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Abstract

A genome-wide association study (GWAS) seeks to identify genetic variants that contribute to
the development and progression of a specific disease. Over the past 10 years, new
approaches using mixed models have emerged to mitigate the deleterious effects of population
structure and relatedness in association studies. However, developing GWAS techniques to
effectively test for association while correcting for population structure is a computational and
statistical challenge. Using laboratory mouse strains as an example, our review characterizes
the problem of population structure in association studies and describes how it can cause false
positive associations. We then motivate mixed models in the context of unmodeled factors.

Introduction

Genetics studies have identified thousands of variants implicated in dozens of common human
diseases (Manolio et al. 2009; Purcell et al. 2009; Stram 2013; Yang et al. 2010). These
variants are locations in the human genome where genetic content differ among individuals in a
population. A genome-wide association study (GWAS) seeks to identify genetic variants that
contribute to the development and progression of a specific disease.

Association studies discover these genetic factors by correlating an individual’s genetic variation
with a disease status or disease-related trait. At the genome-wide scale, association studies
typically focus on statistical relationships between single-nucleotide polymorphisms (SNPs) and
disease traits. SNPs are the most common genetic variants underlying susceptibility to disease,
and associated SNPs are considered to mark the region of a human genome that influences
disease risk. A GWAS identifies a SNP as a significant, and therefore associated, variant when
the specific genome sequence at the SNP is correlated with a disease trait or disease status.
For example, a GWAS study may find that individuals with a specific sequence (or allele) at a
SNP have higher blood pressure on average than individuals with a different sequence at the
SNP. If a SNP has a significant correlation with a trait or disease status, the association study
suggests that presence of the particular variant may increase an individual’s risk for disease.

Typical analytical strategies for performing association studies rely on standard regression
techniques, which assume the data have an identically and independently distributed (i.i.d.)


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/092106; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

property. If data have iid, all variables are mutually independent since each random variable
shares the same probability distribution with other variables. Association study methodology
was originally designed for populations comprised of unrelated individuals, and standard
approaches assume this property is true (Risch and Merikangas 1996). However, the big
genomic datasets available today inevitably contain distantly related individuals. This genetic
relatedness prevents standard association studies from correctly identifying the causal variants
and induces identification of many false positive associations (or spurious associations).

Two types of relatedness may produce high rates of false positive associations: population
structure and cryptic relatedness. Population structure refers to different ancestry among
individuals in a study. Cryptic relatedness exists when some individuals are closely related, but
this shared ancestry is unknown to the investigators. Large (n=>5000) population cohorts
inevitably contain individuals who have common ancestry from different populations. In either
case, individuals who share ancestry are more related than individuals from different ancestries.
These ancestry differences induce a self-organizing population structure effect, which causes
the statistical methodology to assign strong association signals to variants that are not actually
causal for the trait or disease. In many cases, applying standard association study techniques to
population cohorts with population structure produces a high rate of false positive associations.
These associations may appear to be significant, but they are driven by the cohort’s relatedness
rather than variants that truly affect trait or disease risk.

Developing GWAS techniques to effectively test for association while correcting for population
structure is a computational and statistical challenge. This challenge is relevant to human
association studies as well as genetic studies in any organism, including model organisms such
as mice. Mouse studies are widely used to study human disease and, because the particular
history of laboratory mouse strains induces complex patterns of genetic relatedness that can
cause false positives in association studies.

Over the past 10 years, new approaches using mixed models have emerged to mitigate the
deleterious effects of population structure and relatedness in association studies (Zhou and
Stephens 2012; Kang et al. 2008, 2010; Listgarten et al. 2012). These approaches were
originally developed in the context of mouse studies and later applied to human studies. In this
review, we explicitly characterize population structure as a confounding factor in order to
explore the root cause of false positives in association studies. We trace the development of
these methods in mouse studies and describe how these methods were adapted to human
studies, particularly where they are applied to correct for population structure in large-scale
genomic datasets.

Standard Genome Wide Association Studies (GWAS)

Genetic association studies attempt to identify single-nucleotide polymorphisms (SNPs) that are
responsible for differences in trait or phenotype values within an individual. A SNP is a single
position in the human genome sequence where individuals in the population have different
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genetic content. These differing forms of the same gene are referred to as alleles. SNPs are the
most common form of genetic variation, and almost all common SNPs have two alleles.

SNPs are ideal targets for association testing, because they are the most common form of
genetic variants. Their high level of prevalence means that they are often correlated with other
forms of variation. To conduct a typical single-SNP test, we first collect genetic information at
the SNP in a set of individuals (referred to as genotypes). Next, we measure the association (or
correlation) with the trait values (or phenotypes) of the individuals (see Figure 1a). In this Figure,
it is intuitively clear that the first SNP appears to be associated, but the second SNP does not
appear to be associated.

In order to evaluate if the association between a SNP and a phenotype is statistically significant,
we can use the collected data to test two hypotheses. The null hypothesis assumes a model
where the SNP does not affect the phenotype (see Figure 1b). In this hypothesis, the
phenotypes (¥) are only affected by the population mean (#) and the environment (¢). Unless
data indicate otherwise, we assume that the null hypothesis is true and the SNP does not
influence the phenotype (i.e., does not affect the individual's disease risk).

An alternative hypothesis provides a model of the SNP being significantly associated with the
phenotype (see Figure 1c). In this case, the phenotypes (V) are affected not only by the
population mean (/) and environment (¢), but they are also affected by the genotype (x). In
other words, presence of the SNP suggests an individual is likely to have the trait or disease
risk. Here, the quantitative measurement of strength that the genotype has on the phenotype is
referred to as the effect size (5). If the effect size (5) is equal to 0, we consider the two models
equivalent. The SNP is determined to be significantly associated with the phenotype when the
data fits the alternative hypothesis beyond a specific threshold.
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Figure 1. Standard genetic association study applied to human blood pressure data. (a) The left
SNP appears to be more strongly associated with blood pressure than the right SNP. (b) We
test two hypotheses against each other to evaluate whether the association between a SNP and
a phenotype is statistically significant. By default, a null hypothesis assumes that the SNP does
not affect the phenotype. (c) If the data fits the alternative hypothesis beyond a certain
threshold, the SNP is described as significantly associated with the phenotype.
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We mathematically express the null and the alternative hypotheses in order to perform a
single-SNP test. We denote the kth genotype of the jth individual 9ik where the genotype is in
the set {0,1,2}, which is the number of copies of the kth variant that the jth individual has on their
two chromosomes. Here, a “0” denotes the genotype that does not contain the variant in either
chromosome, while a “1” or “2” denotes the genotype presence in one or two of the
chromosomes, respectively. In order to simplify the equations for association studies, we
standardize the genotypes by subtracting the population mean and dividing by the variance. The
frequency of a variant in the population is denoted as Px, which is the average genotype
frequency in the population. The standardized genotypes can be expressed as

4 —Dk 1 —px 2 — pg
Aok € {\/pk(l —or) VoL —pr) /(1 —pk)}_

Once we have calculated the standardized genotypes, a typical single-SNP test can be used to
identify variants associated with traits. A standard regression technique estimates the
relationship among variables, including a dependent variable (¥ ), any independent variables («
), and unknown variables (5). Using regression, these simple linear models can correlate the
genetic variation with the trait, allowing us to assess whether the data best fits the null or
alternative hypothesis.

The equation

y; =+ Xk +e;

models the phenotype for a single individual J in the study. Here, the effect of the variant on the
phenotype is ﬁk, the model mean is /4, and the contribution of the environment on the
phenotype is €i. The environment’s effect on a phenotype for an individual J (€7) is assumed to

2
be normally distributed with variance 03, denoted as €i ™~ N(O, Ue).

The equation above describes the relationship between the genotype and phenotype of just one
individual. We can use vector notation to represent all of the individuals in the dataset and
produce the model

y=pl+ Xy +e (1)

, with the phenotypes of all of the individuals in the dataset denoted as column vector ¥, a
column containing the genotypes for the ith variant in the population denoted as Z:, and a
vector containing the environments denoted as e. 1 is a column vector of 1s. We draw the

random vector ¢ from the distribution € ~ NV (0,21) We note that each element of ¢ is

independent of the others; hence, the variance-covariance matrix is a diagonal matrix (031).
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We can write the distribution of ¥ using
y ~ N(u+ BrXp, 021)
, Where [ is the identity matrix.

Using the observed data (such as the example in Figure 1), we can estimate the values of the
population mean and the effect of the true variant by using the following equations:

N
n Zj:l Yi _ 17y
K N N
. B ZNzl Xy, Xly
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The reason the equations are so simple is because the genotypes are standardized. The
resulting value is the association between an SNP and phenotype. We can then test the
significance of this association by using the following statistic:

B
Se= G VN @)

This statistic is normally distributed with a mean that depends on the effect of the SNP on the

trait, the environmental variance, and the number of individuals. The variance of the statistic is
1. We can write the distribution of the statistic as

Sjy ~ N(%\/ﬁ, 1)

If the SNP does not have an effect on the trait, the statistic will follow the null distribution

S ~ N(0,1)

, Which is a standard normal distribution. We can then use this null distribution to determine
whether the association is significant. This statistic is considered significant with a significance
level of & if

(I)(Sk) < Oés/2 or (I)(Sk) >1 —a5/2
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, in which case the variant is considered to be associated (see Figure 2). We use the notation
s to denote the significance level that we need to achieve at any SNP, which in human studies

is typically 5 * 1075,

4 -
Significance
3 - Threshold Significance
+®"(a,/2) gRegion
2 (a/2)
g1
.0 T T . i-.| T ~d . e T 1

-6 -4 25 5 0 25,5;, 4 6

Figure 2. Significance testing in association studies. The null distribution is the standard normal
distribution and the expected distribution of the association statistics under the assumption that
the effect size is 0. Each variant’s association statistic in equation (3) is computed, and its
significance is evaluated using the null distribution. If the statistic falls in the significance region
of the distribution, the variant is declared associated. In this example, S1 is not significant, while
S2 and S3 are significant. The exact location of the threshold is defined as the location on the
x-axis where the tail probability area equals the significance threshold (S). This is denoted using

the quantile of the standard normal 0® ™' (%),

The p-value of the association is the tail probability area beyond the observed statistic, and the

p-value can be computed using 2¢(—[Skl). If the SNP does not affect the trait, the statistic will
come from the null distribution. In this case, the p-values will be uniformly distributed between 0
and 1.

True Genetic Model

Assuming iid, the single-SNP test will tell us if a SNP is responsible for the differences we
observe in an individual’s trait or phenotype expression values. However, this simple linear
model is an unrealistic model for identifying variants associated with traits in today’s large
genomic datasets that contain a high degree of relatedness. In real populations, the true effect
of a single SNP is influenced by multiple variants that are affecting the trait. A ‘hypothetical’ true
genetic model takes into account the effect of all SNPs on the trait.
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Here, the vector notation

M
y=pl+> BiXi+e

=1

models the phenotypes of all the individuals in the dataset denoted as column vector ¥. Again,
the effect of the 2th variant on the phenotype is Bi, the mean is 1, and the contribution of the
environment on the phenotype is denoted by e. Here, the number of variants is M .

The true genetic model takes into account the true effect of all SNPs, including the effect of the
SNP being tested for association with a trait. When testing SNP k&, we are using equation (1)
the actual data is generated from

y:M+Xkﬁk+ZﬁiXi+e
itk (2)

In applying the simple linear model to data, we observe a mismatch between the model used for
testing and the assumed underlying generative model. Here, any term that is missing in the
testing model when compared to the generative model is called an unmodeled factor. The

> BiX

unmodeled factor is exactly #k

In this case, the unmodeled factor is the effect of variants in a genome other than the variant
being tested. This factor can significantly affect the results of an association study. If the
individuals in the study are related to each other, the unmodeled factor may produce a high rate
of false positive associations.

In an association study, relatedness among individuals is referred to as population structure.
Over the past few years, there have been many methods which have been developed to
mitigate the effect of population structure in association studies. One of the most commonly
utilized approaches today, mixed models, originally became popularized in mouse studies and
is now the standard approach for analyzing human GWAS studies. In this review, we motivate
the problem of population structure in association studies utilizing laboratory mouse strains and
explain how it can cause false positives associations. We then motivate mixed models in the
context of unmodeled factors.

An example of Population Structure Confounding from Mouse Genetics

The importance of controlling for population structure is evident in genetic mapping of inbred
mouse strains. Mice strains pose particular problems that mixed models are developed to solve,
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and the basic ideas behind mixed models can be clearly demonstrated with mice genetics.
Today’s classical inbred laboratory mouse strains descend from a relatively small number of
genetic founders (mostly fancy mice originally kept as pets) and are characterized by several
population bottlenecks (Frazer et al. 2007; Yang et al. 2007).

A second group of laboratory strains are referred to as “wild-derived” strains. These strains are
mouse strains captured from wild and inbred mice that were never kept as pets. Wild-derived
strains do not share the population history of classical laboratory strains. A simple way to
visualize the relationship between multiple ancestral groups and traits in the mouse genome is
with a phylogenetic tree that can be computed from the genetic information (Figure 3). This tree
visualizes the genetic relationships between 32 classical inbred strains and 6 wild derived
strains, using genetic variant information at 140,000 SNPs for each strain.

We observe that the two groups are close to each other in the phylogeny and are separated by
a long branch length (denoted with a dotted line). This branch represents the many genetic
differences between the groups. We also have measurements for body weight and liver weight
for each of the two strains. Not surprisingly, the body weights of the classical strains are much
larger than the body weights of the wild derived strains (Figure 4). Different selective pressures
on the two groups, including environmental fitness (wild-derived) and human selection
(laboratory), produced these differences in population genetics.
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Figure 3. Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap SNPs. Green
strains represent wild-derived non-domesticus mice, and purple strains represent classical

inbred mice.
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Figure 4. Body weight phenotypes of 38 inbred mouse strains from the Mouse Phenome
Database generated by The Jackson Laboratory. The distribution of mice body weights shows
the two clades of mice having very different body weights.

In order to identify which genetic variants are associated with body weight, we applied the linear
model described above to the 140,000 SNPs from this dataset. In general, we expect
association study results to indicate very few significant associations between particular SNPs
and a trait. One common way to visualize the results of an association study is with a Manhattan
plot. In a Manhattan plot, the mouse genome is plotted against the x-axis, and the measure of
significance of correlation between the genome and trait is plotted against the y-axis. Each red
spike represents a SNP at a particular genomic position, and the height of the spike represents
the strength of the association. The green horizontal line represents the significance threshold.
Any SNP that crosses this line is considered a significant association.

We expect to observe a Manhattan plot similar to the one in Figure 5, where a number of SNPs
affect the phenotypes. Thus, we would observe signals that cross the threshold at a few
locations in the genome, but most of the SNPs will not be associated with the phenotype.

Another way to visualize the results of an association study is with a cumulative p-value
distribution plot (b) and a quantile-quantile (Q-Q) plot (c). These plots are graphical techniques
for determining whether multiple datasets come from populations with common distribution.
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Here, the cumulative p-value distribution plot shows the quantiles of the p-values, which assess
the probable significance of association between a genotype and trait; the Q-Q plot shows the
distribution of the same data log-transformed.

Since we expect most SNPs not be to associated, most of the statistics will be coming from the
null distribution. Thus, most of the p-values will be uniformly distributed between 0 and 1.
Typically, only a small fraction of the SNPs have signals stronger than expected at the tail of the
distribution. This results in a cumulative p-value distribution that is close to the diagonal line
(Figure 5b) and a Q-Q plot that follows the line for the beginning of the curve (as shown in
Figure 5c). As shown in Figure 5, we would expect that the median p-value would be close to
0.5.

log p-values
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(b) Cumulative p-value distribution (c) Q-Q plot

Figure 5. Expected distribution of p-values in a typical (a) Manhattan plot, (b) genome-wide
association plot, and (c) Q-Q plot. Circles in (b) and (c) denote where the median p-value (red
line) falls on the graph in comparison to the expected median p-value (yellow line). Here, the
median falls close to 0.5, suggesting population structure is not affecting association results or
has been corrected for in the model.

However, when we applied standard linear models to the inbred mouse dataset, we observed
strong signals in many locations in the genome (Figure 6a). The cumulative p-value distribution

11
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and the Q-Q plots are shown in Figure 6b and 6¢. In our results, we observe that nearly 50% of
the SNPs are significantly associated with the phenotype. There are far more significant
associations (red line) than expected associations (yellow line).

log p-values

|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 X

(a) Genome-wide association map

.6

8.6

Cunulative fraction

a4

Observed loglB-pvalue
w

8.2

Body Height (t=test) t=test +
- Expoctaed . Expected
L] 8,2 B4 .6 .8 1 L] 1 2 £l 4 5

Observed p=values Enpected loglB-quantile

(b) Cumulative p-value distribution (c) Q-Q plot

Figure 6. Observed distribution in a (a) Manhattan plot, (b) genome-wide association plot, and
(c) Q-Q plot. Circles in (b) and (c) indicate where the median p-value falls on the plot compared
to where it is expected. The genomic control factor is computed by considering the observed
median p-value compared to the expected. Here, there is a substantial deviation between the
red and yellow lines due to inflation of false positive associations for the body weight phenotype.

Why We Observe False Positives in Mouse Genetic Studies

We can explain why we observe the excess amount of strong association by examining the data
for one of the red peaks from the Manhattan plot (Figure 6a) in Figure 7a. Here, the big circles
are body weight values, and the small circles are genome-wide SNPs. When we look at the
distribution of body weight values and SNPs, it appears that green SNPs correspond to mice
with small body weight, while pink SNPs correspond to mice with heavy body weight. Clearly
there is a very strong correlation between the SNP and the trait of body weight; it is no surprise
that we observe a very significant p-value.
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However, if we lay the phylogenetic tree over the pattern of SNPs and body weight values
(Figure 7b), we see that the separation of the population into classical and wild derived strains is
strongly correlated with the body weight. Here, the SNP differentiates these two groups. The
length of each branch in the tree corresponds to the amount of genetic differences between the
two groups separated by the branch. The long branch length between the classical and wild
strains indicates that many SNPs are dominant in one group and each has a strong signal. This
correlation between strains and SNPs causes the large amount of observed associations.

Clearly there are genetic differences between these two groups that affect body weight, but not
every genetic difference between the two groups affects body weight. However, the simple
linear model will associate every SNP that separates these two groups with body weight. Thus,
most of the associations that we observe are for SNPs that are not actually affecting body
weight. These associations are referred to as spurious associations.

wild-derived strains @ wild-derived strains
(musculus, ° [ (musculus,
castaneous, spretus) ‘e 5' PR castaneous. spretus)
[ g o
[ ]
e
) L)
e
®
10. ; .?"
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® 300 ® -
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(a) (domesticus) (b) (domesticus)

Figure 7. Body weight phenotypes of 38 inbred mouse strains from the Mouse Phenome
Database. (a) When we look at only SNP distribution, it appears that green SNPs correspond to
small mice, while purple SNPs correspond to large mice. (b) When we look at SNP distribution
and phylogeny together, we see that many SNPs segregate the two clades due to a long,
shared breeding history.

Another way to understand the effect of population structure on association is through graphical
models. We consider SNPs and traits in Figure 8a. Typically, we perform an association test
on a SNP. Observation of an association gives evidence that the SNP affects the trait. On the
other hand, if we don’t observe an association, this suggests that either the SNP does not affect
the trait, or that the effect is too small for our study to detect. However, if genetic differences
between groups are present (Figure 8b), shared histories will produce many SNPs directly
correlated with population structure (straight dark line). In addition, phenotypes, such as body
weight, are also highly correlated with the population structure (straight dark line). This will
induce correlation between many SNPs and the phenotype (dotted line) including, but not
limited to, the SNPs that are actually responsible for variants.
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This phenomenon of association due to relatedness is exactly related to Equation (3). Here, the
Z Bix;
genetic history shared between mouse strains is the unmodeled factor i#k . Since the

shared genetic history is missing from the testing model, we consider population structure the
unmodeled factor.

Using Mixed Model Methods in Mouse Association Studies

We have shown that population structure can bias association study results. Our mouse
examples show that we must correct for population structure in order to accurately identify
specific genetic variants involved in disease risk. Several challenges presently limit usefulness
of genome association studies for implicating genetic variants. First, unmodeled factors are not
known and cannot be accounted for in computational methods that match traits with
phenotypes. Second, we do not know the exact ways that unmodeled factors interact with
population structure to bias output. Finally, many studies ignore dependency among these
unmodeled factors.
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Figure 8. (a) The SNP and phenotype are independent under the null hypothesis (o) and
correlated under the alternative hypothesis (#1). (b) In the case of population structure, the
structure will influence many SNPs and the phenotype. In this case, correlation between SNPs
and the phenotype will be induced in both the null and alternate hypothesis.

The effects of these SNPs are the unmodeled factor in the equation shown in equation (3), and
they confound our ability to perform association studies. In reality, there are many SNPs
located on the long branching line (Figure 7, dashed line) that affect the phenotype. In order to
identify these true associations, we must eliminate the unmodeled factor. While we cannot know
which specific SNPs comprise the unmodeled factor, we can use available knowledge about
similarities between the genomes of individuals in our studies to estimate the unmodeled factor.
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Figure 9. In a true model of association, the unmodeled factors cannot be known. We can
estimate the unmodeled factors when (a) genomes are similar or (b) genomes share few causal
variants.

Using our mouse example, we consider two different strains, B6 and C3H. These two strains are
both classical inbred mice derived from domesticated mice and have similar genomes. In
Figure 9a, we show a toy example considering the genomes of the two strains. Here, the
genomes are very similar; nine out of ten SNPs are shared between B6 and C3H. In our
example, let us assume that the even numbered SNPs are causal variants that affect the
phenotype. For those variants, their corresponding effect size (ﬁz‘) will be non-zero. We neither
know the actual effect sizes nor the resulting value for the unmodeled factor. However, because
they share the same allele as these SNPs, we do know that the two strains will have a similar
value for the unmodeled factor.
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Next, we consider two very different strains pairwise (Figure 9b): the classic inbred mouse strain
B6 and the wild mouse strain CAST. In this case, the strains have different alleles present at
many SNPs. If any of these SNPs affect the trait, the value of the unmodeled factor will differ by
the effect size. Thus, we expect the two strains to have different values for the unmodeled
factor.

The amount of pairwise sharing of alleles between strains can be used to capture the similarity
between the values of the unmodeled factor among strains. In order to do this, we make a
matrix that contains all SNPs shared between the paired genomes (Figure 10). This matrix
allows us to “model” the values of the unmodeled factors among the individuals in our study,
and it shows us which pairs have similar sharing of alleles and which pairs have dissimilar
values.

The principle underlying mixed models is that we incorporate this “model” of unmodeled factors
into the association test. We incorporate the unknown factors into the model of association
using what is called a random effect or a variance component. Our model is called a mixed
model, because it combines a random effect with the effect sizes of the SNPs we are testing
(referred to as fixed effects) to model population structure.

mE oyt X, B+ O/ +e

MODEL
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hered  oea FACTORS
(K) 12981

CAST
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Figure 10. The true model ignores dependency among unmodeled factors and produces false
associations. The mixed model reduces false associations by accounting for the dependency
among SNPs correlated with phenotypes due to population structure.

When using a mixed model to identify causal variation, one key step is to establish these fixed
parameters and random effect components. A linear mixed model (LMM) uses the information
from the matrix to account for the unmodeled factor. We extend the simple, hypothetical true
model

y=pl+ Xy +e
to include a term that captures the unmodeled factors. The term « in
y=pl+ G Xy +tu+te

is a random vector that depends on the amount of shared genome in terms of pairwise

differences. Here, we assume that ¢ ~ N(0, U2K), where K is the kinship matrix. Each entry
of K estimates the pairwise similarity between the genomes of the individuals in the study,
which follows the intuition of Figures 9 and 10.

In practice, K can be computed from the genotypes where each entry in the kinship matrix is
just the product of the standardized genotypes for the two individuals divided by the number of
variants. Thus, the kinship entry computing the relatedness between individuals i and J is

M
oo = 2kt Xk Xk
‘ M

We can elegantly compute the kinship matrix using the equation X = X X" /N _ The standard
estimation equations above cannot be used to estimate the values of the parameters. Due to
the random effect «, the phenotypes of the individuals are no longer independent of each
other—an assumption of the previous methods.

2
However, if we know the values of % and 03, we can then apply the following “mixed model
trick.” We note that the phenotypes will follow the distribution

?JNN(N+Z@X¢,V)

_ 2 2
, Where V= UgK ol and [ is the identity matrix. If we transform then multiply the

phenotypes and genotypes by V_%, we get
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Vi~ N(VTElp+ Y BVTEX, )

In the transformed data, the individuals are now independent of each other, and we can apply
the estimation equations presented above to estimate the values for 8 and the association
statistics.

In this case, we assume that the Bi values are drawn from a normal distribution with a mean

. 2 .
zero as effect size and . as the variance.

2
Estimating the values of %¢ and a? is a difficult computational problem referred to as estimating
the variance components. These parameters are estimated by utilizing a maximum likelihood

2
approach. Specifically, we attempt to find the values of “s and 02, such that the following log
likelihood function of the data is maximized:

1
Uy, Xk, Bk, 0g,0e,m) = _i[n log(27) +log|V | + (y — X3.8:)V ' (y — X1.81)]

where V' = agK + 03].

This equation is computationally difficult, because likelihood requires computing the inverse of
the matrix (V_l), which in turn depends on the values of %9 and 0.. Optimization methods that
maximize this likelihood apply algorithms updating current estimates of of %9 and . until they
converge to high values of the log likelihood function. Each step of an optimization algorithm is
referred to as an iteration. In each iteration, the optimization algorithm must evaluate the log
likelihood for the current values of %9 and 7. and must compute this matrix inverse. A

straightforward way to compute a matrix inverse involves a complexity of approximately O(ng).

Unfortunately, this results in a very inefficient algorithm and prevents mixed models from being
widely utilized in association studies, despite their long history in genetics.

We developed Efficient Mixed Model Association (EMMA) (Kang et al. 2008), an efficient
algorithm for estimating these parameters. Since we first presented EMMA, many other groups
have developed similar efficient algorithms (Kang et al. 2010; Lippert et al. 2011; Zhou and
Stephens 2012). The key idea behind EMMA is that we apply spectral decomposition to the
kinship matrix, leading to a much faster optimization algorithm. The spectral decomposition only
needs to be computed once and requires a complexity of o(n’). Specifically, if we write

K = UDU?T where U is a matrix of eigenvectors and D is a diagonal matrix of eigenvalues,
then we can represent V' using matrix algebra properties as follows:
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We can then compute the quantity Z = U” (¥ — Xx5k) for each SNP k which has complexity

O(”Q). The log likelihood of the data can then be computed using
1 2 2 T/ 2 271\—-1
Iy, Xg, Br, 04, 0c,n) = —a[nlog(QW)%—ogTT(D)—Fnae+Z (0, D+01)" 2]

, which can be computed in complexity O(n) since the matrix inside the likelihood is now
diagonal. The inverse can be computed by simply taking the reciprocal of the elements along
the diagonal. This procedure results in a very efficient algorithm that is useful for today’s
large-scale human genomic datasets.

We applied EMMA to the same mouse association data analyzed using a standard LMM
approach (see Figure 6). With these computational improvements, we almost completely
reduced the inflation of false positives while obtaining nearly uniform p-value distribution for
most SNPs (Figure 11). Here, the strongest peak, which is not significant, falls into a region of
the genome on chromosome 8, which is known to be associated with body weight. Regions of
the genome that correlate with variation in a phenotype are referred to as Quantitative Trait Loci
(QTL).

Next, we applied EMMA to other phenotypes from the same mouse strain datasets, including a
liver weight phenotype. Here, we see that the inflation of false positives is reduced and a strong
signal at chr2 is more pronounced after the correction (Figure 12). EMMA correctly identifies a
locus for liver weight that falls into the QTL Lvrqg1 (liver weight), which was previously identified
using a traditional mous mapping approach (Rocha et. al. 2004).
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Figure 11. (a) The conventional GWAS test applied to mouse body weight phenotypes
produces numerous false positions. (b) The mixed model approach using EMMA almost
completely reduces the inflation of false positives and identifies a strong peak (chr8) that falls
into a known body weight QTL.
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Figure 12. (a) The conventional GWAS test applied to mouse liver weight phenotypes produces
numerous false positions. (b) The mixed model approach using EMMA reduces inflation of false
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positives and correctly produces a stronger signal at chr2, a region that is located in known
QTLs for liver weight.

Population Structure and Mixed Models in Human Association Studies

During the time that mixed models were starting to be used in mouse studies, the problem of
relatedness in human studies was becoming apparent by causing difficulties in analyzing human
GWAS studies. At that time, there was no single approach to handle relatedness. Instead,
different types of relatedness were explicitly modeled, and association study methods were
adapted to those scenarios. There is an entire class of methods designed to handle relatedness
when there are closely related individuals in the genetic study and the genetic relationships are
known. These include methods for multigenerational families, twins, and siblings (Freimer and
Sabatti 2004; Van Dongen et al. 2012).

A complication in human association studies is when the relationships are unknown. One of the
most common types of relatedness among individuals in human studies is due to ancestry.
Ancestry refers to the population that an individual descended from. Many individuals are
admixed, which means they are descended from ancestors in different populations. If an
association study contains individuals from different populations or differing degrees of
admixture, the individual will have different degrees of relatedness among them. In other words,
individuals with the same ancestry are slightly more related to each other than individuals with
different ancestries.

It is well documented that these ancestry differences can induce false positive associations
(Helgason et al. 2005). Association studies that analyzed individuals with differences in
ancestry typically utilized an approach to predict the ancestry for each individual and then
incorporated this information as a covariate in the model (Pritchard et al. 2000). An alternate
approach was to estimate principal components over the genotype data, which could be
interpreted as a proxy for association studies and included in the model as covariates (Price et
al. 2006). In the human genetics literature, ancestry differences are sometimes referred to as
population structure. In this review, we use the term ancestry differences separately from the
term population structure; we use the latter to describe the general phenomenon of relatedness
in a sample.

A second type of relatedness is cryptic relatedness (Voight and Pritchard 2005). Since GWAS
are applied to extremely large samples, there are often individuals included in the study who
happen to be related—but this relatedness is unknown the both the individuals and the
investigators. Typically, cryptic relatedness is handled by screening the association study for
related individuals and computing the genetic similarity between each pair of individuals.

A general purpose approach to correct for population structure, or any type of confounding in
association studies, is genomic control (Devlin and Roeder 1999; Bacanu et al. 2002). Genomic
control allows us to measure the extent to which population structure (or other confounders) is
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affecting the association statistics. By examining the cumulative p-value distribution plot, we
consider the deviation of the actual plot from what is expected at the median. Since we expect
the vast majority of variants not to be associated with the trait, we expect the median observed
p-value to be close to 0.5. Typically, population structure induces a more significant observed
median p-value.

Genomic control computes a correction factor referred to as A\, which is a scaling factor used to
scale all of the observed p-values so that the corrected median p-value is then 0.5. The A\ is on

the X’ scale (meaning that the median p-value is converted to a X’ value and the ratio is
computed relative to the X2 value) corresponding to a p-value of 0.5, which is 0.545. The

observed association p-values are converted from p-values to X2 statistics, scaled by A and
then converted back to p-values.

We can also use the value of the A as a measure of the extent of the effect of confounding on
the association statistics. Genomic control \’s are widely utilized to compare different
correction approaches. A A of 1.0 shows that there is no inflation. A value greater than 1.0 is
evidence that the association statistics are inflated. Typically, the 95% confidence interval of
the A in GWAS studies is 0.02. Thus, any A\ of 1.03 or higher suggests that there is some
inflation. We note that more recent exploration of polygenicity, or the amount of causal variants
for a trait, suggests that there are many more causal variants than originally expected. In this
case, the )\ values should actually be higher than 1.0 (Yang et al. 2011). We discuss this
perspective in the Discussion.

In the literature, ancestry differences and cryptic relatedness are referred to as distinct
phenomenon. In fact, they can be thought of as different degrees of relatedness in the sample.
Consider in Figure 13a, which shows a potential pedigree relating all of the individuals in an
association study sample. Ancestry differences can be thought of relatedness near the top of
the tree (Figure 13b), and cryptic relatedness can be thought of relatedness in a more recent
portion of the tree (Figure 13c).

Ancestry

ot 5o Bro Cryptic relatedness o

(a) ((9)} (c)

Figure 13. Different degrees of relatedness in the sample. (a) All of the individuals in a genetic
study are somehow related through a large pedigree or family tree. This tree can produce two

forms of hidden relatedness: cryptic relatedness (b) and ancestry (c), where the box represents
the level of the pedigree that causes that type of relatedness.
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Mixed models can handle nearly arbitrary genetic relationships between individuals and are a
natural approach for human association studies. Mixed models are ideal because they can be
applied without explicit identification of the ancestry and relatedness within the sample. They
also enable the analysis of datasets with particularly complex genetic relationships, such as
isolate populations where the population is descended from a small number of founder
individuals (Kenny et al. 2010). For isolate populations, the previous methods were not able to
fully account for population structure.

Mixed models were first used in human studies with the Northern Finnish Birth Cohort (Sabatti
et al. 2009), where mixed models were applied to 331,475 SNPs in 5,326 individuals who were
phenotypes for 10 traits (Kang et al. 2010). These traits include C-reactive protein (CRP),
triglyceride (TG), insulin plasma levels, (INS), diastolic blood pressure (DBP), body mass index
(BMI), glucose (GLU), high-density lipoprotein (HDL), systolic blood pressure (SBP), and low
density lipoprotein A (LDL). Individuals within this cohort have some ancestry differences due to
their origin from different parts of Finland, and they share some genetic relationships.

Table 1 shows the results of applying mixed models to these traits. Each entry in the table
shows the A value for the analysis of that phenotype. The first column shows the results of the
uncorrected analysis. We can see that there are very large A factors, particularly for height. In
fact, the associations with height were not reported in the original Sabatti et al. (2009)
manuscript because the high A value suggested that some of the observed associations may
be false positives. The second column shows the A factors after eliminating cryptically related
individuals. Here, we compute the pairwise relationships between individuals and filter out one
of any pair that was closely related. This approach filtered out 611 individuals.

The third column shows the A factors after using 100 principal components as covariates. This
was done to show the limit of the principal component approach in correcting for population
structure. Each component decreases the \; using 100 components is an absurdly large
number of components and is well beyond what is typically utilized in any type of association
study. The last column shows the A\ for mixed models. Each of these A\ values are within the
95% confidence interval (around 1.0), suggesting that mixed models can correct for all of the
population structure in the sample—including cryptic relatedness and ancestry differences. As
shown in Table 1, only mixed models adequately correct for population structure in this sample.

Table 1. Results of analysis (A values) on NFBC66 data.
Traits Uncorrected I1BD<0.1 100PC EMMAX

BMI 1.036 1.028 1.024 1.001
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CRP 1.012 1.020 1.020 0.994
DBP 1.033 1.025 1.029 1.010
GLU 1.045 1.025 1.030 1.009
HDL 1.054 1.041 1.037 1.003
INS 1.026 1.026 1.015 1.005
LDL 1.093 1.089 1.040 1.002
SBP 1.063 1.054 1.021 1.004
TG 1.024 1.021 1.018 0.999
HEIGHT 1.193 1.152 1.080 1.002

2
Mixed models have become important in human GWAS analysis, because the estimates of %y

and 9; can be used to estimate the heritability of the trait. Recent results suggest that common
variants explain a larger proportion of the variance of complex traits than previously thought
(Purcell et al. 2009; Yang et al. 2010; Eskin 2015).

Discussion

Over the past decade, association studies have identified thousands of variants implicated in
dozens of common human diseases. The traditional approach to association studies assumes
that individuals are unrelated to each other. However, in practice, individuals in genetic studies
are related to each other in complex ways. In this review, we demonstrate how these
relationships cause false positives in association studies and how mixed models can correct for
these confounding genetic relationships.

This review covers only the basic principles of mixed models and population structure. Since the
original EMMA paper in 2008, mixed models have become an active research area. Many
groups have published papers exploring various aspects of mixed models and their application
to complex genomic problems.

For example, many approaches have been developed to improve the efficiency of mixed
models, including the methods Fast-LMM (Lippert et al. 2011) and GEMMA (Zhou and
Stephens 2012). More recently, a method called BOLT-LMM (Loh et al. 2015) was developed
for scaling analyses to handle cohorts in the hundreds of thousands of individuals.
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Another direction of method development has been extending mixed models to handle case
control studies. These approaches typically assume a liability threshold model where there is an
underlying continuous phenotype; if the phenotype is above a threshold, the individual has a
disease. If it is below a threshold, the individual does not have the disease (Zaitlen et al. 2012).
These types of studies are also complicated by a phenomenon of selection bias, because the
cases are oversampled from the population. At present, such mixed model extensions to
case/control studies results in challenging computational problems (Hayeck et al. 2015;
Weissbrod et al., 2015).

Some mixed models are developed based on observation of a particular bias inherent to
standard approaches. For example, a bias is induced by the SNP that is tested and used in the
computation of the kinship matrices (Listgarten et al. 2012). This bias motivated the idea that,
when applying mixed models, the kinship matrix should not contain the SNP being tested. As a
result, the Leave One Chromosome Out (LOCO) approach constructs a different kinship matrix
for testing each chromosome and leaves out the SNPs on the chromosome being tested (Yang
et al. 2014).

This approach is also motivated by the observation that many complex traits are highly
polygenic, suggesting that there are hundreds (if not thousands) of loci that influence some
traits (Yang et al. 2011). Some traits, such as height, are known to be highly polygenic. In this
case, it is not clear what the actual value of A should be for a polygenic trait as it is expected to
have a contribution from both confounding effects as well as polygenicity. More recently, a
method called LD score regression has been developed that attempts to differentiate between
these two components (Bulik-Sullivan et al. 2015).

From their origins in non-human organisms to powering large scale human genome wide
association studies today, mixed models play an important role in the analysis of genetic data,
particularly in correcting for population structure. Research in improving and extending mixed
model approaches is now an active research area in the field.

References

Bacanu, S.A., Devlin, B. and Roeder, K., 2002. Association studies for quantitative traits in
structured populations. Genetic epidemiology, 22(1), pp.78-93.

Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Patterson, N., Daly, M.J.,
Price, A.L., Neale, B.M. and Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2015. LD Score regression distinguishes confounding from polygenicity in
genome-wide association studies. Nature genetics, 47(3), pp.291-295.

26


https://www.codecogs.com/eqnedit.php?latex=%5Clambda
https://www.codecogs.com/eqnedit.php?latex=%5Clambda
https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/092106; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Devlin, B. and Roeder, K., 1999. Genomic control for association studies. Biometrics, 55(4),
pp.997-1004.

Eskin, E., 2015. Discovering genes involved in disease and the mystery of missing heritability.
Communications of the ACM, 58(10), pp.80-87.

Frazer, K.A., Eskin, E., Kang, H.M., Bogue, M.A., Hinds, D.A., Beilharz, E.J., Gupta, R.V.,
Montgomery, J., Morenzoni, M.M., Nilsen, G.B. and Pethiyagoda, C.L., 2007. A
sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature, 448(7157),
pp.1050-1053.

Freimer, N. and Sabatti, C., 2004. The use of pedigree, sib-pair and association studies of
common diseases for genetic mapping and epidemiology. Nature genetics, 36(10),
pp.1045-1051.

Golan, D. and Rosset, S., 2011. Accurate estimation of heritability in genome wide studies using
random effects models. Bioinformatics, 27(13), pp.i317-i323.

Golan, D. and Rosset, S., 2014. Effective genetic-risk prediction using mixed models. The
American Journal of Human Genetics, 95(4), pp.383-393.

Hayeck, T.J., Zaitlen, N.A., Loh, P.R., Vilhjalmsson, B., Pollack, S., Gusev, A., Yang, J., Chen,
G.B., Goddard, M.E., Visscher, P.M. and Patterson, N., 2015. Mixed model with correction for
case-control ascertainment increases association power. The American Journal of Human
Genetics, 96(5), pp.720-730.

Hayes, B.J., Bowman, P.J., Chamberlain, A.J., Savin, K., Van Tassell, C.P., Sonstegard, T.S.
and Goddard, M.E., 2009. A validated genome wide association study to breed cattle adapted to
an environment altered by climate change. PLoS One, 4(8), p.e6676.

Helgason, A., Yngvadottir, B., Hrafnkelsson, B., Gulcher, J. and Stefansson, K., 2005. An
Icelandic example of the impact of population structure on association studies. Nature genetics,
37(1), pp.90-95.

Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. and Abecasis, G.R., 2012. Fast and
accurate genotype imputation in genome-wide association studies through pre-phasing. Nature

genetics, 44(8), pp.955-959.

International HapMap 3 Consortium, 2010. Integrating common and rare genetic variation in
diverse human populations. Nature, 467(7311), pp.52-58.

27


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/092106; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., Sabatti, C. and
Eskin, E., 2010. Variance component model to account for sample structure in genome-wide
association studies. Nature genetics, 42(4), pp.348-354.

Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J. and Eskin, E.,
2008. Efficient control of population structure in model organism association mapping. Genetics,
178(3), pp.1709-1723.

Kenny, E.E., Kim, M., Gusev, A., Lowe, J.K., Salit, J., Smith, J.G., Kovvali, S., Kang, H.M.,
Newton-Cheh, C., Daly, M.J. and Stoffel, M., 2010. Increased power of mixed models facilitates
association mapping of 10 loci for metabolic traits in an isolated population. Human molecular
genetics, p.ddg510.

Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.l. and Heckerman, D., 2011. FaST
linear mixed models for genome-wide association studies. Nature methods, 8(10), pp.833-835.

Listgarten, J., Lippert, C., Kadie, C.M., Davidson, R.Il., Eskin, E. and Heckerman, D., 2012.
Improved linear mixed models for genome-wide association studies. Nature methods, 9(6),
pp.525-526.

Loh, P.R., Tucker, G., Bulik-Sullivan, B.K., Vilhjalmsson, B.J., Finucane, H.K., Salem, R.M.,
Chasman, D.l., Ridker, P.M., Neale, B.M., Berger, B. and Patterson, N., 2015. Efficient
Bayesian mixed-model analysis increases association power in large cohorts. Nature genetics,
47(3), pp.284-290.

Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy,
M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, A,
Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M.,
Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F., McCarroll, S.A. & Visscher,
P.M., 2009, Finding the missing heritability of complex diseases, Nature, 461(7265), pp. 747-53.

Neuhaus, S., Igras, E., Fosh, B. and Benson, S., 2012. Part-time general surgical training in
South Australia: its success and future implications (or: pinnacles, pitfalls and lessons for the
future). ANZ journal of surgery, 82(12), pp.890-894.

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A. and Reich, D., 2006.
Principal components analysis corrects for stratification in genome-wide association studies.

Nature genetics, 38(8), pp.904-909.

Pritchard, J.K., Stephens, M., Rosenberg, N.A. and Donnelly, P., 2000. Association mapping in
structured populations. The American Journal of Human Genetics, 67(1), pp.170-181.

28


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/092106; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O'Donovan, M.C., Sullivan, P.F., Sklar,
P., Ruderfer, D.M., McQuillin, A., Morris, D.W. and O’Dushlaine, C.T., 2009. Common polygenic
variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256),
pp.748-752.

Risch, N. and Merikangas, K., 1996. The future of genetic studies of complex human diseases.
Science, 273(5281), pp.1516-1517.

Rocha, J.L., Eisen, E.J., Van Vleck, L.D. and Pomp, D., 2004. A large-sample QTL study in
mice: |. Growth. Mammalian Genome, 15(2), pp.83-99.

Rosset, S., Wells, R.S., Soria-Hernanz, D.F., Tyler-Smith, C., Royyuru, A.K. and Behar, D.M.,
2008. Maximum-likelihood estimation of site-specific mutation rates in human mitochondrial
DNA from partial phylogenetic classification. Genetics, 180(3), pp.1511-1524.

Sabatti, C., Service, S.K., Hartikainen, A.L., Pouta, A., Ripatti, S., Brodsky, J., Jones, C.G.,
Zaitlen, N.A., Varilo, T., Kaakinen, M. and Sovio, U., 2009. Genome-wide association analysis
of metabolic traits in a birth cohort from a founder population. Nature genetics, 41(1), pp.35-46.

Stram, D.O., 2014. Design, analysis, and interpretation of genome-wide association scans.
Springer.

Van Dongen, J., Slagboom, P.E., Draisma, H.H., Martin, N.G. and Boomsma, D.l., 2012. The
continuing value of twin studies in the omics era. Nature Reviews Genetics, 13(9), pp.640-653.

Voight, B.F. and Pritchard, J.K., 2005. Confounding from cryptic relatedness in case-control
association studies. PLoS Genet, 1(3), p.e32.

Weissbrod, O., Lippert, C., Geiger, D. & Heckerman, D., 2015, Accurate liability estimation
improves power in ascertained case-control studies, Nature methods, 12(4), pp. 332-4.

Yang, H., Bell, T.A., Churchill, G.A. and de Villena, F.P.M., 2007. On the subspecific origin of
the laboratory mouse. Nature genetics, 39(9), pp.1100-1107.

Yang, I.V., Wade, C.M., Kang, H.M., Alper, S., Rutledge, H., Lackford, B., Eskin, E., Daly, M.J.
and Schwartz, D.A., 2009. Identification of novel genes that mediate innate immunity using
inbred mice. Genetics, 183(4), pp.1535-1544.

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, P.A.,

Heath, A.C., Martin, N.G., Montgomery, G.W. and Goddard, M.E., 2010. Common SNPs explain
a large proportion of the heritability for human height. Nature genetics, 42(7), pp.565-569.

29


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/092106; this version posted January 28, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Yang, J., Weedon, M.N., Purcell, S., Lettre, G., Estrada, K., Willer, C.J., Smith, A.V., Ingelsson,
E., O'Connell, J.R., Mangino, M. and Méagi, R., 2011. Genomic inflation factors under polygenic
inheritance. European Journal of Human Genetics, 19(7), pp.807-812.

Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. and Price, A.L., 2014. Advantages and
pitfalls in the application of mixed-model association methods. Nature genetics, 46(2),
pp.100-106.

Zaitlen, N., Lindstrom, S., Pasaniuc, B., Cornelis, M., Genovese, G., Pollack, S., Barton, A.,
Bickebdller, H., Bowden, D.W., Eyre, S. and Freedman, B.l., 2012. Informed conditioning on
clinical covariates increases power in case-control association studies. PLoS Genet, 8(11),
p.e1003032.

Zhou, X. and Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association
studies. Nature genetics, 44(7), pp.821-824.

30


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

\CATGTCGACATTTCATAAGCC.

anssaid poolg

SNP
4---4-4-44-40000000

(b)

Ho: [Phenotype] LISNP]

y=u+e

] S ——
PN [ S
—

anssaid poolg

E
4=4-H4-4-4400000000

()

H,: [Phenotype]~[SNP]

"
=

- -
y=ptXxgtre e
=

Y =pXB 145

. bt

: ]

2 1 120
38 N . 120
B8l & T

anssaid poolg



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

wild-derived strains
(musculus,
castaneous, spretus)

classical inbred strains
(domesticus)


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

wild-derived strains
(musculus,
castaneous, spretus)

classical inbred strains
(domesticus)


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

\\“A“LIAA\\A "

{61 Ganiain il sasoauiin map

\

(b) Cumulative p-value distribution (c) Q-Q plot



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

ol il

(2) Genome-wide association map

(b) Cumulative p-value distribution (c) Q-Q plot



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

wild-derived strains
(musculus,

wild-derived strains
(musculus.
castaneous, spretus)

(a)

classical inbred strains
(domesticus)

castaneous, spretus)

classical inbred strains
(domesticus)



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ho: [Phenotypel LISNP]

(@)

SNP

H;: [Phenotypel~[SNP]

Phenotype|

H,

ot

LSNP} [

Ho: [Phenotype]~[SNP]

Many
SNPs

Population Structure

or
Genetic Relatedness



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

TRUE

me, Y=HrX B+, XB e

UNMODELED
FACTORS

m_mmmmmmm

et T

3
cAusAL 1t
[}

SNPS.

R T ST
5

clllic A
| A
callic c
CHIEE c

i
Tl
CalibT)

)


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

A+X B+ ?

fo cm g ° UNMODELED
shared oy, pey FACTORS

® 7

LNEAR

s Y= [H X f+u+e
e u~N(0,62K)


https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

(a) Conventional test

[

kil

m

ki,

(b) EMMA



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

: WMWMWM

(a) Conventional test

il

(b) EMMA



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cryptic relatedness -

Ancestry



https://doi.org/10.1101/092106
http://creativecommons.org/licenses/by-nc-nd/4.0/

