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Abstract

The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that
arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subse-
quent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular
interactions between the epithelium and a population of mesenchymal cells that surround the
tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic
factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate
several subcellular pathways in the epithelium. Such interactions are known to be a prereq-
uisite for normal branching development, although competing theories exist for their role in
morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branch-
ing. Through comparison with experimental data, we show that growth factor-regulated growth
mechanisms can explain early epithelial cell branching, but only if epithelial cell division de-
pends in a switch-like way on the local growth factor concentration; cell division occurring only
if the driving growth factor level exceeds a threshold. We also show how a recently-developed
method, “Approximate Approximate Bayesian Computation”, can be used to infer key model
parameters, and reveal the dependency between the parameters controlling a growth factor-
dependent growth switch. These results are consistent with a requirement for signals controlling
proliferation and chemotaxis, both of which are previously identified roles for GDNF.
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Organogenesis, cellular automaton, developmental processes, mathematical modelling, morphol-
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Author Summary

A number of important congenital disorders arise due to incomplete development of the mam-
malian kidney. Elucidating the cause of these conditions requires an understanding of the
mechanisms that contribute to kidney morphogenesis. Whilst experimental work has suggested
several candidate mechanisms, their importance is still not well understood. Here we develop a
computational model of kidney morphogenesis at the individual cell level to compare these dif-
ferent hypotheses. Guided by existing experimental evidence we propose that a generic growth
factor, that we term “GDNF”, produced from the mesenchyme surrounding the epithelium, can
drive a number of cellular responses. Simulations of our agent-based model reveal that diffusion
of GDNF, coupled with GDNF-stimulated epithelial cell division, can generate the branching
patterns seen in ex vivo kidney explant experiments. We also find that branching depends on
the sensitivity of cell proliferation to changes in GDNF levels. In particular our model only gen-
erates realistic branching when there is significant variation in GDNF levels along the boundary
of the epithelium, and most cells divide only if the local concentration of GDNF exceeds a
threshold value. We conclude that feedback between mesenchymal cells that produce GDNF,
and epithelial cells that consume it, is vital for normal kidney organogenesis.
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1 Introduction

The kidney is a complex organ with a highly branched structure. Its primary function is to
filter urea and other waste products from the blood and metabolic system. Kidney and urinary
tract congenital disorders are amongst the most common birth defects, with many of these
conditions being caused by incomplete branching during development (Airik & Kispert, 2007).
To understand how such disorders arise, we must first address fundamental questions about the
developing kidney, including how branching is initiated, how it is regulated, and how cessation
of branching is controlled. These processes are complex and, as such, biological experiments
that aim to answer these questions are technically difficult to conduct. Furthermore, each
experiment typically investigates only a single facet of kidney morphogenesis. Mathematical and
computational models can assist in this endeavour by integrating multiple biological hypotheses
via a well-defined set of assumptions. Simulations of the resulting models can be performed
to test alternative hypotheses about the mechanisms that regulate kidney morphogenesis, and
generate new predictions that can be tested experimentally (Cebrian et al. , 2014; Combes, 2015;
Murray et al. , 1983; Packard et al. , 2013; Short et al. , 2014; Zubkov et al. , 2015).

Nephrons are the primary functional units of a kidney. A fully developed human kidney has
between 0.2 and 1.8 million nephrons (Hughson et al. , 2003), that are connected by a system
of collecting ducts to the ureter and bladder (Costantini, 2006). Most of the organ is formed
during embryonic development, beginning five weeks post-gestation in humans and embryonic
day 10.5 (E10.5) in mice (Carlson, 2013; Cebrian et al. , 2004). An outgrowth of epithelial cells
from the nephric duct leads to the formation of the ureteric bud epithelium (Little, 2015). As
the ureteric bud grows and branches, a cloud of mesenchymal progenitor cells form caps at the
tips, and eventually differentiate into nephrons.

In addition to their role as nephron precursors, mesenchymal cells release cytokines that
influence the growth and branching of epithelial cells as they form the collecting tree structure.
Glial cell line-derived neurotrophic factor (GDNF) is one such growth factor. GDNF is expressed
in the metanephric mesenchyme by E11.5, and is thought to diffuse across to the epithelial cell
layer, where its binding to cell surface RET receptors transduces signals that are essential for
morphogenesis (Durbec et al. , 1996). GDNF is known to be a chemoattractant, and also to
stimulate the outgrowth of epithelial cells (Little & McMahon, 2012). However, there is no con-
sensus about whether these mechanisms are sufficient to generate normal branching, or whether
additional chemical or mechanical mechanisms are needed. For example, GDNF-independent
signals involving members of the fibroblast growth factor family and Activin are known to affect
branching (Maeshima et al. , 2007; Michos et al. , 2010; Miyazaki et al. , 2000; Qiao et al. ,
2001; Tee et al. , 2010, 2013). As the roles of GDNF and other growth factors remain to be fully
elucidated, in this paper we focus on a single generic growth factor which we term “GDNF”
and attribute to it actions and effects that we acknowledge are likely caused by a combination
of different factors. Although the mechanical forces between epithelium and mesenchyme may
influence branching patterns, they are not a prerequisite for branching. Indeed experiments
performed by Qiao et al. (1999) have revealed that cell–cell contact between mesenchyme and
epithelium is not required for branching; exposure of epithelial cells to soluble factors derived
from metanephric mesenchyme is sufficient. While it is possible that mechanical forces be-
tween the epithelial cells may be an important mechanism for branching, to our knowledge no
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experiments have yet directly investigated this hypothesis.
Branching morphogenesis is a characteristic feature of many mammalian organs including

the kidney, lung, vasculature, the saliva and mammary glands, and in limb development (Af-
folter et al. , 2009). In each of these tissues, branched structures arise due to repetition of
three cellular motifs: bud formation followed by bud extension, and bud splitting, with these
processes being facilitated by regulation at the tips and stalks of individual buds. Similar path-
ways and network topologies perform this regulation in vastly different systems; for example,
fibroblast growth factor signalling in combination with Delta/Notch signals regulate branching
of both trachea and vertebrate vasculature (Affolter et al. , 2009; Ochoa-Espinosa & Affolter,
2012). Several alternative theories have been proposed to explain how such signalling gener-
ates branched structures. For example, Turing’s reaction-diffusion mechanism can give rise to
branched structures (Menshykau & Iber, 2013). Mechanical theories have also been proposed
(Varner & Nelson, 2014). To distinguish between competing theories, simple systems are needed,
whose variability can be controlled. Explant models of branching have a valuable role to play
here as they can recapitulate branching morphogenesis, and are amenable to image analyses that
are difficult or impossible to perform in vivo (Basson et al. , 2006; Serls et al. , 2005; Watanabe
& Costantini, 2004). Additionally, it is possible not only to monitor the structure of an explant
as it evolves over time but also to determine for example how these dynamics change when the
composition of the culture medium that bathes the explant is altered.

A variety of mathematical models have been developed to study different aspects of branch-
ing morphogenesis, including physical cellular processes, such as proliferation and migration
(Hirashima et al. , 2009), the underlying molecular processes (Zubkov et al. , 2015), or a com-
bination of the two (Adivarahan et al. , 2013; Clément & Mauroy, 2014; Menshykau & Iber,
2013). A recent study used ordinary differential equations to describe how the dynamics of the
growing epithelial cell populations at the tips of branches are regulated by mesenchymal cells
(Zubkov et al. , 2015). Comparison of simulation results and experimental data revealed that
the mathemematical model could recapitulate the observed dynamics for the ratio of epithe-
lial to mesenchymal cells at the branch tips. In other studies a Turing system (Turing, 1952)
involving the diffusion of the secreted ligands GDNF (produced by mesenchyme) and Wnt11
(produced by the epithelium in response to the presence of GDNF), as well as RET receptors, is
proposed to be the primary driver of branching (Clément & Mauroy, 2014; Menshykau & Iber,
2013). Predictions generated by these models include the need for cooperative receptor-ligand
binding (Menshykau & Iber, 2013), and a mechanism for self avoidance (so that growing tips do
not come into contact) (Clément & Mauroy, 2014), which recent experiments suggest may be
orchestrated by signalling via BMP7 that is produced by neighbouring branches (Davies et al.
, 2014).

Whilst a few models of developmental processes consider individual cell behaviour (Fletcher
et al. , 2014; McLennan et al. , 2012, 2015), the majority treats cell populations as a continuum
(Clément & Mauroy, 2014; Menshykau & Iber, 2013; Scialdone et al. , 2013; Zubkov et al. ,
2015). While these models have generated valuable insight into different aspects of organ devel-
opment, they are limited in their ability to investigate the influence of cellular and subcellular
mechanisms. Agent-based frameworks that model individual cell behaviour can offer significant
advantages here.

In a biological context, agent-based models treat cells as individual agents, whose behaviour
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is specified by a predefined set of rules that can be deterministic and/or stochastic. First
developed to study the dynamics of replication (von Neumann, 1966), simple agent-based models
such as cellular automata (CA), and generalisations of these such as cellular Potts and hybrid
models are now used widely to study a range of biological systems that include biochemical
reaction networks, stem cell proliferation and differentiation, tumour angiogenesis and metastasis
(Alarcón et al. , 2003; Gerlee & Anderson, 2015; Macklin et al. , 2012; Roeder et al. , 2006; Scott
et al. , 2014). Such “lattice-based” models restrict agents to sites on a fixed lattice. As such they
are typically simpler in design and faster to simulate than alternative off-lattice models, which
place fewer restrictions on the movement of cells (or agents) (Bentley et al. , 2009; Pathmanathan
et al. , 2009; Perfahl et al. , 2016).

In this paper we investigate a series of experiments performed by Watanabe & Costantini
(2004) in which kidneys from mouse embryos were grown in culture. We develop an agent-based
framework to model the growth of these explants, and focus on interactions between epithelial
cells and growth factors (referred to as “GDNF ”) present in the culture medium. Since the
experimental data we have available is limited in detail we formulate an idealised model that
contains the minimal number of assumptions necessary to recapitulate key branching features.
Whilst the model does not explicitly account for mesenchyme cells, local levels of the generic
growth factor, which we term GDNF, serve as a proxy for their influence. We use a CA approach
which does not require specific assumptions about the nature of cell-cell forces that cannot (as
yet) be experimentally verified. In more detail, our agent-based epithelial cells reside on a
regular, two-dimensional grid, their rates of migration and proliferation being regulated by
(and, in turn, regulating) the local distribution of GDNF.

Typically the parameters of computational models cannot be directly measured; they must
be inferred from experimental data. Inference can be comparatively expensive in agent-based
models, with the stochastic nature of the models requiring multiple simulations for each choice
of parameter values. This cost can preclude parameter estimation even with state-of-the-art
techniques, such as approximate Bayesian computation (ABC) (Johnson et al. , 2014; Liepe
et al. , 2014; Toni et al. , 2009). ABC compares simulations from a model with experimental
data, and – using statistics that summarise the system behaviour – accepts simulations (and the
parameters that generated them), if the statistics for model and data lie within an acceptable
distance threshold (see for example, Johnston et al. (2014); Vo et al. (2015)). ABC relies
on the ability to simulate a model relatively quickly (typically faster than one second per one
stochastic realisation of the model). In situations where this condition is not met, new methods
are required for parameter inference. One such method is “Approximate Approximate Bayesian
Computation” (AABC) (Buzbas & Rosenberg, 2015). With AABC actual model simulations
are used to generate pseudo-replicates of the model that can be compared with the data. Since
these pseudo-data are generated in a fraction of the time needed to perform real simulations,
this method can exhibit significant speed up compared to ABC. Our agent-based CA model
takes approximately a minute to generate a single simulation on a desktop computer, and hence
we chose to use AABC for parameter inference.

We analyse the model first by direct simulation across a range of parameter regimes, in each
case comparing model outputs and experimental data. We next use AABC to quantitatively
fit the model to data, and reveal its dependence on key parameters. In doing so, we show how
AABC can be used to integrate the agent-based model (ABM) and the experimental data to
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answer the following questions:

1. Does the mechanism of GDNF-dependent cellular growth (that is, where cell proliferation
rates increase with increases in the local concentration of GDNF) lead kidney explants to
develop branches as seen ex vivo?

2. Which characteristics of GDNF-mediated mechanisms are necessary to generate these
branches?

3. How sensitive is the model to changes in those parameters that influence branching?

We now briefly outline the structure of the paper. In Section 2.1 we introduce the exper-
imental data that we use in this study, and explain the details of how they are processed to
yield summary statistics that represent key features of explant branching. In Section 2.2 we
describe our CA model and, in doing so, explain how individual cell behaviour depends on a
field of GDNF that diffuses through the simulation domain. In Section 2.3 we explain how we
implemented the AABC method, and then use it to investigate the factors that affect explant
branching. In Section 3.1 we demonstrate how our model is able to recapitulate the branching
of kidney explants, and in Section 3.2 we use direct simulation to determine how branching of
our model explants depends on specific biological processes. Finally in Section 3.3 we use AABC
to quantitatively investigate how explant branching depends on three model parameters that
quantify the rate of cell motility and cell division.

2 Materials and Methods

2.1 Kidney explant data experimental data and image processing

Watanabe & Costantini (2004) have developed an ex vivo assay to study epithelial branch-
ing in murine embryonic development. Kidneys were dissected from E11.5 embryos from a
Hoxb7/EGFP transgenic line expressing green fluorescent protein (GFP) throughout the nephric
duct and the ureteric bud (Srinivas et al. , 1999). Kidneys were cultured in fetal bovine serum
and imaged every 30 minutes over a period of 96 hours, generating movies of the developing
explants.

We processed videos of the experimental data (three explants in total) by extracting the
area of the epithelial mass and the number of branch points in each frame. All image pro-
cessing and analyses were performed using Matlab (MathWorks, Natick, MA). We started by
extracting the bulk epithelial mass and then used this to calculate the medial axis skeleton
(see Figs. 1, 3): this can be derived as the loci of centres of bi-tangent circles that fit en-
tirely within the epithelial region (Lee, 1982). We then counted the number of branch points
on each skeleton and used this as a measure of the amount of branching that had occurred.
Calculation of the medial axis skeleton and counting of branching points were carried out us-
ing Matlab’s “bwmorph” function, together with a third-party Matlab package (available from
“https://uk.mathworks.com/matlabcentral/fileexchange/11123-better-skeletonization”). While
this summary statistic captures the aggregate number of branches, it does not explain other
features such as whether the branches are primary or secondary, nor does it provide information
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Figure 1. Workflow used to extract data from the explant images. The same process is
applied to simulation results generated from the CA model. The raw image is reproduced with
permission from Watanabe & Costantini (2004).

about the tip-to-stalk ratio (Bush et al. , 2014; Little, 2015). However we consider the collection
and analysis of such detailed summary statistics to be overly sophisticated for comparison with
our CA model and, hence, we postpone this for future work.

For comparison with our model simulations we also monitored the area of the bulk epithelium
as a measure of the change in the number of cells over time. To facilitate comparison of the
data from each experiment we normalised the area of each epithelial mass at time t by its initial
mass (at t = 0).

For each CA simulation (described below) we recorded the positions of all epithelial cells
over time. We then applied the same image processing methods to the CA data as were applied
to the experimental data, in order to generate comparable summary statistics for branching and
cell numbers.

2.2 Cellular automaton model development

Our model comprises a two-dimensional cellular automaton (CA) model in which the behaviour
of individual epithelial cells (i.e. their speed and direction, their rate of division and consump-
tion of GDNF) depends on the locations of nearby cells and the local concentration of GDNF.
Cell-cell interactions are governed by rules chosen to replicate observed behaviour. Our model
is admittedly an idealisation of the biological processes that underpin kidney morphogenesis. In
the absence of suitable experimental data, our model does not explicitly include mesenchyme
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cells even though they likely surround the explanted epithelium (they are invisible in the exper-
imental images). Similarly our model does not account for a GDNF-Wnt11 positive feedback
loop: GDNF secreted by mesenchymal cells binds to RET receptors on epithelial cells and stim-
ulates them to produce Wnt11 which binds to mesenchymal cells, stimulating further uptake
of GDNF (Majumdar et al. , 2003). However since the available experimental data provides
limited information we chose to formulate a simple model that could reproduce key features of
kidney morphogenesis.

The epithelial cells occupy a square domain which is discretised into N ×N equally-spaced
grid points. Each lattice site is occupied by either an epithelial cell or extracellular matrix
(ECM). At t = 0, a mass of epithelial cells is introduced towards the centre of the domain. Its
shape and size (i.e. the number of cells) are chosen to resemble those from the initial images of
kidney explants from Watanabe & Costantini (2004). All other sites are occupied by ECM at
t = 0.

GDNF field. We assume that GDNF binds to receptors on the outer membrane of epithelial
cells at rate KG, and diffuses from the boundaries of the grid, where it is maintained at a
constant GDNF concentration, G∞. This implicitly represents a far-field approximation of the
experimental conditions, where the ECM area is large, and the local concentration of GDNF is
continuously replenished. These conditions are chosen to mimic the effects of GDNF produced
by mesenchymal cells (that are likely present) as well as other growth factors that are present
in the culture medium. Since the time scale for the diffusion of GDNF across the length of a
cell diameter (seconds) is much shorter than the time scale for cell division (hours), we use a
quasi-steady-state 2D reaction-diffusion-equation (with Dirichlet boundary conditions) to model
the distribution of GDNF, G(x, y, t),

∂G

∂t
≈ 0 = DG∇2G− ΦG (1)

where DG denotes the assumed-constant diffusion coefficient for GDNF, and ΦG is the local rate
of GDNF consumption,

ΦG =

{
KGG(x, y, t), for an epithelial cell located at grid point (x, y) at time t,

0, for ECM.
(2)

In eqn. (2) we assume, for simplicity, that the rate of GDNF consumption depends linearly on
the concentration of substrate (with rate parameter KG). In what follows, it is convenient to
recast eqn. (1) in terms of a dimensionless GDNF concentration g = G

G∞
, and non-dimensional

spatial parameters, ηx = x
L , ηy = y

L , where 0 ≤ g ≤ 1 is the GDNF concentration as a ratio of
that at the boundaries, and 0 ≤ ηx,y ≤ 1 are spatial coordinates as a fraction of the simulation
domain size. Eqn. (1) can then be written as,

dg∇2
ηg = φg, (3)

where ∇2
η is the Laplacian with respect to the non-dimensional spatial coordinates, η; dg = DG

KGL2

is the non-dimensional diffusion coefficient; and φg = ΦG
KGG∞

is the non-dimensional GDNF
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uptake term. In these coordinates the boundary conditions are specified as,

g(0, ηy, t) = 1 = g(L, ηy, t),

g(ηx, 0, t) = 1 = g(ηx, L, t),
(4)

and the local rate of GDNF consumption is given by,

φg =

{
g(ηx, ηy, t), for epithelium at grid point (ηx, ηy) at time t,

0, for ECM.
(5)

In the absence of experimental estimates for the parameters DG and KG, preliminary numerical
experiments revealed that fixing dg = 0.006 lead to sufficient variation in GDNF across the
spatial domain for branching to occur. (See Table S1 for a summary of the parameter values
used in each simulation.)

At the end of each time step (see “Cell based rules” section) we solved eqns. (3), (4) and
(5) using the method of explicit finite differences (implemented in Matlab). Both the CA model
and the finite difference scheme are implemented on the same discrete grid, so the local GDNF
level used in the update rules is its value at the grid point where the cell is located. The GDNF
field affects the movement and behaviour of epithelial cells, while their location and rates of
GDNF uptake affect the evolution of the GDNF field (Fig. 2).

Cell-based rules. Simple rules are used to determine whether individual cells move or divide
(see Algorithm 1, and Table S1 for the parameter values used); cell death is assumed to be
negligible in line with previous experimental results (Hartman et al. , 2007). The algorithm
begins by solving for the steady state solution of the reaction-diffusion equation (as described
above) for the current epithelial cell locations. Using a randomly-permuted list of cell indices,
each cell is then visited in turn, and updated. Updates proceed as follows. If a cell has empty
neighbouring sites then we determine whether to propose a movement or division event into one
of the empty locations; the local GDNF concentration determines whether the proposed action
occurs and, if so, the empty site at which the action is carried out.

During this process we establish whether any of the 4 adjacent sites in the von Neumann
neighbourhood (up, down, left, right) are empty (no epithelium present). If this is the case then
we select a move with probability pmove, or a cell division with probability (1 − pmove). The
probability pmove is independent of GDNF, and is used simply to propose an action (that may
not be undertaken). If an action is selected and feasible, our cell-based rules dictate whether
it is executed. Moves are always carried out; whether cell division occurs depends on local
levels of GDNF. We refer to this process as “GDNF-stimulated cell division”. In particular, the
probability pcd that a cell at location (ηx, ηy) at time t divides is given by,

pcd = Φ(c1 + c2g(ηx, ηy, t)) =
1√
2π

c1+c2g(ηx,ηy ,t)∫
−∞

e−
τ2

2 dτ (6)

where Φ(.) is the standard normal cumulative distribution function. This functional form allows
a switch-like behaviour for cell division. In eqn. (6) the parameter c1 controls the location of
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Figure 2. A series of plots from a typical CA simulation illustrating the interaction between
epithelial cell positions (top) and GDNF level (bottom). Note: the GDNF level at the edges is
not g∞ = 1 because the panels only show the central 140×140 grid points of the domain (itself
of size 400× 400). The parameter values used to generate these plots are shown in Table S1.

the switch, while the parameter c2 determines its sensitivity to the local GDNF level, g(x, y, t).
In most simulations we fix c1 < 0 and c2 > 0, so that in the absence of GDNF (g = 0) by default
epithelial cells do not divide.

If a move or cell division event is to occur, we must decide which empty neighbouring grid
point will be occupied by the result of the action. This choice (if there is more than one empty
grid point) is biased by GDNF levels at the neighbouring sites. For moves this process represents
“chemotaxis” and for cell divisions it represents “anisotropic cell division”. In either case the
probability pi of selecting an empty neighbouring grid point 1 ≤ i ≤ K is given by,

pi =
exp(βagi)
K∑
j=1

exp(βagj)

(7)

where a ∈ {move, cell-division} specifies the action type, 1 ≤ K ≤ 4 is the number of empty
neighbours, and gi is the GDNF concentration at site i. In eqn. (7) the non-negative param-
eter βa controls the sensitivity of the selection to GDNF concentration, which can differ for
chemotaxis and anisotropic cell division.
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Algorithm 1 Pseudocode for updating the CA.
solve for steady state spatial distribution for g =“non-dimensional GDNF concentration”
create a randomly permuted list of cells, C
for each cell in C do

if cell has empty von Neumann neighbours then
//determine whether to propose a move or a cell division
generate u1 ∼ U(0, 1)
if pmove > u1 then

proposed action = move
else

proposed action = cell division
end if
do GDNF-stimulated action(proposed action)

else
proposed action = NULL
consider next cell in C

end if

end for

function GDNF-stimulated action(proposed action)
if proposed action = cell division then

calculate pcd = Φ(c1 + c2g) = 1√
2π

c1+c2g∫
−∞

e−
τ2

2 dτ

generate u2 ∼ U(0, 1)
if pcd > u2 then

do Anisotropic cell division
end if

else
do Chemotaxis

end if
end function
function Chemotaxis

select grid point i out of K empty neighbouring sites with probability

pi =
exp(βmgi)
K∑
j=1

exp(βmgj)

move cell into site i
end function
function Anisotrophic cell division

select grid point i out of K empty neighbouring sites with probability

pi =
exp(βcdgi)
K∑
j=1

exp(βcdgj)

place daughter cell in i
end function
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2.3 Parameter inference for agent-based models

Approximate Bayesian computation (ABC) allows parameter inference and model selection using
distance-based criteria to compare simulations and data (Sunn̊aker et al. , 2013). A distance
metric is introduced (e.g. Euclidean or Manhattan) and simulations are rejected if they yield
values for a (set of) chosen statistic(s) that exceed a threshold value. ABC is appropriate when
a likelihood function is difficult or intractable to calculate. It has been applied to a wide range of
problems in systems biology (Beaumont et al. , 2002, 2010; Csilléry et al. , 2010a). A prerequisite
of ABC is that simulating a dataset from the model must be relatively inexpensive so that it
is possible to adequately sample from the posterior parameter space. This is the case whether
performing simple ABC rejection or more sophisticated procedures, such as sequential Monte
Carlo ABC (Toni et al. , 2009). A simulation time for a single dataset of O(seconds) or greater
is thus typically prohibitive for performing ABC.

A new algorithm named “approximate approximate Bayesian computation” (AABC) has
been designed to resolve this problem (Buzbas & Rosenberg, 2015). By replacing true model
simulations with realisations of a suitably-tuned statistical model, AABC enables parameter
inference for a class of models that previously presented large (or insurmountable) computational
challenges. Agent-based models, such as our CA model, represent such a class, that have with
few notable exceptions (Johnston et al. , 2014; Jones et al. , 2015; Sottoriva & Tavare, 2010),
evaded approximate Bayesian inference.

Here we use AABC to infer parameters of the CA model that yield behaviour consistent with
the average summary statistics extracted from dynamic experimental data for kidney explants
generated by Watanabe & Costantini (2004). These summary statistics (see section 2.1 above)
measure two facets of the evolving explants: the number of branches, and the rate of cell
proliferation. By comparing summary statistics from the experimental data with equivalent
statistics from our simulations (as detailed below) we investigate the sensitivity of explant growth
patterns to variation in three model parameters c1, c2, and pmove. We specify uniform priors
for each of these parameters with the following bounds: c1 ∈ [−20,−40], c2 ∈ [40, 280] and
pmove ∈ [0, 1]. All other parameters are held fixed (as per Table S1).

Specifically the algorithm implements the following steps:

1. Simulate the CA model, and accept a subset of particles with parameter sets θi = (c1i, c2i, pmovei)
and corresponding datasets xi = (x1i, x2i), i ∈ (1, 2, ...,m), where m is the number of sim-
ulations (each with a unique set of parameters sampled from the priors) and N = 2 is the
number of replicates per parameter set. For our application, each dataset x consists of
data for the normalised area and the number of branch points at t = 10, 20, 30 hours after
E11.5.

2. Sample a new set of parameter values, θ∗, from the prior.

3. Calculate the weights, ωi, using an Epanechnikov kernel (Buzbas & Rosenberg, 2015):

ωi =
3

4

1

(θ∗ − θ(k+1))

[
1−

∥∥∥∥ θ∗ − θi
θ∗ − θ(k+1)

∥∥∥∥2
]
1{‖θ∗−θi‖<‖θ∗−θ(k+1)‖},
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where 1{‖θ∗−θi‖<‖θ∗−θ(k+1)‖} is an indicator function with value 1 for the k parameter values

θ = θ1, θ2, ..., θk with the shortest Euclidean distance from θ∗, and 0 otherwise (from θk+1

onwards).

4. Select (θi, xi), i ∈ (1, 2, ..., k), for which ωi > 0.

5. Draw a sample φ – used to specify data resampling probabilities – from a Dirichlet distri-
bution parameterised by ωi, i ∈ (1, 2, ..., k).

6. Simulate a new dataset x∗ of area and branching time point data (of size N = 2 replicates)
by: (i) resampling datapoints from xi with probabilities set by φ, and (ii) assuming that
each replicate is equally probable.

7. Calculate the Euclidean distance between the real and simulated datasets, and add θ∗ to
the posterior, iff ||xi − x∗|| < ε. We choose ε such that 5% of simulations are accepted as
posterior samples.

8. Repeat steps (2)-(7) until convergence in the approximate posterior distribution is reached.

We perform Step (1) of the algorithm in Matlab (MathWorks, Natick, MA), and steps (2)-(7)
in Julia (v0.3.5, julialang.org).

3 Results

3.1 GDNF-directed cellular proliferation can explain the branching patterns
observed when kidney explants are cultured ex vivo

Simulations of the CA model reveal that it can generate branching patterns similar to those
identified from ex vivo kidney explant data of Watanabe & Costantini (2004). In Fig. 3 we
compare results from a typical simulation with experimental data collected at four time points.
The CA model recapitulates notable features of branching: branching at both ends of the buds,
followed by secondary branching at the branch tips. Our simulated explants also often produce
branching events in which three or more branches emerge from a single tip, events which are
observed in the developing kidney (Menshykau & Iber, 2013).

3.2 Finding a minimal set of sub-cellular mechanisms necessary to generate
branching

We also used our model to investigate the contribution of cell proliferation, anisotropic cell
division and chemotaxis to branching (Table 1 and Figs. 4 and 5). Each mechanism is regulated
by local levels of GDNF: the rate of cell division increases with local levels of GDNF in a
sigmoidal manner (see Fig. 6); regarding chemotaxis, cells are more likely to migrate up local
GDNF gradients; for anisotropic cell division (ACD), daughter cells are located preferentially in
sites with higher levels of GDNF. For both chemotaxis and ACD we acknowledge that our model
is an idealisation of the biological processes involved. For example RET-dependent movement
(Riccio et al. , 2016) and luminal mitosis (Packard et al. , 2013) are not considered explicitly.
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(A.) data from ex vivo kidney explant (B.) data from CA model explant

Figure 3. Comparison of branching patterns associated with (A.) ex vivo data and (B.)
typical simulations of the CA model. Image processing techniques (see section 2.1) are used
first to extract the bulk shape of the epithelial cells (middle panel) and then to generate the
medial axis skeleton (right panel), which characterises the shape of the growing explant. The
parameter values used to generate these simulation results are shown in Table S1.
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(F.) GDNF-stimulated growth + ACD
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(G.) Random growth + chemotaxis + ACD
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Figure 4. The effect of different GDNF signalling mechanisms on explant branching.
(A.)-(H.) show simulation results with the indicated mechanisms implemented, and correspond
to cell distributions shown in the panels of Fig. 5 with the same letters. In each panel the black
line and points represent the evolution of branches from an explant experiment in Watanabe &
Costantini (2004); the orange line represents the mean branching observed by model
simulation (n= 200) and the shaded region indicates the 95% confidence interval. “ACD”
indicates “anisotrophic cell division”. The parameter values used in each case are in Table S1.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/096032doi: bioRxiv preprint 

https://doi.org/10.1101/096032
http://creativecommons.org/licenses/by/4.0/


15

E11.5 E12.5 E13.5
(I.) Real explant data

(E.) Random proliferation + ACD (F.) GDNF-stimulated proliferation + ACD

(G.) Random proliferation + chemotaxis + ACD (H.) GDNF-stimulated proliferation + chemotaxis + ACD

(C.) Random proliferation + chemotaxis (D.) GDNF-stimulated proliferation + chemotaxis

E11.5 E12.5 E13.5
(B.) GDNF-stimulated proliferation only(A.) Random proliferation only

dimensionless GDNF concentration

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5. The effect of different GDNF signalling mechanisms on explant branching.
(A.)-(H.) show simulation results with the indicated mechanisms implemented, and correspond
to the panels in Fig. 4 with the same letters. The black mass is the epithelial cells, and the
coloured shading shows the corresponding dimensionless distribution of GDNF. For
comparison experimental from the first video in Watanabe & Costantini (2004) are presented
in (I.). “ACD” indicates “anisotrophic cell division”. Note: the GDNF level at the edges is not
g∞ = 1 because the panels only show the central 140×140 grid points of the domain (itself of
size 400× 400). The parameter values used in each case are in Table S1.
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figure GDNF-stimulated cell division chemotaxis anisotropic cell division (ACD) branching

4,5A - - - -
4,5B + - - +
4,5C - + - -
4,5D + + - +
4,5E - - + -
4,5F + - + ++
4,5G - + + -
4,5H + + + ++

Table 1. A summary of the effect of different GDNF signalling mechanisms on explant
branching. Each row of the table corresponds to specific panels of Figs. 4 and 5, with
corresponding parameter sets indicated in Table S1. In the middle three columns “-” indicates
that the mechanism is inactive, “+” indicates that it is active. In the right-hand column “-”
indicates no significant branching, “+” indicates modest branching and “++” indicates that
branching that is consistent with experimental data.

Even so, our model captures some of the features of these processes and, hence, can be used to
determine their relative contributions for branching.

Model simulations reveal that when cell division is independent of GDNF, no branching
occurs; the explant grows as an approximately circular mass (see Figs. 4,5A). When only cell
proliferation is regulated by GDNF, some branching occurs, although the number of branches is
fewer than for explant growth (see Figs. 4,5B). When chemotaxis and/or anisotropic cell division
depend on GDNF although the rate of proliferation is independent of GDNF, the model does
not exhibit branching (Figs. 4,5 C,E,G). Additionally the cumulative effect of GDNF-stimulated
proliferation and chemotaxis on branching is no greater than proliferation stimulated by GDNF
alone (Figs. 4,5D). By contrast when proliferation and anisotropic cell division depend on
GDNF, the number of branches observed along the branching trajectory increases such that
simulation results are in good agreement with the experimentally observed branching patterns
(Figs. 4,5F). The best agreement with the experimental data is obtained when all three processes
(i.e. proliferation, chemotaxis and anisotropic cell division) depend on GDNF levels (Figs. 4,5H).
These results do not appear to depend strongly on the initial shape of the epithelium used to
in model simulations. In particular simulations initialised using different experimental explant
data yielded similar results (see Figs. S1, S2).

These simulation studies reveal several key messages. First, GDNF-stimulated proliferation
can generate biologically realistic branching patterns. Second, what we term anisotropic cell
division ameliorates the rate of branching when it is coupled to GDNF-stimulated growth.
Finally, within the regions of parameter space studied, GDNF-controlled chemotaxis does not
strongly affect the branching of explants. In order to determine whether the weak dependence on
chemotaxis was due to an overly simplistic treatment of cell-cell interactions, we revised our CA
model to ensure that epithelial cells remain attached to at least one neighbouring cell. However
this change did not significantly alter the observed branching patterns (results not shown).

We also investigated how the shape of the GDNF-controlled switch that regulates cell pro-
liferation affects branching (Fig. 6). When the slope of the switching function is gradual, the
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Figure 6. Series of simulation results showing how the shape of the GDNF-mediated
proliferation switch influences the branching dynamics. For the results shown in each of the
panels we ran simulations with c1 = −25 so that in the absence of GDNF cells would not
divide, and we vary c2 across each of the panels: for (A.) c2 = 400, (B.) c2 = 120 and (C.)
c2 = 20. The inset panels show the location of the proliferation switch in GDNF-space
(horizontal axis), against the probability of growth (vertical axis). In each panel the black line
and points represent the evolution of branches from an explant experiment in Watanabe &
Costantini (2004); the orange line represents the mean branching observed by model
simulation (n= 200) and the shaded region indicates the 95% confidence interval. The
parameter values used in each case are shown in Table S1.

epithelium grows as a circular mass and no branching occurs (Fig. 6A). Similarly, when the
threshold of the switch is high, the epithelial growth rate and branching rate are both too low
(Fig. 6C). We therefore tune the threshold and slope of the GDNF-mediated switch (Fig. 6B)
in order to maximise the amount of branching. Again we show in the Supplementary Materials
how these results are robust to variation in the shape of the epithelial cell starting mass (see
Figs. S3 and S4).

3.3 Branching is sensitive to the form of the GDNF proliferation switch

Having shown that our CA model can reproduce qualitative features associated with early kidney
morphogenesis, we now study the dependence of branching characteristics on the parameters c1,
c2, and pmove; c1 and c2 jointly determine the sensitivity of cell proliferation to GDNF levels
(see eqn. (6)), and pmove is the probability of cell migration.

We performed 50,000 AABC simulations and accepted the top 5% (the 5% with overall
smallest Euclidean distances from the summary statistics associated with the experimental data)
to compose approximate posterior samples, as outlined in section 2.3. We use two summary
statistics to compare simulations with data: the normalised area and the total number of branch
points as calculated from medial axis skeletons of the epithelial cell mass.

In Fig. 7A we plot those trajectories that have been accepted as posterior samples. The
marginal posterior distributions associated with each parameter are shown on the diagonal of
Fig. 7B alongside the two-dimensional posterior joint density distributions for each pair of
parameters. This reveals that the marginal posterior distribution for c2 deviates most from its
prior, taking values between 40 and 280 with high probability; both c1 and pmove deviate less
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Figure 7. Approximate posteriors distributions for three model parameters as estimated by
AABC. The parameters c1 and c2 affect the location and sensitivity of the GDNF-mediated
growth switch, and pmove determines the relative likelihood of cell movement rather than cell
division (see “Materials and Methods”). (A) Accepted trajectories in the posterior simulated
from the model and their comparison with the ex vivo data (black dots indicate means, and
error bars show the range of the data). The experimental data are the means of summary
statistics extracted from three explant experiment videos in Watanabe & Costantini (2004).
(B) Posterior parameter distributions for single (on the diagonal) and joint pairs of
parameters. See Table S1 for information about the parameter values used in the simulations.
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from their prior, although pmove shows deviation at high values where little or no growth occurs.
The joint density plots in Fig. 7B reveal dependencies in parameter space. For the pa-

rameter pair (c1, c2), a negative correlation is observed; we note also that for low values of c1

(i.e. c1 ∈ [−40,−25]) c2 is tightly constrained. This dependence is expected since the two pa-
rameters jointly determine the sensitivity of the switch to GDNF. In particular, under a local
non-dimensional concentration of GDNF of g = − c1

c2
a cell with free neighbouring space divides

with probability 0.5. This means that there are regions of (c1, c2) space (where c1 ∼ −kc2)
which result in practically identical GDNF switches. For the other two parameter pairs, the
joint density plots highlight what has been termed “sloppiness” (Gutenkunst et al. , 2007): the
explant branching phenotype is robust to changes in the values of c1 and pmove. Parameter
sloppiness can be symptomatic of several problems, including insufficient data, or a model that
is overly complex for the available data. Additionally we cannot discount the possibility that our
summary statistics are suboptimal, although we believe that the use of more detailed summary
statistics may be excessive given the level of biological and mechanical realism present in our
CA model.

4 Discussion

We have developed a new model to describe branching morphogenesis in the developing kid-
ney. While there are many agent-based models of other branching systems (e.g. Fumoto et al.
(2016); Iber & Menshykau (2013); Lindenmayer (1968); Merks & Koolwijk (2009); Schatten
et al. (2007)) to our knowledge, this is the first agent-based model of kidney morphogenesis.
A significant advantage of our approach is that unlike spatially-averaged compartment-based
methods (e.g. Menshykau & Iber (2013); Zubkov et al. (2015)) it allows study of processes at
the single-cell level. This spatial resolution may be particularly important in determining the
thresholds in the concentration of growth factors at which branching occurs. The CA frame-
work allows a cell-based description of tissue morphogenesis and facilitates the future addition
of other biophysical mechanisms and the subcellular signalling pathways, as well as extension to
include other cell types (e.g. mesenchymal cap cells, when considering kidney morphogenesis).

At present there is no consensus about whether diffusion-driven Turing patterns of GDNF
coupled with GDNF-regulated proliferation mechanisms can explain branching, or whether other
chemical and mechanical mechanisms are required. Our simulation results indicate that the
GDNF-mediated proliferation may suffice to generate branching in this system. We find that
to recapitulate the branching behaviour of the developing kidney, dynamic spatial patterning of
epithelial cell proliferation had to be included in the model. This was the case across all the
parameter sets that we considered, however there may be isolated regions in parameter space
in which branching occurs via independent mechanisms not included in our model (e.g. due
to mechanical cell-cell interactions). Simulation studies demonstrated that GDNF-stimulated
tissue growth together with chemotaxis and anisotropic cell division provided the best fit to the
explant branching data studied. In a recent experimental study, Riccio et al. (2016) studied the
behaviour of tip cells across development, and concluded that GDNF signalling largely drives cell
movement (rather than proliferation), and that this movement, in turn, drives branching. While
GDNF-dependent chemotaxis may play a role later in kidney development (we focus here on
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E11.5 to E14), our results suggest that it may not contribute significantly during early branching
of the epithelium, and supports a greater role for proliferation than than that identified by Riccio
et al. (2016). It is, of course, possible that mesenchyme-derived factors other than GDNF
provide this signal. Inference of the CA model on a three-dimensional subset of parameters
revealed dependency between the parameters controlling the GDNF-stimulated cell proliferation
switch (c1 and c2). Specifically this result indicated how cell proliferation should depend strongly
on GDNF levels. However it remains to identify a biological mechanism that fulfils this criteria.

Whilst our model can generate explant patterns that mimic some aspects of the experimental
data, we recognise that our simulation results often differ in the finer details. At present it is
not clear whether these discrepancies are due to biological mechanisms that we have neglected,
or due to the relatively simple nature of our model framework. For example these differences
might be reduced if an off-lattice agent-based model, incorporating cell-cell contact forces, were
used. We also note that the differences between our simulation results and the experimental
data are highest for later developmental times, and we speculate that other mechanisms may
be responsible for continued branching at these later time points. In particular our model
does not explicitly include mesenchymal cells that produce growth factors which may influence
branching at later developmental times. Another candidate mechanism is heterogeneity in RET
expression amongst different epithelial cells (Shakya et al. , 2005). In particular, epithelial
cells with differing levels of RET expression have been shown to compete for positions within
branches (Riccio et al. , 2016), and contribute unequally to the tips of the developing kidney
(Chi et al. , 2009). We also assumed that the time scale for GDNF diffusion is much slower
than the time scale for its uptake/binding to RET receptors. However we cannot discount that
future experiments may invalidate this assumption.

As important differences exist between the dynamics of branching as it occurs ex vivo and in
vivo (Short et al. , 2014), caution should be exercised when extrapolating from the former to the
latter. Here we focus on an ex vivo model, due to the availability of published image data. This
system also lends itself more naturally to 2D modelling, which is less computationally expensive
than 3D simulations. Scaling an ABM approach to 3D represents a significant computational
hurdle, and it is possible that the different topology may require qualitatively different mecha-
nisms for branching to occur. However our results are supported by the results of computational
modelling by Clément & Mauroy (2014) who found that diffusion of growth factors was sufficient
to generate realistic 3D branching patterns. Further our 2D model permits investigation of the
dominant mechanisms in a simpler geometry, and presents an opportunity for a first model vali-
dation step before investigating 3D dynamics. As noted above our model omits certain details of
the biology, for example, the (likely) presence of a growth factor-producing mesenchyme. This
choice was dictated partly by the sparsity of the available experimental data. However since
our simple model was able to reproduce key aspects of the explant branching we chose not to
include further (uncertain) biological details.

The flexibility that CA models offer in their ability to describe spatiotemporal heterogeneities
is not only an advantage but also a limitation, because the biological interpretation of each
update rule is not always clear. Modelling cell proliferation and migration with biophysical
and mechanical forces could improve the mechanistic understanding of the model, but comes at
significant computational cost (see for example, Kim et al. (2007); Rejniak & Anderson (2011)).

To perform parameter estimation, we have implemented a version of AABC, an approximate

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/096032doi: bioRxiv preprint 

https://doi.org/10.1101/096032
http://creativecommons.org/licenses/by/4.0/


21

Bayesian inference scheme that is ideally suited to models such as ours that are computationally
expensive to simulate. With the ever-increasing resolution of spatiotemporal data and, concur-
rently, an increasing number of models developed to describe relevant biological phenomena,
we propose that AABC may find useful applications to a range of problems in systems biology,
outside the more typical population genetics applications for which it was developed (Beaumont
et al. , 2002; Buzbas & Rosenberg, 2015; Csilléry et al. , 2010b).

Existing models of organ development have proposed alternative mechanisms for branching
kidney organogenesis. In Zubkov et al. (2015), a spatially-averaged system of ODEs is proposed
in which branching occurs at a specific cell ratio of epithelial (tip) and mesenchymal (cap) cells.
In both Clément & Mauroy (2014) and Menshykau & Iber (2013), spatially-resolved models are
developed and a growth-promoting ligand mechanism is proposed for branching; in Menshykau
& Iber (2013), the authors show that this leads to a Turing-type mechanism through interaction
of GDNF and the RET receptor. The model that we present is consistent with these results,
but goes further by proposing cellular scale rules that, coupled to the influence of a ligand field,
enable branching.

We recognise that other modelling frameworks have been used to simulate branching mor-
phogenesis. These include phase field models (Hartmann & Miura, 2006; Ohta et al. , 1989) and
Turing models (Kondo & Miura, 2010; Menshykau & Iber, 2013)), that yield similar conclusions
to our CA approach. Even so, we believe that it is important to establish whether results are
robust across different modelling approaches or specific to a particular modelling paradigm.

In conclusion we note that while branching morphogenesis is an old problem in mathematical
biology (Murray et al. , 1983), many open questions remain to be addressed. Here, using an
agent-based model that directly describes the cell–cell interactions that occur during organ
development, we shed light on the processes involved in defining the structure of the kidney.
In the future, we propose that more complex hybrid models that combine biophysical and
experimentally-validated rules for the migration and proliferation of epithelial cells will lead to
further advances in our understanding of kidney morphogenesis. Additionally we argue that
future models of in vivo kidney development should include other cells types known to be
involved in organogenesis, for example, mesenchymal cells.
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Chi, Xuan, Michos, Odyssé, Shakya, Reena, Riccio, Paul, Enomoto, Hideki, Licht, Jonathan D,
Asai, Naoya, Takahashi, Masahide, Ohgami, Nobutaka, Kato, Masashi, Mendelsohn, Cathy, &
Costantini, Frank D. 2009. Ret-dependent cell rearrangements in the Wolffian duct epithelium
initiate ureteric bud morphogenesis. Developmental Cell, 17(2), 199–209.
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