

2 Deconstructing isolation-by-distance: the genomic consequences of limited dispersal

4 Stepfanie M. Aguillon^{*,1,2}, John W. Fitzpatrick^{1,2}, Reed Bowman³, Stephan J. Schoech⁴,
6 Andrew G. Clark^{1,5}, Graham Coop^{6,¶}, Nancy Chen^{*,2,6,¶}

8 ¹ Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA

10 ² Cornell Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, New York, USA

12 ³ Archbold Biological Station, 123 Main Dr., Venus, Florida, USA

14 ⁴ Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA

16 ⁵ Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA

18 ⁶ Center for Population Biology & Department of Evolution and Ecology, University of California, Davis, Davis,
California, USA

14

16 * Corresponding author

18 Email: sma256@cornell.edu (SMA)

20 Email: nanchen@ucdavis.edu (NC)

22 ¶ GC and NC are joint senior authors

24 **Abstract**

Geographically limited dispersal can shape genetic population structure and result in a
26 correlation between genetic and geographic distance, commonly called isolation-by-distance. Despite the prevalence of isolation-by-distance in nature, to date few studies
28 have empirically demonstrated the processes that generate this pattern, largely because few populations have direct measures of individual dispersal and pedigree
30 information. Intensive, long-term demographic studies and exhaustive genomic surveys in the Florida Scrub-Jay (*Aphelocoma coerulescens*) provide an excellent opportunity to
32 investigate the influence of dispersal on genetic structure. Here, we used a panel of genome-wide SNPs and extensive pedigree information to explore the role of limited
34 dispersal in shaping patterns of isolation-by-distance in both sexes, and at an exceedingly fine spatial scale (within ~10 km). Isolation-by-distance patterns were
36 stronger in male-male and male-female comparisons than in female-female comparisons, consistent with observed differences in dispersal propensity between the
38 sexes. Using the pedigree, we demonstrated how various genealogical relationships contribute to fine-scale isolation-by-distance. Simulations using field-observed
40 distributions of male and female natal dispersal distances showed good agreement with the distribution of geographic distances between breeding individuals of different
42 pedigree relationship classes. Furthermore, we extended Malécot's theory of isolation-by-distance by building coalescent simulations parameterized by the observed dispersal
44 curve, population density, and immigration rate, and showed how incorporating these extensions allows us to accurately reconstruct observed sex-specific isolation-by-distance patterns in autosomal and Z-linked SNPs. Therefore, patterns of fine-scale
46

isolation-by-distance in the Florida Scrub-Jay can be well understood as a result of

48 limited dispersal over contemporary timescales.

50 **Author Summary**

Dispersal is a fundamental component of the life history of most organisms and

52 therefore influences many biological processes. Dispersal is particularly important in

creating genetic structure on the landscape. We often observe a pattern of decreased

54 genetic relatedness between individuals as geographic distances increases, or

isolation-by-distance. This pattern is particularly pronounced in organisms with

56 extremely short dispersal distances. Despite the ubiquity of isolation-by-distance

patterns in nature, there are few examples that explicitly demonstrate how limited

58 dispersal influences spatial genetic structure. Here we investigate the processes that

result in spatial genetic structure using the Florida Scrub-Jay, a bird with extremely

60 limited dispersal behavior and extensive genome-wide data. We take advantage of the

long-term monitoring of a contiguous population of Florida Scrub-Jays, which has

62 resulted in a detailed pedigree and measurements of dispersal for hundreds of

individuals. We show how limited dispersal results in close genealogical relatives living

64 closer together geographically, which generates a strong pattern of isolation-by-distance

at an extremely small spatial scale (<10 km) in just a few generations. Given the

66 detailed dispersal, pedigree, and genomic data, we can achieve a fairly complete

understanding of how dispersal shapes patterns of genetic diversity over short spatial

68 scales.

70 **Introduction**

72 The movement of individuals over the landscape (dispersal) influences biological
processes and diversity at many levels [1], ranging from interactions between
74 individuals to persistence of populations or species over time [2-4]. Limited dispersal is
also central to generating and maintaining spatial genetic structure within species. In
particular, geographically-limited dispersal can result in isolation-by-distance, a pattern
76 of increased genetic differentiation [5, 6] or, conversely, decreased genetic relatedness
[7-9] between individuals as geographic distance increases. This pattern results
78 because genetic drift can act to differentiate allele frequencies faster than dispersal can
homogenize them among geographically distant populations. A correlation between
80 genetic differentiation and geographic distance is observed in many empirical systems,
consistent with isolation-by-distance being an important process in structuring genetic
82 diversity [10, 11].

Despite the fact that correlations between genetic differentiation and geographic
84 distance are common across many types of organisms, to date, there are few existing
empirical demonstrations of how contemporary patterns of dispersal generate spatial
86 patterns of genetic variation and contribute to observed patterns of isolation-by-
distance. This is, in part, because dispersal is hard to estimate empirically, as it requires
88 monitoring many individuals over long periods of time across the full range of potential
dispersal distances [12]. In addition, the effective population density of reproducing
90 individuals must be known in order to parameterize genetic drift in models of isolation-
by-distance. Therefore, in practice it is hard to know whether the observation of
92 isolation-by-distance is truly consistent with contemporary patterns of dispersal. Indeed,

many studies use genetic isolation-by-distance patterns to infer dispersal distances, as
94 a substitute for the more difficult exercise of measuring dispersal directly in the field [13-
17]. A second issue is that in most studied systems, populations are compared over
96 large spatial scales, so the pattern of isolation-by-distance reflects the dynamics of
genetic drift and dispersal over tens of thousands of generations. These empirical
98 patterns reflect large-scale population movements (e.g., expansions from glacial refugia
[18]) that may not reflect the equilibrium outcome of individual dispersal and genetic
100 drift. While studies have reported fine-scale population structure [19-25], it has been
difficult to deconstruct these patterns to understand what mechanisms actually create
102 them.

Patterns of isolation-by-distance can reflect underlying biological processes.

104 Since the early development of the isolation-by-distance theory, differences in mating
systems and dispersal propensity have both been known to generate differences in
106 isolation-by-distance patterns [5]. In many organisms, dispersal often differs between
the sexes: males tend to disperse farther in mammals (male-biased dispersal), but
108 females tend to disperse farther in birds (female-biased dispersal) [26, 27]. When
dispersal patterns differ between the sexes, the less dispersive sex tends to have
110 stronger overall genetic structure than the more dispersive sex [21, 28, 29]. Similarly,
sex-biased dispersal is expected to result in different levels of genetic structure in
112 markers with different inheritance patterns. For example, in a system where females are
both the heterogametic sex (e.g., in birds, females are ZW and males are ZZ) and more
114 dispersive, autosomes may exhibit higher genetic differentiation than maternally

inherited markers (e.g., mitochondrial DNA), but lower genetic differentiation than the Z
116 chromosome [16, 30, 31].

Here we examine the causes of fine-scale isolation-by-distance in a non-
118 migratory bird, the Florida Scrub-Jay (*Aphelocoma coerulescens*), based on a long-term
population study that has yielded high-quality genetic and pedigree information for many
120 individuals, as well as particularly detailed information on individual dispersal distances.

Florida Scrub-Jays have limited, female-biased natal dispersal, and individuals
122 essentially never move once established as a breeding adult [32, 33]. A population of
Florida Scrub-Jays at Archbold Biological Station in central Florida has been the focus
124 of intense monitoring since 1969, resulting in observed natal dispersal distances for
hundreds of individuals and an extensive pedigree [32, 34, 35]. Moreover, nearly all
126 nestlings and breeders present in the population during the past two decades were
genotyped in a recent study [36]. These long-term dispersal, pedigree, and genomic
128 data make the Florida Scrub-Jay an unusually tractable study system in which to
explore how dispersal influences patterns of isolation-by-distance.

130 Previous work on Florida Scrub-Jays using microsatellite markers has shown
isolation-by-distance across multiple populations [3]. Here, we present evidence for fine-
132 scale isolation-by-distance within a single contiguous population of Florida Scrub-Jays,
and combine genetic, pedigree, and dispersal information to reveal how patterns of
134 isolation-by-distance are created in nature. We find more isolation-by-distance in males
than in females, corresponding to predicted differences resulting from female-biased
136 dispersal patterns. We break down our data into pedigree relationships to demonstrate
that isolation-by-distance is a consequence of close relatives living geographically close

138 together. We perform simulations that successfully reconstruct the empirical distances
139 between individuals of different kinship classes using only the dispersal curves. Finally,
140 we use extensive coalescent simulations parameterized by the dispersal curve,
141 population density, and immigration rate to yield an excellent fit to observed isolation-
142 by-distance patterns.

144 **Results/Discussion**

Limited dispersal results in isolation-by-distance at small spatial scales

146 We documented natal dispersal distances for 382 male and 290 female Florida
147 Scrub-Jays that were born and established as breeders within the population at
148 Archbold Biological Station between 1990-2013. Dispersal curves for both males and
149 females were strongly leptokurtic, consistent with previous studies (Fig 1A; [3, 34]).
150 Here we considered only dispersal within the Archbold population; therefore, our
151 dispersal curves do not capture any long-distance dispersal events, which occur rarely
152 [3]. Females disperse significantly farther than males, with a median \pm SE distance of
153 $1,149 \pm 108$ m and 488 ± 43 m, respectively (Wilcoxon rank sum test, $p < 2.2 \times 10^{-16}$).
154 Florida Scrub-Jays disperse extremely short distances compared with other bird species
155 [34, 37]. The shorter male dispersal distances compared with females may be due in
156 part to differences in territory acquisition between the sexes. Florida Scrub-Jay males
157 are able to acquire breeding territories through budding from the parental territory or
158 inheritance of the parental territory [32], while territory budding and inheritance is
extremely rare in females [34].

160 To explore the genetic implications of this limited, sex-biased dispersal, we
161 genotyped all breeding adults in the Archbold population in 2003, 2008, and 2013 ($n =$
162 513) at 7,843 autosomal SNPs and 277 Z-linked SNPs [36]. We conducted principal
163 component analysis (PCA) separately for all breeding adults, male breeders, and
164 female breeders to visually summarize patterns of autosomal genetic variation within
165 the population. We see genetic differentiation along the north/south axis of Archbold in
166 the first two PC axes when we map breeders to their breeding territories (Fig 1B, S1
167 Fig). Indeed, the top two principal components (PC1 and PC2, 14.6% and 13.1% of the
168 variation, respectively) are significantly correlated with north-south position under the
169 Universal Transverse Mercator coordinate system (henceforth “UTM northing”; S1
170 Table). We found significant correlations with UTM northing for both PC1 and PC2 in
171 males, but only PC1 is significantly correlated with UTM northing in females (S2 Fig, S1
172 Table). Correlation coefficients for PC1 with UTM northing are higher in males than in
173 females (S1 Table). This fine-scale spatial structure is likely a direct result of the
174 unusually limited natal dispersal and female-biased dispersal of these birds (Fig 1A;
175 overall median \pm SE = 647 ± 57 m).

176 To test for isolation-by-distance, we quantified autosomal genetic relatedness
177 between all possible pairs of individuals in the dataset as the estimated proportion of the
178 genome shared identical-by-descent. Under a model of isolation-by-distance, the
179 proportion of the genome shared identical-by-descent should decrease as the distance
180 between individuals in a pair increases. Plotting genetic relatedness against geographic
181 distance for all unique pairs across all years, we found a clear pattern of isolation-by-
182 distance (Fig 1C) at a fine spatial scale (Archbold is \sim 10 km from north to south; Fig

1B). We used Mantel correlograms to compare pairwise geographic and genetic
184 distances (identity-by-descent) within distinct distance class bins across all pairwise
comparisons, all male-male pairs, and all female-female pairs. Mantel correlograms are
186 useful for testing spatial genetic structure when the relationship between geographic
and genetic distance is exponential-like rather than linear [38, 39]. We found significant
188 correlations at more distance classes in all breeders and male-male pairs than in
female-female pairs (S2 Table), which indicates stronger patterns of isolation-by-
190 distance in males than in females, consistent with the observed female-biased
dispersal.

192 To measure the strength of isolation-by-distance in different subsets of the data,
we fitted loess curves and used them to estimate the distance (δ) where the proportion
194 of the genome shared identical-by-descent drops halfway to the mean from its
maximum value. A lower δ indicates a more rapid decay of genetic relatedness by
196 geographic distance, *i.e.*, more isolation-by-distance. We bootstrapped pairs of
individuals to obtain 95% confidence intervals (CI) to assess significance and found
198 stronger isolation-by-distance patterns in male-male ($\delta = 620$ m, 95% CI = [604, 631])
and male-female comparisons ($\delta = 645$ m, [622, 665]) than in female-female
200 comparisons ($\delta = 903$ m, [741, 1261]; Fig 1C), which is consistent with the strongly
female-biased dispersal observed in this system.

202 Because of the detailed pedigree information available for the Florida Scrub-Jay
population within Archbold, we have a rare opportunity to decompose the isolation-by-
204 distance patterns found in this population by familial relationship. The Florida Scrub-Jay
pedigree from our study population consists of 12,738 unique individuals over 14

206 generations and is largely complete (see S3 Table for a summary of the pedigree); here
we identify relationships up to fourth cousins. For each pair of individuals in our dataset,
208 we extracted their closest genealogical relationship from the pedigree (e.g., 1,532 of
130,618 pairs have a relationship closer than first cousins; S3 Table) and calculated the
210 pedigree-based coefficient of relationship (r). We plotted identity-by-descent for pairs of
individuals against the geographic distance between those individuals, coloring points
212 by their pedigree relationship (Fig 2). These plots clearly illustrate how isolation-by-
distance results, in part, from closely related individuals, such as parent-offspring and
214 full-siblings, remaining physically close together as breeders within neighborhoods of
contiguous territories (Fig 2). The stronger signal of isolation-by-distance in male-male
216 comparisons (Fig 2A) seems to be driven by the particularly short geographic distances
between individuals in the highest pedigree relatedness classes (e.g., parent-offspring,
218 full-siblings, grandparent-grandchild, half-siblings, and aunt/uncle-nibling [“nibling” is a
gender-neutral term for niece and nephew]).

220 Another way of visualizing how dispersal generates the observed pattern of
isolation-by-distance is to plot the distribution of geographic distances separating pairs
222 of individuals with different pedigree relationships (Fig 3A). Close relatives tend to be
located closer geographically: for example, the distance between full-siblings is
224 significantly less than the distance between pairs with $r = 0.25$ (half-siblings,
grandparent-grandchildren, and aunt/uncle-niblings; Wilcoxon rank sum test, $p = 0.01$).
226 More generally, if we compare a given pedigree relationship class (r) with the pedigree
relationship class that is half as related ($0.5r$), we find shorter distances in the more
228 related pairs for all sequential comparisons out to third cousins (comparing pairs with r

to $0.5r$, Wilcoxon rank sum test, $p < 0.003$ for all except for the comparison between $r =$

230 0.0625 and $r = 0.03125$; S4 Table). Geographic distances between two males with a

close, known pedigree relationship are shorter than in either female-female or male-

232 female comparisons (Fig 3A, S5 Table), and this pattern holds generally in comparisons

up to second cousins.

234 We can further assess the contribution of various relationship types by

sequentially removing pedigree relationship classes and observing the resulting

236 isolation-by-distance curves (Fig 3B). As expected, the relationship between identity-by-

descent and geographic distance flattens and the strength of isolation-by-distance

238 (measured by δ) decreases as closely related pairs are removed (Fig 3B, S6 Table). For

example, removing pairs with $r \geq 0.5$ (parent-offspring and full-siblings) and $r \geq 0.25$

240 (parent-offspring, full-siblings, half-siblings, grandparents, and aunt/uncle-nibling)

caused significant increases in δ (Fig 3B, S6 Table). However, even after removing all

242 pairs with $r \geq 0.0625$ we still see a significant pattern of isolation-by-distance (S6 Table).

Therefore, isolation-by-distance is not driven only by highly related individuals. Instead,

244 it appears that highly related individuals ($r \geq 0.25$) play a primary role in determining the

strength of the observed isolation-by-distance patterns (measured by δ), but isolation-

246 by-distance still exists even when these individuals are removed from the dataset. The

pattern of isolation-by-distance in more distantly related pairs suggests that isolation-by-

248 distance is generated from dispersal events over many generations even at this small

spatial scale, and is not simply a result of dispersal events over only one or two

250 generations.

252 **Isolation-by-distance patterns are also present in Z-linked SNPs**

252 Patterns of genetic diversity on the Z chromosome are expected to differ from
254 those on the autosomes because of the difference in inheritance patterns and sex-
256 specific dispersal behavior [40]. In birds, males are the homogametic sex (ZZ), while
258 females are heterogametic (ZW). Thus, the Z chromosome spends two-thirds of its
260 evolutionary history in males. In addition, the Z chromosome has a smaller effective
262 population size compared with the autosomes [41]. These facts lead to two predictions:
264 (1) Owing to the reduced effective population size of the Z chromosome, we expect to
266 see higher identity-by-descent on the Z compared to the autosomes. (2) Because
268 females disperse much farther than males in this system, we expect to find more
270 isolation-by-distance in Z-linked SNPs than in autosomal SNPs [31, 40].

272 We separately assessed patterns of isolation-by-distance in 277 Z-linked SNPs.

274 PCA results for Z-linked markers are similar to those observed in autosomes. We found
276 significant correlations for PC1 and PC2 with UTM northing, though correlations
278 between PC2 and UTM northing were significant only for all breeders and male only
280 comparisons (S3 Fig, S1 Table). To fairly compare autosomes and Z chromosomes,
282 which differ in the number of SNPs present, we used unbiased estimates of identity-by-
284 descent for Z-linked and autosomal SNP comparisons. These unbiased estimates do
286 not undergo the final transformation step involved in the estimates of identity-by-descent
288 used previously, and therefore are not bounded by 0 and 1 (see S1 Text for more
290 details). Though these unbiased, unbounded estimates can take negative values, they
292 make comparisons between autosome and Z datasets more straightforward. Bounding
294 identity-by-descent estimates by 0 and 1 for the Z chromosome would generate

upwardly biased estimates. Note that the autosomal identity-by-descent estimates are
276 based on a larger set of SNPs and so values are similar between the bounded
estimates and “unbiased” estimates. Therefore the bias is minimal and not a problem for
278 the previous autosomal analyses.

Similar to autosomal SNPs, isolation-by-distance patterns in Z-linked SNPs are
280 stronger in male-male comparisons ($\delta = 615$ m, [592, 639]) than in either female-female
($\delta = 979$ m, [673, 2048]) or male-female comparisons ($\delta = 637$ m, [601, 674]; S4 Fig). In
282 accordance with theoretical predication, mean identity-by-descent is higher for the Z
chromosome (0.014, [0.013,0.015]) compared with the autosomes (0.0027,
284 [0.0024,0.0030]; Fig 4). However, we do not find evidence for more isolation-by-
distance on the Z chromosome: δ for Z-linked SNPs (647 m, [620, 677]) is not
286 significantly different from δ for autosomal SNPs (621 m, [608, 633]; Fig 4). It is possible
that we lack the power to estimate identity-by-descent on the Z chromosome accurately,
288 given the small number of Z-linked SNPs available (277), which leads to more noise
and uncertainty in the estimates of identity-by-descent on the Z chromosome and
290 therefore a high variance in δ . This is consistent with the larger standard errors for the Z
(Fig 4) and the larger confidence interval for δ on the Z. Future work will increase
292 marker density on the Z to increase resolution and will incorporate maternally-inherited
markers like the W and mitochondria to provide additional insights into the
294 consequences of sex-biased dispersal on markers with different inheritance modes.

296 **Simulations can reconstruct observed geographic structure**

To test our understanding of the population mechanisms leading to fine-scale
298 isolation-by-distance, we used simulations to explore whether observed patterns could
be predicted strictly by dispersal curves and other population parameters. We first
300 conducted simulations of local dispersal in a contiguous population to determine how
well the observed distribution of geographic distances between individuals of known
302 pedigree relationships was predicted by the observed natal dispersal curves. Assuming
that the dispersal curves are constant and that dispersal distance has negligible
304 heritability, we simulated the distance between individuals of a known, close pedigree
relationship using random draws from the sex-specific dispersal curves. For example,
306 for two female first cousins, we first simulated the dispersal distances of the parental
siblings from the grandparental nest (randomly picking their sexes). We then simulated
308 dispersal distances of the two female cousins from their respective parental nests and
calculated the distance (d) between them (Fig 5A). We repeated this procedure 10,000
310 times to obtain a distribution of d .

We found that the dispersal simulations generally nicely reconstruct the observed
312 distribution of geographic distances between related individuals up to second cousins
(Fig 6, S7 Table; Kolmogorov-Smirnov Test with Bonferroni correction, $p > 0.004$ for
314 most pairs). For more distantly related pairs, some of the simulations are significantly
different from the observed distances (Fig 6, S7 Table; Kolmogorov-Smirnov Test, $p <$
316 0.004 for male-female first cousins and female-female second cousins). Notably, the
observed distributions in male-male comparisons of closely related uncle-nephew pairs
318 are significantly different from the simulated distributions – we see more short distances

between individuals in the observed data than expected from the simulations (Fig 6, S7
320 Table).

The distance simulations described above randomized the sexes for all ancestral
322 individuals and therefore averaged across all possible lineages for a given pedigree
relationship. However, given the strongly sex-biased dispersal in the Florida Scrub-Jay,
324 we expect the geographic distance between a given pair of individuals to also depend
on the sexes of the ancestors. For example, two females can be cousins because their
326 mothers are siblings (four female dispersal events), their mother and father are siblings
(three female and one male dispersal events), or because their fathers are siblings (two
328 female and two male dispersal events).

To assess the relationship between the sex of the ancestors and geographic
330 distance between a pair of individuals of a given pedigree relationship, we conducted
additional simulations of first cousins in which we fixed the sexes for the two common
332 ancestors (aunts or uncles) in addition to the focal individuals (the cousins). As
predicted, we found that the median geographic distance between two cousins strongly
334 correlates with the number of female dispersal events in the lineage (Spearman rank
correlation: $\rho = 0.8208$, $p = 0.0067$). For example, the median distance between two
336 cousins depends on the number of female dispersal events in their lineage, such that
male cousins related through their fathers (median \pm SE = $1,715 \pm 130$ m) are
338 geographically closer than male cousins related through their mothers ($2,474 \pm 235$ m).
Similar to our more general dispersal simulations (*i.e.*, those with randomized ancestral
340 sexes), we found that the simulated distributions closely fitted the empirical patterns (S5
Fig, S8 Table). The observed distributions only differed from the simulated distributions

342 in simulations with a male-female cousin pair related by their fathers (S8 Table;
Kolmogorov-Smirnov Test, $p = 0.0005$).

344 In nature, we know that dispersal movements are largely restricted to the
bounded area that is the study population. Because our natal dispersal curves include
346 only within-population dispersal events, we do not think a violation of this assumption is
problematic for simulations of closely related pairs, which involve just a few dispersal
348 events. To accurately simulate distances between more distantly related pairs, we
would need to consider the spatial extent of the population and not allow dispersal
350 movements outside of population boundaries.

352 **Simulations can reconstruct observed genetic structure**

Malécot envisioned identity-by-descent as being due to the chain of ancestry
354 running from present day individuals back to their shared ancestors (“les chaînes de
parenté gamétique”; Fig 5B; [9, 42]). These ideas are the forerunner of modern
356 coalescent theory [43, 44]. Malécot’s interpretation of the relationship between identity-
by-descent and geographic distance reflects the fact that geographically close pairs of
358 individuals are more likely to be closely related, *i.e.*, trace back to a more recent
common ancestor (coalesce), than geographically distant individuals [9].

360 To empirically demonstrate the underlying mechanisms behind Malécot’s model,
we calculated the expected identity-by-descent values as a function of geographic
362 distance for male-male, male-female, and female-female pairs using a spatially-explicit
coalescent model. We parameterized these simulations using the observed pedigree,
364 dispersal curves, immigration rate, and basic demographic information about the study

system. We extended Malécot's framework to include immigration from other
366 populations because previous work has demonstrated a non-negligible rate of
immigration into our study population [36]. For a given pair of individuals, we traced the
368 ancestry of their two alleles at each autosomal locus backwards in time until the two
lineages found a common ancestor or at least one of the lineages was a descendant of
370 an immigrant into the population (Fig 5C). The probability that a lineage in a given
generation was brought into the population by an immigrant (M) is given by the
372 proportion of individuals who are immigrants. If one or both of our lineages traced back
to an immigrant, we assigned the pair of individuals the observed level of identity-by-
374 descent between immigrants. We kept track of the geographic location of each non-
immigrant ancestor by sampling dispersal events from the natal dispersal curve. If our
376 lineages are a distance d_k apart in generation k , the probability of our lineages finding a
shared ancestor in the next generation back ($k+1$) is given by the proportion of pairs that
378 are d_k apart who are full-siblings, half-siblings, or parent-offspring pairs (see S6 Fig). If
the two lineages traced to one of these relationships, we assigned them the expected
380 level of identity-by-descent for that relationship. We simulated expected identity-by-
descent values for many pairs of individuals at a given distance bin.

382 We ran five different simulations to investigate how increasing the complexity of
the model improved our fit to the observed isolation-by-distance patterns in male-male,
384 male-female, and female-female pairs (S2 Text). We began with a model that used sex-
averaged values for all parameters. This model (M0) explained a large proportion of the
386 variance in mean identity-by-descent across geographic distance for male-female pairs
(coefficient of determination $R^2 = 0.90$) but not for male-male and female-female

388 comparisons ($R^2 = 0.61$ and -0.10 , respectively; Fig 7, S7 Fig, Table 1). We then tried to
improve the fit of our model by incorporating sex-specific parameters. First, we
390 simulated dispersal back in time in a sex-specific manner by sampling from the male or
female dispersal curve. Because of the strongly female-biased dispersal in Florida
392 Scrub-Jays, the per-generation coalescent probability for females is greater at larger
distance bins, and immigrants are more likely to be female [34, 36]. By allowing sex-
394 specific dispersal (model M1), sex-specific coalescent parameters (model M2), and also
sex-specific immigration parameters (model M3), our models more closely
396 reconstructed the observed relationship between identity-by-descent and geographic
distance ($R^2 = 0.88-0.90$ for model M3; S7 Fig, Table 1). The fully sex-specific model
398 overestimated identity-by-descent at longer distances for male-male pairs, which we
hypothesized was a result of observed isolation-by-distance in the immigrants. By
400 extending our model to account for variation in relatedness among immigrants with
distance, our final pedigree-based simulations (model M4) recovered the observed
402 pattern of isolation-by-distance for both autosomal and Z-linked loci, with slightly lower
performance for female-female comparisons and for the Z chromosome (S8 Fig, Table
404 1). The fact that our simulations, which only span 10 generations, recovered the
observed decrease in genomic relatedness within 10 km suggests that limited dispersal
406 can generate isolation-by-distance over short timescales in this population.

408 Future directions

Here we have used single-marker estimates of genome-wide identity-by-descent
410 to study relatedness. Additional power to infer recent demography and dispersal history

can be gained by studying shared identity-by-descent blocks – linked segments of the
412 genome that are shared identical-by-descent between pairs of individuals [45-47]. A
number of methods exist for inferring identity-by-descent blocks from dense genotyping
414 or sequencing data [48]. By tracing the spatial distribution of identity-by-descent blocks
of varying lengths, we can uncover how recent dispersal shapes the transmission of
416 genomic segments across the landscape. Furthermore, we will assess how dispersal
shapes patterns of genetic variation over larger spatial scales by extending this
418 approach to multiple populations spanning the entire range of this species. This
question has vital conservation implications, as for example, decreasing rates of
420 immigration are driving increased inbreeding depression within the population at
Archbold Biological Station [36].

422

Conclusion

424 Isolation-by-distance is a commonly observed pattern in nature. Despite its
ubiquity and the frequent use of isolation-by-distance patterns to indirectly estimate
426 dispersal in diverse organisms, few studies to date have deconstructed the causes of
isolation-by-distance. Here, we have shown how limited dispersal can result in isolation-
428 by-distance in the Florida Scrub-Jay. The extremely short dispersal distances of this
species allow us to detect a signal of isolation-by-distance within a single, small
430 contiguous population over just a few generations. In systems with longer dispersal
distances, patterns of isolation-by-distance will likely only be observed over larger
432 spatial scales, and reflect relatedness over potentially much longer timescales. The
extensive dispersal, pedigree, and genomic data in this well-studied system provided a

434 rare opportunity to empirically unpack and extend Malécot's isolation-by-distance model
[9]: we have shown how limited dispersal leads to closely related individuals being
436 located closer together geographically, which results in a pattern of decreased genetic
relatedness with increased geographic distance.

438

Materials and Methods

440 Study system: the Florida Scrub-Jay

The Florida Scrub-Jay is a cooperatively breeding bird endemic to Florida oak
442 scrub habitat [32, 33]. Individuals live in groups consisting of a breeding pair and non-
breeding helpers (often previous young of the breeding pair) within territories that are
444 defended year-round. A population of Florida Scrub-Jays at Archbold Biological Station
(Venus, Florida, USA) has been intensely monitored by two groups for decades: the
446 northern half by Woolfenden, Fitzpatrick, Bowman, and colleagues since 1969 [32, 34]
and the southern half by Mumme, Schoech, and colleagues since 1989 [35, 49].
448 Standard population monitoring protocols in both studies include individual banding of
all adults and nestlings, mapping of territory size and location, and surveys to determine
450 group composition, breeding status/success, and individual territory affiliation [32, 34].
Immigration into our study population is easily assessed because every individual is
452 uniquely banded (so any unbanded individual is an immigrant). Blood samples for DNA
have been routinely obtained from all adults and day 11 nestlings through brachial
454 venipuncture since 1999. This intense monitoring has generated a pedigree of 14
generations over 46 years. All activities have been approved by the Cornell University
456 and University of Memphis Institutional Animal Care and Use Committees and permitted

by the US Geological Survey, the US Fish and Wildlife Service, and the Florida Fish and
458 Wildlife Conservation Commission.

Here, we measured dispersal distances of individuals banded as nestlings within
460 Archbold and that subsequently bred within Archbold between 1990 and 2013 (382
males and 290 females). We began our sampling in 1990 because the study site was
462 expanded to its current size by 1990; hence, dispersal measures before this year are
systematically shorter (*i.e.*, lack the longer distances). Thus, we have a comprehensive
464 measure of dispersal tendencies of individuals within Archbold over a 24-year period.

We measured natal dispersal distance as the distance from the center of the natal
466 territory to the center of the first breeding territory in meters using ArcGIS Desktop v10.4
[50], independent of the age of first breeding (definition from [51]).

468 As part of a previous study, 3,984 individuals have been genotyped at 15,416
genome-wide SNPs using Illumina iSelect Beadchips [36]. Details of SNP discovery,
470 genotyping, and quality control can be found in [36]. Here, we focused on breeding
adults in Archbold during the years 2003, 2008, and 2013 ($n = 513$), when almost all
472 individuals present have been genotyped. Autosomal SNPs were pruned for linkage
disequilibrium using PLINK v1.07 [52]. We conducted analyses on both the entire set of
474 SNPs and the dataset pruned for linkage disequilibrium. We found qualitatively similar
results, so we present only the results from the pruned dataset here. Our final dataset
476 included 7,843 autosomal and 277 non-pseudoautosomal Z-linked SNPs. All of the
presented analyses were conducted on the combined dataset across all three years.
478 For any individuals present in multiple years, we randomly selected presence in a single
year for inclusion in this combined analysis.

480

Relatedness measures

482 To determine genetic relatedness, we estimated the proportion of the genome
shared identical-by-descent relative to the population frequency for all individual
484 pairwise comparisons within and across years using the 'genome' option in PLINK v1.07
[52] for autosomal SNPs. As PLINK does not calculate identity-by-descent for sex-linked
486 markers, we used a custom R script to estimate the proportion of the genome shared
identical-by-descent for Z-linked SNPs (S1 File). Identity-by-descent for Z-linked SNPs
488 was calculated using a method-of-moments approach using observed allele counts
similar to that in [52]. Identity-by-descent values reported by PLINK are constrained to
490 biologically plausible values between 0 and 1 in a final transformation step. To avoid
introducing biases when comparing identity-by-descent estimates obtained from very
492 different numbers of SNPs (on the Z chromosome versus the autosomes), we used
untransformed autosomal and Z-linked identity-by-descent values for comparisons
494 between the autosomes and Z. All identity-by-descent calculations used allele
frequencies from the sample of all individuals in the population through time. See S1
496 Text for further details and S1 File for the R code.

Additionally, we estimated relatedness of all individual pairwise comparisons
498 using the pedigree. We calculated the coefficient of relationship by using the 'kinship'
function within the package *kinship2* [53] in R v3.2.2 [54] and multiplied the values by
500 two (to convert them from kinship coefficients). The pedigree-based coefficient of
relationship was calculated separately for expectations under autosomal and Z-linked
502 scenarios using the 'chrtype' option within the 'kinship' function. Because *kinship2*

assumes an XY system, we swapped the sex labels of our individuals and swapped
504 mothers and fathers in the pedigree to calculate the coefficient of relationship for a ZW
system. The autosomal coefficient of relationship r and proportion of the genome shared
506 identical-by-descent are highly correlated (S9 Fig; Pearson's product moment
correlation: $t = 688.85, p < 0.0001$). Because genomic estimators of relatedness are
508 more precise than pedigree-based estimators [55], we only report results for genomic
measures of relatedness in the text (but see S10 Fig, S11 Fig, and S2 Table for
510 analyses using pedigree-based measures of relatedness).

512 **Isolation-by-distance in genetic and pedigree data**

We used three approaches to test for isolation-by-distance patterns in our data.
514 First, we conducted principal component analysis on the autosomal and Z-linked
genomic data using custom Perl and R scripts. We conducted separate analyses on
516 males only, females only, and all individuals. We then compared the first two PC axes
from each analysis with the UTM northing values of the territory centroids for each
518 individual using Spearman rank correlations. To ensure these patterns were not driven
by differences in genetic diversity within the study site, we estimated observed
520 heterozygosity and inbreeding coefficients (F^{II} from [56]) from the autosomal SNPs in
PLINK. We compared individual heterozygosity and inbreeding coefficients with UTM
522 northing and found no relationship (Pearson's product-moment correlation, $t = 1.493, p$
 $= 0.136$ for heterozygosity, $t = -1.559, p = 0.120$ for inbreeding coefficient).
524 Second, we conducted Mantel correlogram tests using the 'mantel.correlog'
function in the vegan package [57] in R v3.2.2 [54]. Mantel tests compare two distance

526 matrices and test for significance through permutation of the matrix elements [58, 59].

526 While Mantel tests are useful for assessing linear relationships, they will not accurately
528 represent the spatial structure found in systems with exponential-like decreases in
528 structure (*i.e.*, strong spatial structure in the short distance classes that decreases and
530 stabilizes at larger distances). Mantel correlograms are able to assess these more
530 complex spatial structures by utilizing the traditional Mantel test within distinct distance
532 bins [38, 39]. Here, we use Mantel correlograms to compare a matrix of individual
532 pairwise comparisons of geographic distances to a matrix of pairwise comparisons of
534 relatedness between individuals (either estimated from the genomic data or from the
534 pedigree, and for autosomes or the Z chromosome). We conducted separate analyses
536 for comparisons between males only, females only, and all individuals. Note that we
536 cannot conduct Mantel correlograms on male-female comparisons alone, as we cannot
538 use unbalanced matrices in this type of analysis. We limited our analyses to the
538 following distance class bins to ensure that enough comparisons fell within each bin:
540 250-750 m, 750-1250 m, 1250-1750 m, 1750-2250 m, 2250-2750 m, 2750-3250 m,
540 3250-3750 m, 3750-4250 m, 4250-4750 m, 4750-5250 m. We did not include
542 comparisons between breeders in the same territory or self-self comparisons (distance
542 < 250 m). We performed 10,000 permutations to obtain corrected *p*-values.

544 Finally, we fitted a loess curve to the scatterplot of identity-by-descent and
544 geographic distance between pairs of individuals. We tested for isolation-by-distance by
546 determining whether identity-by-descent at the smallest distance interval was larger
546 than the overall mean. To measure the strength of isolation-by-distance, we estimated
548 the distance where identity-by-descent drops halfway to the mean from its maximum

value, which we define as δ . To assess uncertainty in these estimates, we used a
550 bootstrapping method in which we randomly resampled pairs with replacement, fitted a
loess curve, and estimated identity-by-descent at distance bin 0, mean identity-by-
552 descent, and δ . We repeated this procedure 1,000 times to obtain 95% bias-corrected
and accelerated bootstrap confidence intervals.

554

Dispersal simulations

556 We used simulations to determine whether we could generate the observed
distribution of geographic distances between related pairs using only the natal dispersal
558 curve. For each of several focal pairwise relationships (full-siblings, aunt/uncle-nibling,
first cousins, and second cousins), we simulated dispersal events starting at their
560 common ancestral nest and then recorded the resulting distance between the two focal
individuals using a custom script in R (Fig 5A, S2 File). We located the shared ancestral
562 nest of the birds at (0,0) in an unbounded two-dimensional habitat. The number of
dispersal events for a given focal pair ranged from two (full-siblings) to six (second
564 cousins). For each dispersal event, we randomly sampled a dispersal angle (0-360°)
and a dispersal distance from the sex-specific dispersal distribution (Fig 1A). The sexes
566 of the final individuals in the focal pair were fixed (either male-male, male-female, or
female-female). In most cases, the sexes of ancestral individuals up to the common
568 ancestor were chosen randomly with a coin flip. To further assess the impact of sex-
specific dispersal on the distribution of geographic distances between pairs, we
570 performed simulations for first cousins with fixed sexes for the two focal individuals (the
cousins) and the two common ancestors (aunts or uncles). This resulted in nine

572 possible simulations (with sex combinations of male-male, male-female, and female-female for both the focal pair and the common ancestors). We performed these
574 simulations 10,000 times for each focal pairwise relationship, calculating the resulting distance between the two focal individuals each time. We determined the empirical
576 distances between individuals of different pedigree relationships and compared the observed distributions to the simulated distributions using Kolmogorov-Smirnov tests
578 and the means using Wilcoxon rank sum tests, both with Bonferroni corrections. Code for the dispersal simulations is included in S2 File.

580

Coalescent simulations

582 We generated the expected isolation-by-distance pattern for the autosomes and the Z chromosome given the observed dispersal curves and immigration rate using
584 spatially-explicit pedigree-based simulations that are extensions of Malécot's model of isolation-by-distance [9]. For each pair of individuals, we simulated their lineages
586 backwards in time until we reached a common ancestor or one or more of the lineages was a descendent of an immigrant into the population (Fig 5C). In each generation g ,
588 we first sampled a dispersal distance from the empirical sex-specific dispersal curve (Fig 1A) and a dispersal angle (0-360°) uniformly at random and calculated the
590 geographic distance d_g between the two individuals. Here, we assumed that there is no genetic variation for dispersal distance, and sampled a dispersal distance for all
592 individuals of a given sex from the same distribution. After the first dispersal event, we randomly assigned sexes for all ancestors. We then calculated the probability that the
594 two lineages located at distances (d_1, \dots, d_g) did not coalesce (share a common

ancestor) or have an immigrant ancestor in the previous $g - 1$ generations and the
596 probability that they either coalesce or have an immigrant ancestor in generation g .
Given the relatively small population size and high immigration rate, we found that
598 nearly all pairs either shared a common ancestor or had an immigrant ancestor within
10 generations, and so we used $g \leq 10$ (increasing this limit had no effect on our
600 results). Here we define the probability that two individuals share a common ancestor in
the preceding generation as the probability the pair is closely related (parent-offspring,
602 full-siblings, or half-siblings). For a pair of individuals at distance d , we estimated the
probability they are parent-offspring ($P_p(d)$), full-siblings ($P_f(d)$), or half-siblings ($P_h(d)$)
604 from the observed pedigree and distances between these relative classes (S6 Fig). We
calculated the sex-specific probability an individual is an immigrant as the proportion of
606 breeding male or female individuals in a given year who were not born in Archbold ($M =$
0.197 for males and 0.345 for females). Using mean identity-by-descent values for
608 immigrant-immigrant and immigrant-resident pairs obtained from our data, we estimated
the expected proportion of the genome shared identical-by-descent for a given pair of
610 individuals as follows:

$$\hat{Z} = \sum_{g=1}^{10} \left[\prod_{k=1}^{g-1} (1 - M)^2 [1 - P_p(d_k) - P_f(d_k) - P_h(d_k)] \right] \times [P_p(d_g) \mathbb{E}(Z_p) + P_f(d_g) \mathbb{E}(Z_f) + P_h(d_g) \mathbb{E}(Z_h) + 2M(1 - M) \mathbb{E}(Z_r) + M^2 \mathbb{E}(Z_m)]$$

Where $\mathbb{E}(Z_p)$, $\mathbb{E}(Z_f)$, and $\mathbb{E}(Z_h)$ are the expected identity-by-descent values for parent-
612 offspring, full-sibling, and half-sibling pairs, respectively (S9 Table). $\mathbb{E}(Z_m)$, and $\mathbb{E}(Z_r)$ are
the sex-specific empirical mean identity-by-descent values for immigrant-immigrant and
614 immigrant-resident pairs, respectively. Because we found a pattern of isolation-by-

distance in immigrant-immigrant pairs, we used expected identity-by-descent values for

616 immigrant-immigrant and immigrant-resident pairs conditional on distance. We binned

distances into 15 quantiles and ran 1,000 simulations for each distance bin. To evaluate

618 the fit of our model, we calculated the coefficient of determination R^2 for each type of

comparison as follows:

$$R^2 = 1 - \frac{\sum_i (y_i - \hat{Z}_i)^2}{\sum_i (y_i - \bar{y}_i)^2}$$

620 Where y_i is the mean observed identity-by-descent value in distance bin i and Z_i is the

mean simulated identity-by-descent value in distance bin i . Note that it is possible to

622 obtain negative values of R^2 when the model performs so poorly that the mean of the

data provides a better fit than our model. We ran simulations using parameters

624 estimated from the full dataset, and then performed two-fold cross-validation to check

for over-fitting. As results from both sets of models were similar, we discuss results from

626 the full dataset in the text. See S2 Text for the full derivation of our model and S3 File

for the R code.

628

Acknowledgments

630 We thank the many students, interns, and staff at Archbold Biological Station and the

University of Memphis who collected the dispersal data. We thank the members of the

632 Harrison, Clark, Lovette, and Coop labs for thoughtful comments on this manuscript. In

memory of Richard G. Harrison without whom this collaboration would not have been

634 formed.

References

636 1. Clobert J, Danchin E, Dhont AA, Nichols JD. *Dispersal*. Oxford, UK: Oxford
638 University Press; 2001.

640 2. Coulon A, Fitzpatrick JW, Bowman R, Lovette IJ. Mind the gap: genetic distance
increases with habitat gap size in Florida scrub jays. *Biol Lett*. 2012;8(4):582-5. doi:
10.1098/rsbl.2011.1244. PMID: 22357936.

642 3. Coulon A, Fitzpatrick JW, Bowman R, Lovette IJ. Effects of habitat fragmentation
on effective dispersal of Florida scrub-jays. *Conserv Biol*. 2010;24(4):1080-8. doi:
10.1111/j.1523-1739.2009.01438.x. PMID: 20151985.

644 4. Duckworth RA, Badyaev AV. Coupling of dispersal and aggression facilitates the
646 rapid range expansion of a passerine bird. *Proc Natl Acad Sci USA*.
2007;104(38):15017-22. doi: 10.1073/pnas.0706174104. PMID: 17827278.

648 5. Wright S. Isolation by distance under diverse systems of mating. *Genetics*.
1946;31:39-59.

650 6. Wright S. Isolation by Distance. *Genetics*. 1943;28:114-38.

652 7. Malécot G. *Les Mathématiques de l'Hérédité*. Paris: Masson; 1948.

654 8. Malécot G. Heterozygosity and relationship in regularly subdivided populations.
Theor Popul Biol. 1975;8:212-41.

656 9. Malécot G. Génétique des populations diploïdes naturelles dans le cas d'un seul
locus. III. Parenté, mutations et migration. *Ann Génét Sél Anim*. 1973;5(3):333-61.

658 10. Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure
analyses in plant populations. *Mol Ecol*. 2004;13(4):921-35. doi: 10.1046/j.1365-
294X.2004.02076.x.

660 11. Meirmans PG. The trouble with isolation by distance. *Mol Ecol*.
2012;21(12):2839-46. doi: 10.1111/j.1365-294X.2012.05578.x.

662 12. Koenig WD, Van Vuren D, Hooge PN. Detectability, philopatry, and the
distribution of dispersal distances in vertebrates. *Trends Ecol Evol*. 1996;11(12):514-7.

664 13. Broquet T, Petit EJ. Molecular Estimation of Dispersal for Ecology and
Population Genetics. *Annu Rev Ecol Evol Syst*. 2009;40(1):193-216. doi:
10.1146/annurev.ecolsys.110308.120324.

666 14. Epperson BK. Estimating dispersal from short distance spatial autocorrelation.
Heredity. 2005;95(1):7-15. doi: 10.1038/sj.hdy.6800680. PMID: 15931252.

668 15. Rousset F. Genetic differentiation and estimation of gene flow from F-statistics
under isolation by distance. *Genetics*. 1997;145:1219-28.

670 16. Li MH, Merila J. Genetic evidence for male-biased dispersal in the Siberian jay
(*Perisoreus infaustus*) based on autosomal and Z-chromosomal markers. *Mol Ecol*.
672 2010;19(23):5281-95. doi: 10.1111/j.1365-294X.2010.04870.x. PMID: 20977509.

674 17. Slatkin M. Gene flow in natural populations. *Annu Rev Ecol Syst*. 1985;16:393-
430.

676 18. Excoffier L, Foll M, Petit RJ. Genetic Consequences of Range Expansions. *Annu
Rev Ecol Evol Syst*. 2009;40(1):481-501. doi:
10.1146/annurev.ecolsys.39.110707.173414.

678 19. Leighton GM, Echeverri S. Population genomics of Sociable Weavers *Philetairus
socius* reveals considerable admixture among colonies. *J Ornithol*. 2016;157:483-92.
680 doi: 10.1007/s10336-015-1307-1.

682 20. Garroway CJ, Radersma R, Sepil I, Santure AW, De Cauwer I, Slate J, et al.
682 Fine-scale genetic structure in a wild bird population: the role of limited dispersal and
682 environmentally based selection as causal factors. *Evolution*. 2013;67(12):3488-500.
684 doi: 10.1111/evo.12121. PMID: 24299402.

686 21. Temple HJ, Hoffman JI, Amos W. Dispersal, philopatry and intergroup
686 relatedness: fine-scale genetic structure in the white-breasted thrasher, *Ramphocinclus*
686 *brachyurus*. *Mol Ecol*. 2006;15(11):3449-58. doi: 10.1111/j.1365-294X.2006.03006.x.
688 PMID: 16968282.

690 22. Foerster K, Valcu M, Johnsen A, Kempenaers B. A spatial genetic structure and
690 effects of relatedness on mate choice in a wild bird population. *Mol Ecol*.
690 2006;15(14):4555-67. doi: 10.1111/j.1365-294X.2006.03091.x. PMID: 17107482.

692 23. Quaglietta L, Fonseca VC, Hájková P, Mira A, Boitani L. Fine-scale population
692 genetic structure and short-range sex-biased dispersal in a solitary carnivore, *Lutra*
694 *lutra*. *J Mammal*. 2013;94(3):561-71. doi: 10.1644/12-mamm-a-171.1.

696 24. Weber JN, Bradburd GS, Stuart YE, Stutz WE, Bolnick DI. Partitioning the effects
696 of isolation by distance, environment, and physical barriers on genomic divergence
696 between parapatric threespine stickleback. *Evolution*. 2016. doi: 10.1111/evo.13110.
698 PMID: 27804120.

700 25. van Dijk RE, Covas R, Doutrelant C, Spottiswoode CN, Hatchwell BJ. Fine-scale
700 genetic structure reflects sex-specific dispersal strategies in a population of sociable
700 weavers (*Philetairus socius*). *Mol Ecol*. 2015;24(16):4296-311. doi: 10.1111/mec.13308.
702 PMID: 26172866.

704 26. Dobson FS. Competition for mates and predominant juvenile male dispersal in
704 mammals. *Anim Behav*. 1982;30:1183-92.

706 27. Greenwood PJ. Mating systems, philopatry and dispersal in birds and mammals.
706 *Anim Behav*. 1980;28:1140-62.

708 28. Goudet J, Perrin N, Waser P. Tests for sex-biased dispersal using bi-parentally
708 inherited genetic markers. *Mol Ecol*. 2002;11:1103-14.

710 29. Roy J, Gray M, Stoinski T, Robbins MM, Vigilant L. Fine-scale genetic structure
710 analyses suggest further male than female dispersal in mountain gorillas. *BMC Ecol*.
712 2014;14:21.

714 30. Prugnolle F, de Meeus T. Inferring sex-biased dispersal from population genetic
714 tools: a review. *Heredity*. 2002;88:161-5. doi: 10.1038/sj/hdy/6800060.

716 31. Segurel L, Martinez-Cruz B, Quintana-Murci L, Balaresque P, Georges M, Hegay
716 T, et al. Sex-specific genetic structure and social organization in Central Asia: insights
716 from a multi-locus study. *PLoS Genet*. 2008;4(9):e1000200. doi:
718 10.1371/journal.pgen.1000200. PMID: 18818760.

720 32. Woolfenden GE, Fitzpatrick JW. The Florida Scrub Jay: Demography of a
720 Cooperative-breeding Bird. Princeton, New Jersey: Princeton University Press; 1984.

722 33. Woolfenden GE, Fitzpatrick JW. Florida Scrub-Jay (*Aphelocoma coerulescens*).
722 Poole A, editor. Ithaca: Cornell Lab of Ornithology; 1996.

724 34. Fitzpatrick JW, Woolfenden GE, Bowman R, editors. Dispersal distance and its
724 demographic consequences in the Florida scrub-jay. Proceedings of the XXII
724 International Ornithological Congress; 1999; Durban: South Africa.

726 35. Schoech SJ, Mumme RL, Moore MC. Reproductive endocrinology and
mechanisms of breeding inhibition in cooperatively breeding Florida scrub jays
(*Aphelocoma c. coerulescens*). *Condor*. 1991;93:354-64.

728 36. Chen N, Cosgrove Elissa J, Bowman R, Fitzpatrick John W, Clark Andrew G.
Genomic consequences of population decline in the endangered Florida scrub-jay. *Curr
Biol*. 2016. doi: 10.1016/j.cub.2016.08.062.

730 37. Paradis E, Baillie SR, Sutherland WJ, Gregory RD. Patterns of natal and
breeding dispersal in birds. *J Anim Ecol*. 1998;67:518-36.

732 38. Borcard D, Legendre P. Is the Mantel correlogram powerful enough to be useful
in ecological analysis? A simulation study. *Ecology*. 2012;93(6):1473-81.

734 39. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, de Campos
Telles MP, et al. Mantel test in population genetics. *Genet Mol Biol*. 2013;36(4):475-85.

736 40. Schaffner SF. The X chromosome in population genetics. *Nat Rev Genet*.
2004;5(1):43-51. doi: 10.1038/nrg1247. PMID: 14708015.

738 41. Charlesworth B. Effective population size and patterns of molecular evolution and
variation. *Nat Rev Genet*. 2009;10(3):195-205. doi: 10.1038/nrg2526. PMID: 19204717.

740 42. Ishida Y. Sewall Wright and Gustave Malécot on isolation by distance. *Philos Sci*.
2009;76(5):784-96.

742 43. Slatkin M, Veuille M. Modern developments in theoretical population genetics:
the legacy of Gustave Malécot: Oxford University Press; 2002.

744 44. Nagylaki T. Gustave Malécot and the transition from classical to modern
population genetics. *Genetics*. 1989;122(2):253-68.

746 45. Ralph P, Coop G. The geography of recent genetic ancestry across Europe.
PLoS Biol. 2013;11(5):e1001555. doi: 10.1371/journal.pbio.1001555. PMID: 23667324.

748 46. Ringbauer H, Coop G, Barton NH. Inferring recent demography from isolation by
distance of long shared sequence blocks. *Genetics*. 2017.

750 47. Baharian S, Barakatt M, Gignoux CR, Shringarpure S, Errington J, Blot WJ, et al.
The Great Migration and African-American Genomic Diversity. *PLoS Genet*.
2016;12(5):e1006059. doi: 10.1371/journal.pgen.1006059.

752 48. Browning SR, Browning BL. Identity by descent between distant relatives:
detection and applications. *Annu Rev Genet*. 2012;46:617-33. doi: 10.1146/annurev-
genet-110711-155534. PMID: 22994355.

754 49. Mumme RL. Do helpers increase reproductive success? *Behav Ecol Sociobiol*.
1992;31:319-28.

756 50. ESRI. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems
Research Institute; 2011.

758 51. Greenwood PJ, Harvey PH. The natal and breeding dispersal of birds. *Annu Rev
Ecol Syst*. 1982;13:1-21. doi: 10.1146/annurev.es.13.110182.000245.

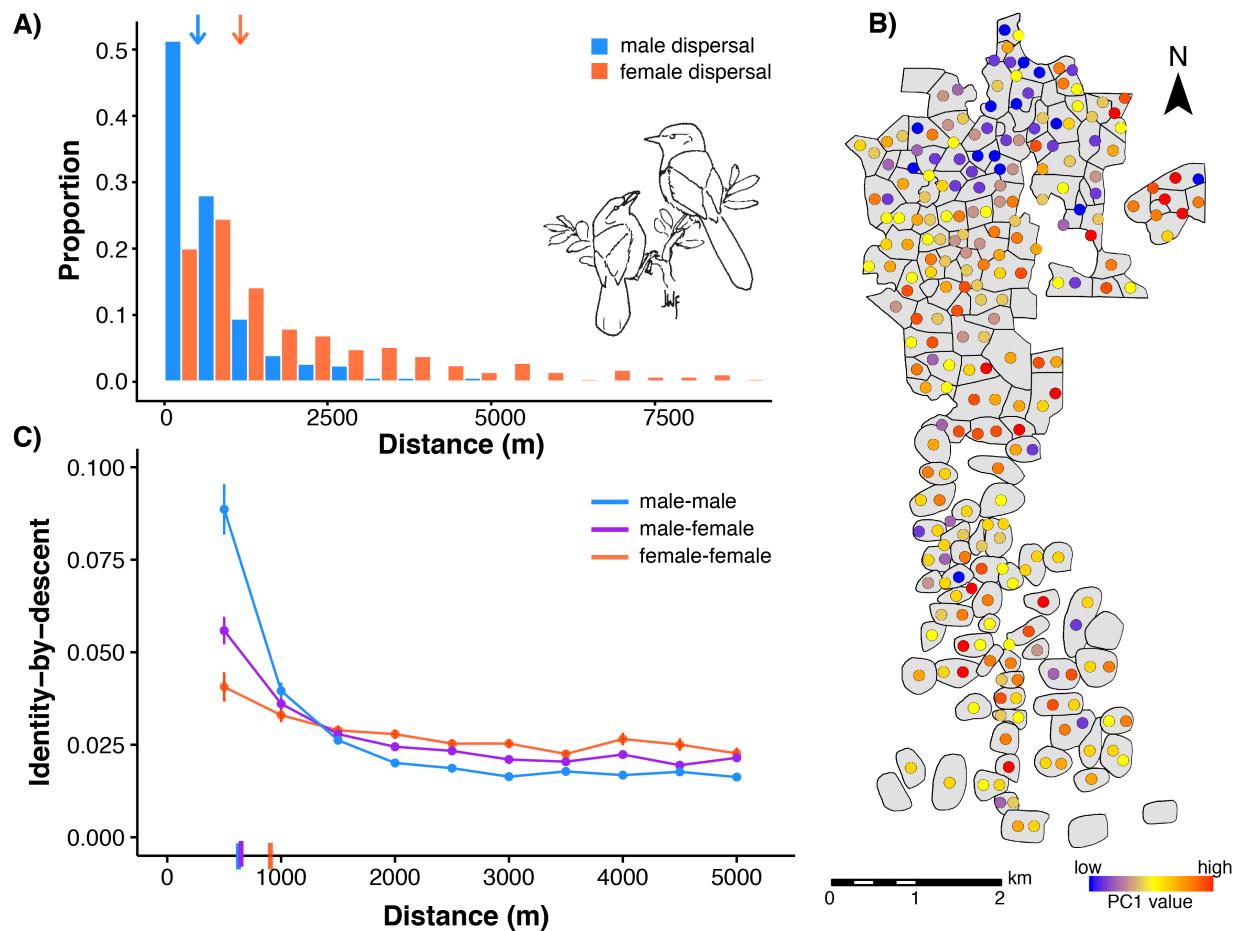
760 52. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, et al.
PLINK: a toolset for whole-genome association and population-based linkage analysis.
Am J Hum Genet. 2007;81:559-75.

762 53. Therneau TM, Sinnwell J. *kinship2: Pedigree Functions*. 2015.

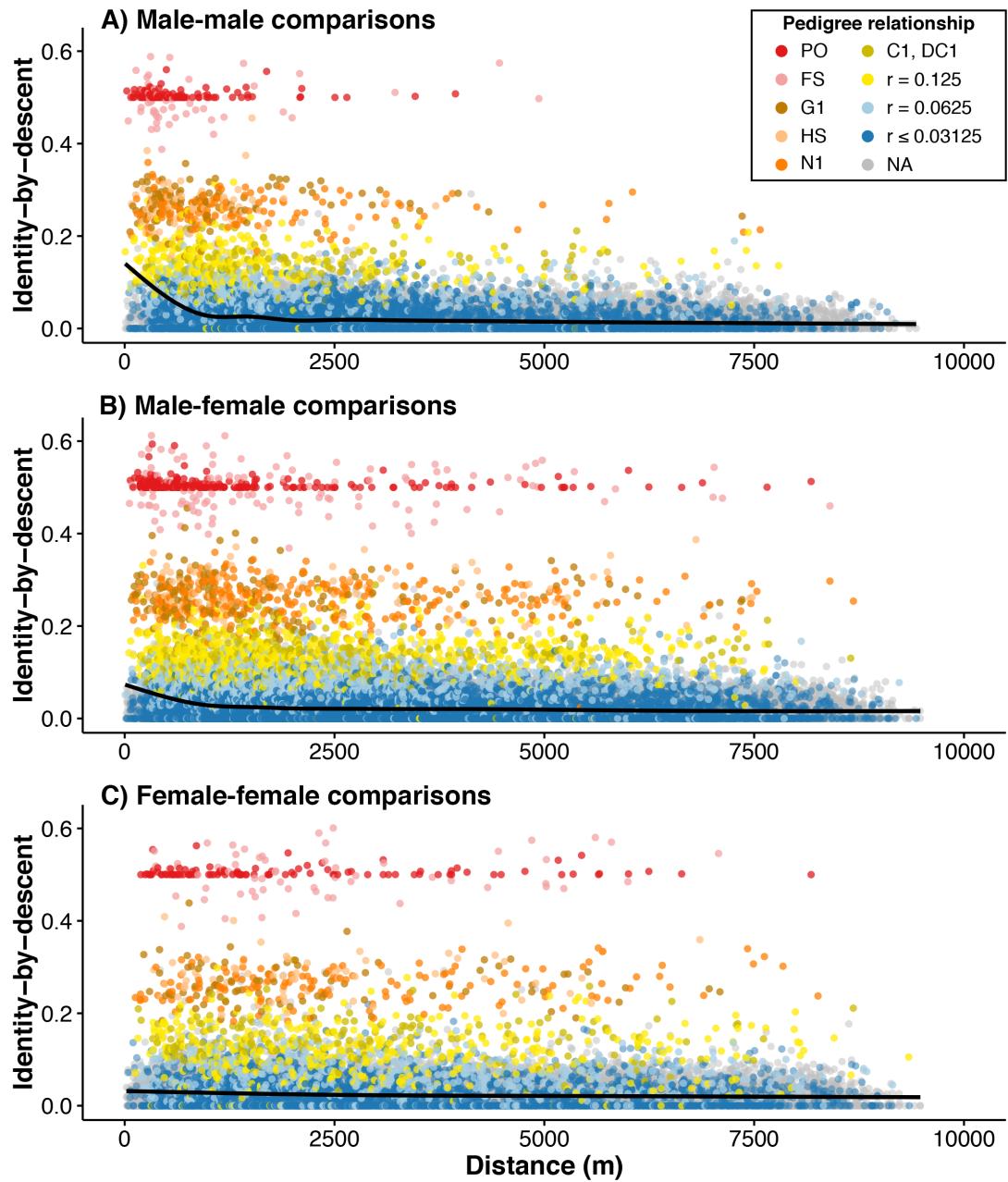
764 54. R Core Team. R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2015.

55. Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of
770 genomics: marker-based measures are better than pedigrees. *Heredity*.
2015;115(1):63-72. doi: 10.1038/hdy.2015.17. PMID: 26059970.

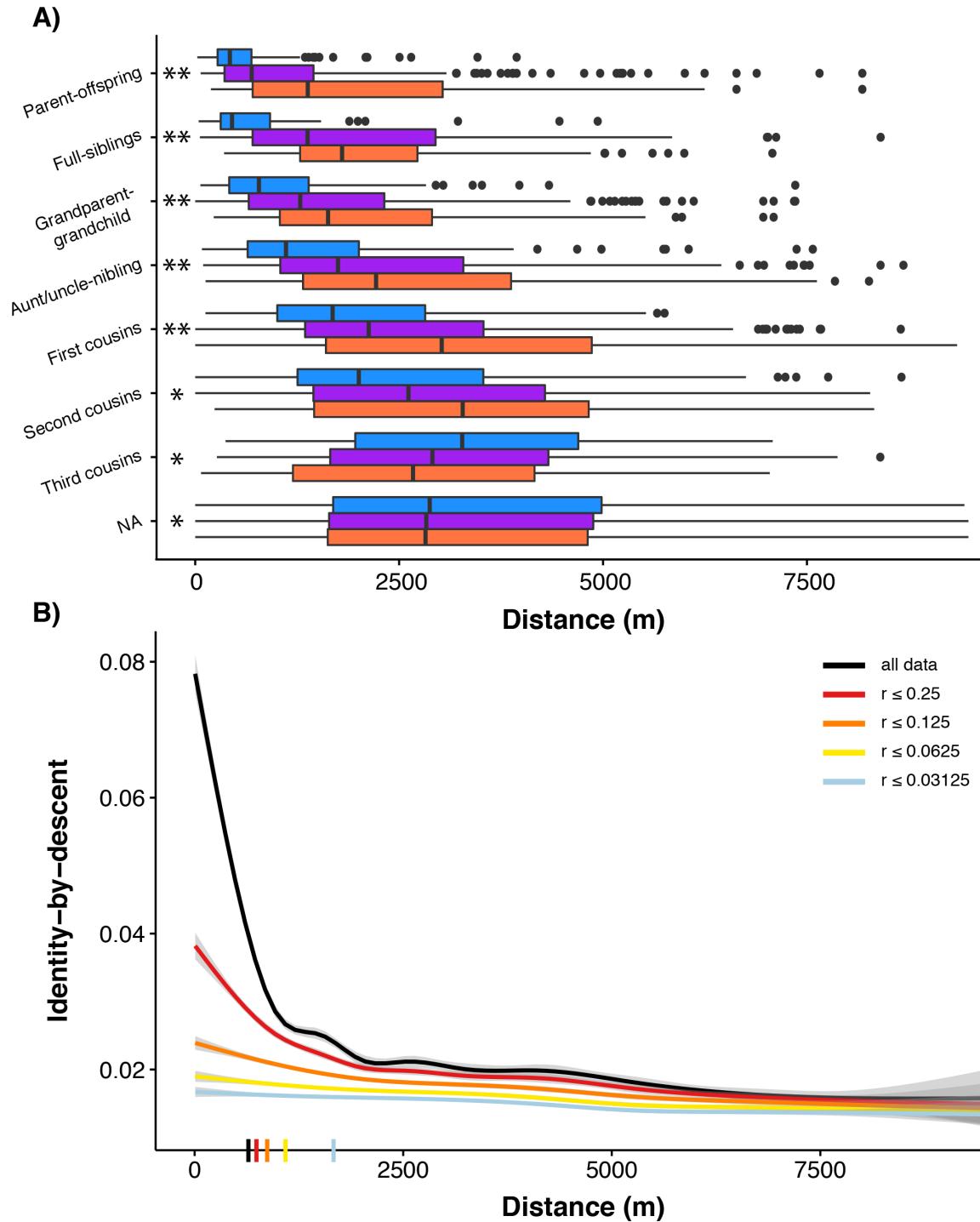
772 56. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
complex trait analysis. *Am J Hum Genet*. 2011;88(1):76-82. doi:
774 10.1016/j.ajhg.2010.11.011. PMID: 21167468.


776 57. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al.
vegan: Community Ecology Package. 2015.

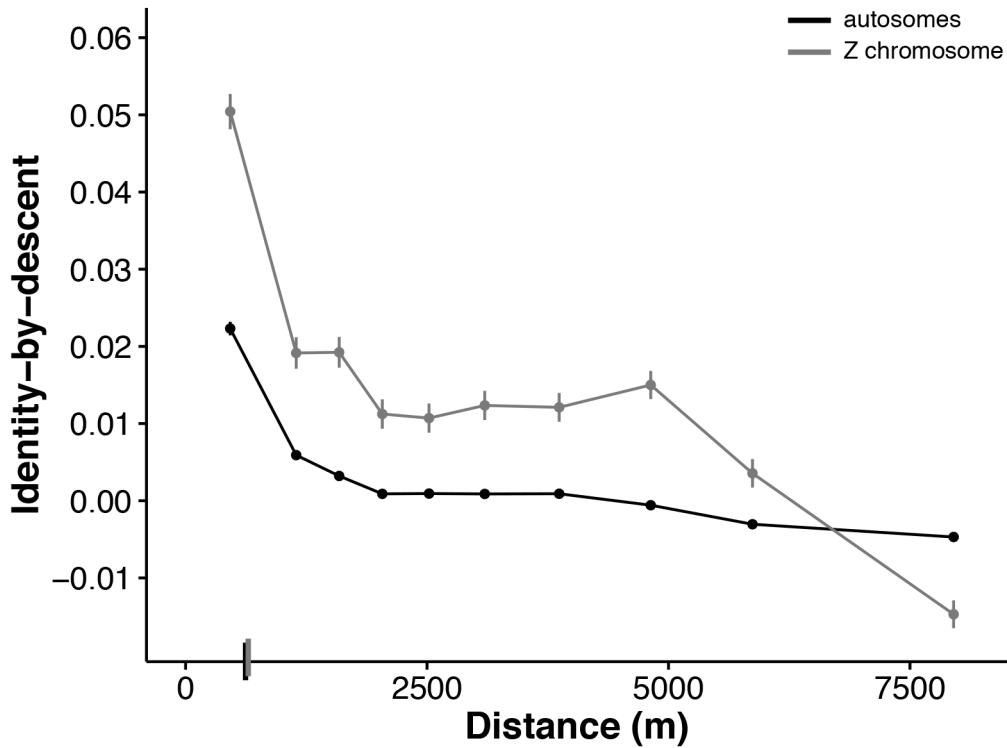
778 58. Mantel N. The detection of disease clustering and a generalized regression
approach. *Cancer Res*. 1967;27:209-20.


780 59. Mantel N, Valand RS. A technique of nonparametric multivariate analysis.
Biometrics. 1970;26(3):547-58.

782 60. Grossman M, Eisen EJ. Inbreeding, coancestry, and covariance between
relatives for X-chromosome loci. *J Hered*. 1989;80:137-42.


784 **Figures**

786 **Fig 1. Dispersal curves and isolation-by-distance patterns in the Florida Scrub-Jay.** (A) Natal dispersal distances for Florida Scrub-Jays born and breeding within Archbold Biological Station (1990-2013, $n = 672$) are significantly shorter in males (blue bars; median \pm SE = 488 ± 43 m) than in females (salmon bars; $1,149 \pm 108$ m; Wilcoxon rank sum test, $p < 2.2 \times 10^{-16}$). Median values are shown with arrows at top of plot. Florida Scrub-Jay drawing by JWF. (B) Map of breeding territories (gray polygons) for a representative year (2008) within Archbold with individual breeders colored by PC1 values shows isolation-by-distance from north to south. (C) Isolation-by-distance patterns in autosomal SNPs shown with standard error bars. The decline in identity-by-descent with geographic distance is stronger in male-male (blue) and male-female (purple) pairwise comparisons than in female-female comparisons (salmon). δ values, the distance where identity-by-descent drops halfway to the mean (see text for details), are shown as dashes on the x-axis.


800 **Fig 2. Isolation-by-distance patterns in Florida Scrub-Jays can be deconstructed**
802 **by pedigree relatedness.** Distance versus identity-by-descent in autosomal SNPs for
804 all possible (A) male-male, (B) male-female, and (C) female-female comparisons is, in
806 part, generated by highly related individuals remaining physically close together. Loess
808 curves are shown in each panel. Isolation-by-distance patterns are significantly stronger
810 in male-male (A) and male-female (B) comparisons than in female-female (C)
812 comparisons. Points are colored by specific pedigree relationship or, for more distant
relationships, grouped into a single coefficient of relationship (r) class. Gray points
indicate no known pedigree relationship. Pedigree relationship abbreviations: PO =
parent-offspring, FS = full-siblings, G1 = grandparent-grandchild, HS = half-siblings, N1 =
aunt/uncle-nibling, C1 = first cousins, DC1 = double first cousins. ("Nibling" is a
gender-neutral term for niece and nephew.)

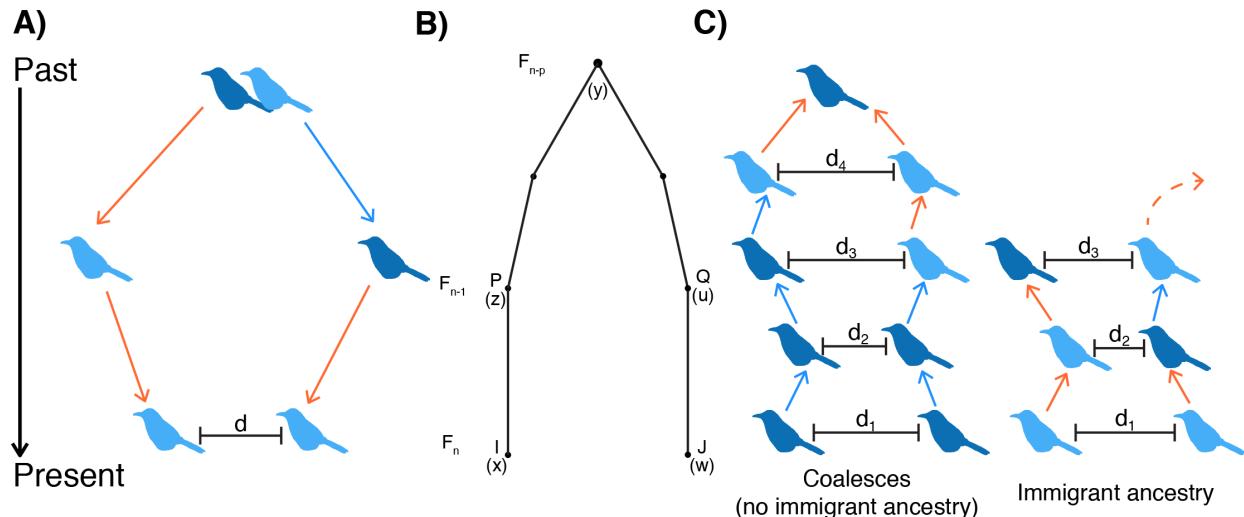
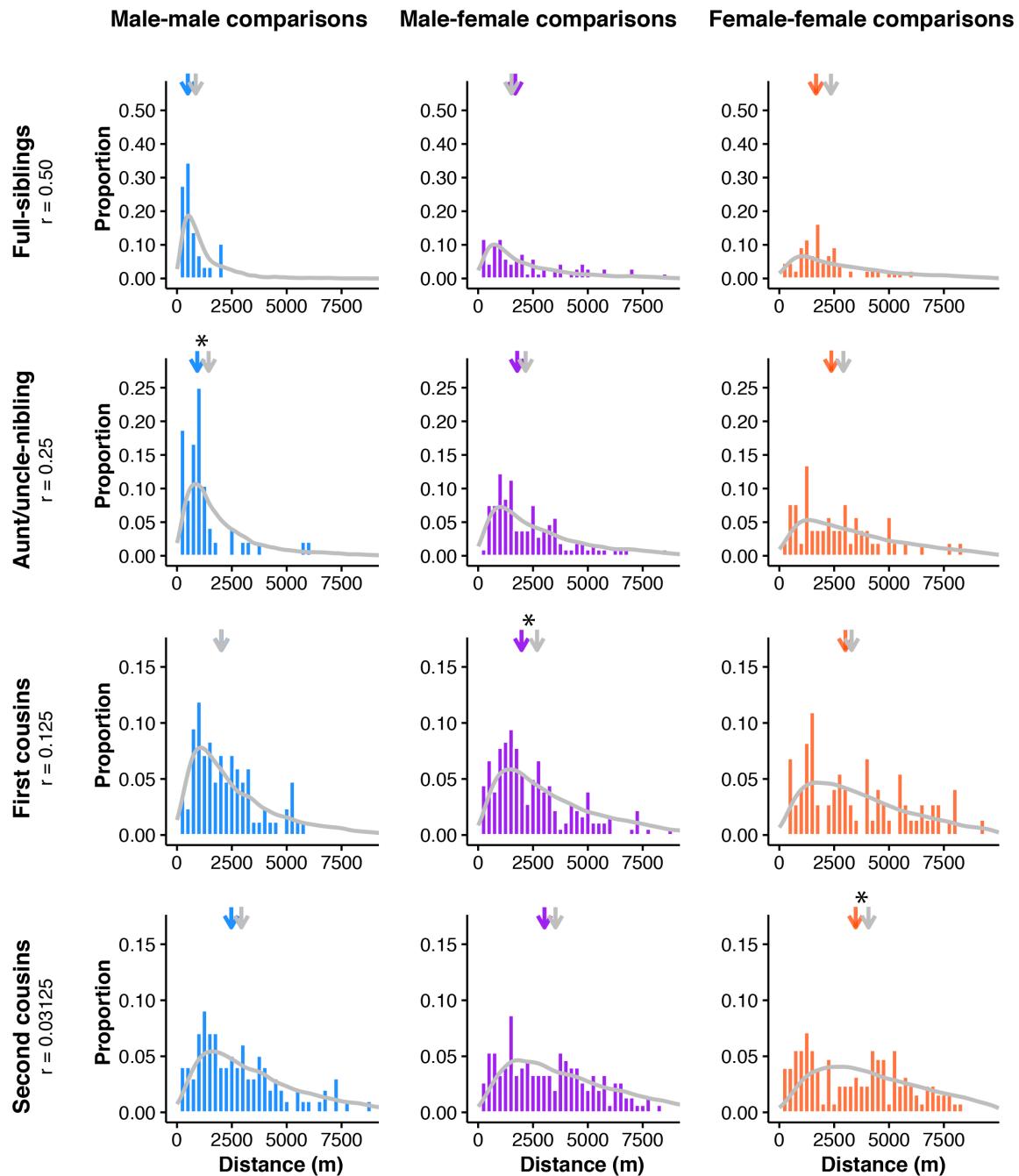
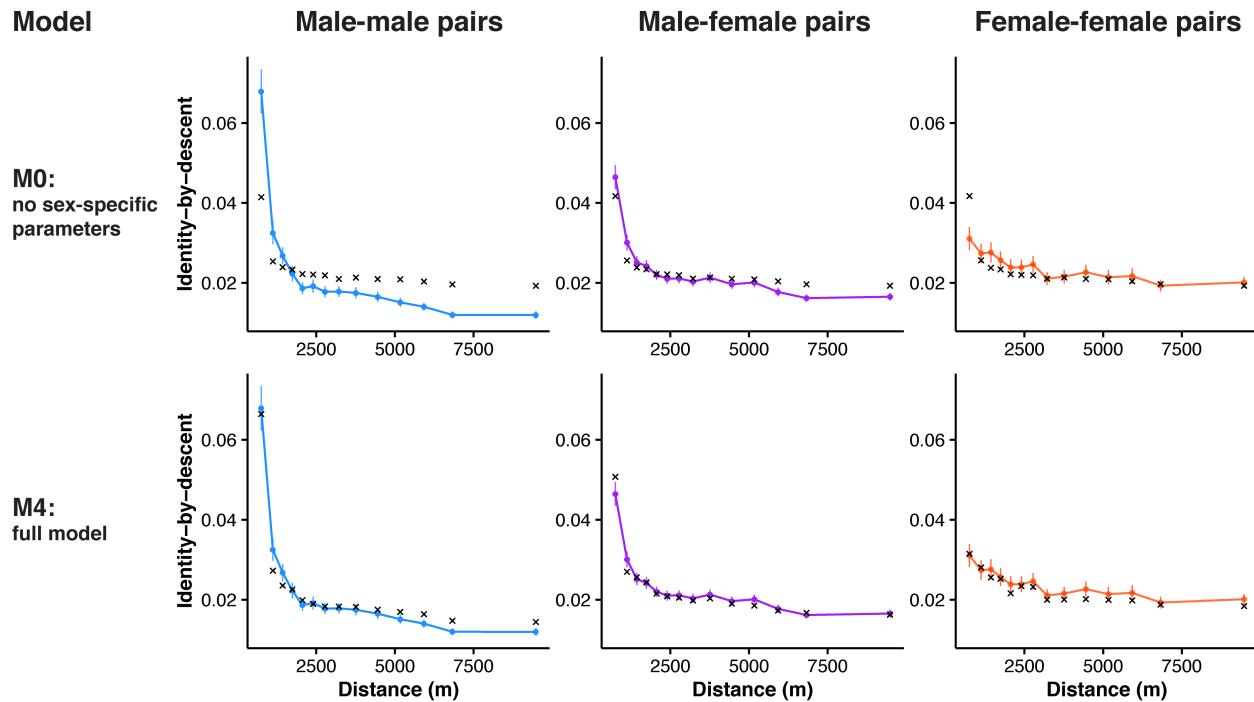

814

Fig 3. Distances between Florida Scrub-Jay individuals of close pedigree relatedness explains, in part, the observed isolation-by-distance patterns. (A)
 816 Distances between all possible male-male (blue), male-female (purple), and female-
 818 female (salmon) comparisons separated by pedigree relationship. Significant
 820 differences using the Kolmogorov-Smirnov Test are indicated with two asterisks when all three comparisons were significantly different (MM-FF, MM-MF, MF-FF) and a single

822 asterisk when only MM-FF and MM-MF comparisons were significantly different. The
822 distance between parent-offspring pairs is significantly shorter than the distance
824 between full-siblings (Wilcoxon rank sum test, $p = 5.20 \times 10^{-9}$) and the distance between
824 full-siblings is significantly shorter than the distance between pairs with $r = 0.25$
826 (Wilcoxon rank sum test, $p = 0.01$). (B) Loess curves of distance versus identity-by-
826 descent in autosomal SNPs for all possible unique pairwise comparisons with separate
828 lines showing sequential removal of pedigree relationship classes. The strength of
828 isolation-by-distance decreases as highly related pairs are removed. δ values, the
830 distance where identity-by-descent drops halfway to the mean (see text for details), are
830 shown as dashes on the x-axis.



832 **Fig 4. Isolation-by-distance in autosomal and Z-linked SNPs.** Geographic distance
833 versus unbiased identity-by-descent for autosomal (black) and Z-linked (gray) SNPs for
834 all possible unique pairwise comparisons showing higher mean identity-by-descent in Z-
835 linked SNPs (0.014) than in autosomal SNPs (0.0027). Here we use untransformed
836 estimates of identity-by-descent to avoid biases introduced by the different numbers of
837 autosomal and Z-linked SNPs (see text for details). Identity-by-descent values are
838 binned across 10 distance quantiles and shown as mean \pm SE. δ values, the distance
839 where identity-by-descent drops halfway to the mean (see text for details), are shown as
840 dashes on the x-axis.


842

844 **Fig 5. Overview of dispersal and coalescent simulations of isolation-by-distance.**
845 (A) An example schematic of a dispersal simulation for two female first cousins. Our
846 simulations were over a two-dimensional space, but here we show dispersal on a one-
847 dimensional line for visualization purposes. For the dispersal simulations, we start with
848 the most recent common ancestor for a pair of individuals of known pedigree
849 relationship and simulate dispersal events forward in time until the present. In this case,
850 we start at the grandparental nest, simulate dispersal distances (and angles) of the
851 parents, and then dispersal of the two cousins. Light blue birds are females and dark
852 blue are males. Arrows indicate male (blue) and female (salmon) dispersal events
853 drawn from the dispersal curves. In most simulations, sexes of all ancestors are
854 determined by a coin flip. (B) The gametic kinship chain from Malécot's theory of
855 isolation-by-distance. A locus from individual I born at location x and a locus from
856 individual J born at location w in generation F_n are identical-by-descent if both are
857 descended from the same locus in their common ancestor in generation F_{n-p} . Under
858 Malécot's model, genetic relatedness of individuals should decrease as the distance
859 between them increases. Redrawn from [9]. (C) Illustration of two possible outcomes in
860 the coalescent simulations. In these simulations, we start with a pair of individuals of
861 specified sex separated by distance d_1 and trace their ancestral lineages backwards in
862 time until we either reach a common ancestor or one of the ancestors was an
863 immigrant. In each generation, the probability a given pair coalesces is sampled directly
864 from the pedigree. M is the probability a parental individual is an immigrant. Using
865 empirical estimates of identity-by-descent between closely related pairs and immigrants,
866 we generated expected identity-by-descent values for each pair.

868

870 **Fig 6. Dispersal simulations can reconstruct the observed distribution of**
872 **geographic distances between related pairs.** Simulated (gray line) and observed
874 (colored histograms) dispersal values for full-sibling, aunt/uncle-nibbling, first cousin, and
876 second cousin comparisons. Male-male comparisons are shown in blue, male-female
877 comparisons in purple, and female-female comparisons in salmon. Median values for
878 the simulated (gray) and observed (colored) distributions are indicated by arrows above
879 each plot. Simulated distributions that were significantly different from the observed
880 distribution using the Kolmogorov-Smirnov Test are marked with asterisks above the
881 median arrows.

Fig 7. Coalescent simulations can reconstruct isolation-by-distance patterns.

880 Simulated (black crosses) and observed (colored circles and line) autosomal isolation-
882 by-distance patterns for male-male (blue), male-female (purple), and female-female
884 comparisons (salmon). We ran five different simulations using the observed pedigree,
886 dispersal curves, and immigration rate. Results are shown for two models: the simplest
888 model with no sex-specific parameters (M0) on top and our final model with sex-specific
parameters and isolation-by-distance in immigrants (M4) on bottom. By increasing the
biological realism of our models, we can recover the observed pattern of isolation-by-
distance. The coefficient of determination for the final model is 0.98 for male-male
comparisons, 0.96 for male-female comparisons, and 0.78 for female-female
comparisons. See Table 1 and S7 Fig for full results.

890 **Supporting Information**

892 **S1 Dataset. Dispersal data used in this study**

894 **S2 Dataset. Genetic and pedigree relatedness data used in this study**

896 **S1 File. R code for estimating identity-by-descent for Z-linked markers**

898 **S2 File. R code for dispersal simulations**

900 **S3 File. R code for coalescent simulations**

902 **S1 Text. Identity-by-descent estimation for Z-linked markers**

904 **S2 Text. Derivation of coalescent model**

906 **Tables**

908 **Table 1. Coefficient of determination (R^2) for different coalescent models for
910 autosomal and Z-linked SNPs.**

Model number	Model description	Autosomal			Z-linked		
		MM	MF	FF	MM	MF	FF
M0	No sex-specific parameters	0.61 (0.60)	0.90 (0.88)	-0.10 (0.06)	0.46 (0.44)	0.65 (0.61)	0.16 (0.12)
M1	M0 + sex-specific dispersal	0.64 (0.64)	0.92 (0.91)	0 (0.10)	0.48 (0.47)	0.66 (0.64)	0.16 (0.10)
M2	M1 + sex-specific relatedness	0.86 (0.86)	0.90 (0.88)	0.84 (0.66)	0.68 (0.68)	0.66 (0.65)	0.16 (0.13)
M3	M2 + sex-specific immigration	0.88 (0.88)	0.90 (0.91)	0.88 (0.73)	0.61 (0.58)	0.63 (0.58)	0.22 (0.17)
M4	M3 + isolation-by-distance in immigrants	0.98 (0.94)	0.96 (0.97)	0.78 (0.63)	0.89 (0.85)	0.93 (0.91)	0.41 (0.37)

912

914 Values listed are from models with parameter estimates from the full dataset. Mean values from five cross-validation runs are included in parentheses. MM = male-male pairs, MF = male-female pairs, FF = female-female pairs. See S2 Text for more details.