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Motivation: The identification of heterogeneities in cell populations by utilizing single-cell tech-
nologies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees.
Several methods have been proposed for such inference from high-dimensional single-cell data. They
typically assign each cell to a branch in a differentiation trajectory. However, they commonly assume
specific geometries such as tree-like developmental hierarchies and lack statistically sound methods
to decide on the number of branching events.
Results: We present K-Branches, a solution to the above problem by locally fitting half-lines to
single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies
for branches in the differentiation trajectory of cells. We propose a modified version of the GAP
statistic for model selection, in order to decide on the number of lines that best describe the data
locally. In this manner, we identify the location and number of subgroups of cells that are associ-
ated with branching events and full differentiation, respectively. We evaluate the performance of
our method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during
hematopoiesis, single-cell qPCR data of mouse blastocyst development and artificial data.
Availability: An R implementation of K-Branches is freely available at https://github.com/

theislab/kbranches

Contact: fabian.theis@helmholtz-muenchen.de

I. INTRODUCTION

Recent advances in single-cell technologies have lead
to the discovery and characterization of novel cell types
in multicellular organisms. Studying diverse cell popu-
lations that differ in morphology and function can pin-
point distinct cell types in different stages of regulatory
processes, such as cellular development. For example,
single-cell methods have lead to new discoveries related
to hematopoietic stem cells [1, 2], as well as the immune
system [3–5].

The development of novel computational techniques
for the analysis of single-cell data is an active research
topic in the field of bioinformatics [6–8]. The key idea is
that individual cells can be mapped from a high dimen-
sional space to a low-dimensional manifold of trajecto-
ries that reflect the continuous regulatory processes. As
a result, a number of methods have been proposed that
can reconstruct differentiation trajectories, given snap-
shot data of individual cells in different stages of the
differentiation process, such as Monocle [9], Wishbone
[10], Diffusion Pseudotime [11] and SLICER [12]. Given
a ”root” cell as a starting point, most of these methods
can also calculate an ordering of the cells (pseudotime)
based on the stage each cell is in the differentiation pro-
cess. However, with the exception of Diffusion Pseudo-
time, while these methods are successful in assigning cells
to discrete differentiation trajectories (branches) they do
not tackle the problem of identifying the local dimension-
ality around each cell. That is, identifying branching re-
gions of cells not yet strongly associated to any branch,
intermediate regions along a branch and tip regions of
fully differentiated cells. Moreover, all the above methods

lack a sound statistical model to identify the existence
and number of cell subgroups associated to branching
events.

In this study, we propose a data driven, model-based
clustering method that identifies the exact number of
”branching regions”, as well as the exact number of
fully differentiated ”tip regions” in the lineage tree. The
method then proceeds to assign each cell to a branching,
intermediate or tip region. The proposed methodology
does not aim to infer a pseudotemporal ordering of the
cells and as such no ”root” cell needs to be defined. More-
over, since characterization of each cell is based on local
information in the differentiation trajectory, the method
can successfully identify cells belonging to the aforemen-
tioned regions of interest in trajectories of arbitrary ge-
ometry.

II. METHODS

A. Problem formulation

Given a center c and direction v, a halfline L is de-
fined as the set of points satisfying L = {c + t · v, t ≥
0}, with l, c,v ∈ RP . We aim to find K halflines
L1, ..., LK with a common center c and K distinct di-
rection vectors v1, ...,vK . In this case, each halfline Lk

corresponds one cluster Ck. As a prerequisite to defin-
ing a cost function, note that the Euclidean distance of
a given point x to a halfline Lk reads:

d(x, Lk) =

{ ∣∣∣∣∣∣(I − vkv
T
k

vT
k vk

)
(x− c)

∣∣∣∣∣∣ , if (x− c)T · vk ≥ 0

‖x− c‖, if (x− c)T · vk < 0
.

(1)
Additionally, one may also use other distance metrics
[13].
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The clustering method aims to assign each of the given
data points (cells) into its closest halfline, while minimiz-
ing the total cost. In other words, the goal is to identify
the center c, as well as the direction vectors v1, ...,vK of
unit length that minimize the overall clustering cost. To
this end, we define the cost function J to describe the
total dispersion, which corresponds to the sum of disper-
sions over the K clusters and reads:

J =
K∑

k=1

∑
xi∈Ck

d(xi, Lk)2

=
K∑

k=1

 ∑
xi∈C−

k

‖xi − c‖2

+
∑

xi∈C+
k

∣∣∣∣∣∣∣∣(I − vkv
T
k

vT
k vk

)
(xi − c)

∣∣∣∣∣∣∣∣2
 ,

(2)

where Ck = C−k ∪C
+
k corresponds to all elements in clus-

ter k and C−k , C+
k correspond to the sets of elements in

cluster k with negative and positive dot product to to all
vectors in the direction of Lk, respectively.

Algorithm 1 K-Branches clustering

1: Inputs: K: number of clusters, x1, ...,xN : data points
2: Random initialization of c,v1, ...,vK

3: for n in 1:N do . N: number of all data points
4: assign xn to nearest Lk, according to eq. (1)
5: end for
6: repeat
7: update the center c . according to eq. (5)
8: update the direction vectors v1, ...,vK . according to

eq. (6)
9: for n in 1:N do

10: assign xn to nearest Lk, according to eq. (1)
11: end for
12: until no change in cluster assignments

Algorithm 2 K-Branches clustering, medoid version

1: Inputs: K: number of clusters, x1, ...,xN : data points
2: Define: M = {ic, iv1 , ..., ivK} . medoid indices
⊆ {1, ..., N}

3: Random initialization of {ic, iv1 , ..., ivK} . to random
indices

4: for n in 1:N do . N: number of all data points
5: assign xn to nearest Lk, according to eq. (1)
6: end for
7: while total cost J decreases do . Repeat until

convergence
8: ic ← argmini/∈M (J(c = xi)) . update the center
9: for k in 1:K do . iterate over K directions

10: ivk ← argmini/∈M (J(vk = xi)) . update the
directions

11: end for
12: for n in 1:N do
13: assign xn to nearest Lk, according to eq. (1)
14: end for
15: end while

1. The K-Branches clustering method

In order to calculate the model parameters, after ran-
dom initialization we follow an EM-like iterative op-
timization procedure similar to that of K-Means [14].
Namely, we iteratively (1) assign data points to their
closest cluster and (2) update the estimates of c and
v1, ...,vK while minimizing J in each step, until con-
vergence. Since the method might converge to a local
optimum of the cost function, multiple executions us-
ing different initializations have to be carried out. The
method is randomly initialized by assigning one random
data point as the center c and K other random data
points as the direction vectors v1, ...,vK . In the follow-
ing subsections we present the update equations for the
center and directions, respectively.

2. Estimating the center of the halflines

First, we optimize the cost function J with respect
to the center of the halflines c. Therefore, we have to
calculate the gradient ∇cJ , as follows:

∇cJ = 2
K∑

k=1

 ∑
xi∈C−

k

(c− xi) +
∑

xi∈C+
k

Ak
T (c− xi)

 ,

(3)
where the matrix Ak is defined as:

Ak =

(
I − vkv

T
k

vT
k vk

)T

·
(
I − vkv

T
k

vT
k vk

)
, (4)

with vT
k vk = 1.

The equation ∇cJ = 0 can be solved in closed form,
and the optimal c reads:

copt =

 K∑
k=1

 ∑
xi∈C−

k

xT
i +

∑
xi∈C+

k

xT
i Ak


·

(
K∑

k=1

(
|C−k |I + |C+

k |Ak

))−1
,

(5)

where |C±k | refers to the size of the set C±k . In the
case K = 1 the right part of Equation (5) simplifies to
(|C−k |I+ |C+

k |A1)−1, which is not full rank and therefore

not invertible when |C−k | = 0. While the method for lo-
cal clustering introduced in a subsequent section is also
performed with K = 1, it uses a fixed center c, rendering
the above limitation irrelevant.

3. Estimating the directions of the halflines

The direction vector vk for each of the K halflines (clus-
ters) is updated according to Equation (6) as the average
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(A) Original data (B) K-Branches clustering (C) K-Means clustering

FIG. 1. Illustration of K-Branches clustering on artificial data and comparison to K-Means. (A) Original data (B) In the case
artificial data, K-Branches successfully clusters the three halflines. The center of the halflines as well as the lines corresponding
to the direction of each cluster are plotted on top of the data points. The medoids version yields almost identical results for
the same data. (C) Unlike K-Branches, K-Means (also with K = 3) merges part of the green halfline into the blue cluster.
Since K-Means clusters points in spherical clusters, it is clearly not suitable for clustering data points which belong to distinct
differentiation trajectories.

tip (K=1)

intermediate (K=2)

branching (K=3)

B1T1

T2

T3
(A) (B)

FIG. 2. Illustration of local clustering for region identification. (A) Each cell is used as the center of the halflines and local
clustering is performed in its neighbourhood. Then, by using model selection the center cell is either characterized as a tip cell,
a cell belonging to an intermediate region or a cell belonging to a branching region depending on which of the three models
(K = 1, 2, or 3) best describes the structure of the neighbourhood. (B) After local clustering is performed on the dataset,
cells belonging to three tips (T1, T2, T3) and one branching region (B1) have been identified, while the rest of the cells are
considered to belong to intermediate regions. The exact number of tip and branching regions is inferred from the data and
does not need to be specified by the user.

direction of all samples belonging to cluster k, with re-
spect to the center of all halflines c and can subsequently
be normalized to unit length.

vk =
1∣∣∣∣∑

xi∈Ck
(xi − c)

∣∣∣∣ ∑
xi∈Ck

(xi − c). (6)

The pseudocode for the K-Branches algorithm is pre-
sented in Algorithm 1, while a comparison between K-
Branches and K-Means is illustrated in Figure 1.

4. Medoid version of K-Branches

As in K-Means, the K-Branches method described
above determines a ”centroid” Lk(c,vk) per cluster,
which depends on arbitrary vectors c,vk ∈ RP . We can
easily modify this to use data points, as in K-Medoids
([15]; [14]). The goal of the Medoid version of K-Branches
is to identify one data point as the center medoid xc

and K data points as the direction medoids xv1, ...,xvK .
That is, the model parameters now correspond to K + 1

data points, instead of K + 1 points in RP , where P
the number of dimensions. Similar to K-Medoids, the
proposed algorithm searches over all data points dur-
ing each iteration in a greedy manner and identifies the
data points that minimize the cost function J given by
Equation (2). All medoids are reassigned during each
iteration of the algorithm, until a local minimum for J
is reached and the total clustering cost cannot be fur-
ther decreased. At this point, the algorithm converges
to a solution where one of the data points is the cen-
ter medoid xc of the halflines and K data points corre-
spond to the direction medoids xv1, ...,xvK . The rela-
tionship between the original and the medoid version is
similar to that of K-Means and K-Medoids. That is, the
medoid version is more robust in selecting the center of
the halflines with respect to non-global optima and usu-
ally even only one random initialization is sufficient in
practice. In the original algorithm, calculating the pa-
rameters c,v1, ...,vK requires time proportional to the
number of data points O(N). A speedup of the medoid
version is possible by computing the distance matrix D
only once, where Dij = ||xi − xj ||. Then, the distance
of a data point xi to a halfline L(xc,xv − xc) can be
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FIG. 3. The original, as well as the modified versions of the GAP statistic are necessary for the identification of regions of
interest in single-cell differentiation trajectories. All error bars in the plot correspond to 95% confidence intervals generated
using 100 bootstrap data sets and overlaps of GAP statistics between different values of K are highlighted. Different y-axes are
used since unlike the modified version, the original GAP statistic is calculated in log scale. (A) A local neighbourhood which
belongs to a branch tip, where the center of the halflines is fixed at the edge (red X) and its corresponding GAP statistics
in (D). (B) A local neighbourhood corresponding to an intermediate region is modelled by the same dataset, by moving the
fixed center in the middle (red X) and its corresponding GAP statistics in (E): the overlap for GAP between K = 2 and

K = 3 indicates it would lead to false identification of intermediate cells as branching cells (note: values of G̃AP for K = 1 are
very low and do not overlap with values for K = 2, 3). (C) Dataset showing a branching region and it’s corresponding GAP

statistics in (F): the overlap for G̃AP between K = 2 and K = 3 indicates it would lead to false identification of tip cells as
branching cells. These results indicate that GAP should be used first, to separate tip region cells from the rest (intermediate

and branching). Subsequently, G̃AP should be used to separate intermediate from branchign region cells.

computed in O(1) time from Equation (7). However, for
every one of the N − (K + 1) candidate medoids, the
distance to every other data point is taken into consider-
ation to calculate the overall clustering cost. As a result,
O(N2) time is required to update the medoids during
every iteration.

d(xi, L(xc,xv − xc)) = D2
ic −

D2
ic + D2

cv −D2
iv

2Dcv
. (7)

To summarize, in cases where robustness in the identi-
fication of the center of the halflines is crucial, the medoid
version might be preferable. In applications where robust
identification of the center of the halflines is not as cru-
cial, especially in larger datasets, the original version of
the algorithm could be preferable. Last, in cases where
the center of the halflines is known (or held fixed), such
as the case of local clustering presented later in the meth-
ods section, there is no advantage to using the medoid
over the original version, since both are equally robust in
identifying the directions of the halflines.

B. Identifying branching and tip regions through
local clustering

1. Local clustering

In this section we derive a method for the identifica-
tion of ”regions of interest” in single-cell data, in par-
ticular, the identification of branching regions and tips
of branches in lineage trees of differentiating single cells.
The main idea is to center the previous model on each
data point and adopt a local perspective by examining
only the neighbourhood of S nearest neighbours to the
center. We will show that by fixing the center of the
halflines on a given data point and fitting the previous
model of K halflines using a neighbourhood size of S data
points, one can infer whether the center data point itself
belongs to branching, intermediate or tip region, through
appropriate model selection.

2. Selection of the neighbourhood size S

The proposed method utilizes a number of S near-
est neighbours to extract the neighbourhood of the cen-
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ter data point that is being examined. The size of the
neighbourhood must be sufficiently large to reflect the
local structure of the data, without capturing irrelevant
global information. The proposed method is able to au-
tomatically suggest a value for S using a threshold on

δ = 1
N

∑N
i=1

∑
j 6=i ‖xi−xj‖2, which ensures that the av-

erage cumulative squared distance δ of each data point
to all other data points in the dataset is kept at a con-
stant value. Moreover, the accompanying software pack-
age provides the option of visualization and manual fine
tuning of S through a graphical user interface.

3. Neighbourhood scaling

Another challenging aspect is related to datasets show-
ing strong variation in the density of data points along
the differentiation trajectories. For example, in the
dataset of [16], there are sparse and dense regions. Vari-
ability of data point density might reflect an artifact of
the data acquisition process, or could be a result of the
underlying biological system. In the datasets examined
so far, regions of very low density do not pose a threat to
the performance of the method, since efficient selection
of S will expand the neighbourhood size accordingly. On
the other hand, the fixed number of S neighbours may
drastically shrink the size of the neighbourhood in regions
of very high density. To compensate for this effect, an
appropriate heuristic rule was implemented. To be pre-
cise, for a given number of S neighbours, we calculate the
median neighbourhood radius ρ over all neighbourhoods
of size S. The neighbourhood scaling scheme is as fol-
lows: prior to performing local clustering for the i-th data
point, its neighbourhood radius ρ (which corresponds to
its distance to the furthest point in the neighbourhood)
is calculated and the condition ρi ≥ ρ is assessed. If it
is true, clustering is performed as usual. Otherwise, the
neighbourhood size (S) of the i-th data point is increased
until ρi ≥ ρ holds.

4. Local model selection

The goal is to infer whether each data point belongs
to a tip, intermediate or branching region of a differ-
entiation trajectory, based on local clustering. That is,
using a given data point as the fixed center c of the
halflines, three different models are fit using K= 1, 2
and 3 halflines. The aim of the model selection step in
the problem at hand is to identify the clustering model,
i.e. the value of K, that best fits the data of the local
neighbourhood centered around the data point in ques-
tion. If one halfline best fits the neighbourhood, then
the central data point belongs to a branch tip. If two
halflines provide the best fit, then the central data point
belongs to an intermediate region. If three halflines best
fit the local neighbourhood, then the central data point
belongs to a branching region. The concept of identify-

ing regions of interest through model selection and local
clustering is presented in Figure 2.

The GAP statistic [17] is a popular method for iden-
tifying the number of clusters that best fit some given
data. It depends on the sum of pairwise distances of
points in each cluster. If the Euclidean distance is used
as the distance measure, it corresponds to the dispersion
around the cluster means (clustering cost). The GAP
statistic compares the decrease in the clustering cost of
the original data with the decrease in clustering cost of
data drawn from a null distribution where no natural
cluster structure exists. In theory, the dispersion in the
data sampled from the null distribution decreases mono-
tonically as K increases, while the dispersion in the orig-
inal data drops rapidly for the value of K that best fits
the dataset. Thus, the GAP statistic is maximized when
the best value of K is used for clustering.

In the case of local K-Branches clustering, we introduce
a modification of the GAP statistic that calculates the
dispersion around halflines, as follows:

W̃K =
K∑

k=1

∑
xi∈Ck

d(xi, Lk)2, (8)

where d(xn, Lk) is given by equation (1). Moreover, in
contrast to the original GAP we do not take the log-
arithm of the dispersion, since it has been reported to
overestimate the number of clusters in some cases [18].
Finally, the modified GAP statistic is given by:

G̃APK =
1

B

B∑
b=1

W̃ ∗K,b − W̃k. (9)

The dispersions W̃ ∗K,b are calculated by applying eq. (8)
after performing clustering on each of the b = 1, ..., B
bootstrap datasets (of the same size as the original
dataset) drawn from the null reference distribution.

To summarize, given a data point as the center of
the halflines, local clustering is performed. Then, if
GAPK=1 > GAPK=3, it belongs to a branch tip. Oth-
erwise, if the data point does not belong to a tip and

G̃APK=2 ≥ G̃APK=3 holds, it belongs to an intermedi-
ate region. Finally, if the data point does not belong to a

tip and G̃APK=2 < G̃APK=3, it belongs to a branching
region. Both the original and modified versions of the
GAP statistic are necessary for model selection and are
complementary to each other. That is, GAP can identify
tip cells but is not suitable for separating intermediate
from branching cells (Figure 3-E). On the other hand,

G̃AP can separate intermediate and branching cells, but
it not suitable for identifying tip cells, since it would
falsely identify a large number of tip cells as branching
cells (Figure 3-F). The performance comparison of the
different GAP statistics is illustrated in Figure 3. As a
final step, after all data points have been assigned to tip,
intermediate and branching regions, K-Means clustering
is performed on the subset of the data belonging to tips,
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using the original GAP statistic for model selection. In
this manner, the exact number of tips is identified and
each data point that has been characterized as belonging
to a tip region is uniquely assigned to a specific tip. The
same process is applied to cells belonging in branching
regions in order to identify the exact number of branch-
ing events and assign ”branching region” cells to their
corresponding branching event.

5. Dimension reduction precedes model selection

In this section we focus on the selection of the null ref-
erence distribution. Uniform sampling of features over a
box aligned with the principal components of the data
is suggested in [17]. Alternatively, uniform sampling
over the range of every feature in the original dimen-
sions of the data is suggested for simplicity. While the
K-Branches clustering method performs well in the orig-
inal space, model selection does not. This follows from
the ”curse of dimensionality” [14], since it becomes ex-
ponentially hard to estimate the null distribution in high
dimensions. As a result, dimensionality reduction is a
necessity if model selection is to be performed. Diffu-
sion maps [19] are a non-linear dimensionality reduction
method which are known to successfully identify differ-
entiation trajectories [20], outperforming traditional di-
mensionality reduction methods such as principal com-
ponent analysis (PCA) [14]. As a result, the data set is
first processed by diffusion maps and the first few diffu-
sion components (DCs) are selected. Then, local clus-
tering is performed for each data point in the space of
the selected DCs. Finally, the reference distribution is
calculated by uniform sampling over a box aligned with
the same DCs, resulting in the computation of the GAP

and G̃AP statistics used for model selection.

III. RESULTS

A. Datasets

The proposed method is evaluated using two publicly
available datasets, as well as one synthetic dataset. The
first dataset corresponds to single-cell RNA-seq data de-
scribing the differentiation of myeloid progenitors during
hematopoiesis ([2]; Accession Number GSE72857) and
consists of measurements of 2730 cells and 8716 genes.
The second dataset consists of single-cell qPCR data
related to mouse blastocyst development ([16]; Acces-
sion Number J:140465) and includes measurements of
429 cells and 48 genes. Finally, the third dataset is an
artificial dataset used as proof of concept and includes
measurements of 2 synthetic genes and 244 cells that dif-
ferentiate into three branches but the differentiation pro-
cess includes a loop. Such a dataset could for example
correspond to cellular reprogramming, or cells exiting the
cell cycle, as also suggested by [12].

B. Comparison to other methods

The purpose of local K-Branches is to identify branch-
ing and tip regions, while current popular methods assign
cells to distinct branches. Local K-Branches is compared
to Diffusion Pseudotime (DPT) [11] which in addition
to assigning cells to distinct branches, also identifies tip
cells and undecided cells in branching regions. One dif-
ference between DPT and the proposed method is that
DPT only identifies one cell of each branch as the tip,
while the proposed method typically identifies a region
of tip cells. Monocle [9] and SLICER [12] are also in-
directly compared to the proposed method, in terms of
estimating correct branching in the data. The results of
applying all methods on the above datasets are presented
in Figure 4.

The comparison to a DPT analysis was performed as
follows: First, DPT was applied to each dataset and the
cells corresponding to the tips of the branches, as well as
the undecided cells corresponding to branching regions
were identified. To ensure that the comparison is as
direct as possible the same diffusion components com-
puted by diffusion map during DPT analysis were ex-
tracted. Subsequently, local K-Branches clustering was
performed on exactly the same diffusion components and
cells were assigned to either fully differentiated tip, in-
termediate and branching regions. It should be noted
that while DPT uses all available diffusion components,
local K-Branches is only performed on the first two or
three components, depending on the morphology of the
dataset.

1. Single-cell RNA-Seq data of myeloid progenitors

When applied to the first two diffusion components
of the single-cell RNA-Seq dataset of [2], the proposed
method identifies three branch tips of fully differentiated
cells, as well as one branching region. The results of Dif-
fusion Pseudotime on the same data agree with the find-
ings of the proposed method. Two of the three tips iden-
tified by DPT are in the tip regions of local K-Branches,
while the third tip of DPT is not inside but in the vicin-
ity of the local K-Branches tip region. When compar-
ing the branching region, the undecided cells of DPT
are either inside or in close proximity to the branching
region identified by local K-Branches. However, consid-
erably fewer cells are considered as undecided by DPT.
Finally, Monocle overestimates, while SLICER underes-
timates the overall branching. The regions identified by
K-Branches are illustrated with respect to FACS labels
in Figure 5.
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single-cell qPCR data

(C) local K-Branches on
artificial data
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(D) DPT on single-cell RNA-Seq data (E) DPT on single-cell qPCR data (F) DPT on artificial data
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(G) Monocle on single-cell RNA-Seq data (H) Monocle on single-cell qPCR data (I) Monocle on artificial data
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FIG. 4. Local K-Branches successfully identifies regions of interest in single-cell data. Green, black and red points indicate cells
belonging to tip (marked as T), intermediate and branching (marked as B) regions, respectively. In (G-L) the same diffusion
components are used for visualization purposes only. (A) Local K-Branches identifies three tip regions and one branching region
in single-cell RNA-Seq data [2]. (D) Diffusion Pseudotime yields similar results when applied on the same data. (B) Local
K-Branches identifies four branch tips and two branching regions corresponding to two separate branching events in single-cell
qPCR data [16]. (E) Once again, the results of Diffusion Pseudotime support the regions identified by K-Branches on the same
data. (C) K-Branches successfully identifies three branch tips and three branching regions in artificial data, despite the loop
between the branches. (F) Diffusion Pseudotime identifies the branch tips but fails to correctly identify all branching regions
on the same data, due to the presence of the loop. (G-I) Monocle branch assignments on the same datasets. In (G, H) Monocle
overestimates the number of branching events, while it does not detect one branching event in (I). (J-L) SLICER branch
assignments on the same datasets. SLICER underestimates branching in (J), finds irrelevant branches in (K) and overestimates
branching in (L).
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FIG. 5. Cells plotted according to FACS-measured FcgR3
and CD34 protein expression values [2]. The cells correspond-
ing to regions B1, T1, T2, T3, as identified by local K-
Branches, are highlighted. The megakaryocyte/erythrocyte
progenitors (MEP), granulocyte/macrophage progenitors
(GMP) and common myeloid progenitors (CMP) gates are
also plotted. Pie-charts correspond to the distribution of
T1,T2 and T3 cells in the MEP and GMP gates. The cells
of branching region B1 are enriched only in the CMP gate
(Fisher’s exact test p-value: 2.2−16). The cells of tip T1 cor-
respond to MEP, while the cells of tip T2 correspond to GMP.
The cells of tip T3 correspond to outlier groups of dendritic
cells and natural killer cells (lymphocytes).

2. Single-cell qPCR data of mouse blastocyst development

The proposed method was applied to the first three
diffusion components of the single-cell qPCR data which
contains two distinct branching events [16]. Once more
there is close agreement between the results of the pro-
posed method and Diffusion Pseudotime. Both methods
identify four branch tips and the tip cells of DPT are
in the tip regions of the proposed method. Moreover,
both methodologies identify two branching regions indi-
cating two separate branching events. However, DPT
only assigns two cells per branching region, while the
branching regions identified by the proposed methodol-
ogy are considerably larger. Finally, one key difference is
that the proposed method automatically identified four
branch tips and two branching regions, while DPT had to
be manually run twice on the data: First, three branches
were identified, then DPT was performed on one of the
branches, identifying the second branching region and
new branch tips. Both Monocle and SLICER do not
identify the two branching events, probably due to the
high degree of sparsity in the data.

3. Artificial data of arbitrary geometry

The third dataset highlights an important advantage
of the proposed methodology. Namely, the identification
branch tips and branching regions in datasets of arbitrary
geometry. In this case, the dataset was manually gener-
ated to consist of three branches with a loop among them
and the first two diffusion components retain the same
geometry as the original dataset. Even though it could
be directly applied to the original two-dimensional data,
the proposed method was performed on the first to diffu-
sion components. This was done for two reasons: First,
for real data of high dimensions clustering and model
selection will be performed on the diffusion components
and we assume that dimensionality reduction through
diffusion maps will also retain the loop structure of real
data. Second, by using the diffusion components there is
direct comparison to the performance of DPT. Despite
the challenging geometry of the dataset, the proposed
method correctly identifies the three regions correspond-
ing to the branch tips, as well as the three branching
regions. On the other hand, DPT correctly identifies the
three tip cells but fails in identifying the branching re-
gions. To be precise, it identifies one branching region
correctly, but then it fails to find the other two and con-
siders one irrelevant part of the loop as a branching re-
gion. Monocle underestimates the number of branching
events, probably since it always assumes that the differ-
entiation trajectory corresponds to a tree-like structure.
Finally, SLICER overestimates the overall branching in
the data.

IV. CONCLUSION AND DISCUSSION

In this study, a model based clustering approach was
introduced for the identification of regions of interest in
single-cell data. First, a novel clustering method called
K-Branches was introduced, which clusters data points
into a set of K halflines with a common center. Sub-
sequently, this clustering method was applied locally to
the neighbourhood of each cell and a modified version of
the GAP statistic was developed to perform model se-
lection. The goal of model selection is to identify the
local dimensionality of the data. That is, identify fully
differentiated tip cells and cells belonging to branching
regions. In this manner, all branching events, as well as
all end-points (tips) in differentiation trajectories can be
identified. As demonstrated, this local view of the data
allows the method to be successfully applied to challeng-
ing datasets that include sparsity and complex geome-
tries.

The main idea of the proposed methodology is different
from that of commonly used methods such as DPT, Mon-
ocle, Wishbone, or SLICER. To be precise, these methods
aim to assign each cell to a distinct branch in the differen-
tiation process and also calculate pseudotime: an order-
ing of the cells, relevant to their distance from a starting
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root cell, which reflects how far they have progressed in
the differentiation process. As such, K-Branches cannot
be directly compared to most of these methods, perhaps
with the exception of DPT. To be precise, DPT also iden-
tifies tip cells and branching regions of undecided cells.

The performance of the proposed method was com-
pared to that of DPT in three single-cell datasets. In the
fist two datasets which correspond to single-cell qPCR
[16] and single-cell RNA-Seq [2] data, both methods yield
similar results. The main differences being that DPT as-
signs fewer cells in branching regions and only assigns
one cell per tip. However, in the third dataset which
consists of three branches with a loop in between, the
model based approach of the proposed methodology suc-
cessfully identifies all tip and branching regions, while
DPT only identifies the branch tips and does not manage
to correctly identify the branching regions of undecided
cells. While this difference was observed on a synthetic
data set, real datasets containing loops could in theory
correspond to cells exiting cell cycle, cells resulting in the
same state through different differentiation trajectories,
or cellular reprogramming [21]. One advantage of DPT
is faster execution time since the entire dataset is typ-
ically processed in a few minutes. On the other hand,
local K-Branches requires a few seconds per data point.
However, in the case of local K-Branches each data point
can be processed completely in parallel.

In terms of future work, it would be interesting to
extend the method to support explicit identification
of the branches that lie between the branching and
tip regions, which are currently only characterized as
intermediate regions. While clustering works in the

original dimensions, model selection using the GAP
statistic does not. As such, the proposed method
utilizes diffusion maps for dimensionality reduction. In
this regard coupling the proposed methodology with
dimensionality reduction methods other than diffusion
maps and comparing the performance achieved would
be interesting. Finally, developing a different model
selection method, other than the GAP statistic, that
would allow the methodology to be directly applied in
the original dimensions could be an additional topic of
future work.
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