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Abstract 
 
Advances in nanopore sequencing technology have enabled investigation of the full 
catalogue of covalent DNA modifications. We present the first algorithm for the 
identification of modified nucleotides without the need for prior training data along with 
the open source software implementation, nanoraw. Nanoraw accurately assigns 
contiguous raw nanopore signal to genomic positions, enabling novel data visualization, 
and increasing power and accuracy for the discovery of covalently modified bases in 
native DNA. Ground truth case studies utilizing synthetically methylated DNA show the 
capacity to identify three distinct methylation marks, 4mC, 5mC, and 6mA, in seven 
distinct sequence contexts without any changes to the algorithm. We demonstrate 
quantitative reproducibility simultaneously identifying 5mC and 6mA in native E. coli 
across biological replicates processed in different labs. Finally we propose a pipeline for 
the comprehensive discovery of DNA modifications in any genome without a priori 
knowledge of their chemical identities.  
 
 
Introduction 
 
DNA modifications are essential across the three kingdoms of life1, and are used by cells 
for defense, gene regulation, cell differentiation, and the transmission of regulatory 
programs across generations. A host of assays have been developed to detect specific 
modified nucleotides, including and especially 5mC and 6mA, which are widely deployed 
by prokaryotes and eukaryotes 2-4. Techniques exist to detect a diverse group of 
epigenetic modifications through the observation of DNA Pol II kinetics leveraging Single 
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Molecule Real-Time sequencing (SMRT-seq) platform5, 6. In particular, pioneering work7, 

8 demonstrated the capacity to identify DNA methylation marks via the comparison of 
native versus amplified DNA through supervised machine learning. The SMRT-seq 
platform provides observations of DNA modifications through analysis of polymerase 
dynamics, which leads to the current requirement of deep read coverage in order to 
identify particular DNA modifications5, 8. 
 
Nanopore sequencing technology confers the opportunity to identify modified 
nucleotides through direct observations of single-molecules through monitoring electric 
current. Several pilot studies have demonstrated the feasibility of using nanopore-
derived information to identify methylation marks in native DNA9-11. To date, such studies 
have used a highly processed form of the data generated by the nanopore platform. 
Further, no software packages have been developed to interrogate and visualize the raw 
data in a human-interpretable fashion. Here, we present software that implements 
visualization to enable direct exploration, and automated statistical procedures to 
discover DNA modifications of, in principle, any form, even when the chemical identity of 
the modification is not known a priori. That is, we utilize unsupervised, rather than 
supervised statistical learning. We demonstrate the efficacy of our approach for three 
known marks, 4mC, 5mC and 6mA, in an artificial “ground truth” setting, and also in a 
well-studied laboratory strain of E. coli. 
 
The identification of modified nucleotides without training data (Figure 1) requires the 
(nanopore) sequencing of a native and matched amplified DNA sample (where 
amplification is employed to produce unmodified DNA). We developed the open source 
nanoraw software package (pypi.python.org/pypi/nanoraw version 0.4.2; code repository 
github.com/marcus1487/nanoraw and documentation nanoraw.readthedocs.io) for the 
processing and visualization of raw data. The re-squiggled (Methods) raw signal for both 
native and amplified samples is compared at each base genome-wide leading to the 
identification of consistently modified bases, with discriminative power to accurately 
detect known marks in E. coli, and also the potential identification of new signals of 
unknown origin. Several similar approaches have been previously described6, 9-13, but 

require prior training datasets not only 
for new types of modifications, but for 
the same modification in a new 
sequence context. Additionally, the 
reliance of model-based approaches 
on known training data sets does not 
allow for detection of modified and 
unmodified nucleotides in close 
proximity. Table 1 summarizes the 
central benefits of testing-based 
(nanoraw) versus model-based12, 13 
modified nucleotide detection 
methods. In our view, testing-based 

 
Figure 1. Modified DNA identification pipeline. 
Native and whole genome amplified (WGA) 
biological samples are processed using nanopore 
sequencing, raw signal is analyzed with nanoraw 
and statistical tests are performed to identify 
regions with modified bases. 
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modified nucleotide algorithms may soon enable the description of the entire collection 
of modified nucleotides in a genome. 
 
Testing-based Advantages Model-based Advantages 
● No training data needed 
● Identification of modified and unmodified 

nucleotides in close proximity 
● Any chemical modification detectable 

● Exact chemical modification known 
● Exact modified position known 
● Only native DNA needed after training 

Table 1. Testing-based versus Model-based Modified Nucleotide Detection 
 
We anticipate that this approach, enabled by the software we present, will play an 
important role in microbial, plant, and metazoan genomics, particularly and especially for 
non-model organisms. Many software packages exist14, 15 to assemble complete 
genomes from nanopore data, and hence genome sequence and epigenetic 
modifications can be simultaneously obtained in a single assay without prior knowledge 
of the collection of extant epigenetic marks in an organism. Further, we point to future 
work, where coupling to mass spectrometry and NMR may provide a complete parts list 
of endogenous DNA modifications in any system. The implications of this technology are 
clear and wide reaching for cancer genomics, population genetics, studies of epigenetic 
heritability, and the environmental biosciences. 
 
 
Results 
 
Visualization of the raw output of nanopore sequencing  
 
Base-calling in nanopore sequencing currently relies on treating signal as a locally 
stationary process, first involving segmentation into stationary regimes (“events”), and 
then kmer-calling within segments to assign putative kmers16-18. Initial assignments are 
then resolved to individual nucleotide calls by joint analysis of consecutive segments. 
Precision for the initial k-mer calls is relatively poor, and is improved upon reconciliation 
of neighboring regions. Individual “1D” nucleotide calls show 83.9-89.6% identity in 
genomic alignments for single molecule reads (Table 2), facilitating both de novo 
genome assembly15, 19, 20 and the processing presented here. 
 
We developed the nanoraw software package to precisely associate raw nanopore 
signal with genomic positions (Methods; implemented in the genome_resquiggle 
subcommand) and thus allow genome-browser style visualization of raw nanopore signal 
– a utility so far missing from nanopore software resources. The resolution of raw signal 
with aligned genomic sequence constitutes a robust procedure applicable to current and 
foreseeable subsequent generations of the technology with little to no tuning of 
parameters. The nanoraw software allows the selection of genomic locations via a 
multitude of criterion enabling the visual identification of regions of consistent or 
inconsistent raw signal and, as a result gains insight and intuition into the process of 
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nucleotide assignments. Additionally, nanoraw provides a utility for outputting genome-
wide statistics for groups of corrected reads in standard wiggle format (Supp. Figure 1; 
statistics include q/p-values, difference in signal between groups, read coverage, mean 
signal level, mean signal standard deviation, and mean event length). 
 
Identification of chemically modified nucleotides 
 
We leverage the previously established9, 11-13 strategy comparing native to amplified DNA 
in the context of genome-guided analysis to discover modified nucleotides without a 
priori knowledge of their chemical composition or effect on the nanopore signal. 
 
To demonstrate the feasibility of this approach for three major classes of DNA 
modifications, we constructed a ground truth dataset using seven purified methylases to 
introduce methylation to whole genome amplified E. coli DNA at known target sites 
(Table 2). These methylases catalyze the addition of a methyl group to the DNA to 
produce three distinct methylated bases: 4 methyl-cytosine (4mC; M.BamHI), 5 methyl-
cytosine (5mC; M.HhaI, M.MpeI and M.SssI) and 6 methyl-adenine (6mA; M.TaqI, 
M.EcoRI and M.dam). Each of these samples and two control samples were processed 
by nanopore sequencing (Methods). 
 

Methylase	 Known	
Meth.	Site	

Average	
Depth	

Methylase	
Class	

Motifs	in	
Genome	

Detection	
AUC	

1D	
Accuracy	

TaqI	 TCGA	 22	 6mA	 30914	 0.82	 87.8	
BamHI	 GGATCC	 36	 4mC	 988	 0.84	 87.9	
EcoRI	 GAATTC	 27	 6mA	 1290	 0.88	 87.8	
HhaI	 GCGC	 50	 5mC	 65566	 0.97	 87.3	
MpeI	 CG	 39	 5mC	 693340	 0.62	 86.4	
SssI	 CG	 19	 5mC	 693340	 0.78	 83.9	
dam	 GATC	 33	 6mA	 38240	 0.66	 89.6	

Table 2. Tested methylases with known recognition site (methylated base underlined), 
depth of sequencing, methylation class, and other sample statistics. 
 
Individual reads, corresponding to single molecules, are aligned to a genome using 
extant methods21, 22. We use BWA-MEM for all mappings presented here, but make the 
graphmap algorithm available through nanoraw as an alternative option. We use only 
template (in sequencing) reads in the analysis presented here due to a known shift in 
complement read signal12, likely due to re-annealing of the DNA helix. Nanopore 
technology is likely moving away from 2D read technology, so this does not present any 
issues for future applications. We note that the nanoraw pipeline can easily be applied to 
a genome derived directly from the same nanopore data using established pipelines14 
when analyzing organisms without a reference genome. Nanopore assemblies of E. coli 
have yielded accurate single-contig genomes (99.5% nucleotide identity,23-25). After 
alignment, raw signal is re-segmented using the nanoraw genome_resquiggle command 
to map contiguous raw signal to mapped genomic positions (Methods). Given two  
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Figure 2. Identification of known modifications. A. Detection of three distinct chemical DNA 
modifications (4mC, 5mC and 6mA). Each panel contains the known methylase recognition 
sequence, the discovered sequence motif, the raw genome-anchored nanopore signal at the top 
identified regions (red – methylated reads, black - amplified reads) and distributions of Mann-
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collections of corrected events, one corresponding to native DNA and another to 
amplified, the identification of DNA modifications is reduced to a statistical testing 
problem. This approach contrasts with previous DNA modification identification 
algorithms which model signal shifts and require new training datasets for each 
modification and genomic sequence context9, 12, 13. To identify genomic positions with  
shifted electric current, as compared to an amplified sample, the nanoraw pipeline 
employs the Mann-Whitney U-test26. As modified bases consistently shift the electric 
current at several bases surrounding the modified base (Figure 2A-C, Supp. Figure 2), 
Fisher’s method27 was applied across a moving window to produce final significance 
tests (Methods). Bases admitting statistically significant tests indicated regions with 
modified nucleotide(s). 
 
For each chemical modification (4mC, 5mC and 6mA) nanoraw discovered the known 
sequence specificity of each enzyme based solely on shifted signal levels followed by a 
standard motif discovery pipeline (Figure 2, Supp. Figure 2; figures are immediately 
produced by the nanoraw plot_motif_with_stats command). Dam methylase shows 
expected motif degeneracy5, 28 and comparatively weak specificity. Mann-Whitney p-
value (top of lower panel) and “smoothed” Fisher’s method p-value (bottom panel) 
distributions for the top 1,000 most significant regions containing the known motif (Figure 
2, Supp. Figure 2, lower panel) indicate that globally the highest Fisher’s method 
significance values center on the known modified base. We note that the location of 
nucleotides with shifted signal is specific to the sequence context, as indicated by the U-
test p-values. Borrowing strength across statistical tests at neighboring nucleotides 
(using Fisher’s method) yields a p-value distribution that generally achieves its minimum 
at the modified nucleotide, regardless of the sequence context. Additionally, six out of 
the seven methylases produce a lower AUC when testing either the nucleotide 
immediately up or downstream from the known modification (Table 2), indicating a 
preference for the peak of statistical significance to occur at the modified nucleotide.  
 
Genome-wide, each methylase shows strong preference for the known sequence motif 
with variable levels of accuracy (Figure 2D; area under the curve (AUC) from 0.62 to 
0.97; Table 2). For M.BamHI, the AUC can be improved from 0.84 to 0.93 by including 
the discovered degeneracy at the fourth position of the motif (Figure 2B), indicating 
potential preference for near-cognate sequences. Such star activity may be responsible 
for the reduced fidelity of detection of the known motif for several methylases tested 
here. Statistical power for the detection of modified bases also scales as expected with 
sequencing depth (Supp. Figure 3). Additionally, in vitro methylase activity may be lower 
for some methylases contributing to poorer detectability. 
 

Whiteny U-test and Fisher’s method negative log p-values at each base over the top 1000 most 
significant regions containing the motif. Additional tested methylases are shown in Supp. Figure 3 
B. ROC curves for the seven methylase experiments show a range of capacity to discriminate 
known modification sites (determined by known motif). 
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Endogenous modifications in laboratory strain of E. coli 
 
To simultaneously assess our capacity to identify endogenous modifications along with 
the biological and technical reproducibility of our approach, we applied our modified 
nucleotide detection pipeline to E. coli (strain K-12 MG1655), one of the best-studied 
genetic model organisms, independently in two laboratories (Experiment A: Pennacchio 
Lab, LBNL, USA, and Experiment B: Loman Lab, Univ. Birmingham, UK). Due to 
inclusion of two additional bacterial samples the coverage of the E. coli genome from 
experiment B samples was substantially lower (8X native and 6X amplified  average 
strand-specific coverage) than the experiment A samples (98X native and 13X amplified  
average strand-specific coverage). In both experiments the expected29, 30 modifications 
catalyzed by M.dam (6mA) and M.dcm (5mC) were identified as the strongest de novo 
identified motifs (Figure 3A-B and Supp. Figure 4) and ubiquitously throughout the 
genome with similar specificity to in vitro methylation experiments (Figure 3C); 
Experiment A detects the M.dam and M.dcm targeted modifications with 0.85 and 0.93 
AUC and experiment B with 0.73 and 0.90 AUC. 
 
In experiments A and B respectively, 97% and 88% of the top 1000 most significant sites 
are attributable to the known M.dam or M.dcm sequence motifs (Supp. Figure 6 and 7; 
within 2 base pairs).  Indeed the top of the rank lists from the two experiments is greatly 
enriched for overlap; the very top of the rank lists are enriched 200 fold over random 
detection (Supp. Figure 8A). To assess the biological versus technical variability we 
down-sampled reads from experiment A and found that correspondence between 
pseudo-down-samples is approximately equal to the correspondence between equal 
depth samples from two experiments. We find that depth of sequencing is the driving 
factor for reproducibility in our study. Fraction of overlap between the top 1% of sites 
scales with coverage showing increased power to detect known motifs out to greater 
than 15X coverage (Supp. Figure 9). When only sites with greater than 11X coverage 
are considered we observe greater than 32% overlap between the two experiments 
within the top 1% (Supp. Figure 8). An extended discussion of factors affecting 
reproducibility of identification of DNA modifications can be found in the supplemental 
text. 
 
Modification Clustering 
 
To discover relative signatures of modifications, we employed an unsupervised 
dimension reduction approach. For each identified (statistically significant) genomic 
position, we computed the difference between the native and amplified signal at each 
nucleotide within a window two bases up- and down-stream. This provides a signal shift 
signature for each modification/context (Methods). These signatures are compared using 
Euclidian distance (at allowed offsets up to 2 bases) and projected to 2-dimensions 
using Multidimensional Scaling (MDS) for visualization (Figure 3D). The two dominant 
clusters correspond the known 4mC and the 5mC methylases. Other sites contain the 
potential for modifications of unknown origin as well as potential false positives. Hence,  
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Figure 3. Identification of Native DNA Modifications. A,B. Two major classes of 
modifications found in native E. coli (dcm and dam methylase). Panels are as in Figure 2A. C. 
ROC curves for native modified bases as in Figure 2B. D. Clustering of individual modified 
locations based solely on raw genome-anchored signal (raw versus amplified). Color indicates 
motif the region matches. 
 
unsurprisingly, the vast majority of epigenetic modifications in E. coli are of known origin, 
and our pipeline detects them and provides a clustering that segregates the underlying 
modification. This analysis demonstrates that the raw signal can be used to visualize, 
cluster, and detect distinct DNA modifications genome-wide. 
 
A note on signal normalization 
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In addition to resolving raw signal with a genomic alignment and appropriate statistical 
testing, raw signal normalization is key to the accurate identification of modified bases. 
Most current nanopore base calling and methylation detection algorithms 12, 13, 16-18 utilize 
picoamp (pA) values produced by normalization of the raw 16-bit data acquisition (DAC) 
values. This normalization occurs in steps, first taking the mean of DAC values over 
detected events, followed by application of instrument-derived parameters (offset, range 
and digitization) to produce raw pA estimates. These raw pA estimates contain 
systematic shifts in signal over each read (Supp. Figure 10). These values are then 
corrected by fitting of k-mer dependent shift and scale parameters 12. This fitting 
procedure requires that the read be basecalled such that a k-mer is assigned to each 
estimated event as well as a lookup table of standard k-mer current levels derived from 
many runs on the same nanopore chemistry. All normalization procedures (DAC, raw 
pA, pA and median) are made available in the nanoraw package. 
 
To discover modification directly from raw signal, we apply median normalization 
(Methods) based solely on the raw DAC signal values (without use of segmentation, 
called bases or instrument-derived drift parameters). Despite the relative simplicity of the 
median normalization technique we see that both both pA and the far more 
straightforward median normalized signal explain 76% of variance for 4-mers (Supp. 
Figure 10; similarly for 6-mer we see 77% and 76% of explained variance for pA and 
median normalizations respectively). Note that the fraction of explained variance is 
invariant to scale, thus allowing comparison of normalizations on drastically different 
scales. We propose that median signal normalization constitutes a useful raw signal 
normalization method without the need for basecalling or the a prior generation of k-mer-
level lookup tables, and that fraction of variance explained by k-mers constitutes a useful 
metric for the assessment of signal normalization procedures. 
 
Discussion 
 
The methodology presented here allows for the identification of DNA modifications using 
raw nanopore data and statistical analysis without external or additional training data. At 
present, we require repeated observations of modifications at any genomic position for 
detection, meaning that individual modified nucleotides need to be consistently present 
at a genomic location in several independent reads, as with most current modified 
nucleotide detection assays (including Illumina-based assays such as bisulfite 
sequencing). Once identified, modeling of consistent signal shifts could conceivably 
generate phased, single-stranded modification maps in individual, single-molecule 
reads. As nanopore median and maximum read lengths continue to increase, these calls 
could be used to phase an epigenome with single-strand resolution. In diploid 
organisms, such as human, this would be a considerable advance over bisulfite 
sequencing and antibody-based approaches, and will likely soon enable the study of 
population epigenetics. 
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Iterating the base-calling procedure to explicitly take into account modifications during 
sequencing, progressively enlarging the chemical vocabulary of a base caller, will, at 
least in part, ameliorate the combinatorial complexity associated with this task. Indeed, 
one of the most obvious applications of nanoraw is the generation of training sets for 
base-calling algorithms that seek to improve the state of the art in this sequencing 
platform. Iteratively refined base-calls may improve resolution and power for the 
detection of modifications. Importantly, nanoraw does not require de novo knowledge of 
modification identity or sequence specificity. Thus training data sets can be produced 
wherein modified and unmodified bases exist within very short distances, as is the case 
in biological samples. Such training sets will likely prove useful to increase the accuracy 
of nanopore sequencing. 
 
In organisms and systems with more diverse DNA modifications, or less sequence 
specificity at modified residues, our clustering approach provides an avenue for the 
systematic discovery of modified nucleotides, even when we do not know the identity of 
the modifications a priori. For instance, one could couple the strategies presented here 
to mass spectrometry (MS) or nuclear magnetic resonance (NMR) to discern specific 
moieties. One approach would be to fragment native DNA and use biotinylated 
oligonucleotide probes to pull down suspect regions of native DNA identified by nanoraw 
e.g. via sonication or the use of restriction enzymes, and then subject the precipitate to 
tandem mass spectrometry. In this way, a complete survey of DNA modifications could 
be derived de novo without the need for antibodies to specific moieties or enzymes. 
Given recent descriptions of the likely importance of 6mA modifications in metazoans, 
and the opportunistic (antibody enabled) nature of such discovers to date, it seems 
unlikely that a complete vocabulary of endogenous DNA modifications exists for complex 
organisms. 
 
As the consistency of raw nanopore signal improves, it may become possible to identify 
modified bases from individual molecules without the need for repeated observations. 
This would open new furrows in exposure biology, where adducts are distributed 
stochastically in the genome due to non-endogenous chemical activities. More than 200 
different types of DNA adduct resulting from exposure to exogenous and endogenous 
DNA binding compounds have been described31. These observations could be 
correlated with patterns of mutation in tumors and cell lineages within tumors to study 
the mechanisms of DNA repair underlying individual and environmentally-induced 
cancer susceptibility. Ultimately, such technologies may enable new diagnostic and 
therapeutic strategies in precision medicine. 
 
Additionally, we acknowledge the enormous power of the human end-user for the 
detection of interesting patterns in complex data. The effective visualization of raw 
nanopore signal in genomic contexts may yield unexpected dividends as biologists 
browse signal-level information in regions containing genes or genomic elements of 
interest. For instance, we anticipate the generation of “ChIP-nano” assays to discover 
patterns of epigenetic marks associated with transcription factor binding sites. Such 
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correspondences seem likely given a recent report that at least 70% of transcription 
factors in Arabidopsis thaliana have differential binding affinities at 5mC sites32.  
 
Lastly, direct RNA sequencing will likely soon be possible on the Oxford Nanopore 
platform, and the approaches we present here may be useful for the study of RNA 
modifications. Combining the strategies presented here with a variety of pull-down 
assays for DNA and RNA has the potential to transform our understanding of the 
molecular codes of life.  
 
 
Methods 
 
DNA Sample Preparation and Nanopore Sequencing  
 
Standard sample preparation including DNA extraction, whole genome amplification and 
nanopore library preparation (all samples presented here are “2D” reads) are described 
in detail in the supplementary methods. In vitro DNA methylation procedures are 
described in full in the supplemental methods. 
 
Resolve Indels Using Raw Nanopore Observations 
 
Raw nanopore signal is processed first by segmentation into “events”, followed by 
assigning bases to those segments and joining of selected neighboring segments. This 
produces estimated base calls that contain errors. Individual reads are then aligned, 
using extant software, to a genome. We then resolve differences between the reads and 
the underlying genome sequence by re-segmenting the raw nanopore signal at genomic 
alignment insertions and deletions. Raw nanopore signal is anchored at stretches of 
alignments without indels. Resolving the segmentation of the raw signal to match the 
known bases constitutes the base algorithm used for all analyses presented in this 
manuscript. The full algorithm description can be found in supplemental methods and is 
implemented and publicly available in the open source python package nanoraw via the 
genome_resquiggle subcommand (pypi.python.org/pypi/nanoraw version 0.4.2; code 
repository github.com/marcus1487/nanoraw; and documentation 
nanoraw.readthedocs.io). 
 
Statistical Testing for the Identification of Modified Nucleotides 
 
With raw nanopore signal assigned to each genomic base, comparison of raw signal 
levels between two samples is reduced to a testing problem. In order to test the 
difference between two samples the mean signal for each read at a genomic base are 
computed. We propose the Mann-Whitney U-test26 to test for differences in median 
signal intensity between two samples of interest. A robust order statistic-based approach 
is chosen as signal shifts near modified bases appear consistent, but not necessarily 
large in scale which other tests (e.g. t-test) have increased power to detect. The U-test is 
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applied at every position across the genome with sufficient coverage (at least 5 reads in 
both samples). Since signal is affected at several bases surrounding a modified base, 
Fisher’s method27 for combining p-values is computed on a moving window (of two 
bases up and down stream for all tests in this paper) to produce final p-values. 
 
Signal Level Normalization 
 
Nanopore sequencing is originally recorded as 16-bit integer data acquisition (DAC) 
values measuring the electric current across the nanopore. When the raw nanopore 
signal is converted to events (estimated base locations) Oxford Nanopore Technologies 
converts this integer signal value to an raw picoamp (pA) level via three parameters: 
offset, range and digitization. These pA values are then further corrected for pore and 
time specific drift of current level. This procedure requires a base called reads and a k-
mer current lookup table. These normalization techniques are both implemented in the 
nanoraw package. Thus far, these measurements have been the gold standard for 
downstream analysis of nanopore signal levels. 
 
To investigate and compare alternative normalization methods the following metric is 
proposed: fraction of conditional variance explained by k-mer (here we use 4-mer). We 
apply a median normalization procedure as the default for downstream signal 
processing. For a read with 𝑁 raw signal observations (where 𝑅! is the raw signal level at 
the 𝑖!!  observation) we define the median normalized signal (𝑀! ) as 𝑀! = (𝑅! −
𝑚𝑒𝑑𝑖𝑎𝑛!∈[!,!](𝑅!))/𝑀𝐴𝐷 where 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛!∈[!,!] 𝑅! −𝑚𝑒𝑑𝑖𝑎𝑛!∈[!,!](𝑅!) . All signal 
measurements presented in this manuscript have been median normalized (with the one 
exception for the comparison to pA normalizations). In addition we winsorize the signal 
to clip aberrant spikes at plus and minus five MAD for all normalization types. 
 
Modification Based Sequence Motifs 
 
To identify the sequence preference for the sites identified from a given modified versus 
amplified experiment we first identify the top 1,000 unique genomic locations based on 
computed Fisher’s method p-values. Seven bases of context are included up and 
downstream around each identified location. The meme algorithm33 is then applied to 
these sequences in the ZOOPS model. The top hit based on value is reported. 
 
Clustering 
 
Each region centered on a base with significantly deviated current (based on U-test p-
value) is identified. Each region is identified by the differences between the native and 
amplified signal levels. The distance between each pair of identified regions is computed 
as the minimum Euclidian distance over a 5-vector allowing a shift up or downstream by 
2 bases (as peak significance is not exact). The dimension reduction algorithm MDS is 
applied in order to visualize clustering of the data. This algorithm is available via the 
cluster_most_significant subcommand in nanoraw. 
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De novo Identification of DNA Modifications Enabled by 
Genome-Guided Nanopore Signal Processing 

 

Supplemental Material 
 
 
Supplemental Text 
 
Overlap and reproducibility of identified modifications between replicates 
 
Measuring and quantifying reproducibility of assays which identify modified nucleotides 
is inherently challenging. Unlike many biological assays where the top hits consistently 
show effect sizes much larger than the majority of other sites (such as ChIP-seq), all 
modified sites throughout the genome are essentially equally statistically powered 
(modulo a few factors). This means that if for example 50,000 sites within the E. coli 
genome are truly modified in 100% of tested DNA fragments then these 50,000 will be 
randomly re-ordered in terms of any statistical test from one replicate to the next. 
Additionally, the null distribution contains all other sites in the genome. For the relatively 
small E. coli genome this elicits ~8.5M strand specific tested sites. Under the null 
distribution p-values will randomly distribute even between 0 and 1. Thus by random 
chance, we would expect to see within the E. coli genome at least one non-modified 
base with a p-value as low as 10e-7. As the statistical test for the identification of truly 
modified sites is likely not powered to to this level, the 50,000 truly modified sites will be 
mixed within these randomly identified sites from the null distribution. As shown in the 
main text and Supp. Figures 6 and 8 strand-specific coverage has a strong effect on the 
reproducibility as increased coverage increases the statistical power. 
 
In addition to these factors, methylation is well documented to change with cell growth 
phase34. Given that no attempt was made to synchronize the growth phase in either lab, 
this and other biological effects may contribute to the discovery of modified sites unique 
to one of the two experiments. Using a mixture model approach (Methods) to account for 
differential coverage, we estimate that genome-wide 96% of dam and dcm recognition 
sites are methylated within experiment A data while only 83% of such sites are 
methylated within experiment B (Supp. Figure 7). Globally we estimate 25% of sites 
within experiment A sample show a shift in signal (indicating that they are in close 
proximity to a modified nucleotide) as compared to 7% of sites from experiment B (Supp. 
Figure 7). 
 
Finally, given that the nanoraw MoD-seq pipeline does not have single base precision in 
the current implementation, sites within several bases of a modified base may all obtain 
significant p-values. These sites contribute additionally to a lack of overlapping 
significant sites between two replicates. 
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Supplemental Methods 
 
Experiment Library Preparation (LBNL) 
 
Total genomic DNA from E. coli str. K-12 substr. MG1655 was extracted using 
previously described methods35. In brief, DNA was extracted from approximately 4 x 109 
log-phase cells using the QIAGEN Genomic-tip 20/G according to the manufacturer’s 
instructions (Qiagen, Valencia, California). Whole genome amplification of E. coli total 
genomic DNA was performed using the QIAGEN REPLI-g Single Cell Kit according to 
the manufacturer’s instructions (Qiagen). DNA was quantified using Qubit dsDNA BR 
assay (Life Technologies, Grand Island, New York). 
 
2D sequencing libraries were prepared from native and amplified E. coli DNA according 
to the ONT recommended protocol (SQK-NSK007). In summary, DNA was fragmented 
using a Covaris g-TUBE (Covaris, Ltd., Brighton, United Kingdom). The fragmented DNA 
then underwent DNA damage repair using the FFPE DNA Damage Repair Kit (NEB, 
Ipswich, Massachusetts) and AMPure XP bead clean-up (Beckman Coulter, Brea, 
California). The DNA was end-repaired and A-tailed using the NEBNext Ultra II End Prep 
Kit (NEB). Following AMPure XP bead clean-up, adapters were ligated onto the DNA 
using Blunt/TA Ligase Master Mix (NEB). Libraries underwent a clean-up step using 
MyOne C1 Streptavidin beads (Life Technologies) and were quantified using Qubit 
dsDNA HS assay (Life Technologies). All sequencing runs were performed using R9 
flow cells and MinION Mk1b devices with the standard MinKNOW 48-hour sequencing 
protocol. Metrichor was used to perform basecalling using the 2D Basecalling for FLO-
MIN105 250bps workflow. 
 
Experiment Library Preparation (University of Birmingham) 
 
Total genomic DNA was isolated from three bacterial cell pellets (S. aureus, M. 
smegmatis and E. coli K-12) using the genomic buffer set and 500/G genomic tips 
(Qiagen) following the manufacturer's instructions and mixed in equal amounts. DNA 
was fragmented using a Covaris g-TUBE in a centrifuge at 5000 rpm. Part of the 
material was end-repaired and A-tailed using the NEBNext Ultra II End Prep Kit. 
Following AMPure XP bead clean-up, PCR adapters provided in the SQK-NSK007 kit 
(ONT) were ligated onto the fragments using Blunt/TA Ligase Master Mix (NEB). 10 ng 
of the cleaned-up, adapted fragments were PCR amplified using LongAmp Taq 2x 
Master Mix (NEB) and the primers provided in the SQK-NSK007 kit. Following 18 cycles 
of PCR fragments were cleaned-up and sequencing libraries were prepared for both 
PCR amplified and the native DNA set aside earlier according to the ONT recommended 
protocol (SQK-NSK007) described above. Sequencing runs were performed using R9 
flow cells and MinION Mk1b devices with the standard MinKNOW 48-hour sequencing 
protocol. Metrichor was used to perform basecalling using the 2D Basecalling for FLO-
MIN105 250bps workflow. 
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PCR amplified DNA that underwent methylase treatment were barcoded using the native 
barcoding kit (EXP-NBD002) so multiple treatments could be multiplexed on one 
flowcell. Approximately 200 ng input DNA for each treatment was barcoded and pooled 
according to the 2D Native barcoding genomic DNA protocol. A library was prepared 
from the pooled, barcoded fragments using the SQK-LSK208 kit according according to 
the ONT recommended protocol. Two sequencing runs were performed using R9.4 flow 
cells and MinION Mk1b devices with the standard MinKNOW 48-hour sequencing 
protocol. Metrichor was used to perform basecalling using the 2D Basecalling for FLO-
MIN106 250bps workflow. 
 
Synthetic DNA Modification 
 
DNA methyltransferases were purchased from New England Biolabs and used 
according to the manufacturer's instructions. The exceptions are the M.MpeI (Chrometra, 
Belgium) and M.TaqI, which was expressed and purified by the Protein Expression 
Facility, Birmingham. DNA methylation was performed in vitro by incubating DNA (60 
ng/uL) with 1 uL of methyltransferase and 80uM S-adenosyl-L-methionine in 50 uL of 
aqueous solution containing the appropriate methyltransferase buffer (NEB Cutsmart 
Buffer was used for both the M.MpeI and M.TaqI). Reactions were incubated at 37C for 
1h (60C for 1h for M.TaqI) and then purified directly for sequencing using SPRI magnetic 
beads. 
 
Resolve Indels Using Raw Nanopore Observations 
 
Raw nanopore data produced by the Oxford Nanopore Technologies MinoION device is 
stored as a digital integer value that represent a measure of electric current as DNA 
passed through a nanopore (at a current rate of 4000 observations per second). As DNA 
passes through a nanopore this signal changes as some function of the local base pair 
composition of that DNA molecule. For DNA this function has been resolved with 
considerable accuracy by Oxford Nanopore technologies, but significant errors remain in 
the 1D base calls (between 70%-90% accuracy reported though this depends strongly 
on the version of pore used20, 21, 36). These errors can make it difficult to process or 
interpret the signal associated with a particular position of interest on the genome, as is 
common practice in genomic sciences. Thus a key step to more exact and confident 
interpretation is to resolve base calls made from this raw nanopore signal with a known 
or discovered consensus genome. 
 
In order to address this problem the following algorithm is proposed and implemented in 
the nanoraw software package to assign contiguous segments of raw nanopore signal 
with genomic positions. Starting from the Oxford Nanopore Technologies base calls the 
first step is to align base calls to a provided genome (this genome could even have been 
discovered and assembled de novo from the same run14, 15, 19). Currently, nanoraw 
allows the use of either graphmap21 or BWA-MEM22 long read mapping algorithms, but 
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any long read aligner could be used. All alignments presented in this manuscript were 
completed with the BWA-MEM algorithm. Then stretches of correctly mapped regions 
(including matching and mismatched base pairs) are used to anchor the called nanopore 
segments to genomic bases. Then aligned insertion and deletions (indels) must be 
resolved to assign raw nanopore signal to the assigned genomic bases. We note that 
indels are extended to the smallest non-ambiguous region where a called indel could 
identically be represented by another pairwise alignment. 
 
For insertions into the genome, there are segments of the raw nanopore signal that are 
assigned to base(s) that do not exist in the genome. When such a region is encountered 
the region is extended out to the neighboring segments and one new segment is 
determined from the raw signal (using the process described below). Conversely for 
deletions there are genomic bases that have no assigned signal. The region defined by 
events surrounding these deleted base calls are identified and the number of deleted 
base pairs plus one (for the two correctly aligned neighboring bases) segments are then 
identified from the raw signal in this region. 
 
For both insertions and deletions the final stage is to identify a specified number of new 
segments within a stretch of raw signal. In order to accomplish this the running 
difference between the mean signals of neighboring regions (currently using 4 
observation windows) are computed. The site within the region of interest with the 
largest difference in signal level is called as the first segment. Then the next highest 
peak site is chosen unless it is within four observations of a previously added 
segmentation site. This process is repeated until the requested number of segments is 
identified. It is possible that the requested number of segments cannot be identified, and 
in this case the neighboring correctly called segments are included into the region of 
interest and the processes is repeated to identify two more segments from the expanded 
region. If extending this indel region intersects another indel these two indel regions are 
merged and re-segmented together. For all reads presented in this manuscript if a read 
requires the re-segmentation of greater than 100 contiguous bases it is excluded from 
further analysis. 
 
This algorithm is implemented in the genome_resquiggle subcommand of the nanoraw 
software package. 
 
Identify Regions of Interest 
 
In addition to the Mann-Whitney U-test, the t-test is a supported test in the nanoraw 
software for convenience though we found better identification of known methylated site 
with the robust Mann-Whitney U-test. Additional regions of interest that are query-able 
by the nanoraw software are regions of maximal coverage, regions centered on a k-mer 
of interest (e.g. homopolymers have proven to be difficult to process in nanopore data16, 

37), and regions with the largest raw difference in signal means between two groups of 
samples. The genomic sequence at the most significant regions of interest are also 
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available directly in fasta format via the write_most_significant_fasta subcommand and 
standard wiggle files are produced by the write_wiggles subcommand for genome-wide 
investigation. This collection of region identification tools gives the nanopore investigator 
incredible power to interpret and further develop the potential for this technology. 
 
Filter to identify reads with most consistent and biologically relevant signal 
 
In order to remove reads that appear to be of low quality we have developed a filter 
based on the number of observations per base (event). Given the resolution of the raw 
signal to the genomic alignment, we have much more accurate picture of how many 
observations are made per genomic base. Bases that contain many more observations 
indicate a “stuck” base. Sometimes this may be of biological interest, but signal level 
variance analysis indicate that the majority of reads with many “stuck” bases do not 
provide signal levels matching the trends for reads that pass through the pore at a 
consistently fast rate. We recommend a filter to remove any reads with greater than 
5,000 observations at a single base or greater than 200 observations in more than 1% of 
the bases within a read and this filter is applied to all analyses presented in this paper. 
 
Mixture Model Percent Modified Bases Estimation 
 
In order to estimate the fraction of positions with signal affected by a DNA modification 
we employ a mixture model implemented in the R package fdrtools38, 39. This model 
attempts model a distribution of p-values with a uniform component (which represents 
the false tests) and a monotonically increasing component (representing the true positive 
tests). Here we report one minus the estimated fraction composed within the null 
(uniform) component as the fraction of sites affected by modified bases. 
 
 
Supplemental Figures 
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Supplemental Figure 1. Example of corrected region of signal process is depicted. In 
the Upper panel segments on the top are estimated basecalls, segments on the bottom 
are genomic bases from a pairwise alignment and the signal through the graph is the 
median normalized raw nanopore signal (observed at 4kHz). Base call segments (top) 
marked in red indicate inserte bases, genomic segments (bottom) in red indicate deleted 
bases and called bases marked in red indicate mismatches. The lower panel shows the 
moving window of differences between neighboring windows of 4 observations. This 
measure is used to identify new segments. 
 

 
Supplemental Figure 2. Example genome browser locus showing statistics for 
methylated and un-methylated genome resolved nanopore data. Showing (from top to 
bottom; second set of tracks are reverse strand) q-value, p-value, difference in signal 
between groups, mean signal from group 1 (un-methylated), and mean signal from 
group 2 (methylated). Not shown are coverage, mean signal standard deviation, and 
mean event length. 
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Supplemental Figure 3. Additional known methylase signal plots (as in Figure 3). Red 
boxes indicate known methylation site. 
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Supplemental Figure 4. Distribution of p-values at given thresholds of minimum 
(between native and amplified) coverage at a site. Experiment A used for this analysis. 
 

 
Supplemental Figure 5. Examples for two major classes of modifications from lower 
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coverage data from experiment B as well as negative log U-test and Fishers p-value 
distributions for 1,000 most significant sites within the known motif (as in Figure 4A). 
Arrows indicate known methylation site. 
 

 
Supplemental Figure 6. Density of sites showing correspondence between two 
experiments across rank lists (by p-value). Right panel is zoomed in to the top 1% of 
both lists. Lower panel shows the same correspondence restricted to sites with greater 
than 7X coverage (as opposed to 5X). 
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Supplemental Figure 7. P-value distributions for experiment A (left) and B (right) across 
both regions that contain either dam or dcm motif and those regions that do not contain 
a motif. 
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Supplemental Figure 8. Comparison of modified bases identified by entirely 
independent processing pipelines including labs, technicians and sources. Moving down 
the rank list from both experiments (x axis) the enrichment over random (left panel) and 
percentage of overlap (right panel) is computed (y axis). Different lines indicate the 
minimal coverage filter applied to test each base across all four sequencing experiments 
(native and amplified from both experiments). 
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Supplemental Figure 9. Relationship between statistical power (depth of coverage) and 
fraction of identified sites with known motifs in native E. coli samples over range of 
down-sampling to achieve different levels of strand-specific coverage (x-axis). 
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Supplemental Figure 10. Oxford Nanopore Technologies raw pA normalization (A), 
corrected pA normalization (B) and median normalization (C). For each figure, left to 
right are 4-mers (from bottom to top position: one base already passed through the pore, 
the base at the center of the pore and two bases that have not yet passed though) 
ordered by mean signal across all reads. Each line represents the mean signal of one 
read across all 4-mers. 
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