432 2978 4909 0.8176
Staggered MCC (single OTU) 17200 66762827 2583 5293 0.8154
Staggered Accuracy 16337 66763813 1597 6156 0.8134
Staggered FPs + FNs 16313 66763811 1599 6180 0.8127
Staggered TP+ TN 16319 66763779 1631 6174 0.8121
Staggered Average Neighbor 16142 66762854 2556 6351 0.7871
Staggered Nearest Neighbor 12413 66764886 524 10080 0.7276
Staggered Sumaclust 15377 66760390 5020 7116 0.7178
Staggered VSEARCH (w/AGC) 15095 66760823 4587 7398 0.7173
Staggered USEARCH (w/AGC) 14630 66761174 4236 7863 0.7101
Staggered VSEARCH (w/AGC) 13567 66762304 3106 8926 0.7005
Staggered USEARCH (w/DGC) 13244 66762537 2873 9250 0.6955
Staggered Negative Predictive Value 20724 66744588 20822 1769 0.6783
Staggered Furthest Neighbor 9575 66765410 0 12918 0.6524
Staggered FN 21018 66738538 26872 1475 0.6413
Staggered Sensitivity 20981 66737899 27511 1512 0.6361
Staggered OTUCLUST 15625 66371336 15527 6868 0.5903

Staggered Swarm 443 66765408 2 22050 0.1400
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Supplemental Text

To provide a detailed demonstration of how the OptiClust algorithm works consider a relatively simple ex-
ample where there are 50 sequences. After aligning the sequences and calculating the pairwise distances
between the sequences there are 15 pairs of sequences with a distance below the desired threshold of 0.03:

Seq. 1 Seq. 2 Distance

O
w

0.024
0.028
0.028
0.027
0.016
0.024
0.028
0.024
0.024
0.024
0.016
0.027
0.027
0.024
0.028

MTMOr X r T > 00> O0OM

OO UV UV UTO0OZ«oe —— IO

The other 1210 distances were larger than 0.03 and are not needed for the analysis because they are taken
to be true negatives. For example, the distance between sequences A and B is larger than 0.03. So, if they
are in different OTUs then that would be a true negative (TN) and if they are in the same OTU then that
would be a false positive (FP). Alternatively, because sequences B and D are closer to each other than 0.03
(i.e. 0.024) if they are in separate OTUs then that would be a false negative (FN) and if they are in the same
OTU then that would be a true positive (TP). It is important to note that the algorithm assumes that there are
no duplicate sequences and the actual abundance is saved elsewhere to be substituted later when counting
the frequency distribution of each OTU across the samples included in the analysis.

The algorithm starts by seeding sequences either into individual OTUs or into a single OTU. As demonstrated
in Figure 1, seeding the sequences into randomly ordered individual OTUs generates better results and is
faster than starting with a single OTU. Among the 15 pairwise distances that are smaller than 0.03, there are
17 sequences that are labeled A through Q. A separate pool is created for the 33 other sequences that are not
within 0.03 of any other sequence and are thus to be placed into 33 separate OTUs. In the diagrams below,
this pool is designated as “...”. Having seeded the initial OTUs there are 0 TPs, 1210 TNs, 0 FPs, and 15 FNs.
Initially the number of FNs corresponds to the number of distances less than 0.03, the number of TNs is the
number of total distances (i.e. 1225) minus the number of distances less than 0.03. The number of TPs, TNs,
FPs, and FNs should sum to the total number of distances. The resulting Matthew’s Correlation Coefficient
(MCC)is 0.00. The algorithm next goes through each sequence sequentially to determine whether the MCC
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value would be increased by removing it from its current OTU to join other sequences in a new OTU or to
create its own OTU.

The demonstration of the algorithm starts with sequence A. Notice that it is within 0.03 of sequences H and
J. There are three options: sequence A could remain as its own OTU, it could join with sequence H, or it
could join with sequence J.

0.26

OOEOOEOHOOOOOOEOOO

If it stays as its own OTU, the MCC value would remain 0.00. If it joined with sequences H or J the number
of TPs would increase by 1 and the number of FNs would decrease by 1. In either case the MCC would be
0.26. In this case, joining H or J would result in an improved MCC and so the algorithm randomly selects
which sequences to join. For this demonstration, it will form a new OTU with sequence H. This results in 1
TPs, 1210 TNs, 0 FPs, 14 FNs, and an MCC of 0.26.

Sequence B is processed by the same process as sequence A. Sequence B is within 0.03 of sequences D
and |. Again, there are three options: sequence B could remain as its own OTU, it could join with sequence
D, or it could join with sequence I.

0.36

OEPOOOGOOOOOOEOGOO

If it remains as its own OTU, the MCC value would remain 0.26. If it joined with sequences D or | the number
of TPs would increase by 1 and the number of FNs would decrease by 1. In either case the MCC would
be 0.36. Joining D or | would result in an improved MCC and so the algorithm randomly selects which
sequences to join. For this demonstration it will form a new OTU with sequence D. This results in 2 TPs,
1210 TNs, 0 FPs, 13 FNs, and an MCC of 0.36.

Sequence C is within 0.03 of sequence G creating two options: remain as its own OTU or join with sequence
G.
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0.45

LHOOO0OBOOOOOOOOOO

If it remains in its own OTU, the MCC value would remain 0.36. If it joined with sequence G the number of
TPs would increase by 1 and the number of FNs would decrease by 1 resulting in an MCC value of 0.45.
Because of the improved MCC value, sequence C joins with sequence G to form a new OTU. This results
in 3 TPs, 1210 TNs, 0 FPs, 12 FNs, and an MCC of 0.45.

For sequence D the algorithm gets more complicated since sequence D is already in an OTU with sequence
B. As seen when considering sequence B, sequence D is within 0.03 of sequence B and it is also similar
to sequence |. Now there are three options: sequence D could remain with sequence B in an OTU, it could
leave that OTU and join with sequence I, or it could form a new OTU where it is the sole member.

lolololclclolololololelolelolele

If sequence D remains with B, the MCC value would remain 0.45. If it joined with sequence | the number of
TPs and FNs would stay constant resulting in an MCC value of 0.51. If it formed a new OTU by itself, the
number of TPs would decrease by one and the number of FNs would increase by 1 resulting in an MCC value
of 0.36. Because the MCC values for staying in the OTU with B or leaving the OTU to join the OTU with | are
the same, the algorithm would again randomly chose between the two options. For demonstration purposes,
sequence D will remain in its OTU with sequence B. This results in no changes in the four parameters or the

MCC value.

For sequence E, the same type of options are available as when sequences A and B were processed.
Sequence E could remain on its own or it could join with sequences F or Q.

0.51

QLOOVOOOOVOOOOO
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Similar to the earlier cases, the MCC value for joining another sequence is larger than staying on its own.
Because the MCC values for joining F or Q are the same, the algorithm randomly selects which sequences
to join. For this demonstration sequence E will form a new OTU with sequence F. This results in 4 TPs, 1210
TNs, 0 FPs, 11 FNs, and an MCC of 0.51.

For sequence F, the steps taken by the algorithm are the same as earlier for sequence D. Here, sequence F
could remain in an OTU with sequence E, it could leave and form an OTU with sequence Q, or it could form
a new OTU on its own.

0.45

Again, the MCC value for sequence F remaining with sequence E is the same as for leaving to form an
OTU with sequence Q. Both options are superior to leaving to form a new OTU on its own. The algorithm
randomly chooses between the two options. For demonstration purposes, sequence F will remain in its OTU
with sequence E. This results in no changes in the four parameters or the MCC value.

The decisions for sequence G are similar to sequence F, with the exception that the only choices are to stay
in an OTU with another sequence (C) or to form a new OTU on its own.

WOOOOOVOOOOO®

Leaving to form a new OTU results in a lower MCC value and so the algorithm leaves sequence G with
sequence C. This results in no changes in the four parameters or the MCC value.

For sequence H the steps taken are the same as seen earlier for sequence B.

0.51

OOOOOOEOEOE

0.45
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For demonstration purposes sequence H will remain in its OTU with sequence A.

Moving to sequence |, the process is similar to what was done earlier with sequences A and B. The only
difference is that because sequence | is similar to both sequences B and D the increase in TP and decrease
in FN will be double.

TOOODOO0OOOOOO0

If sequence | remains in an OTU by itself, the MCC value will be 0.51. If it joined the OTU with sequences B
and D, then the number of TPs would increase by 2 and the number of FNs would decrease by 2 resulting
in an improved MCC value of 0.63. This is the choice that is taken resulting in 6 TPs, 1210 TNs, 0 FPs, and
9 FNs.

Processing sequence J is the same as sequence | since sequence J is close to both A and H.

clololclelolololololclole

Again, by joining the OTU containing sequences A and H the number of TPs increases by 2 and the number
of FNs decreases by 2 resulting in 8 TPs, 1210 TNs, 0 FPs, 7 FNs, and an improved MCC value of 0.73.

Processing sequence K is the same as for sequence A.

clolclcYolelololefolole

0.77

Merging sequences K and P into the same OTU results in 9 TPs, 1210 TNs, 0 FPs, 6 FNs, and an improved
MCC value of 0.77.
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Processing sequence L presents a more complicated set of decisions. Again, there are three choices. Be-
cause sequence L is similar to sequences O and P it could form an OTU with sequence O or with the OTU
containing sequences K and P.

@@@Q@@O

0.78

If sequence L remains on its own, the MCC value would remain 0.77. If it joined with sequence O the number
of TPs would increase by 1 and the number of FNs would decrease by 1 resulting in an MCC value of 0.81.
The subtlety of this step is found in when considering the possibility of sequence L joining an OTU with
sequences K and P. It would increase the number of TPs by one and decrease the number of FN by one
and by joining with sequence P; however, because O is not close to K the number of TNs would decrease
by one and the number of FPs would increase by one. This would result in an MCC value of 0.78. Of the
three options forming an OTU with sequences L and O provides the maximal MCC value. This results in 10
TPs, 1210 TNs, 0 FPs, 5 FNs, and an improved MCC value of 0.81.

The steps for processing sequence M is the same as earlier for sequence C.

OO0O0OPVLOBOOO

Merging sequences M and N into the same OTU resultsin 11 TPs, 1210 TNs, 0 FPs, 4 FNs, and an improved
MCC value of 0.85.

Moving on to sequence N, the two options are to stay in an OTU with sequence M or to spit off and form a
new OTU on its own.

DOOOLLOOOE
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Remaining in an OTU with sequence M provides the larger MCC value and so the OTU memberships do
not change.

Processing of sequence O presents three options that have been explored before. Sequence O can stay in
its OTU with sequence L, it can join the OTU with sequences K and P, or it can form a new OTU on its own.

@@@”@O

If sequence O remains in the OTU with sequence L, the MCC value would be 0.85. If it leaves that OTU to
join sequences K and P in their OTU then the number of TNs would decrease by 1, but the number of FPs
would increase by 1 because O is similar to P, but not to K. This would result in an MCC value of 0.82. If
sequence O forms a new OTU on its own, then the number of TPs would decrease by one and the number of
FNs would increase by one resulting in an MCC value of 0.81. The best option is for sequence O to remain
in its OTU with sequence L.

For sequence P the steps taken are similar to those used to evaluate clusters for sequence O; however, the
final decision is different. Sequence P can stay with sequence K in their OTU, it can leave to join the OTU
with sequences L and O, or it can form a new OTU on its own.

If sequence P remains in the OTU with sequence K, the MCC value would be 0.85. Alternatively, P could
leave that OTU to join sequences L and O in their OTU. If P leaves its OTU with K then the number of TPs
would decrease by one and the number of FNs would increase by one. By joining with L and O the number
of TPs would increase by two and the number of FNs would decrease by two. The net effect would be to
increase the number of TPs by 1 and decrease the number of FNs by 1. This would result in an MCC value
of 0.89. If sequence P formed a new OTU on its own, then the number of TPs would decrease by one and
the number of FNs would increase by one resulting in an MCC value of 0.81. The best option is for sequence
P to leave its OTU with sequence K and join the OTU containing sequences L and O. The updated counts
are 12 TPs, 1210 TNs, 0 FPs, 3 FNs.
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To finish the first round of processing each sequence, sequence Q is processed. Sequence Q is similar
to both sequences E and F. Because sequences E and F are in the same OTU, the situation is similar to
processing sequence |.

clonckcXeXcXoyoXe

By joining the OTU containing sequences E and F the number of TPs increases by two and the number of
FNs decreases by one. The updated counts are 14 TPs, 1210 TNs, 0 FPs, and 1 FNs, which result in an
improved MCC value of 0.97.

Having processed each sequence, the first iteration of the algorithm is complete. The MCC value has
changed from 0.00 to 0.97. Because the MCC value changed, it is necessary to re-evaluate each sequence
again and re-evaluate the final MCC value to determine whether it has changed. In this case, evaluation
of sequences A through J result in the same clustering pattern. When the algorithm reaches sequence K it
finds that the sequence is similar to sequence P, which is in an OTU with L and O; however sequence K is
not similar to L or O.

@@O

Although, sequence Kiis similar to sequence P, it is not similar to sequences L or O. Were sequence K to join
their OTU, it would increase the number of TPs by one and decrease the number of FNs by one because
of its similarity to sequence P, but it would increase the number of FPs by two and decrease the number of
TNs by two because K is not similar to L or O. The end result would be a MCC value of 0.94, which is less
than the MCC value of keeping sequence K on its own (i.e. 0.97).

Continuing the process for the remaining sequences, none of the sequences will move between OTUs and
the MCC value does not change. At this point, the clustering has converged to the optimum MCC value of
0.97. Repeating this process using 100 different seeds for the random number generator required a median
of 3 iterations (range from 2 to 4) to converge.
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