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Abstract

Macromolecular protein complexes carry out many of the essential functions of cells, and many
genetic diseases arise from disrupting the functions of such complexes. Currently there is great
interest in defining the complete set of human protein complexes, but recent published maps
lack comprehensive coverage. Here, through the synthesis of over 9,000 published mass
spectrometry experiments, we present hu.MAP, the most comprehensive and accurate human
protein complex map to date, containing >4,600 total complexes, >7,700 proteins and >56,000
unique interactions, including thousands of confident protein interactions not identified by the
original publications. hu.MAP accurately recapitulates known complexes withheld from the
learning procedure, which was optimized with the aid of a new quantitative metric (k-cliques) for
comparing sets of sets. The vast majority of complexes in our map are significantly enriched
with literature annotations and the map overall shows improved coverage of many disease-
associated proteins, as we describe in detail for ciliopathies. Using hu.MAP, we predicted and
experimentally validated candidate ciliopathy disease genes in vivo in a model vertebrate,
discovering CCDC138, WDR90, and KIAA1328 to be new cilia basal body/centriolar satellite
proteins, and identifying ANKRD55 as a novel member of the intraflagellar transport machinery.
By offering significant improvements to the accuracy and coverage of human protein
complexes, hu.MAP (http://proteincomplexes.org) serves as a valuable resource for better
understanding the core cellular functions of human proteins and helping to determine
mechanistic foundations of human disease.
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Introduction

A fundamental aim of molecular biology is to understand the relationship between genotype and
phenotype of cellular organisms. One major strategy to understand this relationship is to study
the physical interactions of the proteins responsible for carrying out the core functions of cells,
since interacting proteins tend to be linked to similar phenotypes and genetic diseases.
Accurate maps of protein complexes are thus critical to understanding many human diseases
(Goh et al. 2007; P. I. Wang and Marcotte 2010; Lage et al. 2007). Technical advances in the
field of proteomics, including large-scale human yeast two-hybrid assays (Rolland et al. 2014;
Rual et al. 2005), affinity purification / mass spectrometry (AP-MS) (Huttlin et al. 2015; Hein et
al. 2015) and co-fractionation / mass spectrometry (CF-MS) (Havugimana et al. 2012; Wan et
al. 2015; Kirkwood et al. 2013; Kristensen, Gsponer, and Foster 2012) have enabled the partial
reconstruction of protein interaction networks in humans and other animals, markedly increasing
the coverage of protein-protein interactions across the human proteome. Such efforts are
largely ongoing, as we still lack a comprehensive map of human complexes, and we have only
partial understanding of the composition, formation and function for the majority of known
complexes. Prior high-throughput protein interaction assays in yeast and humans have
generally tended to show limited overlap (Yu et al. 2008; von Mering et al. 2002; Gandhi et al.
2006; Hart, Ramani, and Marcotte 2006), suggesting that interactions from different studies tend
to be incomplete, possibly error-prone, but also orthogonal.

Over the past year, three large-scale protein interaction mapping efforts in particular have
greatly expanded the set of known human protein interactions, namely BioPlex (Huttlin et al.
2015), Hein et al. (Hein et al. 2015) and Wan et al. (Wan et al. 2015), collectively comprising
9,063 mass spectrometry shotgun proteomics experiments. The three resulting datasets are
notable for representing independent surveys of human protein complexes by distinct methods
(AP-MS vs. CF-MS), in distinct samples (different cells and tissues), and in the case of the two
AP-MS datasets, using distinct choices of affinity-tagged bait proteins. The datasets are
complementary in other aspects as well: The two AP-MS interaction sets are each sampled
from a single choice of immortalized cancer cell line grown in rich cell culture medium, and thus
represent deep, but condition- and cell type-specific, views of the interactome network. The AP-
MS networks sample only a fraction of human proteins as “baits” and are limited to interactions
which contain a bait protein, which is expressed recombinantly as a fusion to an affinity
purification moiety (green fluorescent proteins (GFP) for Hein et al. or FLAG-HA for BioPlex.)
These strategies resulted in 23,744 and 26,642 protein interactions for BioPlex and Hein et al.,
respectively. In contrast, the CF-MS experiments sampled endogenous proteins in their native
state without genetic manipulation, but with only partial purification, relying instead on repeat
observation of co-eluting proteins across samples and separations to increase confidence in the
interactions. The resulting 16,655 protein interactions reflect the biases expected for well-
observed proteins, tending towards more abundant, soluble proteins. Additionally, the Wan et al.
interactome required all interactions to have evidence in at least two sampled metazoan
species; thus, only evolutionarily-conserved human proteins are represented. As a
consequence, none of these three datasets is individually comprehensive; nonetheless, we
expect them to present highly complementary, potentially overlapping views of the network of
core human protein complexes. There is thus an opportunity to integrate these over 9,000
published mass spectrometry experiments in order to create a single, more comprehensive map
of human protein complexes.

Here, we describe our construction of a more accurate and comprehensive global map of
human protein complexes by re-analyzing these three large-scale human protein complex mass
spectrometry experimental datasets. We built a protein complex discovery pipeline based on
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supervised and unsupervised machine learning techniques that first generates an integrated
protein interaction network using features from all three input datasets and then employs a
sophisticated clustering procedure which optimizes clustering parameters relative to a training
set of literature curated protein complexes. While generating the complex map, we re-analyzed
AP-MS datasets to identify >15,000 high-confidence protein interactions not reported in the
original networks. This re-analysis substantially increased the overlap of protein interactions
across the datasets and revealed entire complexes not identified by the original
analyses. Importantly, the integrated protein interaction network and resulting complexes
outperform published networks and complex maps on multiple measures of performance and
coverage, and represents the most comprehensive human protein complex map currently
available. Moreover, the framework we employ can readily incorporate future protein interaction
datasets.

We expect that a comprehensive definition of protein complexes will ultimately aid our
understanding of disease relations among proteins. In line with expectation, our map shows
markedly increased coverage of disease-linked proteins, especially for proteins linked to
ciliopathies, a broad spectrum of human diseases characterized by cystic kidneys, obesity,
blindness, intellectual disability, and structural birth defects (Hildebrandt, Benzing, and Katsanis
2011). We highlight both known and novel complexes relevant to ciliopathies and, moreover,
experimentally validate multiple new protein subunits of ciliary complexes, using in vivo assays
of cilia structure and function in vertebrate embryos. Additionally, we distribute our results to the
community in a simple and easy to navigate website: http://proteincomplexes.org/. The scale
and accuracy of this human protein complex map thus provides avenues for greater
understanding of protein function and better disease characterization.

Results and Discussion

Overlap between three recent high-throughput animal protein interaction datasets is modest, but
can be greatly increased by a re-analysis of the data

Protein interaction networks from various sources often show minimal overlap (von Mering et al.
2002; Gandhi et al. 2006; Hart, Ramani, and Marcotte 2006). We therefore first sought to
measure the overlap of proteins and interactions between three recently published protein
interaction data sets from BioPlex (Huttlin et al. 2015), Hein and colleagues (Hein et al. 2015)
and Wan and colleagues (Wan et al. 2015). The BioPlex network is the result of 2,594 AP-MS
experiments from HEK293T cells. Similarly, the Hein et al. network is the result of 1,125 AP-MS
experiments from Hela cells. In both screens, the authors considered only interactions between
the affinity-tagged bait protein and the co-precipitated “prey” proteins, corresponding to a
“spoke” model of interactions (Figure 1A). The Wan et al. network is derived from a CF-MS
analysis of nine organisms, comprising 6,387 MS experiments.

We observe reasonable overlap in terms of the proteins identified within each published
network, ranging between 30% and 68% of the proteins between individual networks
(Supplemental Table 1). However, the overlap among protein interactions was more limited,
ranging between ~3% and ~6% overlap (Figure 1B, Supplemental Table 1). There are
generally three accepted reasons for the limited overlap commonly observed between large-
scale protein interaction maps (von Mering et al. 2002): 1) the interaction networks sample
different portions of the interactome (e.g., differences in cell types and baits), 2) the
experimental methods used are biased towards discovery of certain classes of interactions (e.g.
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soluble vs. membrane protein interactions) and therefore are complementary to the other
methods, and 3) the experimental methods produce false positive interactions.

To further probe the reason for the limited observed overlap, we next considered if the spoke
model interpretation of the AP-MS experiments was partly responsible. By only considering
interactions between bait proteins and their preys, spoke models are heavily reliant on the baits
selected for experimentation, and also ignore evidence for repeated precipitation of intact
complexes across baits. Traditionally, spoke models have shown higher accuracy when
compared to the alternative full “matrix” model interpretation (Figure 1C) (Bader and Hogue
2002). However, the discrimination between true and false protein interactions can be
dramatically improved by computing confidence scores for prey-prey interactions when applying
a matrix model (Hart, Lee, and Marcotte 2007; H. Wang et al. 2009) or a hybrid spoke-matrix
model (e.g., socio-affinity index) (Gavin et al. 2006) to AP-MS data. In order to reinterpret the
AP-MS datasets using a matrix model while effectively discriminating true and false positive
interactions, as well as suppressing “frequent flyer” co-purifying proteins, we applied a
hypergeometric distribution-based error model to the AP-MS datasets, calculating p-values for
pairs of proteins that were significantly co-precipitated more often than random across AP-MS
experiments. We then ranked each protein pair according to its calculated p-value and selected
the top N pairs for each AP-MS dataset, where N is the number of interactions reported in the
original published interaction networks (23,744 BioPlex interactions and 26,642 Hein et al.
interactions). This reinterpretation of AP-MS experiments using a matrix model substantially
increased the amount of overlap among the three interaction networks, which rose to between
10% and 15%, as plotted in Figure 1D (see also Supplemental Table 1). This result indicates
that there are thousands of interactions captured by the AP-MS experiments that were not
previously identified and confirms a far greater consistency among the underlying mass
spectrometry datasets, arguing that a combined analysis of the datasets could considerably
improve coverage of the complete human protein interactome.

Integrating the large-scale proteomics datasets into a human protein-protein interaction network

Based on the notion that considering this large and diverse set of experiments jointly should
increase the ability to discriminate between true and false protein interactions, we next asked if
integrating all three large-scale datasets would outperform the individual networks in terms of
identifying true human protein interactions. We employed a formal machine-learning framework
to combine evidence from the thousands of individual mass spectrometry experiments in the
three large-scale datasets. Our approach was specifically designed to address the limited
network overlap described above, using the confidence-weighted matrix model to increase
interaction coverage while preserving accuracy. We expected the orthogonal techniques
employed, CF-MS and AP-MS, to complement each other, where CF-MS captures stable
interactions among endogenous proteins in diverse cells and tissues, while AP-MS captures a
large collection of interactions with differing biophysical characteristics. The three datasets also
sample very different portions of the human interactome in terms of cell type and bait selection,
which we similarly expected to contribute to a more comprehensive map.

Figure 1E outlines the pipeline used for protein complex discovery. We first generated a feature
matrix using the published features from BioPlex, Hein et al. and Wan et al. as well as the new
matrix model features, in the form of a negative log hypergeometric p-value capturing the
specificity and extent to which pairs of proteins co-precipitated across many AP-MS baits. Rows
in the feature matrix represented pairs of proteins and columns represented measured
numerical estimates of protein pairs’ interaction potentials based on the different experiments
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(see Materials and Methods). We also labeled protein pairs according to their support by a gold-
standard, literature-curated set of human protein complexes (the CORUM protein complex
database (Ruepp et al. 2010)). We assigned a positive label if both proteins were seen in the
same complex, a negative label if both proteins were observed in the literature-curated set but
not in the same complex, and an “unknown” label for all other pairs. A support vector machine
(SVM) classifier was trained using the labeled feature matrix, then applied to all protein pairs,
assigning each pair an SVM confidence score, indicating the level of support for that pair of
proteins to participate in the same complex. This classification step thus resulted in an
integrated human protein-protein interaction network, in which the nodes are proteins identified
in any of the three experimental datasets, and the edges between nodes represent co-complex
interactions weighted proportionally to the SVM score.

As an initial estimate of the quality of the integrated human protein interactions, we calculated
their precision and recall by reconstructing a set of 15,687 gold-standard, literature-curated co-
complex interactions omitted from the training procedure. While networks generated using
features from only one of the three datasets showed high precision for high confident
interactions, they quickly dropped in precision in the higher recall range (Figure 2A). In contrast,
the integrated network demonstrated substantial improvements to performance, with a precision
of 80% over just under half of the benchmark interactions. Additionally, adding the matrix model
features to the published interactions greatly improved the performance, indicating that the
matrix model features capture new information beyond spoke features and serve as a rich
source of evidence supporting true protein interactions.

Clustering pairwise interactions reveals human protein complexes

A hallmark of protein complexes is that their component proteins should frequently be co-
purified in independent separations and affinity purifications. This trend manifests as densely
connected regions of the interaction network, which we sought to identify by applying a two
stage clustering procedure. In the first stage of clustering, we applied the ClusterOne algorithm
(Nepusz, Yu, and Paccanaro 2012), which identifies large, dense subnetworks of the full protein
interaction network. Importantly, ClusterOne allows proteins to participate in more than one sub-
network as dictated by the data, as proteins frequently participate in more than one complex
(Wan et al. 2015). In the second stage, we separately applied MCL (Enright, Van Dongen, and
Ouzounis 2002) and Newman'’s hierarchical clustering method (Newman 2004) to further refine
the sub-networks produced by ClusterOne. As with many unsupervised machine learning
techniques, clustering algorithms have adjustable parameters for optimizing their performance.
We therefore used a parameter sweep strategy to identify choices of parameters that best
recapitulated known complexes. We evaluated each parameter combination by comparing the
resulting protein clusters to our literature curated training set of protein complexes and selected
the top ranking parameter combination. As the comparison of protein complexes to a gold
standard set is not a fully solved problem, we first developed an objective scoring framework for
complex-level precision and accuracy, as we describe in the next section.

Evaluation of the derived protein complexes using k-cliques identifies the most accurate and
comprehensive complex map

Guiding and assessing the accuracy of the reconstructed complexes requires comparison with a
gold standard set of known complexes. However, comparing sets of complexes to known
complexes (or more generally, comparing sets of sets with each other), is ill-defined due to the
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problem of first deciding which sets should be compared and second, to the incomparable
nature of specific matches. For instance, given two non-overlapping complexes, one of size 3
and one of size 20, it is difficult to assess whether an exact match of the complex of size 3
should be given more weight than a partial match of the complex of size 20 (e.g., with 17 out of
20 correct). Many complex-complex comparison metrics (Song and Singh 2009; Brohée and
van Helden 2006; Bader and Hogue 2003) have attempted to address this issue, but they are
often difficult to interpret and may lead to false minima in the parameter landscape, in part
because they require a mapping procedure to determine which specific gold standard
complexes match up with specific reconstructed complexes.

In order to more systematically address these issues, we invented a new class of similarity
metrics, k-cliques, for comparing sets of complexes in a formal precision-recall framework.
Specifically, our approach is based on the matching of cliques within the set of all possible
cliques between predicted complexes and benchmark complexes. Cliques range from size 2
(pairwise protein interactions) through n, where n is the size of the largest predicted complex.
The approach allows for precision and recall values to be calculated unambiguously (because a
clique is either present or absent in a given set) for each clique size, k, and averaged to
determine a single performance metric (here, the F-Grand metric, corresponding to the average
across all clique sizes of the harmonic mean of precision and recall; see Materials and
Methods). An important feature of the k-cliques approach is that it focuses the evaluation on
protein interactions, rather than the proteins themselves, providing a unique perspective on set
comparisons. In addition, while other approaches suffer from evaluating each complex
individually and often require a cluster reduction step in which similar clusters are combined to
avoid potential skew, e.g. as caused by prediction of sub-complexes of larger complexes, the k-
cliques approach compares complexes on a global level and naturally deals with potential skew
by only evaluating on the unique set of cliques for all predicted complexes. Finally, there is no
need to determine a unique mapping between each predicted and benchmark complex, thus
avoiding mapping-induced ambiguity.

We computed the performance in terms of reconstructing known complexes for each of >1,000
different clustering algorithm parameter combinations, varying the SVM confidence threshold for
the input pairwise protein interactions, the ClusterOne density and overlap options, and the
inflation option for MCL. The top-scoring sets of clusters for the two 2" stage clustering
methods, MCL and Newman’s hierarchical method, were of similarly high quality when
evaluated relative to the training set of complexes (Figure 2B). These two top-scoring cluster
sets also showed the top-ranking scores when compared to the literature-curated leave-out test
set for their respective clustering methods, serving to validate the parameter optimization
method. As the two top-scoring cluster sets identified many distinct specific complexes and sub-
complexes, we combined these two top scoring definitions of complexes in order to provide a
more comprehensive view of the myriad of physical protein assemblies in human cells. The
resulting fully integrated human protein complex map, called hu.MAP, consists of 4,659
complexes, 56,735 unique co-complex interactions and 7,777 unique proteins (Supplemental
Tables 2 and 3).

The integrated map improves pairwise interaction performance, identifies new interactions, and
is strongly supported by independent protein interaction datasets

We wished to assess the quality of the integrated map of human protein complexes by multiple,
independent approaches. First, because the process of network clustering entails removing
interactions between proteins that are inconsistent with the defined complexes, we might expect


https://doi.org/10.1101/092361
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/092361; this version posted December 7, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

the resulting clustered network to be more accurate than the pre-clustered network. Indeed, the
final interaction network shows improved precision and recall (Figure 2C), indicating that the
clustering step is preferentially removing false positives from the original network.

Next, during the course of identifying protein interactions and complexes, we withheld a leave
out set of literature-curated complexes to serve as a final, fully independent test set. We
compared these data to the derived map and to previously published complex maps, using two
different comparison measures (Supplemental Figure 1). For both the k-clique metric and the
precision recall product measure (Song and Singh 2009), we observed a dramatic improvement
in performance over the Wan et al. and BioPlex maps (note: Hein reported only interactions, not
complexes). A survey of evidence supporting each interaction in the map showed multiple lives
of evidence supported many pairwise interactions (Figure 2D). This further supports the notion
that the underlying datasets are orthogonal and that integrating them provides substantial
improvement on discriminating true and false protein interactions. Remarkably, however, we
observed tens of thousands of interactions in the map supported only by matrix model features,
15,454 of them having very high confidence. Thus, considering prey-prey interactions in the AP-
MS datasets dramatically enhanced the identification of human protein interactions.

Finally, in order to assess the quality of the final map independently of both the test and training
set complexes, we further evaluated our complex map with several of the largest remaining
available human protein interaction datasets. We observed highly significant overlap with
protein interactions from different experimental methods, including yeast two-hybrid assays
(Rolland et al. 2014), additional unpublished BioPlex AP-MS experiments (“BioPlex” 2016), and
crosslinking mass spectrometry performed on human cell lysate (Liu et al. 2015) (Figure 2E).
Thus, comparisons with independent datasets strongly support the high quality of the derived
protein complexes, as measured by multiple metrics of performance, considering interactions
both pair-wise and set-wise, and even considering interactions measured independently by
multiple different technologies.

Prey-prey interactions reveal a large, synaptic bouton complex, isolated from HEK cells

The thousands of additional high-confidence interactions contributed by prey-prey co-
purification patterns led us next to consider their value in our protein complex discovery pipeline.
In particular, we asked if matrix model edges could independently identify complexes, or if they
only served to support observed bait-prey associations. We thus searched for complexes in the
map that were supported predominantly with matrix model interactions. Figure 3A summarizes
AP-MS experiments for four example complexes. Three of these complexes—the exosome
complex, eukaryotic initiation factor 3 (elF3) complex, and the 19S proteasome—were
supported both by spoke edges and matrix model edges, showing high complementarity
between the two sets of interactions. This support was evident in the strong interaction density
both between bait proteins and between bait and prey proteins within each complex. In contrast,
the fourth complex shown in Figure 3A is a newly identified complex by our pipeline that
surprisingly has limited density between bait proteins, but substantial, high-specificity density in
the prey region of the matrix. Notably, the four bait proteins that each precipitate nearly all 60
subunits of this complex largely do not co-precipitate each other.

We performed annotation enrichment analysis to establish functional connections between
member proteins of this novel complex. Strikingly, the proteins identified in this complex are
highly specific for cerebral cortex tissue, as measured by Human Protein Atlas tissue
expression data (Uhlén et al. 2015) (Figure 3B). We additionally observed high brain-region
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specific co-expression among members of the complex, unlike as for random protein pairs, in
the Allen Brain Map microarray dataset (Hawrylycz et al. 2012) (Figure 3C). The complex
includes subunits of the SNARE complex, a known physically associated set of proteins
involved in synaptic vesicles (Studhof 1995). Consistent with this trend, we found a strong
enrichment of gene ontology terms (GO) (Ashburner et al. 2000) among members of the
complex specific to neurotransmission and neuron migration (Figure 3D). Thus, there is good
correspondence between this complex and known interacting protein complexes at the synaptic
bouton, the presynaptic axon terminal region containing synaptic vesicles and the location of
neuronal connections.

Rather surprisingly, the AP-MS experiments that support this complex were all performed with
HEK293T cells. HEK293T cells were first reported to be derived from human embryonic kidney
tissue (Graham et al. 1977), and therefore it is puzzling as to why a complex comprised of
cerebral cortex specific proteins showed such a strong signal in kidney-derived cells. However,
re-analyses of HEK293T cell origins suggest that they were originally mis-annotated and
actually derive from adjacent human embryonic adrenal tissue, rather than embryonic kidney
cells (Shaw et al. 2002; Lin et al. 2014), and thus exhibit many neuronal properties (Shaw et al.
2002). The possibility remains open that the protein complex identified here could also have
additional roles in the body. Regardless, this complex exemplifies the value of prey-prey
interactions for discovering protein complexes.

The integrated map markedly improves coverage of disease-linked protein complexes

A key application of more accurate human protein complex maps will be to highlight and
characterize biologically important protein modules, especially those relevant to human disease.
We thus next evaluated the map in reference to a variety of localization, functional and disease
annotation datasets. First, we annotated proteins in hu.MAP with information about their human
tissue expression patterns from the Human Protein Atlas (Uhlén et al. 2015). We observed a
substantial portion of proteins in our map expressed across all assayed tissues, suggesting our
map captures many core processes in human cells (Figure 4A), although many tissue-specific
complexes appear to be identified as well, as for the example of the synaptic bouton complex in
Figure 3. We next evaluated the fraction of complexes with significantly enriched annotations
(Bonferroni-corrected hypergeometric p < 0.05; g:Profiler (Reimand et al. 2016)) from the Gene
Ontology, Reactome, CORUM, OMIM, KEGG and HPA annotation databases (Ashburner et al.
2000; Fabregat et al. 2016; Ruepp et al. 2010; Amberger et al. 2015; Kanehisa et al. 2014;
Uhlén et al. 2015) (Figure 4B). Approximately two-thirds (3,147 out of 4,659) of the complexes
had at least one significantly enriched annotation term, demonstrating the biological pertinence
of complexes in the map (see Supplemental Table 4 for full list of each complexes’ significantly
enriched annotation terms).

Knowledge that a protein interacts with a disease-associated protein greatly increases the
probability that the first protein is linked to the same disease (Dudley et al. 2005; Ideker and
Sharan 2008; Fraser and Plotkin 2007; McGary, Lee, and Marcotte 2007; Lage et al. 2007).
Thus, we expect an important application of this map will be to enable the discovery of
candidate disease genes. In order to estimate this strategy’s potential, we compared the map’s
coverage of known disease-associated proteins with other published networks. Figure 4C
shows the fraction of proteins annotated in the Online Mendelian Inheritance in Man (OMIM)
disease gene database, mapped according to eight high level Disease Ontology (DO) terms
(Schriml et al. 2012) for hu.MAP, the Wan map, BioPlex, and the full Hein et al. interaction
network (which serves to increase its proteome coverage). hu.MAP shows substantially higher
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coverage than the other networks for nearly all high level DO terms, covering ~46% of the
annotated human disease-associated proteins.

New components of ciliary protein complexes

One specific class of diseases in particular stood out, namely diseases related to defective cilia,
known as ciliopathies. Cilia are microtubule based cellular protrusions that are critical for cell-to-
cell signaling and proper embryonic development (Oh and Katsanis 2012; Goetz and Anderson
2010). Cilia assembly and maintenance are highly regulated processes whose disruption can
lead to debilitating birth and early childhood disorders, including Joubert syndrome, Meckel
syndrome, Bardet-Biedl syndrome, orofaciodigital syndrome, and polycystic kidney disease.
Although many ciliopathies share clinical presentations such as kidney and liver dysfunction,
other clinical features and their severity can vary considerably across individuals (Tobin and
Beales 2009; Gerdes, Davis, and Katsanis 2009; Hildebrandt, Benzing, and Katsanis 2011).
The resulting confounding array of clinical features, an absence of cures, and limited but
expensive treatments, all lead ciliopathies to collectively represent a major health burden (Tobin
and Beales 2009). Protein complexes are integral to many ciliary and centrosomal processes
and have maijor roles in ciliopathies (Gupta et al. 2015; Boldt et al. 2016). To more directly
assess hu.MAP’s relevance to ciliopathies, we measured its coverage of ciliopathy-associated
proteins (OMIM-annotated proteins mapped onto the mid-level Disease Ontology term
“ciliopathy”) and known ciliary proteins (literature-curated as the SysCilia “Gold Standard” (van
Dam et al. 2013)) (Figure 4D). For both ciliopathy-associated and ciliary proteins, we observed
a substantial increase in coverage over other networks, with hu.MAP covering >50% of ciliary
proteins.

An examination of individual complexes enriched with ciliary proteins highlighted both known
and novel ciliary components. hu.MAP reconstructed multiple known ciliary protein complexes
including the Intraflagellar Transport particles A and B (IFT-A and IFT-B) (Cole et al. 1998;
Piperno and Mead 1997), the Bardet-Biedl-linked BBSome (Nachury et al. 2007), the CPLANE
ciliogenesis and planar polarity effector complex (Toriyama et al. 2016), and the CEP290-
CP110 complex (Tsang et al. 2008) (Figure 5). In all, the map contains 234 complexes and
sub-complexes involving 158 ciliary proteins (Supplemental Table 5), many associated with
ciliopathies (Toriyama et al. 2016; Chetty-John et al. 2010; Walczak-Sztulpa et al. 2010;
Schaefer et al. 2014; Beales et al. 2007; den Hollander et al. 2006). Moreover, we observed
many of these complexes to also contain additional uncharacterized proteins. These novel
proteins represent excellent candidates for ciliary roles, so we next focused on detailed
experiments to characterize their in vivo functions and subcellular localization in developing
vertebrate embryos.

Observation of an 18 subunit ciliopathy-linked complex enriched in centrosomal proteins

Among the ciliary complexes, we identified a large, 18-subunit complex in which 8 subunits
were already linked to ciliopathies and 14 members were known to localize to the centrosome
centriolar satellites (Figure 5A and 6A). A second 8-member complex was observed interacting
with subunits of the first complex, also containing centrosome-localized and ciliopathy-linked
proteins (Figure 6A). Figure 6B plots the AP-MS observations that supported the discovery of
these complexes. We observed strong evidence for physical associations among members in
each complex, with multiple bait proteins from multiple datasets affinity-purifying substantial
portions of each complex. Centrosomes are the microtubule organizing centers of cells, with
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dual roles in chromosomal movement and organization of the ciliary microtubule axonemes.
Thus, the marked enrichment of centrosomal/centriolar satellite and ciliopathy proteins in these
two complexes strongly implicates a relationship between centriolar satellites and ciliary related
disease.

Three of the 18 proteins in the larger complex were completely uncharacterized (WDR90,
CCDC138 and KIAA1328), so we determined the subcellular localization of tagged versions of
these proteins as a direct experimental test of the map’s prediction. We expressed proteins in
this complex as GFP-fusions in multiciliated cells (MCCs) of embryos of the frog Xenopus
laevis, as these cells provide an exceptional platform for studying vertebrate ciliary cell biology
in vivo (Werner and Mitchell 2012; Brooks and Wallingford 2012; Toriyama et al. 2016). Serving
as positive controls, known centrosomal components, including PIBF1, localized strongly and
specifically to basal bodies and co-localized with the basal body marker Centrin4 (Figure 6C).
WDR90, CCDC138 and KIAA1328 each localized strongly and specifically to basal bodies,
strongly supporting their participation in centrosomal and ciliary biology, and validating the
map’s predictions.

ANKRDSS5 is a novel intraflagellar transport complex protein

We next focused on the IFT complexes, which link cargos to microtubule motors for transport
along ciliary axonemes (Taschner and Lorentzen 2016). The IFT system is comprised of two
multi-protein complexes, IFT-A and IFT-B (Cole et al. 1998; Piperno and Mead 1997). Our map
effectively recapitulated known protein-protein interactions in the IFT-B complex, assembling not
only the entire complex (Figure 5D, Supplemental Figure 2), but also recovering elements of
known sub-complexes. For example, the map assembled much of the known IFT-B “core” (also
called the IFT-B1 complex) containing IFT22, IFT46, IFT74 and IFT81. The map also identified
a complex containing IFT38, IFT54, IFT57, and IFT172, which closely matches the recently
described IFT-B2 complex (Taschner et al. 2016; Katoh et al. 2016). The map further
recapitulated the smaller IFT-A complex (Figure 5B, Supplemental Figure 2), the anterograde
IFT motor complex of KIF3A, KIF3B and KAP (Taschner and Lorentzen 2016), and also more
ancillary but relevant interactions, such as that between IFT46 and the small GTPase ARL13B
(Cevik et al. 2013).

Importantly, the map also predicted novel components of the IFT complexes. For example, the
map predicted an interaction between IFT-B and RABEP2 (Figure 5D), which is interesting
because while RABEP2 is implicated in ciliogenesis (Airik et al. 2016), its mechanism of action
remains obscure. Even more interesting is the link between IFT-B and the poorly defined protein
ANKRDS55 (Figures 5E and 7A). A re-examination of the raw data from the AP-MS experiments
reinforced the notion that ANKRD55 is an IFT-B component (Figure 7B), so we tested this
hypothesis in vivo using high-speed confocal imaging in Xenopus MCCs (Brooks and
Wallingford 2012). We find that an ANKRD55-GFP fusion protein localizes to cilia and moreover
time-lapse video analysis indicates that ANKRD55 traffics up and down cilia (Figure 7C and
Supplemental Movie 1). In kymographs made from the time-lapse data, we observed
ANKRD55-GFP to move coordinately in axonemes with known IFT protein CLUAP1-RFP
(Supplemental Figure 3A and Supplemental Movie 2 and 3). Finally, disruption of the
ciliopathy protein JBTS17 was recently shown to elicit accumulation of IFT-B proteins (but not
IFT-A proteins) in ciliary axonemes (Toriyama et al. 2016). Consistent with the predicted
association of ANKRD55 with IFT-B, we observed robust aberrant accumulation of ANKRD55 in
axonemes after JBTS17 knockdown (Supplemental Figure 3C).
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Because IFT subunits have been linked to vertebrate birth defects, as a new subunit of the IFT-
B particle, we would expect disruption of ANKRDS55 to in turn disrupt ciliary function and proper
embryonic development. We performed in vivo experiments in order to test ANKRD55 function,
first by asking if knockdown elicited a similar cilia phenotype to IFT knockdown. Figure 7D
shows images of morpholino-antisense oligonucleotide (MO) knockdowns of both ANKRD55
and its co-complex member IFT52; the morphant embryos exhibit similar ciliary disruption
phenotypes, further supporting the connection between IFT and ANKRD55. Finally, disruption of
IFT in vertebrate animals, including Xenopus and mice, result in defects in neural tube closure
(Huangfu et al. 2003; Toriyama et al. 2016), and we therefore asked if loss of ANKRD55 would
exhibit similar defects. Indeed, knockdown of ANKRD55 in Xenopus embryos resulted in
defective neural tube closure; this defect could be rescued by expression of a version of the
ANKRD55 mRNA that could not be targeted by the MO, arguing for the specificity of the
knockdown phenotype (Figure 7E). Taken together, the interaction, localization, and genetic
perturbation data all indicate that ANKRD55 interacts physically and functionally with the IFT-B
complex and strongly suggests that ANKRDS55 is likely to play a role in human ciliopathies.

Conclusions

Gaining a more complete understanding of the relationship between human genotypes and
phenotypes will require improved maps of protein complexes as well as some understanding of
their dynamic nature across cell types and across the spectrum from healthy to diseased tissue.
Recent advances in proteomics now allow for the comparison of biological networks across
different conditions to identify the dynamics of protein complex function (ldeker and Krogan
2012; Kristensen, Gsponer, and Foster 2012). However our ability to interpret these
experiments is hindered by the lack of a complete picture of protein complexes. Here, we report
a map that captures a significant portion of the core protein machinery in human cells. This map
provides not only a framework on which to organize future experiments, but also provides
immediate insight into broad classes of human diseases, including ciliopathies.

To produce this map, we described the re-analysis and integration of three large-scale protein
interaction datasets. We showed that the limited overlap of the input published networks is due
in part to the computational analyses of the underlying experiments, which suggests more
sophisticated analysis techniques may further uncover novel protein interactions. Integration
across the datasets greatly enhanced the precision and recall of the final interaction network, in
part by scoring prey-prey interactions, leading us to identify thousands of interactions which
were previously unreported in the original publications, as for e.g. the synaptic bouton complex.
This weighted matrix model approach should be of increasing importance because of its ability
to elegantly compensate for and capitalize on off-target identifications in AP-MS datasets. The
model’s ability to take into account the frequency at which proteins are identified across
experiments allows for the filtering out of non-specific and contaminating proteins found across
datasets. It is likely the matrix model approach will only become more powerful as additional
datasets are available and can be combined to identify subtle trends across many experiments.

Indeed, there is tremendous effort in the community to generate ever larger-scale maps of
human protein interactions, and extensions to ongoing high throughput interactome studies can
be naturally incorporated into our protein complex discovery framework. We envision a continual
expansion and refinement of this set of human protein complexes using the described pipeline
as new high throughput protein interaction experiments are published.
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We also developed a novel method for comparing the reconstructed protein complexes to a gold
standard set of protein complexes, a problem that has proven difficult for the field. The solution
we propose is formulated in a precision-recall framework based on cliques derived from the
predicted clusters and gold standard set. This approach differs from previous solutions in that it
generates a global comparison between clusters and the gold standard, rather than identifying
the best match for each single cluster at a time. The method is applicable whenever one wishes
to compare two sets of sets, as it is general in nature and should be useful beyond comparing
protein complexes.

The success of long-standing efforts to understand the genetic basis of human disease relies
heavily on understanding the physical interactions of proteins. We demonstrate the value of our
complex map for understanding human disease by featuring ciliopathy related complexes.
Through this analysis we highlighted uncharacterized proteins, which we experimentally
validated to be cilia-associated, as predicted by the map. We also knocked down one of these
proteins, ANKRD55, and showed a disruption in ciliogenesis, which strongly suggests a role in
ciliopathies. These results establish the ability of an integrated human protein complex map to
identify new candidate disease genes, with potentially broad applicability to many human
diseases.

Materials and Methods
Gold standard training and test set complexes

For training and evaluating our protein complex discovery pipeline we used literature curated
complexes from the Corum core set (Ruepp et al. 2010). We first removed redundancy from the
Corum set by merging complexes that had large overlap (Jaccard coefficient > 0.6). The set of
complexes were then randomly split into two sets, labeled test and training. Due to proteins
participating in multiple complexes, the randomly split sets were not fully disjoint. We dealt with
the overlap of these two sets differently at the pairwise interaction and complex level, as follows:

For the purposes of training and evaluating our SVM classifier, we generated positive and
negative pairwise protein interactions for both test and training sets. A positive protein
interaction is defined as a pair of proteins that are part of the same complex. A negative protein
interaction is defined as a pair of proteins that are both in the set of complexes but not part of
the same complex. We addressed overlap here between the test and training (positive/negative)
protein interactions by removing interactions from the training protein interaction sets which
were shared in the test protein interaction sets, such that the sets were fully disjoint.

For the analyses of protein complexes, in order to ensure that the test and training sets of
complexes were disjoint, we removed entire complexes from the training set which shared any
edge with a complex in the test set. In comparing the size distributions (the number of subunits
per complex) between the training and test sets, we noticed a skew of larger complexes in the
test set likely a result of our conservative approach of removing complexes from the training set.
In order to better balance the training and test complex set size distributions, we first randomly
split the test set into two and combined one half with the training complexes. We again applied
our redundancy removal procedure, removing complexes from the training set which shared any
edge with a complex in the test set. Similar to what has been done previously (Wan et al. 2015;
Havugimana et al. 2012), we also removed complexes larger than 30 subunits from the test set
so as not to skew performance measurements.
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The final pairwise protein interaction training/test sets consisted of 27,665/15,687 and
2,543,855/2,867,914 positive and negative interactions, respectively. The final protein complex
training/test sets consisted of 406/264 complexes. The complete lists of training/test interactions
and complexes are available at the supporting web site (http://proteincomplexes.org).

Calculating protein interaction features from the mass spectrometry datasets

We collected published features from three datasets, Wan et al. (Wan et al. 2015), BioPlex
(Huttlin et al. 2015) and Hein et al. (Hein et al. 2015). Wan fractionation features included four
measures of co-fractionation as well as 19 lines of evidence from HumanNet (Lee et al. 2011)
and two additional AP-MS datasets (Guruharsha et al. 2011; Malovannaya et al. 2011).
Specifically, the co-fractionation measures, as described previously (Havugimana et al. 2012;
Wan et al. 2015), included a Poisson noise Pearson correlation coefficient, a weighted cross-
correlation, a co-apex score and a MS1 ion intensity distance metric. Each co-fractionation
measure was applied to each fractionation experiment, totaling 220 features.

Additional features were taken from Wan et al. (Wan et al. 2015). In summary, HumanNet
features were originally downloaded from http://www.functionalnet.org/humannet/download.html
(file: HumanNet.v1.join.txt). We excluded HS-LC (human literature curated) and HS-CC (human
co-citation) evidence codes to remove circularity in the training process. The additional AP-MS
fly feature, HGSCore value, was downloaded from Supplemental Table 3 in Guruharsha et al.
(Guruharsha et al. 2011). The additional AP-MS human feature was based on the MEMOs (core
modules) certainty assignments “approved,” “provisional,” and “temporary” downloaded from
Supplemental File 1 in Malovannaya et al. (Malovannaya et al. 2011), assigning the scores 10,
3 and 1, respectively.

BioPlex AP-MS features were downloaded from:
http://wren.hms.harvard.edu/bioplex/data/cdf/150408 CDF STAR_GRAPH_Ver2594.cdf
Specifically, we used the following nine features: NWD Score, Z Score, Plate Z Score, Entropy,
Unique Peptide Bins, Ratio, Total PSMs, Ratio Total PSM's and Unique: Total Peptide Ratio.
For the Hein AP-MS data, the features prey.bait.correlation, valid.values, log10.prey.bait.ratio,
and log10.prey.bait.expression.ratio were taken from Supplemental Table S2 in Hein et al. (Hein
et al. 2015).

We generated two additional features for both the BioPlex and Hein AP-MS datasets based on
a matrix model interpretation, specifically, the number of experiments a pair of proteins is
observed together (pair_count) as well as a p-value of two proteins being observed together at
random across all AP-MS experiments, as calculated using the hypergeometric distribution as
previously described (Hart, Lee, and Marcotte 2007).

Accurate learning of pairwise protein interactions

Given this feature matrix, we next proceeded to train a support vector machine (SVM) protein
interaction classifier. We scaled the feature values using LIBSVM's (Chang and Lin 2011) svm-
scale to avoid features with larger numeric range from dominating the classifier. We performed
a parameter sweep of the SVM C and gamma parameters using LIBSVM's cross-validation
grid.py utility. Training and prediction were calculated using LIBSVM's svm-train and svm-
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predict tools with the 'probability estimates' option set to true. Finally, we applied the SVM
classifier to all pairs of proteins for which we had data, thereby generating a protein interaction
network in which edge weights between protein nodes were set to the SVM's probability
estimate for interacting. We repeated this procedure for combinations of features including only
features for individual publications, as well as Wan + BioPlex, Wan + BioPlex + Matrix_Model,
Wan + BioPlex + Matrix_Model + Hein and Wan + BioPlex + Matrix_Model + Hein +
Matrix_Model (fully integrated). To calculate precision recall curves, we used the python scikit-
learn machine learning package (Buitinck et al. 2013).

Identifying protein complexes by clustering the interaction network

We applied a two stage clustering approach to the protein interaction network to identify clusters
of densely interacting proteins, representing our best estimates of protein complexes. First, we
sorted the edges of the protein interaction network by their interaction probabilities and selected
the top f percent of edges, where fis a parameter in the range of [0.008, 0.01, 0.015, 0.02,
0.025, 0.03, 0.05] determined by a parameter sweep described below. We applied the
ClusterOne algorithm (Nepusz, Yu, and Paccanaro 2012) to the resulting interaction network,
specifying minimum size parameter = 2, seed method parameter = 'nodes', density in the range
[0.2, 0.25, 0.3, 0.35, 0.4] and overlap in the range [0.6, 0.7, 0.8]. For each cluster produced by
the ClusterOne algorithm, we refined the clustering by performing a second round of clustering
using the MCL algorithm (Enright, Van Dongen, and Ouzounis 2002), specifying the MCL
parameter inflation (-1) to be in the range [1.2, 2, 3, 4, 5, 7, 9, 11, 15]. In parallel, we refined
each ClusterOne cluster using an alternate second-stage clustering algorithm, the Newman
method (Newman 2004). Finally, we removed any protein from the resulting clusters that did not
have an edge weight to the remaining proteins in the cluster scoring above the filter parameter,
f, which occasionally, although rarely, arose through the action of the MCL algorithm.

To objectively optimize the choice of clustering parameters, we performed the two stage
clustering process for each combination of parameters, varying f, density, overlap and inflation,
and selected the cluster set that maximized the F-Grand k-clique measure compared to the
training set of literature curated complexes. The best-scoring parameters for ClusterOne + MCL
were size: 2, density: 0.2, overlap: 0.7, seed_method: nodes, inflation: 7, and f; 0.03. The final
parameters for ClusterOne + Newman were size: 2, density: 0.4, overlap: 0.7, seed_method:
nodes, and f: 0.02. Edges that passed the f filter corresponding to an interaction probability of
0.26509, were considered high confidence. Finally, we combined the best-scoring two-stage
clustering sets (i.e., the union of the best performing ClusterOne + MCL and ClusterOne +
Newman sets) to form the final estimate of protein complexes.

Measuring accuracy of the protein complex map by the k-cliques method

We developed a new class of similarity metrics called k-cliques for comparing sets of predicted
complexes to gold standard complexes. In this method, we consider all observed cliques within
a set of clusters. We evaluate precision as whether each clique in our predicted complex set is
present or absent in the cliques of the gold standard complex set. Similarly, we evaluate recall
according to the presence or absence of cliques from the gold standard complex set in the
predicted complex set.

In detail, let C be a set of predicted complexes {c4, ¢, ..., cp} and D be a set of gold standard
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complexes {d4, do, ..., dp}, where ¢j and dj are an individual predicted complex and gold
standard complex respectively. Let Qp be the set of protein identifiers in D (equation 1).

Q=4

D
2 represents the powerset (set of all subsets) and 2y represents the powerset of a given size
(e.g. k=2, all pairwise combinations; k=3, all triplet combinations; efc.). Ay (equation 2)
represents the set of all size k cliques in the predicted clusters, C. An additional condition on Ay
is that the individual cliques overlap with proteins in the gold standard set (Qp, equation 1), so

we only evaluate on proteins that have known complex memberships. The rationale for this is so
we do not penalize novel predicted complexes as false positives. Similarly, By, (equation 3),

represents the set of all size k cliques in the gold standard complexes set D. Note, there is no
condition on By in terms of protein membership as was done with A. This results in an absolute

recall measure and evaluates on all complexes in the gold standard regardless of whether or
not there is ample data for those proteins.

Ay = | (Pule:) N P(Qp))
aee (2)

By = J (Pu(d;))

3)

Definitions of Ax and Bi now provide us with a way to compare size k cliques in predicted

clusters to size k cliques in gold standard complexes in a precision/recall framework. Equations
4, 5 and 6 describe the operations of determining true positives (TPy), false positives (FPy) and

false negatives (FN), respectively, for a given clique size k.

TP, = |A, N Byl
FP, = |A;\ B

= | Ax \ Bl 5)
FNi = | By \ Ayl

(6)

Equations 7 and 8 define precision (Pk) and recall (Rk), and equation 9 defines F-measure (F)
as the harmonic mean of Py and Ry.

TP,
Po= b
TP, + FP,

(7)
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TP
Ry= s
TP, + F'Ny (8)
P
Fk:2>< LRIC

Finally, we define a global F-measure (F-Grand, equation 10) as the mean of Fj’s, iterating over
clique sizes of k from 2 to K where K is the max cluster size of the predicted clustering set C.

K
F _ Zk:? Fy
grand — K —1

(10)

Additionally, we define an alternative global measure that defines weights for each Py and Ry
by the number of clusters, wy, with size 2 k. This allows for the mitigation of potential bias
created by large clique sizes only having a few contributing clusters.

R . Z?:Z Wy, * Rk

weighted — Zl(—w
B=2TE )

P . 21[522 Wy, * Pk

weighted — ZK—U}
)

Pweighted X Rweighted

Fwei =2
ghted
Pweighted + Rweighted

(13)

In practice, the sizes of the clique sets (equations 2 and 3) are quite large and computationally
intractable to calculate. We therefore randomly sample 10,000 cliques from Ay and By when
evaluating true positive, false positive and false negative values (equations 4, 5 and 6).
Additionally, we add a pseudo-count of 0.00001 to true positive, false positive and false
negative values when calculating precision and recall (equations 7 and 8). We have
implemented a script to calculate the F-weighted k-clique score that is available in our project
GitHub repository. An example command line is as follows:

python complex comparison.py -—cluster predictions hu MAP.txt -=
gold standard testComplexes.txt

Measuring overlap with independent protein interaction datasets

In order to assess agreement between our complex map and other protein interaction datasets,
we compared the observed overlap of protein interactions to the overlap expected by chance.
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We chose three datasets that were not integrated into our protein complex discovery pipeline,
the yeast two-hybrid dataset from Rolland et al. (Rolland et al. 2014), released but unpublished
interactions (06/12/2015) from the BioPlex project (“BioPlex” 2016), and an inter-protein
crosslinking (1% FDR) dataset from Liu et al. (Liu et al. 2015).

For the unpublished BioPlex dataset, we removed all interactions that overlapped with the
original published BioPlex interaction set to ensure a disjoint set with our training dataset. For
the Liu et al. crosslinking dataset, we considered a non-redundant subset by collapsing all inter-
protein crosslink interactions for each pair of proteins to just a single interaction.

For each interaction dataset, we generated 1,000 random interaction sets by randomly selecting
M pairs of proteins where M is the number of interactions in that dataset. We then compared the
overlap of interactions from our complex map with the random interaction sets to determine a
random distribution and calculated a z-score for the overlap of our complex map and the original
interaction dataset relative to the random distribution.

Synaptic bouton complex expression analysis

We downloaded human normalized microarray datasets H0351.2001, H0351.2002,
H0351.1009, H0351.1012, H0351.1015, H0351.1016 from the Allen Brain Map (Hawrylycz et al.
2012) [downloaded from: http://human.brain-map.org/static/download]. For each gene in the
synaptic bouton complex, we averaged expression values across corresponding probes and
calculated Pearson correlation coefficients for each pair of genes. For comparison to a random
background distribution, we randomly selected 60 probes from the microarray datasets and
calculated Pearson correlation coefficients between the random probes and the genes in the
synaptic bouton complex.

For tissue expression analysis of synaptic bouton complex genes, we used RNA-sequencing
data for 32 tissues from the Human Protein Atlas (Uhlén et al. 2015) [downloaded:
http://www.proteinatlas.org/download/rna_tissue.csv.zip].

Calculations of tissue specificity, annotation enrichment, and coverage

For comparing tissue specificity, we used reported RNA Tissue Category assignments from the
Human Protein Atlas (Uhlén et al. 2015) [downloaded:
http://www.proteinatlas.org/download/proteinatlas.tab.gz]. We mapped proteins to HPA entries
with RNA tissue category classifications, considering either the entire human proteome, the
union of proteins from protein interaction networks of Wan et al., BioPlex and Hein et al., or the
proteins in our final complex map. In order to calculate enriched annotations for each complex,
we applied g:Profiler (Reimand et al. 2016) with a Bonferroni p-value correction per each
complex and excluded electronic annotations from consideration. We used the complete set of
proteins in the final protein interaction network as the statistical background. In order to
calculate coverage of diseases, we mapped OMIM annotations (Amberger et al. 2015) on to
Disease Ontology (Schriml et al. 2012) terms, then selected the top eight disease categories as
well as the term “ciliopathies”. We then mapped proteins from our complex map, the Wan et al.
complex map [downloaded: Supplementary Table 2 from Wan et al. (Wan et al. 2015)], the
BioPlex complex map [downloaded: Supplemental Table S3 from Huttlin et al. (Huttlin et al.
2015)] and Hein et al. protein interaction network [downloaded: Supplemental Table S2 from
Hein et al. (Hein et al. 2015)] onto the Disease Ontology terms. We also evaluated coverage of
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proteins in the SysCilia Gold Standard Version 1 set of cilia related proteins (downloaded:
http://www.syscilia.org/goldstandard.shtml) (van Dam et al. 2013).

Calculation of prey abundance and network visualization

To calculate percentile ranks of prey abundance for AP-MS raw data, we used the prey
abundance measures “zscore” and “prey.bait.correlation” from BioPlex and Hein et al.
respectively. We ordered each set and calculated the rank percentile using SciPy
stats.percentileofscore (Jones et al. 2015) for each pair in the list. Networks of protein
complexes were visualized using Cytoscape 3.2.1 (Shannon et al. 2003).

Morpholinos and mRNA synthesis

Morpholino antisense oligonucleotides (MOs) were purchased from Gene Tools. The ANKRD55
MO was designed to block splicing using the sequence 5'-
TCTGAATCACCTTGAAGCACAAAGA-3’. We used previously validated MOs for JBTS17, 5'-
TCTTCTTGATCCACTTACTTTTCCC-3* (Toriyama et al. 2016); and [FT52, 5'-
AAGCAATCTGTTTGTTGACTCCCAT-3' (Dammermann et al. 2009). Full length ANKRD55
cDNA (identified from Xenbase, www.xenbase.org) was amplified from a Xenopus cDNA library
and subcloned into the vector pCS10R (derived from pCS107 expression vector) fused with C-
terminal GFP. The human CLUAP1 open reading frame was obtained from the Human
ORFeome collection V7.1 and subcloned into the pCS10R-mCherry vector. Capped mRNAs
were synthesized using MMESSAGE mMACHINE (Ambion). mRNAs and MOs were injected
into two ventral blastomeres or two dorsal blastomeres at the 4-cell stage to target the
epidermis or the neural tissues, respectively. We used each mRNA or MO at the following
dosages: ANKRD55 MO (30 ng for the epidermis and 20 ng for the neural plate), JBTS717 MO
(20 ng), IFT52 MO (40 ng), ANKRD55-GFP mRNA (75 pg), ANKRD55 mRNA (350 pg for neural
tube closure rescue experiment), membrane RFP mRNA (50 pg), and mCherry-CLUAP1 (100

Pg).

Imaging and analysis

For high-speed live imaging, Xenopus embryos injected with ANKRD55-GFP and mCherry-
CLUAP1 mRNA were anaesthetized with 0.005 % benzocaine at stage 26. High-speed in vivo
imaging was acquired on a Nikon Eclipse Ti confocal microscope with a 63%/1.4 oil immersion
objective at 0.267 sec per frame. Kymographs were calculated using Fiji (Schindelin et al.
2012). Confocal images were collected with an LSM700 inverted confocal microscope (Carl
Zeiss) with a Plan-APOCHROMAT 63x%/1.4 oil immersion objective. Bright field images were
collected using a Zeiss Axio Zoom V16 stereo microscope with Carl Zeiss Axiocam HRc color
microscope camera. Neural tube closure quantification was performed using Fiji.

Plasmids

CCDC138, CCDC61, TBC1D31, FOPNL, MIB1, PIBF1, and SSX2IP entry ORF clones were
obtained from the DNASU Plasmid Repository (Seiler et al. 2014; Grant et al. 2015). Xenopus
laevis cDNA was prepared by reverse transcription (SuperScriptlll First strand synthesis,
Invitrogen), and KIAA1328, WDR90, TTLL5 cDNAs were PCR-amplified from the library using
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the following primers:

WDR90OF caccATGGCTGGAGTCTGGCAG
WDR90R TGAATTCTGAATGTCCCACAC

TTLLSF caccATGCCCGAAATGTTGCC

TTLLSR TTTTCTTTGCCCTTTACTGTCGA
KIAA1328F caccATGGATTTACAGAGGCAGCAAG
KIAA1328R  ACAAATGAAGAAGATCTCCTCTAACATC

PCR products were sub-cloned into Gateway ENTRY clones (pENTR/D-TOPO Cloning Kit, Life
Technologies). Destination vectors were modified from destination vector Pcsegfpdest (a gift
from the Lawson laboratory) by inserting the a-tubulin promoter between the Sall and BamHI
sites. Fluorescence protein-tagged expression plasmids were constructed using the LR reaction
on entry clones and destination vectors with the Gateway LR Clonase Il Enzyme mix (Life
Technologies). Expression plasmids (40pg) with centrin-BFP mRNA (100pg) were co-injected
into the ventral blastomeres of Xenopus embryos at the 4-cell stage and imaged at stage 27.

Xenopus embryos

Xenopus embryo manipulations and injections were carried out using standard protocols. All
experiments were performed following animal ethics guidelines of the University of Texas at
Austin, protocol number AUP-2015-00160.
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Figure Legends

Figure 1: Re-analysis of published AP-MS experiments improves overlap among protein
interaction networks.

A. Graphical schematic of spoke model applied to AP-MS datasets. In the spoke model, all
interactions must include a bait protein.

B. Venn diagram of overlap between published large scale protein interaction networks BioPlex
(AP-MS), Hein et al. (AP-MS) and Wan et al. (CF-MS). Protein interactions in BioPlex and Hein
et al. were generated from a spoke model.

C. Graphical schematic of matrix model applied to AP-MS datasets. In the matrix model
interactions are allowed between prey proteins.

D. Venn diagram of overlap between protein interaction networks where a matrix model was
applied to BioPlex and Hein et al. Sizes of matrix model protein interaction networks were kept
constant with published networks. Note an increase in the overall number of overlapping
interactions when compared to B.

E. Diagram of protein complex discovery workflow. Three protein interaction networks, BioPlex,
Hein et al. and Wan et al. were combined into an integrated protein complex network and
clustered to identify protein complexes. Parameters for the SVM and clustering algorithms were
optimized on a training set of literature curated complexes and validated on a test set of
complexes.

Figure 2: Integration of the three large-scale protein complex datasets substantially
improves both precision and recall of known human protein interactions.

A. Precision-recall curves calculated on a leave-out set of protein interactions from literature
curated complexes for different combinations of predictive protein interaction features. The
integration of all three datasets outperforms all other networks. Also, note a substantial
improvement in performance when the matrix model features are used (Wan+BioPlex vs.
Wan+BioPlex_MatrixModel).

B. Performance of parameter optimization for MCL and Newman two-stage clustering
procedures. Each data point represents a set of parameters and is evaluated based on the
resulting clusters similarity to both training and test sets of complexes using the F-Grand
measure (see Materials and Methods). Final parameter sets were selected based only on F-
Grand measure for the training set.

C. Precision-recall curves evaluating protein interactions on leave out set before (integrated)
and after (hu.MAP) clustering procedure. Note an improvement in performance after clustering
suggests the clustering procedure successfully removed false positive interactions.

D. Distribution of protein interactions in the final protein interaction network based on input
evidence. Note the matrix model interactions produce many high confident interactions. Also,
the “Multiple” category shows predominately high confident interactions, which validates the
integration of multiple datasets mitigating false positives.

E. Protein interactions from our complex map significantly overlap with other protein interaction
datasets across a variety of experimental types.
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Figure 3: Matrix model edges identify large synaptic bouton complex.

A. Presence/absence matrix of BioPlex AP-MS experiments as rows and pulled down proteins
as columns for four complexes identified in our complex map. The Exosome, elF3 Complex and
19S Proteasome all have multiple bait-bait interactions whereas the novel synaptic bouton
complex does not have bait-bait interactions but does have substantial density in the non-bait
region of the matrix. This density is identified by the matrix model and highlights the model’s
ability to discover protein complexes.

B. RNA expression profiles of proteins in the synaptic bouton complex across different tissues
sampled by the Human Protein Atlas. This shows the complex is highly specific for cerebral
cortex tissue.

C. Correlation coefficient distributions of Allen Brain Map tissue expression profiles between
synaptic bouton complex proteins and random set of proteins. This shows coherence of
expression among proteins in the complex suggesting a functional module.

D. Significantly enriched Gene Ontology annotations for proteins in the synaptic bouton complex
shows enrichment for neuron development and synaptic transmission.

Figure 4: hu.MAP consists of predominately core human complexes and covers a large
fractions of disease genes.

A. Complex map coverage of Human Protein Atlas RNA tissue specificity classifications
showing majority of complexes are ubiquitously expressed and likely core cellular machinery.

B. Fraction of complexes with significantly enriched annotation terms (p-value < 0.05, g:Profiler
hypergeometric test with Bonferroni correction) from various ontologies.

C-D. Protein coverage of high-level Disease Ontology terms (C) and cilia related annotations
(D) for complex map as well as two published maps (Wan et al. and BioPlex) and a published
interaction network (Hein et al.).

Figure 5: Select complexes in the map are strongly linked to human ciliopathies. Eight
complexes are highlighted with ciliopathy-linked subunits (bold outlines), illustrating
representative clinical presentation of associated mutations as follows:

A. Polycystic kidneys from patient with OFD1 variant, adapted from (Chetty-John et al. 2010).

B. Brachydactyly in Sensenbrenner syndrome patient with IFT122 variant, adapted from
(Walczak-Sztulpa et al. 2010).

C. X-ray of hands of Bardet-Biedl syndrome patient with LZTFL1 (BBS17) variant, adapted from
(Schaefer et al. 2014).

D. X-ray exhibiting chest narrowing of Jeune asphyxiating thoracic dystrophy individual with
IFT80 variant, adapted from (Beales et al. 2007).

E. Brain MRI showing hypoplastic corpus callosum from patient with an IFT52 variant, adapted
from (Girisha et al. 2016),

F. X-ray of short-rib polydactyly syndrome individual with multiple skeletal anomalies with INTU
variant, adapted from (Toriyama et al. 2016).
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G. Undeveloped fovea among other pathologies in Leber congenital amaurosis patient with
CEP290 variant (den Hollander et al. 2006).

Figure 6: Oro-facial-digital syndrome 1 (OFD1) interaction partners are centriole and
centriolar satellite proteins, suggesting new components of ciliary basal bodies.

A. Network of Ciliopathy Complex and closely interacting centrosomal complex. Edge weights
represent SVM confidence scores where gray are intra-complex edges and purple are inter-
complex edges. Color of nodes follows Figure 5 conventions.

B. Matrix of AP-MS evidence supporting both complexes. The matrix shows strong support for
interactions within each complex. Bait proteins that are members of either complex are labeled
on the left.

C. Experimental validation of ciliary proteins using multi-ciliated epithelial cells in Xenopus
laevis. Localization assays for the three uncharacterized proteins in the OFD1 complex confirm
that all three proteins localize to basal bodies at the base of the cilia in a manner similar to
known components of the complex. Scale bars: 1Tum.

Figure 7: ANKRD55 is a new component of the intraflagellar transport (IFT) particle, is
important for ciliogenesis, and has a role in neural tube closure.

A. Network view of two IFT subcomplexes associated with ANKRD55.

B. Matrix of AP-MS experiments shows strong support for ANKRD55 association with known
IFT proteins.

C. ANKRDS55 localizes to cilia as predicted from co-complex interactions, as assayed in vivo in
multi-ciliated X. laevis epithelial cells. Scale bar: 10 um. Kymograph of ANKRD55 localized to
cilia in vivo reveals rapid trafficking along the length of the cilia.

D. Morpholino knockdown of ANKRD55 results in reduced count and length of cilia, in a manner
similar to the control IFT52 knockdown, supporting a role in ciliogenesis for ANKRD55. Scale
bar: 10 um.

E. Dorsal view of stage 19 embryos displays that ANKRD55 knockdown causes neural tube
closure defects that are rescued by wild-type ANKRD55 mRNA. The box plot displays average
distance between neural folds in control, morphant, and rescue embryos. *** (P < 0.0001)

Supplemental Figure 1: hu.MAP outperforms published complex maps on leave out set of
gold standard complexes.

A. Comparison of hu.MAP and published complex maps to leave out set using precision recall
product measure (Song and Singh 2009).

B. Comparison of hu.MAP and published complex maps to leave out set using F-weighted k-
clique score.

Supplemental Figure 2: hu.MAP recapitulates IFT A and IFT B complexes
A. Network view of IFT A and IFT B complexes. Node colors follows Figure 5 conventions.
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B. Matrix of AP-MS experiments show IFT A and IFT B are well separated and supported by
multiple experiments.

Supplemental Figure 3: ANKRDS55 localization and movement along axonemes is
consistent with being a component of the IFT-B particle

A. Two color kymograph generated by co-expression of ANKRD55-GFP (green) and mCherry-
CLUAP1 (magenta) reveals that ANKRD55 travels along axonemes in association with other
IFT proteins. Scale bar: 10 um.

B. RT-PCR demonstrates the efficiency of ANKRD55 MO to disrupt splicing of ANKRD55
MRNA in Xenopus embryos. GAPDH is used as control.

C. Morpholino knockdown of JBTS17, known to specifically effect IFT-B localization, results in
the accumulation of ANKRDS55-GFP in axonemes (Green: ANKRD55-GFP, Magenta:
membrane RFP). Scale bar: 10 um.

Supplemental Movie 1: ANKRD55 traffics along the axoneme of X. laevis cilia (green,
ANKRD55-GFP; magenta, membrane RFP).

Supplemental Movie 2: ANKRD55 co-migrates along axonemes with known IFT-B
component CLUAP1 (green, ANKRD55-GFP; magenta, CLUAP1-RFP).

Supplemental Movie 3: Single axoneme view of ANKRD55 co-migrating with known IFT-B
component CLUAP1 (green, ANKRD55-GFP; magenta, CLUAP1-RFP). Left = proximal,
right = distal.
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