

1 **Genomic characterization of serial-passaged Ebola virus in a boa constrictor cell line**

2

3 **Greg Fedewa^a, Sheli R. Radoshitzky^b, Xiǎoli Chi^b, Lián Dǒng^b, Melissa Spear^c, Nicolas**
4 **Strauli^c, Mark D. Stenglein^d, Ryan D. Hernandez^{e,f,g}, Peter B. Jahrling^h, Jens H. Kuhn^{h,#},**
5 **and Joseph L. DeRisi^{i,j#}**

6 Integrative Program in Quantitative Biology, Bioinformatics, University of California San
7 Francisco, San Francisco, CA, USA^a; Molecular and Translational Sciences Division, United
8 States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD,
9 USA^b; Biomedical Sciences Graduate Program, University of California San Francisco, San
10 Francisco, CA, USA^c; Department of Microbiology, Immunology, and Pathology, Colorado
11 State University, Fort Collins, Colorado, USA^d; Quantitative Biosciences Institute, University of
12 California San Francisco, San Francisco, CA, USA^e; Institute for Human Genetics, University of
13 California San Francisco, San Francisco, CA, USA^f; Department of Bioengineering and
14 Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA^g;
15 Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases,
16 National Institutes of Health, Fort Detrick, Frederick, MD, USA^h; Department of Biochemistry
17 and Biophysics, University of California San Francisco, San Francisco, CA, USAⁱ; Chan
18 Zuckerberg Biohub^j

19

20 # Address correspondence to: JHK: Integrated Research Facility at Fort Detrick (IRF-Frederick),
21 Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases
22 (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick,
23 MD 21702, USA; Phone: +1-301-631-7245; Fax: +1-301-631-7389; Email:

24 kuhnjen@mail.nih.gov; JLD: Department of Biochemistry and Biophysics, University of
25 California San Francisco (UCSF), 1700 4th St., San Francisco, CA 94158, USA; Phone: +1-415-
26 418-3647; Email: joe@derisilab.ucsf.edu

27

28 **Running Title:** Ebola virus propagation in snake cells (33 characters).

29 **Word Count:** Abstract 249 words; Text 4640 words

30

31 **Keywords:** boa constrictor; ebolavirus; Ebola virus; EBOV; *Filoviridae*; filovirus; JK cells;
32 virus evolution

33

34 **ABSTRACT**

35 Ebola virus disease (EVD) is a viral hemorrhagic fever with a high case-fatality rate in humans.

36 EVD is caused by four members of the filoviral genus *Ebolavirus*, with Ebola virus (EBOV)
37 being the most notorious one. Although bats are discussed as potential ebolavirus reservoirs,
38 limited data actually support this hypothesis. Glycoprotein 2 (GP2) of reptarenaviruses, known to
39 infect only boa constrictors and pythons, are similar in sequence and structure to ebolaviral
40 glycoprotein 2 (GP₂), suggesting that EBOV may be able to infect snake cells. We therefore
41 serially passaged EBOV and a distantly related filovirus, Marburg virus (MARV), in the boa
42 constrictor kidney cell line, JK, and characterized viral growth and mutational frequency by
43 sequencing. We observed that EBOV efficiently infected and replicated in JK cells, but MARV
44 did not. In contrast to most cell lines, EBOV infected JK cells did not result in obvious
45 cytopathic effect (CPE). Genomic characterization of serial-passaged EBOV in JK cells revealed
46 that genomic adaptation was not required for infection. Deep sequencing coverage (>10,000x)

47 demonstrated the existence of only a single non-synonymous variant (EBOV glycoprotein
48 precursor preGP T544I) of unknown significance within the viral population that exhibited a
49 shift in frequency of at least 10% over six passages. Our data suggest that boid snake derived
50 cells are competent for filovirus infection without appreciable genomic adaptation; that cellular
51 filovirus infection without CPE may be more common than currently appreciated; and that there
52 may be significant differences between the natural host spectra of ebolaviruses and
53 marburgviruses.

54 **IMPORTANCE**

55 Ebola virus (EBOV) causes a high case-fatality form of viral hemorrhagic fever. The natural
56 reservoir of EBOV remains unknown. EBOV is distantly related to Marburg virus (MARV),
57 which has been found in bats in the wild. The glycoprotein of a reptarenavirus known to infect
58 boid snakes (pythons and boas) shows similarity in sequence and structure to these viruses,
59 suggesting that EBOV and MARV may be able to infect and replicate in snake cells. We
60 demonstrate that JK, a boa constrictor cell line, does not support MARV infection, but does
61 support EBOV infection without causing overt cytopathic effect or the need for appreciable
62 adaptation. These findings suggest different filoviruses may have a more diverse natural host
63 spectra than previously thought.

64 **INTRODUCTION**

65 Ebola virus (EBOV) is one of five members of the genus *Ebolavirus* in the mononegaviral
66 family *Filoviridae*. Four ebolaviruses (Bundibugyo virus, EBOV, Sudan virus, Taï Forest virus)
67 are known to cause Ebola virus disease (EVD), whereas the fifth member, Reston virus
68 (RESTV), is thought to be nonpathogenic for humans. EVD is clinically indistinguishable from
69 Marburg virus disease (MVD), which is caused by the two members of the filoviral genus

70 *Marburgvirus* (Marburg virus [MARV] and Ravn virus [RAVV]) (1). The latest EVD outbreak,
71 caused by EBOV, began in Western Africa in December 2013 and ended in March 2016,
72 infecting 28,646 and killing 11,323 people (2). Like the vast majority of EVD outbreaks (2, 3),
73 this outbreak started with a single introduction of EBOV from an unknown wild reservoir host
74 into a human, with subsequent human-to-human transmission (4-10).

75 Frugivorous bats are often discussed as potential ebolaviral host reservoirs, but
76 supporting data are overall sparse and stem largely from detection of anti-EBOV or anti-RESTV
77 antibodies or short, EBOV genome-like, RNA fragments by RT-PCR. Ebolaviruses have not
78 been recovered from any wild bat; ebolavirus genomes have not been sequenced from wild bats;
79 and experimental infections of frugivorous bats with ebolaviruses have thus far failed (11-14). In
80 contrast, genetically diverse MARV and RAVV could repeatedly be isolated from wild Ugandan
81 Egyptian rousettes (*Rousettus aegyptiacus*), a frugivorous bat species, in direct vicinity of human
82 infections (15, 16) and experimental infections of Egyptian rousettes have been successful in the
83 laboratory (11). Together, these findings indicate that ebolaviruses and marburgviruses may
84 differ in host tropism and that in contrast to marburgviruses, bats may not play a major role in
85 ebolavirus maintenance in nature. However, until now, filovirus genus-specific cell susceptibility
86 differences have not been uncovered *in vitro*, i.e., cells lines that can be infected with
87 marburgviruses typically also support ebolavirus infection independent of species origin (3).

88 The recent discovery of a possible distant evolutionary relationship (17) between the
89 glycoprotein genes of filoviruses and snake-infecting reptarenaviruses (*Arenaviridae*:
90 *Reptarenavirus*) (16) prompted us to test the filovirus susceptibility of the boid snake (python
91 and boas) cell line, boa constrictor JK (18) to evaluate whether filoviruses have the general
92 ability to replicate in non-mammalian cells. We demonstrate that JK cells can be infected over

93 multiple passages with EBOV, but not MARV; that EBOV infection of JK cells is not
94 accompanied by cytopathic effect (CPE); and that EBOV does not undergo major genomic
95 adaptation while replicating in this cell line. Our data support the hypothesis that there may be
96 fundamental differences in ebolavirus and marburgvirus host tropism in the wild and indicate a
97 need for further investigation of filovirus host tropism using non-mammalian cell lines.

98 MATERIALS AND METHODS

99 Filovirus stock preparation

100 Infections with Ebola Virus/H.sapiens-tc/COD/1995/Kikwit-9510621 (reference genome
101 GenBank #KT582109; EBOV) ([19](#)) and Marburg virus/H.sapiens-tc/KEN/1980/Mt. Elgon-
102 Musoke (MARV) ([20](#)) were conducted under biosafety level 4 conditions at the United States
103 Army Medical Research Institute of Infectious Diseases (USAMRIID). EBOV and MARV were
104 propagated in grivet (*Chlorocebus aethiops*) kidney epithelial Vero E6 cells (American Type
105 Culture Collection, Manassas, VA, #CCL-81) and titrated by plaque assay as previously
106 described ([21-23](#)).

107 Quantification of filoviral titers by qRT-PCR

108 Boa constrictor kidney JK cells were plated at 15,000 per well in a 96-well plate as previously
109 described ([18](#)). One day later, media were removed, and cells were infected with EBOV or
110 MARV (MOI = 1 or 10) or mock infected (no virus) (50 μ l/well). Inocula were removed 1 h
111 later, and cells were washed once with phosphate-buffered saline (PBS) and supplemented with
112 fresh growth media (150 μ l/well). Cells were incubated at 37°C in a 5% CO₂ atmosphere. At the
113 indicated time points (0, 24, 48, 72, and 144 h after virus inoculation), media were either
114 harvested for qRT-PCR or titer was determined by plaque assay (data not shown). At the
115 experiment endpoint (144 h), cells were fixed with formalin (Val Tech Diagnostics, Pittsburgh,

116 PA USA) for immunostaining. For qRT-PCR, RNA was extracted with Trizol (Thermo Fischer
117 Scientific, Waltham, MA USA) and the Ambion Blood RNA Isolation Kit (Thermo Fischer
118 Scientific, Waltham, MA USA). The assay was performed with RNA UltraSense one-step kit
119 (Thermo Fisher Scientific Waltham, MA USA) and TaqMan probe (ABI, Thermo Fischer
120 Scientific, Waltham, MA USA) following the manufacturer's instructions. The primers used
121 were: EBOGP_For (TGGGCTGAAAAGCTGCTACAATC), EBOGP_Rev
122 (CTTGTCACATACCGGCAC), probe EBOGP_Prb (5'-6FAM-
123 CTACCAGCAGGCCAGACGG-TAMRA) ([24](#)), and MARV_GP2_F
124 (TCACTGAAGGAAACATAGCAGCTAT), MARV_GP2_R
125 (TTGCCGCGAGAAAATCATT), and probe MARV_GP2_P
126 (ATTGTCAATAAGACAGTCAC). Serial 10-fold dilutions (10^2 to 10^7) of the assayed virus
127 were used as standards.

128 **Filovirus virus serial passage**

129 EBOV or MARV were passaged in either JK cells or human epithelial adenocarcinoma HeLa
130 cells (American Type Culture Collection #CCL2). For each of the serial passages, JK cells and
131 HeLa cells were plated in six-well plates (at 300,000 cells/well, three replicates per cell line per
132 virus). One day later, cells were exposed to EBOV or MARV at a multiplicity of infection (MOI)
133 of 1. Briefly, exposure was performed by first removing media from cells, incubating cells with
134 media containing filovirus for 1 h, washing cells, and finally adding fresh media back to cells.
135 Infected cells were then incubated at 37°C in a 5% CO₂ atmosphere for 3 or 4 days (Fig. 1).
136 Supernatants were collected at the indicated time points; 50 µl were used to infect monolayers of
137 fresh cells; and 1.5 ml were added to Trizol for sequencing.

138 **Filovirus immunostaining**

139 Cells infected with EBOV or MARV were stained for high-content quantitative image-based
140 analysis with murine monoclonal antibodies against EBOV or MARV GP_{1,2} (6D8 and 9G4
141 antibody, respectively), followed by Alexa Fluor 488-conjugated goat anti-mouse IgG
142 (Invitrogen, Thermo Fisher Scientific, Waltham, MA USA). Infected cells were also stained with
143 Hoechst 33342 and HCS CellMask Red (Invitrogen, Thermo Fisher Scientific, Waltham, MA
144 USA) for nuclei and cytoplasm detection, respectively. Infection rates and cell numbers were
145 determined using high-content quantitative imaging data on an Opera quadruple excitation high
146 sensitivity confocal reader (model 3842 and 5025; PerkinElmer, Waltham, MA USA) at two
147 exposures using ×10 air, ×20 water, or ×40 water objective lenses as described in (24). Analysis
148 of the images was accomplished within the Opera environment using standard Acapella scripts.
149 At least 4,000 cells and up to 9,000 cells, were analyzed per well.

150 **Measurement of Cytopathic effects**

151 We measured cell number as an indication of CPE. See Filovirus immunostaining methods for
152 details. Briefly, infected cells were also stained with Hoechst 33342 and HCS CellMask Red
153 (Invitrogen, Thermo Fisher Scientific, Waltham, MA USA) for nuclei and cytoplasm detection,
154 respectively. Infection rates and cell numbers were determined using high-content quantitative
155 imaging data on an Opera quadruple excitation high sensitivity confocal reader.

156 **Passage population size measurement**

157 The number of EBOV genomes that each passage produced and the number of genomes added to
158 sequencing libraries were determined by two-step reverse transcription droplet digital PCR (RT-
159 ddPCR) (25). EBOV RNA was reverse-transcribed using EBOV-specific primer EBOGP_For
160 (TGGGCTGAAACTGCTACAATC), diluted, and assayed with the Bio-Rad Qx200 Droplet
161 Digital PCR System (Bio-Rad, Hercules, CA USA) following the manufacturer's instructions.

162 **Sequencing-library preparations**

163 Trizol inactivated samples were prepared for Illumina sequencing using a protocol slightly-
164 modified from our previously published protocol (26) Briefly, complementary DNA (cDNA)
165 was created from randomly primed RNA using SuperScript VILO Master Mix (Thermo Fisher
166 Scientific, Waltham, MA USA). cDNA was tagmented using Illumina's Nextera reagents
167 (Illumina, San Diego, CA, USA), followed by dual-barcoding to prevent miscalling of samples
168 (27). Libraries were quantified by qPCR, pooled, size-selected using BluePippin (Sage Science,
169 Beverly, MA, USA), amplified, quantified again by qPCR, and paired-end sequenced (150/150
170 bases) on an Illumina HiSeq 4000 system at the University of California, San Francisco Center
171 for Advanced Technology. Samples HeLa-P1-R1 (Host-Passage-Replicate) and JK-P1-R1
172 through JK-P6-R1 were prepared and sequenced separately using the same method and
173 sequencer.

174 **Single nucleotide variant analysis pipeline**

175 Sequencing reads were filtered for reads containing sequencing adapters and quality using a cut-
176 off of at least 95% of the sequence having a 0.98 probability being correct (-rqi 95 0.98) with
177 PriceSeqFilter from PRICE (version 1.2) (28). Filtered reads were aligned to the EBOV
178 reference genome [KT582109 bases 1–18882] using GSNAp (version 2015-09-29) (29) using
179 default settings.

180 Because of the very high coverage in each sample, duplicate reads were not removed, a
181 step usually taken in single nucleotide variant (SNV) analysis. Sorted and indexed BAM files
182 were processed with LoFreq* (version 2.1.2) (30) using default settings, to call SNVs. A final
183 cut-off of ≥ 0.005 allele frequency was selected as a conservative threshold, calculated as 1.25
184 standard deviations above the mean of each nucleotide's maximum detected allele frequency

185 (0.00339, $\sigma = 0.00129$) of the Illumina supplied PhiX control sequence, which was included in
186 each sequencing run. SNVs were then determined to be either synonymous or non-synonymous.
187 Analysis was performed and graphs were generated using Python3, IPython (31), pandas (32),
188 matplotlib (33), and seaborn (34).

189 **Testing for selection**

190 See supplemental methods. Briefly, we developed a simulation-based procedure to identify
191 alleles in the EBOV genome that changed frequency over passages more than expected under
192 neutrality given the dynamic viral population size and estimated sequencing error rates. The
193 neutral simulations had five parameters: the overall population growth function, the number of
194 generations, the starting allele frequency, and the read depth for each site during the first and last
195 passage.

196 **Detection of defective interfering genomes**

197 Sequencing reads were processed in the same way as for SNV analysis. For each passage point,
198 only properly paired reads were used. All of the passages of replicate 1 in JK cells (JK-R1) and
199 passage 1, replicate 1, of passage in HeLa cells (HeLa-R1-P1) had a sizable drop in Q-score
200 during sequencing of read 2. These reads were filtered out during pre-processing, necessitating
201 that these paired-end reads be mapped as a combined single-end sample for each of the above
202 passages. These combined samples then lacked proper pairing and were not used in defective
203 interfering (DI) genome analysis. Each of the properly paired reads were also confirmed for the
204 correct mapping orientation. Then the “reference location” located in each samples’ BAM file
205 was used as that read’s mapping location and the distance difference between the read 1 mapping
206 location and read 2 mapping location was calculated along with the mean and standard deviation

207 for the entire set. Proper pairs characterized by a distance difference greater than the mean + 3 σ
208 were counted as reads coming from potential DI genomes.

209 **Data availability**

210 Sequencing data from EBOV passaging is located on NBCI SRA under BioProject:
211 PRJNA353512.

212 **RESULTS**

213 **Ebola virus, but not Marburg virus, replicates in boa constrictor cells**

214 To test whether filoviruses can replicate in boa constrictor cells, we exposed a previously
215 established boa constrictor kidney cell line, JK ([18](#)), to either EBOV or MARV at MOIs of 1 or
216 10. At various time points after exposure, cell culture supernatant was collected for qRT-PCR, or
217 cells were fixed and stained for filoviral antigen (GP_{1,2}) detection ([24](#)). Based on
218 immunostaining, 26.22% ($\sigma = 4.56$) and 60.98% ($\sigma = 6.46$) of the cells were infected with EBOV
219 at 144 h post inoculation (hpi) at MOIs of 1 and 10, respectively. Mock-exposed cells were not
220 infected (0.11%, $\sigma = 0.08$) as expected. Surprisingly, exposure to MARV resembled mock.

221 Based on immunostaining, we measured MARV infection for the mock infection at 3.01%
222 ($\sigma=0.50$), for an MOI of 1 at 7.20% ($\sigma=2.22$), and for an MOI of 10 at 12.57% ($\sigma=2.69$).

223 Quantification of filoviral RNA by qRT-PCR corroborated the immunostaining assay results. For
224 EBOV-infected JK cells, we measured 1.87×10^8 ($\sigma = 2.30 \times 10^7$) and 8.46×10^8 ($\sigma = 3.45 \times 10^8$)
225 genome copies/ml at 144 hpi at MOIs of 1 and 10, respectively. This represents a 49-fold and 23-
226 fold increase, respectively, over 0 h post inoculation. For MARV-infected JK cells, we measured
227 3.68×10^6 ($\sigma = 3.41 \times 10^6$) and 2.43×10^7 ($\sigma = 7.63 \times 10^6$) genome copies/ml at 144 hpi representing
228 a 1.30-fold and 1.27-fold increase at MOIs of 1 and 10, respectively.

229 **Ebola virus does not cause cytopathic effects in JK cells**

230 Cells were stained with Hoechst 33342, imaged and counted as an indication of cell viability.
231 When compared to mock infected, EBOV-infected JK cells do not show a decrease in the
232 number of viable cells, unlike what has been shown for many other cell lines (35). We counted
233 83,678 ($\sigma = 292$) cells per well of mock infected JK cells, while EBOV-infected cells were
234 counted at 83,678 ($\sigma = 546$) cells per well for MOI of 1, and 6,539 ($\sigma = 827$) cells per well for
235 MOI of 10.

236 **Ebola virus, but not Marburg virus, continues to replicate in boa constrictor cells during
237 serial passage**

238 To characterize any adaptive genomic mutations necessary for efficient growth in JK cells, we
239 serially passaged EBOV in JK cells in parallel with control human (HeLa) cells for 6 cycles (an
240 average of 4.33 days per cycle) (Fig. 1) and MARV, analogously, for 5 cycles. The infection of
241 both JK and HeLa cells was initiated at an MOI of 1 (3.0×10^5 plaque forming units (pfu)/well).
242 For each passage cycle of EBOV, the extent of infection was monitored by qRT-PCR,
243 immunostaining, and reverse transcription digital-droplet PCR (RT-ddPCR). For each passage
244 cycle of MARV, the extent of infection was monitored by qRT-PCR. While EBOV was detected
245 by qRT-PCR in both JK and HeLa cells at all passages, MARV was detected at all passages in
246 HeLa cells, but only at the first passage in JK cells (Table S2). At all passages, EBOV infected
247 JK cells revealed clusters of EBOV GP_{1,2}-positive cells, with predominantly cytoplasmic and cell
248 membrane staining (Fig. 2). Over the course of these passages, the number of genome
249 equivalents produced by infected JK cells was modestly lower than by infected HeLa cells.
250 Quantification of EBOV genome copy number in the supernatants from passages in JK cells by
251 RT-ddPCR yielded an average of 8.49×10^8 copies/ml ($\sigma = 9.92 \times 10^8$) across all passages and
252 replicates, whereas HeLa cells yielded an average genome copy number of 6.34×10^9 copies/ml

253 ($\sigma = 5.88 \times 10^9$). The EBOV genome copy number measured in the JK supernatants was not
254 significantly different between the first and last passage (4.34×10^9 vs. 1.79×10^9 , $p=0.4$, Welch's
255 t-test).

256 We used a deep sequencing approach to characterize the spectrum of possible mutations
257 associated with EBOV adaptation to JK cells. For each passage, total cell culture supernatant
258 RNA was processed into cDNA libraries for deep sequencing by random priming. For each
259 library, sequencing reads were aligned to the EBOV reference genome. The mean coverage of
260 the EBOV genome in JK cells across all passages was 36,730-fold ($\sigma = 12,016$), and 69,946-fold
261 ($\sigma = 26,582$) for HeLa cell passages (Fig. 3). We detected no regional bias of coverage at any
262 point within the genome in any of the three biological replicates for infected JK and HeLa cells,
263 excluding the extreme 5' and 3' ends. Previous characterization of cells infected with either
264 EBOV or MARV using deep sequencing yielded a pronounced gradient of filovirus gene
265 transcription similar to that seen for other mononegaviruses. Transcripts accumulate in the 3' to
266 5' direction, with the furthest 3' gene (encoding the filoviral nucleoprotein [NP]) yielding the
267 highest coverage and the furthest 5' gene (encoding the filoviral RNA-dependent RNA
268 polymerase [L]) yielding the lowest coverage (36). For the data presented here, the lack of a 3' to
269 5' coverage gradient is consistent with sequence reads derived from EBOV genomic RNA in cell
270 culture supernatant virions, as opposed to cellular EBOV transcripts (Fig. 3).

271 These data identify boa constrictor JK cells as susceptible to EBOV, but not MARV,
272 infection. To our knowledge, JK cells represent the first cell line with filovirus genus-specific
273 (ebolavirus vs. marburgvirus) susceptibility to infection.

274 **Ebola virus adaption is not required for infection of boa constrictor cells**

275 We first characterized the extent of variation within the EBOV inoculum population. We
276 detected 48 single nucleotide variants (SNVs) in the inoculum that passed our quality and
277 frequency cut-off filters including 21 non-synonymous SNVs. We detected only a single position
278 (nt 7669, EBOV glycoprotein precursor [preGP] codon 544: T544I) with a nonsynonymous SNV
279 having an allele frequency of >10% in the inoculum (Table 1, Table 2, Fig. 4A). At this position,
280 the initial population consisted of 62.0% (Thr) and 37.9% (Ile), similar to the previously
281 characterized EBOV/Kik-951061 “R4414” (passage 2) strain ([19](#)).

282 We then characterized variation across passages in JK and HeLa cells. Taking into
283 account all replicates and all passages, we detected a mean of 89 SNVs ($\sigma = 31$) for passages in
284 HeLa cells and a mean of 51 SNVs ($\sigma = 19$) for passages in JK cells Table 1, Fig. 5A).
285 Considering only nonsynonymous variants that were not already present in the inoculum, we
286 detected a mean of 15 ($\sigma = 15$) for all replicates and all passages in HeLa cells and a mean of 8
287 ($\sigma = 7$) for all replicates and all passages in JK cells (Table 1, Fig. 5B).

288 To determine whether there was a change in the distribution of allele frequencies
289 associated with EBOV SNVs detected as a function of passage or host (boa constrictor vs.
290 human) cell, we focused on a comparison of the first and last EBOV passages. The mean allele
291 frequency associated with non-synonymous SNVs not found in the inoculum for EBOV grown
292 in HeLa cells was 0.009 and 0.015 in the first passage and passage 6, respectively. The
293 difference between these passages was statistically significant (KS-test, $p = 0.00051 < 0.01$
294 Holm-Bonferroni adjusted p). However, the difference in distributions of allele frequencies
295 associated with non-synonymous variants not found in the inoculum for EBOV grown in JK cells
296 was not significant (KS-test, $p = 0.41710 > 0.01$ Holm-Bonferroni adjusted p).

297 We also compared the distribution of allele frequencies associated with nonsynonymous
298 variants not found in the EBOV inoculum between the two host cells at the last passage. The
299 difference between their means was relatively small (HeLa, JK mean = 0.015, 0.012,
300 respectively), and the difference between these distributions was not statistically significant (KS-
301 test, $p = 0.0131 > 0.0083$ Holm–Bonferroni adjusted p).

302 To further increase the stringency of our criteria for identifying biologically relevant
303 EBOV variants, we considered only non-synonymous variants present in all three biological
304 replicates for each passage from each host cell that were not present, or at a frequency below the
305 limit of detection in the inoculum (Table 1, Fig. 5C). We detected a mean of 3 non-synonymous
306 SNVs ($\sigma = 2$) across all passages in HeLa and a mean of 1 non-synonymous SNVs ($\sigma = 1$) across
307 all passages in JK. We were unable to detect any EBOV SNVs that met these criteria for the first
308 passage in either cell type. For JK passages, EBOV SNVs that met these criteria were only
309 detected in passages 3, 4, and 6. In the case of passage 6 we did not find any statistical
310 significance between the distributions of allele frequencies of SNVs found in the HeLa passage
311 vs. the JK passage (KS-test $p = 0.4249$ vs. 0.05).

312 Finally, we implemented a rigorous simulation-based test for neutral evolution of EBOV
313 that takes into account sequencing error, sampling error, and an estimated demographic model
314 representing the passages in our experiments. We found numerous variants that deviate from
315 neutral expectations (14,473 sites in JK and 15,028 sites in HeLa). However, as discussed above,
316 nearly all of these variants experienced extremely small changes in allele frequency. To estimate
317 the strength of selection operating on EBOV in each cell line, we implemented a deterministic
318 fitness model and applied it to each site in turn. We found that the estimated selection
319 coefficients are small (Fig. 4B, and Table S1).

320 Together, these data indicate that EBOV can replicate in boa constrictor cells for
321 prolonged times/passages without requiring major genomic adaptations.

322 **Weak positive selection operates on the Ebola virus genome during passaging**

323 To identify EBOV genomic sites undergoing positive selection in JK or HeLa cells, we first
324 excluded sites with total read coverage that was not within two standard deviations of the
325 genome-wide mean (calculated by first averaging the total reads across the three replicates for
326 each passage and then averaging all passages). After filtering, a total of 17,924 sites and 17,970
327 sites, covering 95% of the genome, were retained for EBOV passaged on HeLa and JK cells
328 respectively. Only three EBOV genomic sites had a change in allele frequency of at least 10%,
329 all of which were identified in JK cell-grown virus (Figure 5C, Table S1): nucleotide positions
330 5,780 (located in VP40 5' UTR), 7,669 (preGP T544I), and 18,016 (L, synonymous mutation).
331 In HeLa cells, all allele frequency changes were less than 7% (Table S1). Using a deterministic
332 model of positive selection (see supplemental methods), we estimate that the selection
333 coefficient at all sites in the EBOV genome (across both HeLa and JK cells) was less than 12%.
334 These data suggest that weak selection can be identified in the EBOV genome over passages
335 (particularly in JK cells; see supplemental methods for statistical test results), but that very little
336 adaptation is necessary to successfully passage EBOV in either cell type.

337 **Passage of Ebola virus in either Boa constrictor cells or HeLa does not lead to appreciable
338 production of defective interfering genomes**

339 The presence of DI particles has been noted with EBOV in grivet (*Chlorocebus aethiops*) kidney
340 epithelial Vero E6 cell culture, but they remain poorly understood with only a single paper
341 published on EBOV DI genome characterization ([37](#)). Viral DI particles often contain genomes
342 with long deletions or genomic re-arrangements that presumably arise through errors in

343 replication by, for instance, template switching (38). To detect the presence of EBOV genomic
344 sequences with deletions that would likely yield DI particles, we quantified the insertion distance
345 between sequence pairs for EBOV infecting both JK and HeLa cells across all passages and
346 replicates. The EBOV inoculum featured 0.0276% of reads that were consistent with internal
347 genomic deletions. We detected a low level of putative deletion sequences in both cell types
348 (0.0780% $\sigma = 0.0535$ for HeLa cells and 0.0234% $\sigma = 0.00480$ for JK cells) in all passages and
349 replicates distributed across the EBOV genome (Table 1, Fig. S1). By the final passage, this
350 value changed to 0.0552% $\sigma = 0.00340$ and 0.0206% $\sigma = 0.00185$ for HeLa and JK cells,
351 respectively. In this analysis, we can not rule out the possibility of internal deletions produced
352 during sequencing library preparation, and thus these measurements are likely to be over
353 estimates. Regardless, this analysis indicates that sequences consistent with the presence of DI
354 particles could be detected, but only at very low frequencies.

355 DISCUSSION

356 The natural reservoir of EBOV and all other ebolaviruses remains unclear. Marburgviruses have
357 been isolated from wild Ugandan Egyptian rousettes (*Rousettus aegyptiacus*) and also have been
358 used to infect these bats experimentally (11, 15, 16). Such findings have not been reported for
359 ebolaviruses, thereby raising the possibility that marburgviruses and ebolaviruses may differ in
360 host tropism and may even infect animals of different orders (11-14, 39). Experimental filovirus
361 inoculations into taxonomically diverse animals to determine host tropism have only rarely been
362 reported. These experiments suggest that all isolated filoviruses can infect and are frequently
363 lethal for various nonhuman primates (common marmosets [*Callithrix jacchus*], common
364 squirrel monkeys [*Saimiri sciureus*], crab-eating macaques [*Macaca fascicularis*], grivets
365 [*Chlorocebus aethiops*], hamadryas baboons [*Papio hamadryas*], rhesus monkeys [*Macaca*

366 *mulatta*]) and domestic ferrets (*Mustela putorius furo*); and that most filoviruses can be adapted
367 in the laboratory to infect and kill various rodents (golden hamsters [*Mesocricetus auratus*],
368 guinea pigs [*Cavia porcellus*], laboratory mice); and that some filoviruses can infect domestic
369 pigs (*Sus scrofa*). Various plants, goats (*Capra hircus*), horses (*Equus caballus*), and red sheep
370 (*Ovis aries*) were found to be resistant to experimental filovirus infection (summarized in (3, 40,
371 41)).

372 In 2001, a possible genetic link between mammalian arenaviruses (family *Arenaviridae*,
373 genus *Mammarenavirus*) and the mononegaviral filoviruses was suggested based on similarities
374 between arenaviral and filoviral glycoproteins (17). This possible link was further substantiated
375 by the structural characterization of the glycoprotein from a newly discovered snake
376 reptarenavirus (genus *Reptarenavirus*) (42). Filoviral glycoproteins engage endosomal
377 mammalian Niemann-Pick disease, type C1 protein (NPC1) to gain entry into host cell (12, 43).
378 Interestingly, Russell's viper (*Daboia russellii*) cells do not support EBOV entry and Russell's
379 viper NPC1 does not bind to the EBOV glycoprotein. This deficiency was traced to a single
380 amino acid (Y503) that, when changed to the analogous human residue (Y503F), causes Russell's
381 viper cells to become susceptible to EBOV infection (44). Although the boa constrictor genome
382 has been assembled, it has not been annotated (REF PMID 23870653). We used a comparative
383 alignment approach and mapping of transcriptome-derived short sequence reads to predict the
384 boa constrictor NPC1 protein sequence (Genbank XXXXXX). The predicted boa constrictor
385 NPC1 has an Phe residue at the critical position (F517, homologous to F503 in human NPC1),
386 which is consistent with boa constrictor cell susceptibility to EBOV infection. This supports the
387 possibility that NPC1 from snakes of certain species may have been subject to selection by
388 viruses with filovirus-like glycoproteins (44).

389 We aimed to further explore the potential genetic link between filoviruses and
390 reptarenaviruses. Reptarenaviruses are known to infect captive boid snakes (pythons and boas)
391 ([18](#), [45-47](#)). We tested whether boa constrictor JK cells are naturally capable of supporting
392 EBOV or MARV infection. While MARV infection was unsuccessful, JK cells supported EBOV
393 replication over six passages in the absence of major genomic adaptation. Only one genomic
394 position, 7669, (EBOV preGP T544I) switched major alleles (38% to 52%). After maturation of
395 the glycoprotein precursor, this residue resides in the preGP cleavage product GP₂. The residue is
396 a critical structural determinant of the EBOV GP₂ fusion loop, which mediates fusion of the
397 filovirion membrane with the host-cell membrane to initiate virion entry ([48](#)).

398 Both alleles, Thr and Ile, have been identified in different EBOV isolates. For instance,
399 isolates of the EBOV Makona variant ([49](#)), which caused the 2013–2016 Western African EVD
400 outbreak, almost exclusively encode Thr at preGP position 544 ([4-10](#)), whereas a 1976 EBOV
401 Yambuku variant isolate encodes the Ile allele ([50](#)). Curiously, Ile is also encoded at the
402 homologous position in the genome of RESTV ([51](#), [52](#)), which has not yet been associated with
403 human infections. We detected weak positive selection favoring the Ile allele in the EBOV
404 passages in JK cells, suggesting this allele provides a fitness advantage over Thr for infection in
405 JK cells, but the mechanistic reason for this selection remains to be determined.

406 In contrast to the successful infection of JK cells with EBOV, these cells were unable to
407 support productive MARV infection. Uncovering the molecular underpinnings of this difference
408 could increase our understanding of filovirus tropism. Importantly, EBOV infection of JK cells
409 occurred in the absence of CPE, an observation that also has only rarely been reported ([53](#)).
410 These observations raise the possibility that ebolaviruses and marburgviruses could sub-
411 clinically and/or persistently infect disparate hosts, possibly even of different animal orders (e.g.,

412 mammals vs. reptiles). Additional non-mammalian cell lines should therefore be screened for
413 filovirus susceptibility to aid the search for natural filovirus hosts, possibly followed by
414 experimental animal inoculations or exposures. These experiments further suggest that additional
415 genetic dissection of MARV will reveal the underlying determinants that prevent JK cell
416 infection.

417 **ACKNOWLEDGMENTS**

418 We thank Laura Bollinger (NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick,
419 MD, USA) for critically editing the manuscript.

420 **FUNDING INFORMATION**

421 This work was supported by the Howard Hughes Medical Institute, and in part through Battelle
422 Memorial Institute's prime contract with the US National Institute of Allergy and Infectious
423 Diseases (NIAID) under Contract No. HHSN272200700016I, and by the US National Human
424 Genome Research Institute (R01 HG007644) to RDH. A subcontractor to Battelle Memorial
425 Institute who performed this work is: J.H.K., an employee of Tunnell Government Services, Inc.

426 The views and conclusions contained in this document are those of the authors and
427 should not be interpreted as necessarily representing the official policies, either expressed or
428 implied, of the US Department of the Army, the US Department of Defense, the US Department
429 of Health and Human Services, or of the institutions and companies affiliated with the authors.

430 REFERENCES

431 1. **Kuhn JH.** 2015. Ebolavirus and marburgvirus Infections, p 1323–1329. *In* Kasper DL,
432 Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J (ed), Harrison's Principles of
433 Internal Medicine, 19th ed, vol 2. McGraw-Hill Education, Columbus, Ohio, USA.

434 2. **World Health Organization.** 2016. Ebola situation reports.
435 <http://apps.who.int/ebola/ebola-situation-reports>.

436 3. **Kuhn JH.** 2008. Filoviruses. A compendium of 40 years of epidemiological, clinical, and
437 laboratory studies. Archives of Virology Supplementum, vol. 20.
438 SpringerWienNewYork, Vienna, Austria.

439 4. **Park DJ, Dudas G, Wohl S, Goba A, Whitmer SLM, Andersen KG, Sealfon RS,**
440 **Ladner JT, Kugelman JR, Matranga CB, Winnicki SM, Qu J, Gire SK, Gladden-**
441 **Young A, Jalloh S, Nosamiefan D, Yozwiak NL, Moses LM, Jiang P-P, Lin AE,**
442 **Schaffner SF, Bird B, Towner J, Mamoh M, Gbakie M, Kanneh L, Kargbo D,**
443 **Massally JLB, Kamara FK, Konuwa E, Sellu J, Jalloh AA, Mustapha I, Foday M,**
444 **Yillah M, Erickson BR, Sealy T, Blau D, Paddock C, Brault A, Amman B, Basile J,**
445 **Bearden S, Belser J, Bergeron E, Campbell S, Chakrabarti A, Dodd K, Flint M,**
446 **Gibbons A, et al.** 2015. Ebola virus epidemiology, transmission, and evolution during
447 seven months in Sierra Leone. *Cell* **161**:1516-1526.

448 5. **Ladner JT, Wiley MR, Mate S, Dudas G, Prieto K, Lovett S, Nagle ER, Beitzel B,**
449 **Gilbert ML, Fakoli L, Diclaro JW, 2nd, Schoepp RJ, Fair J, Kuhn JH, Hensley LE,**
450 **Park DJ, Sabeti PC, Rambaut A, Sanchez-Lockhart M, Bolay FK, Kugelman JR,**
451 **Palacios G.** 2015. Evolution and spread of Ebola Virus in Liberia, 2014-2015. *Cell Host*
452 *Microbe* **18**:659-669.

453 6. **Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, Jalloh S,**
454 **Momoh M, Fullah M, Dudas G, Wohl S, Moses LM, Yozwiak NL, Winnicki S,**
455 **Matranga CB, Malboeuf CM, Qu J, Gladden AD, Schaffner SF, Yang X, Jiang P-P,**
456 **Nekoui M, Colubri A, Coomber MR, Fonnie M, Moigboi A, Gbakie M, Kamara FK,**
457 **Tucker V, Konuwa E, Saffa S, Sellu J, Jalloh AA, Kovoma A, Koninga J, Mustapha**
458 **I, Kargbo K, Foday M, Yillah M, Kanneh F, Robert W, Massally JLB, Chapman**
459 **SB, Bochicchio J, Murphy C, Nusbaum C, Young S, Birren BW, Grant DS,**
460 **Scheiffelin JS, et al.** 2014. Genomic surveillance elucidates Ebola virus origin and
461 transmission during the 2014 outbreak. *Science* **345**:1369-1372.

462 7. **Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G, Rambaut A,**
463 **Hewson R, García-Dorival I, Bore JA, Koundouno R, Abdellati S, Afrough B,**
464 **Aiyepada J, Akhilomen P, Asogun D, Atkinson B, Badusche M, Bah A, Bate S,**
465 **Baumann J, Becker D, Becker-Ziaja B, Bocquin A, Borremans B, Bosworth A,**
466 **Boettcher JP, Cannas A, Carletti F, Castilletti C, Clark S, Colavita F, Diederich S,**
467 **Donatus A, Duraffour S, Ehichioya D, Ellerbrok H, Fernandez-Garcia MD, Fizet A,**
468 **Fleischmann E, Gryseels S, Hermelink A, Hinzmann J, Hopf-Guevara U, Ighodalo**
469 **Y, Jameson L, Kelterbaum A, Kis Z, Kloth S, Kohl C, Korva M, et al.** 2015.
470 Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa.
471 *Nature* **524**:97-101.

472 8. **Simon-Loriere E, Faye O, Faye O, Koivogui L, Magassouba N, Keita S, Thibierge J-**
473 **M, Diancourt L, Bouchier C, Vandebogaert M, Caro V, Fall G, Buchmann JP,**
474 **Matranga CB, Sabeti PC, Manuguerra J-C, Holmes EC, Sall AA.** 2015. Distinct

475 lineages of Ebola virus in Guinea during the 2014 West African epidemic. *Nature*
476 524:102-104.

477 9. **Tong Y-G, Shi W-F, Liu D, Qian J, Liang L, Bo X-C, Liu J, Ren H-G, Fan H, Ni M,**
478 **Sun Y, Jin Y, Teng Y, Li Z, Kargbo D, Dafae F, Kanu A, Chen C-C, Lan Z-H, Jiang**
479 **H, Luo Y, Lu H-J, Zhang X-G, Yang F, Hu Y, Cao Y-X, Deng Y-Q, Su H-X, Sun Y,**
480 **Liu W-S, Wang Z, Wang C-Y, Bu Z-Y, Guo Z-D, Zhang L-B, Nie W-M, Bai C-Q,**
481 **Sun C-H, An X-P, Xu P-S, Zhang X-L-L, Huang Y, Mi Z-Q, Yu D, Yao H-W, Feng**
482 **Y, Xia Z-P, Zheng X-X, Yang S-T, Lu B, et al.** 2015. Genetic diversity and
483 evolutionary dynamics of Ebola virus in Sierra Leone. *Nature* 524:93-96.

484 10. **Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba NF,**
485 **Soropogui B, Sow MS, Keïta S, De Clerck H, Tiffany A, Dominguez G, Loua M,**
486 **Traoré A, Kolié M, Malano ER, Heleze E, Bocquin A, Mély S, Raoul H, Caro V,**
487 **Cadar D, Gabriel M, Pahlmann M, Tappe D, Schmidt-Chanasit J, Impouma B,**
488 **Diallo AK, Formenty P, Van Herp M, Günther S.** 2014. Emergence of Zaire Ebola
489 virus disease in Guinea. *N Engl J Med* 371:1418-1425.

490 11. **Jones MEB, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol ST, Towner JS.**
491 2015. Experimental inoculation of Egyptian rousette bats (*Rousettus aegyptiacus*) with
492 viruses of the *Ebolavirus* and *Marburgvirus* genera. *Viruses* 7:3420-3442.

493 12. **Wahl-Jensen V, Radoshitzky SR, de Kok-Mercado F, Taylor SL, Bavari S, Jahrling**
494 **PB, Kuhn JH.** 2013. Role of rodents and bats in human viral hemorrhagic fevers, p 99–
495 127. *In* Singh SK, Ruzek D (ed), *Viral Hemorrhagic Fevers* doi:10.1201/b15172-9.
496 Taylor & Francis/CRC Press, Boca Raton, Florida, USA.

497 13. **Paweska JT, Storm N, Grobbelaar AA, Markotter W, Kemp A, Jansen van Vuren**
498 P. 2016. Experimental inoculation of Egyptian fruit bats (*Rousettus aegyptiacus*) with
499 Ebola virus. *Viruses* **8**:29.

500 14. **Leendertz SAJ, Gogarten JF, Düx A, Calvignac-Spencer S, Leendertz FH.** 2016.
501 Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses.
502 *Ecohealth* **13**:18-25.

503 15. **Towner JS, Amman BR, Sealy TK, Carroll SA, Comer JA, Kemp A, Swanepoel R,**
504 **Paddock CD, Balinandi S, Khristova ML, Formenty PBH, Albarino CG, Miller DM,**
505 **Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC,**
506 **Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR,**
507 **Ksiazek TG, Nichol ST, Rollin PE.** 2009. Isolation of genetically diverse Marburg
508 viruses from Egyptian fruit bats. *PLoS Pathog* **5**:e1000536.

509 16. **Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepoel R, Kemp A,**
510 **Erickson BR, Comer JA, Campbell S, Cannon DL, Khristova ML, Atimnedi P,**
511 **Paddock CD, Kent Crockett RJ, Flietstra TD, Warfield KL, Unfer R, Katongole-**
512 **Mbidde E, Downing R, Tappero JW, Zaki SR, Rollin PE, Ksiazek TG, Nichol ST,**
513 **Towner JS.** 2012. Seasonal pulses of Marburg virus circulation in juvenile *Rousettus*
514 *aegyptiacus* bats coincide with periods of increased risk of human infection. *PLoS Pathog*
515 **8**:e1002877.

516 17. **Gallaher WR, DiSimone C, Buchmeier MJ.** 2001. The viral transmembrane
517 superfamily: possible divergence of arenavirus and filovirus glycoproteins from a
518 common RNA virus ancestor. *BMC Microbiol* **1**:1.

519 18. **Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, Reavill DR, Dunker F, Derisi JL.** 2012. Identification, characterization, and *in vitro* culture of highly divergent
520 arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents
521 for snake inclusion body disease. MBio **3**:e00180-00112.

522

523 19. **Kugelman JR, Rossi CA, Wiley MR, Ladner JT, Nagle ER, Pfeffer BP, Garcia K, Prieto K, Wada J, Kuhn JH, Palacios G.** 2016. Informing the historical record of
524 experimental nonhuman primate infections with Ebola virus: genomic characterization of
525 USAMRIID Ebola virus/H.sapiens-tc/COD/1995/Kikwit-9510621 challenge stock
526 "R4368" and its replacement "R4415". PLoS One **11**:e0150919.

527

528 20. **Smith DH, Johnson BK, Isaacson M, Swanepoel R, Johnson KM, Kiley M, Bagshawe A, Siongok T, Keruga WK.** 1982. Marburg-virus disease in Kenya. Lancet
529 **1**:816-820.

530

531 21. **Shurtleff AC, Biggins JE, Keeney AE, Zumbrun EE, Bloomfield HA, Kuehne A, Audet JL, Alfson KJ, Griffiths A, Olinger GG, Bavari S.** 2012. Standardization of the
532 filovirus plaque assay for use in preclinical studies. Viruses **4**:3511-3530.

533

534 22. **Shurtleff AC, Bloomfield HA, Mort S, Orr SA, Audet B, Whitaker T, Richards MJ, Bavari S.** 2016. Validation of the filovirus plaque assay for use in preclinical studies.
535 Viruses **8**:113.

536

537 23. **Moe JB, Lambert RD, Lupton HW.** 1981. Plaque assay for Ebola virus. J Clin
538 Microbiol **13**:791-793.

539

540 24. **Radoshitzky SR, Dong L, Chi X, Clester JC, Retterer C, Spurges K, Kuhn JH, Sandwick S, Ruthel G, Kota K, Boltz D, Warren T, Kranzusch PJ, Whelan SPJ,**

541 Bavari S. 2010. Infectious Lassa virus, but not filoviruses, is restricted by BST-
542 2/tetherin. *J Virol* **84**:10569-10580.

543 25. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ,
544 Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen
545 JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC,
546 Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA,
547 Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White
548 HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW. 2011.
549 High-throughput droplet digital PCR system for absolute quantitation of DNA copy
550 number. *Anal Chem* **83**:8604-8610.

551 26. Stenglein MD, Jacobson ER, Wozniak EJ, Wellehan JF, Kincaid A, Gordon M,
552 Porter BF, Baumgartner W, Stahl S, Kelley K, Towner JS, DeRisi JL. 2014. Ball
553 python nidovirus: a candidate etiologic agent for severe respiratory disease in *Python*
554 *regius*. *MBio* **5**:e01484-01414.

555 27. Wilson MR, Fedewa G, Stenglein MD, Olejnik J, Rennick LJ, Nambulli S,
556 Feldmann F, Duprex WP, Connor JH, Mühlberger E, DeRisi JL, Chia N. 2016.
557 Multiplexed metagenomic deep sequencing to analyze the composition of high-priority
558 pathogen reagents. *mSystems* **1**:e00058-00016.

559 28. Ruby JG, Bellare P, Derisi JL. 2013. PRICE: software for the targeted assembly of
560 components of (Meta) genomic sequence data. *G3 (Bethesda)* **3**:865-880.

561 29. Wu TD, Nacu S. 2010. Fast and SNP-tolerant detection of complex variants and splicing
562 in short reads. *Bioinformatics* **26**:873-881.

563 30. **Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N.** 2012. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. *Nucleic Acids Res* **40**:11189-11201.

564 31. **Pérez F, Granger BE.** 2007. IPython: a system for interactive scientific computing. *Computing in Science & Engineering* **9**:21-29.

565 32. **McKinney W.** 2011. pandas: a Foundational Python Library for Data Analysis and Statistics.

566 33. **Hunter JD.** 2007. Matplotlib: a 2D graphics environment. *Computing in Science & Engineering* **9**:90-95.

567 34. **Waskom M, Botvinnik O, drewokane, Hobson P, Halchenko Y, Lukauskas S, Warmenhoven J, Cole JB, Hoyer S, Vanderplas J, gkunter, Villalba S, Quintero E, Martin M, Miles A, Meyer K, Augspurger T, Yarkoni T, Bachant P, Evans C, Fitzgerald C, Nagy T, Ziegler E, Megies T, Wehner D, St-Jean S, Coelho LP, Hitz G, Lee A, Rocher L.** 2016. seaborn: v0.7.0 (January 2016). zenodo doi:10.5281/zenodo.45133.

568 35. **Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S, Ebihara H, Feldmann H.** 2012. The Ebola virus glycoprotein contributes to but is not sufficient for virulence *in vivo*. *PLoS Pathog* **8**:e1002847.

569 36. **Shabman RS, Jabado OJ, Mire CE, Stockwell TB, Edwards M, Mahajan M, Geisbert TW, Basler CF.** 2014. Deep sequencing identifies noncanonical editing of Ebola and Marburg virus RNAs in infected cells. *MBio* **5**:e02011.

585 37. **Calain P, Monroe MC, Nichol ST.** 1999. Ebola virus defective interfering particles and
586 persistent infection. *Virology* **262**:114-128.

587 38. **Lazzarini RA, Keene JD, Schubert M.** 1981. The origins of defective interfering
588 particles of the negative-strand RNA viruses. *Cell* **26**:145-154.

589 39. **Jensen Leendertz SA.** 2016. Testing new hypotheses regarding ebolavirus reservoirs.
590 *Viruses-Basel* **8**:30.

591 40. **Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR, Palacios G, Bavari S,**
592 **Jahrling PB, Kuhn JH.** 2016. Neglected filoviruses. *FEMS Microbiol Rev* **40**:494-519.

593 41. **Swanepoel R, Leman PA, Burt FJ, Zachariades NA, Braack LEO, Ksiazek TG,**
594 **Rollin PE, Zaki SR, Peters CJ.** 1996. Experimental inoculation of plants and animals
595 with Ebola virus. *Emerg Infect Dis* **2**:321-325.

596 42. **Koellhoffer JF, Dai Z, Malashkevich VN, Stenglein MD, Liu Y, Toro R, J SH,**
597 **Chandran K, DeRisi JL, Almo SC, Lai JR.** 2014. Structural characterization of the
598 glycoprotein GP2 core domain from the *CAS virus*, a novel arenavirus-like species. *J Mol*
599 *Biol* **426**:1452-1468.

600 43. **Côte M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D,**
601 **Chandran K, Cunningham J.** 2011. Small molecule inhibitors reveal Niemann-Pick C1
602 is essential for Ebola virus infection. *Nature* **477**:344-348.

603 44. **Ndungo E, Herbert AS, Raaben M, Obernosterer G, Biswas R, Miller EH,**
604 **Wirchnianski AS, Carette JE, Brummelkamp TR, Whelan SP, Dye JM, Chandran**
605 **K.** 2016. A single residue in Ebola virus receptor NPC1 influences cellular host range in
606 reptiles. *mSphere* **1**:e00007-00016.

607 45. **Bodewes R, Kik MJL, Raj VS, Schapendonk CME, Haagmans BL, Smits SL,**
608 **Osterhaus ADME.** 2013. Detection of novel divergent arenaviruses in boid snakes with
609 inclusion body disease in The Netherlands. *J Gen Virol* **94**:1206-1210.

610 46. **Hepojoki J, Salmenperä P, Sironen T, Hetzel U, Korzyukov Y, Kipar A, Vapalahti**
611 **O.** 2015. Arenavirus coinfections are common in snakes with boid inclusion body
612 disease. *J Virol* **89**:8657-8660.

613 47. **Stenglein MD, Jacobson ER, Chang L-W, Sanders C, Hawkins MG, Guzman DS-M,**
614 **Drazenovich T, Dunker F, Kamaka EK, Fisher D, Reavill DR, Meola LF, Levens G,**
615 **DeRisi JL.** 2015. Widespread recombination, reassortment, and transmission of
616 unbalanced compound viral genotypes in natural arenavirus infections. *PLoS Pathog*
617 **11**:e1004900.

618 48. **Gregory SM, Larsson P, Nelson EA, Kasson PM, White JM, Tamm LK.** 2014.
619 Ebolavirus entry requires a compact hydrophobic fist at the tip of the fusion loop. *J Virol*
620 **88**:6636-6649.

621 49. **Kuhn JH, Andersen KG, Baize S, Bào Y, Bavari S, Berthet N, Blinkova O, Brister**
622 **JR, Clawson AN, Fair J, Gabriel M, Garry RF, Gire SK, Goba A, Gonzalez J-P,**
623 **Günther S, Happi CT, Jahrling PB, Kapetshi J, Kobinger G, Kugelman JR, Leroy**
624 **EM, Maganga GD, Mbala PK, Moses LM, Muyembe-Tamfum J-J, Magassouba NF,**
625 **Nichol ST, Omilabu SA, Palacios G, Park DJ, Paweska JT, Radoshitzky SR, Rossi**
626 **CA, Sabeti PC, Schieffelin JS, Schoepp RJ, Sealton R, Swanepoel R, Towner JS,**
627 **Wada J, Wauquier N, Yozwiak NL, Formenty P.** 2014. Nomenclature- and database-
628 compatible names for the two Ebola virus variants that emerged in Guinea and the
629 Democratic Republic of the Congo in 2014. *Viruses* **6**:4760-4799.

630 50. **Kuhn JH, Loftis LL, Kugelman JR, Smither SJ, Lever MS, van der Groen G,**
631 **Johnson KM, Radoshitzky SR, Bavari S, Jahrling PB, Towner JS, Nichol ST,**
632 **Palacios G.** 2014. Reidentification of Ebola virus E718 and ME as Ebola
633 virus/H.sapiens-tc/COD/1976/Yambuku-Ecran. *Genome Announc* **2**.

634 51. **Groseth A, Ströher U, Theriault S, Feldmann H.** 2002. Molecular characterization of
635 an isolate from the 1989/90 epizootic of Ebola virus Reston among macaques imported
636 into the United States. *Virus Res* **87**:155-163.

637 52. **Ikegami T, Calaor AB, Miranda ME, Niikura M, Saijo M, Kurane I, Yoshikawa Y,**
638 **Morikawa S.** 2001. Genome structure of Ebola virus subtype Reston: differences among
639 Ebola subtypes. *Arch Virol* **146**:2021-2027.

640 53. **van der Groen G, Webb P, Johnson K, Lange JV, Lindsay H, Elliott L.** 1978. Growth
641 of Lassa and Ebola viruses in different cell lines, p 255-260. *In* Pattyn SR (ed), *Ebola*
642 virus haemorrhagic fever. Elsevier/North-Holland Biomedical Press, Amsterdam, The
643 Netherlands.

644

645 **FIGURE LEGENDS**

646 **FIG 1:** Cartoon of the viral passaging experimental procedure. Plated cells, either boa constrictor
647 JK or human HeLa cells, were infected with EBOV for 1 h and then grown for either 4 or 5 days.
648 To passage virus, supernatants were removed and a 1/40 subsample (50 μ l) was used to inoculate
649 a fresh monolayer of cells. In addition, 1.5 ml of the supernatant was inactivated for sequencing.
650 This procedure was repeated for a total of 6 passages of EBOV.

651

652 **FIG 2:** Antibody staining of EBOV GP_{1,2}. Cells infected with EBOV were stained for cytoplasm
653 (shown in red) and with anti-GP_{1,2} antibody (shown in green).

654

655 **FIG 3:** Coverage maps of mapped reads. Each sample was deep-sequenced and mapped back to
656 the EBOV reference genome (genome cartoon drawn to scale between both maps). The number
657 of reads that map to each genome base position was computed for each sample. For each
658 replicate passage series for either HeLa (top graph: EBOV inoculum, red; HeLa-R1, blue; HeLa-
659 R2, green; HeLa-R3, purple) or JK cells (bottom graph: EBOV inoculum, red; JK-R1, blue; JK-
660 R2, green; JK-R3, purple), the mean coverage (respectively-colored solid lines) was calculated
661 and graphed.

662

663 **FIG 4:** Alleles across the EBOV genome A: Single nucleotide variants (SNVs) found in the
664 EBOV passaging inoculum. The \log_{10} (allele frequency) of each SNV is plotted as a function of
665 its position in the EBOV reference genome (genome cartoon drawn to scale between A and B).
666 All SNVs are color coded. Yellow: non-synonymous SNVs; black: synonymous and non-coding
667 SNVs. B: The estimated selection coefficients across the EBOV genome for passages in HeLa

668 cells (orange) and JK cells (green). Each point represents the most positively selected allele for
669 each site in the EBOV genome. Selection coefficients were averaged across the three replicates.
670 C: The allele frequency trajectories across passages of the most strongly selected sites in HeLa
671 (right) and JK (left) cells.

672
673 **FIG 5:** Graphs of EBOV passages vs. \log_{10} (allele frequency) of single nucleotide variants
674 (SNVs). Each SNV found in each passage was plotted as its \log_{10} (allele frequency). A:
675 Frequency of all SNVs from each replicate. B: Frequency of non-synonymous variants from each
676 replicate that were not found in the inoculum. C: Non-synonymous variants found in all three
677 replicates, but not the inoculum, were plotted as a single point with their mean frequency.
678 Inoculum was a single replicate whereas all other passages were pooled triplicates, except for C.
679 JK cells: green; HeLa cells: orange.

680
681 **Table 1:** EBOV passage data. Each sample is described as cell type used for EBOV passaging
682 (Host); passage number (Passage); replicate number (Replicate); mean coverage (Mean
683 coverage); total number of single nucleotide variants (SNVs) found for that sample (Total
684 SNVs); number of non-synonymous SNVs found (Non-syn SNVs); number of coding-
685 synonymous SNVs (Coding syn SNVs); number of SNVs found in each viral passage-replicate
686 not found in the inoculum or below the limit of detection in the inoculum (Non-synSNVs not in
687 inoculum); number of SNVs found in all three replicates, but not, or below the limit of detection,
688 in the inoculum (Non-syn SNVs in all replicates number); number of EBOV genomes produced
689 in each sample found by RT-ddPCR (Genome copies by RT-ddPCR); number of EBOV
690 genomes produced per ml for each sample found by RT-ddPCR (Genome copies per ml by RT-

691 ddPCR); number of EBOV genomes produced per ml for each sample found by RT-qPCR
692 (Genome copies per ml by RT-qPCR); and the fraction of reads that have a putative deletion
693 between reads (DI read fraction). N/A, not applicable.

694

695 **Table 2:** EBOV inoculum population sequence variation. Each of the SNVs we found above our
696 cut-off in the inoculum population. Each row is the position (Position), the allele from the
697 reference sequence used (Reference allele), the variant allele (SNV allele), the percent saturation
698 of the variant allele (SNV %), the gene where the allele is located (Gene), the codon where the
699 allele is located and the change it caused (Codon change), and the sequencing depth at that
700 position (Sequencing Depth).

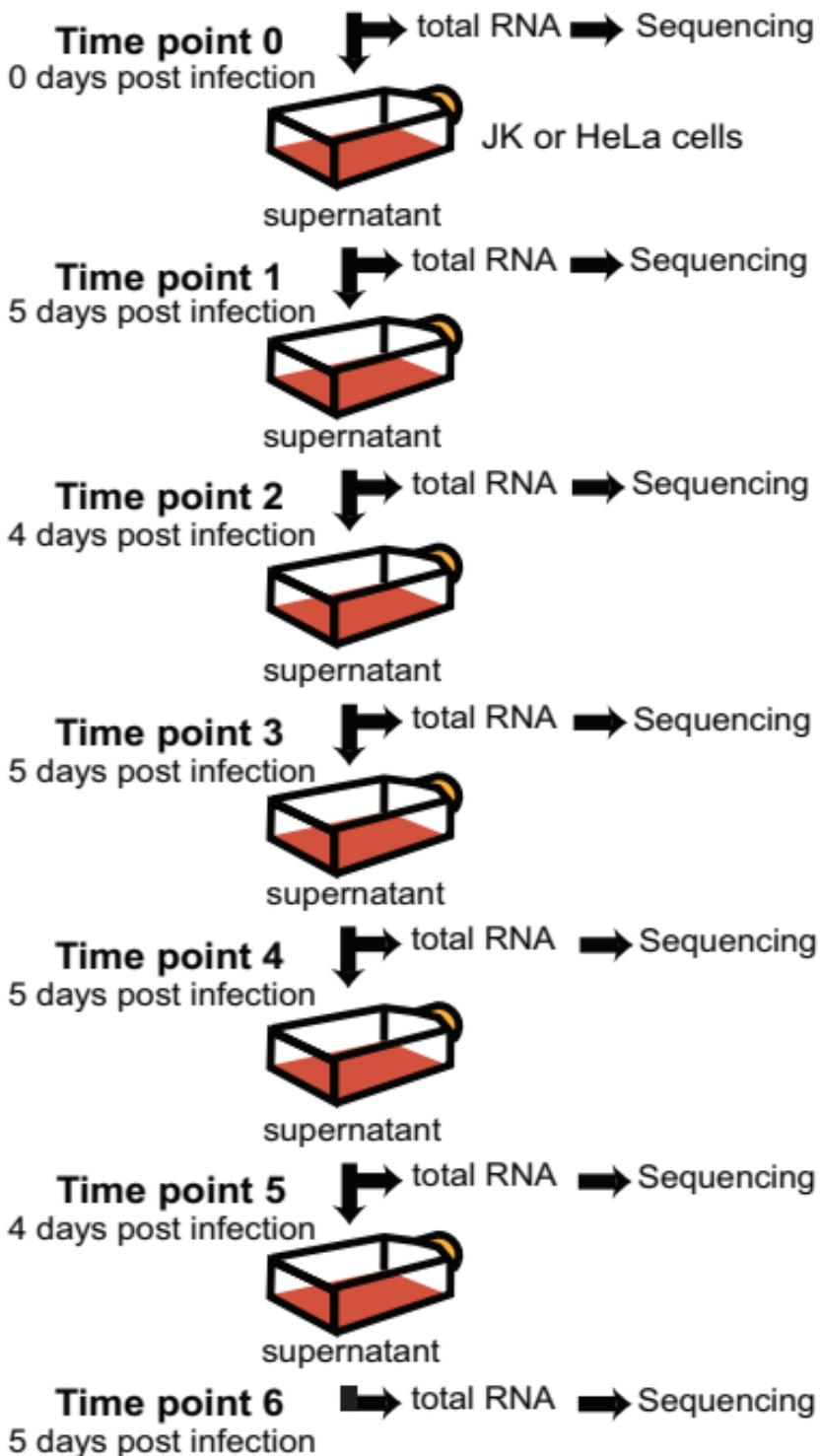
701

702 **SUPPLEMENTAL DATA**

703 **Supplemental figure S1:** Mapping location of sequencing read pairs of possible defective
704 interfering genomes. For each properly paired end sequencing reads, the starting position of read
705 1 mapped onto the EBOV reference genome is plotted against the starting position of read 2
706 mapped onto the EBOV reference genome. The left window is 1×10^6 read pairs randomly
707 sampled, without replacement, from the inoculum. The center window is 1×10^6 read pairs
708 randomly sampled, without replacement, from the all the passages in HeLa cells. The right
709 window is 1×10^6 read pairs randomly sampled, without replacement, from the all the passages in
710 JK cells. Each read pair (black dot) has an alpha value (opacity) of 0.1.

711

712 **Supplemental figure S2:** Population sizes over time. Depicts the estimated and observed
713 population sizes over time. The continuous red lines show the population size that was estimated
714 from the observed population sizes (black points) at six equally spaced time points. Significant
715 bottlenecks occurred with each passage. Estimates were determined separately for each cell type
716 and trial.

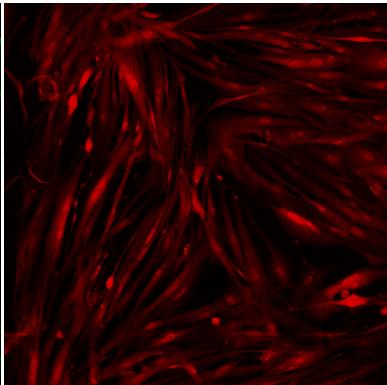
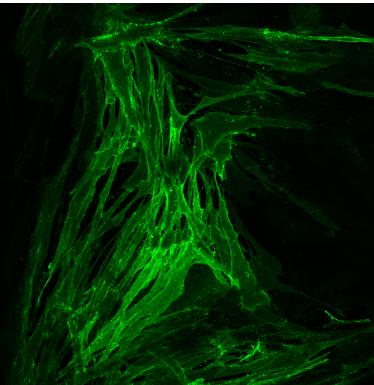
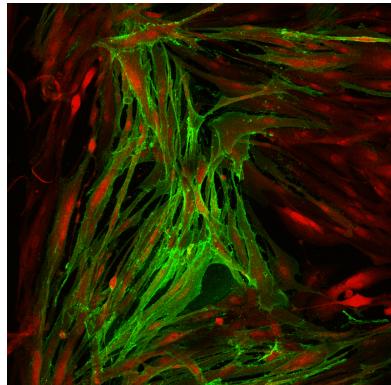

717

718 **Supplemental table S1:** Estimated selection coefficients of significant positively selected sites
719 across the EBOV genome. Each row represents a genome position with their allele, the
720 respective average (across the 3 replicates) selection coefficient, average (across the 3 replicates)
721 change in allele frequency between starting and ending passages, and the p value. p values were
722 calculated using Fisher's method.

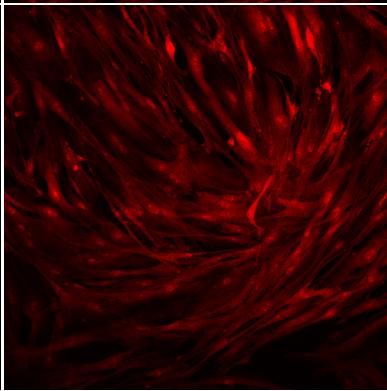
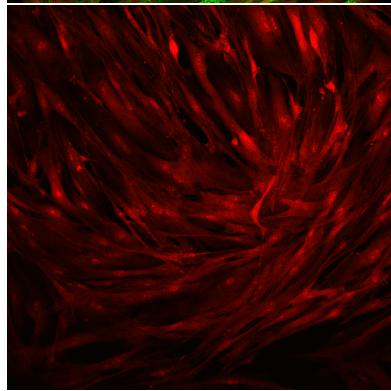
723

724 **Supplemental table S2:** MARV passage quantification. Each element in the table represents
725 MARV genomes per ml in the supernatant found by qRT-PCR of each sample. Samples that did
726 not cross threshold after 40 cycles are labeled as not detected, ND.
727

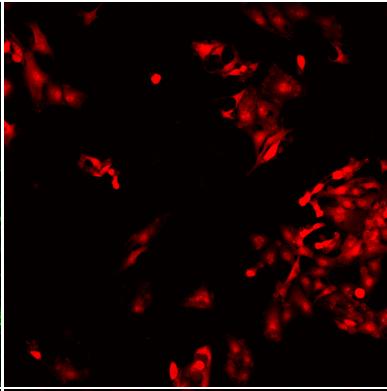
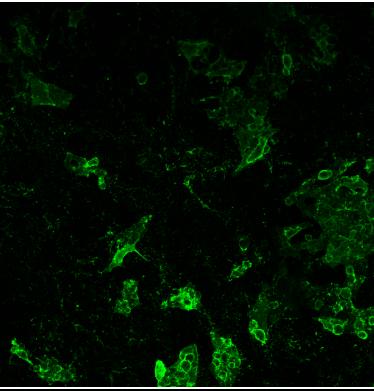
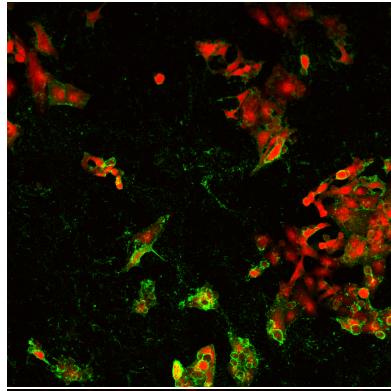
EBOV

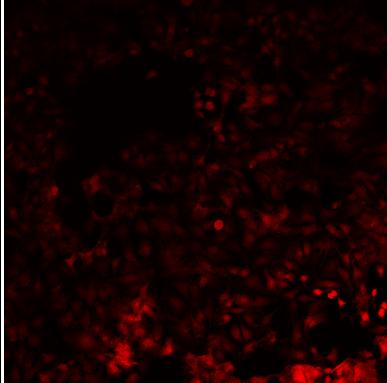
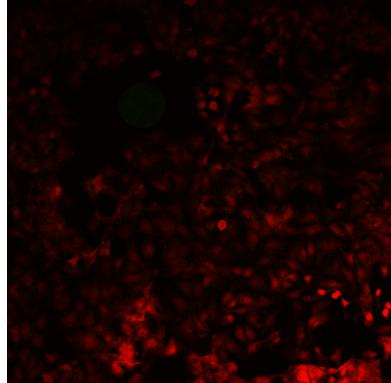




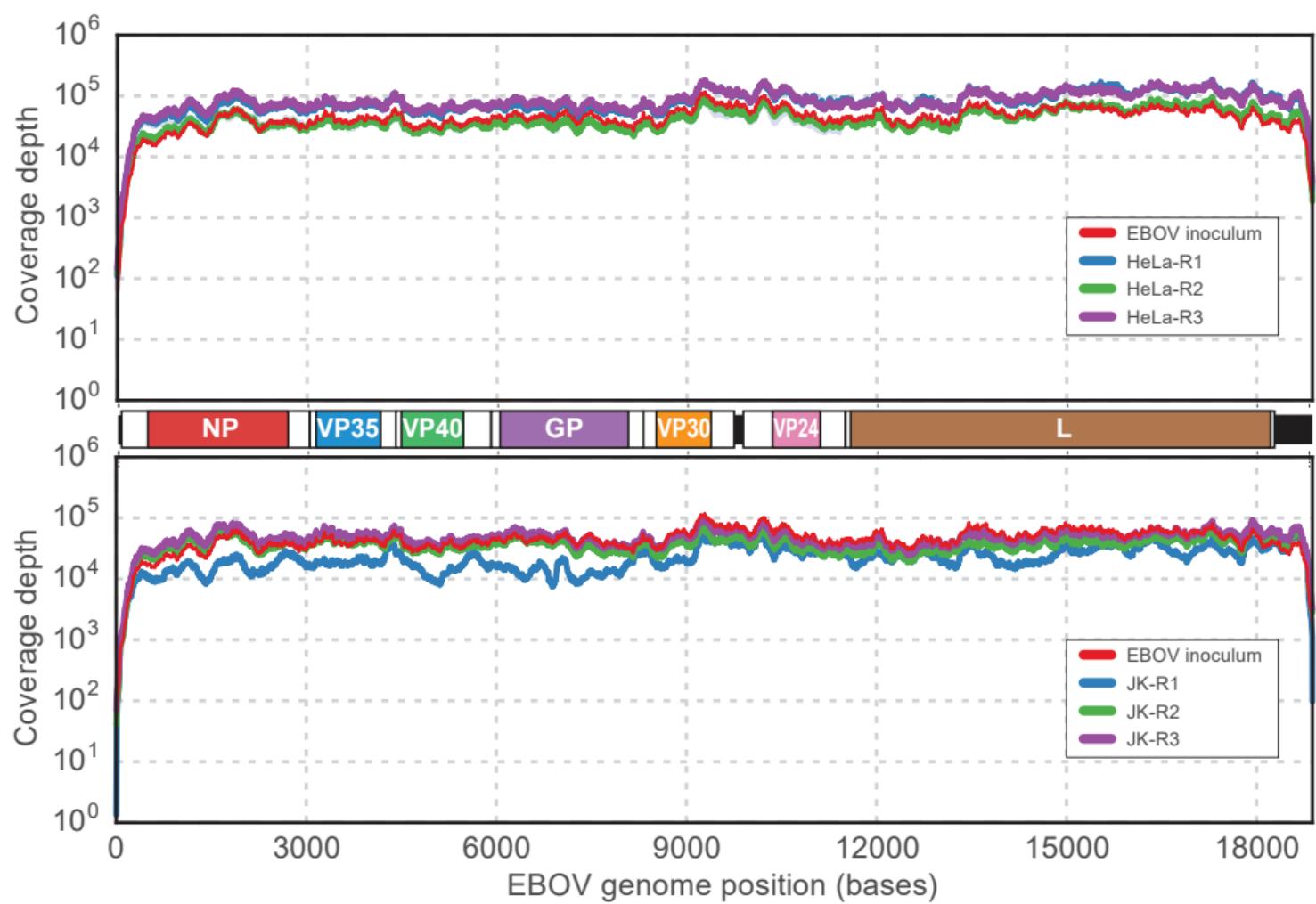
Combined



anti-GP_{1,2}

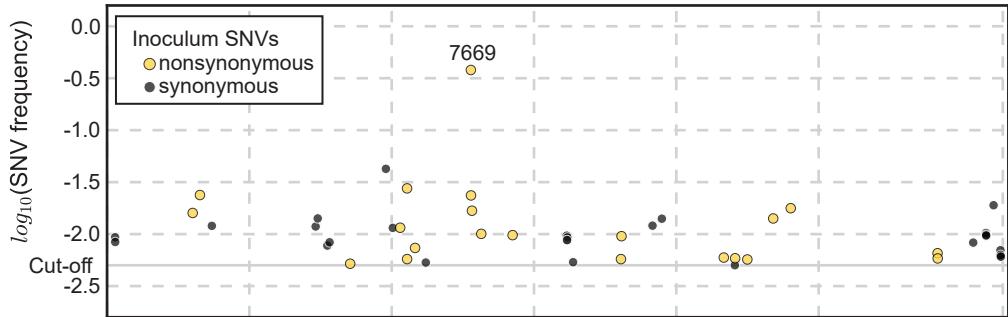
Whole-cell stain




JK cells - EBOV

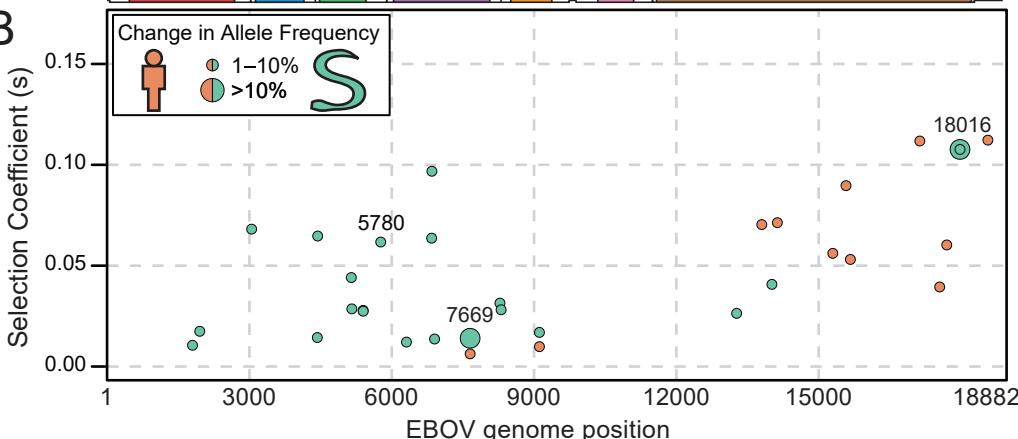


JK cells - mock

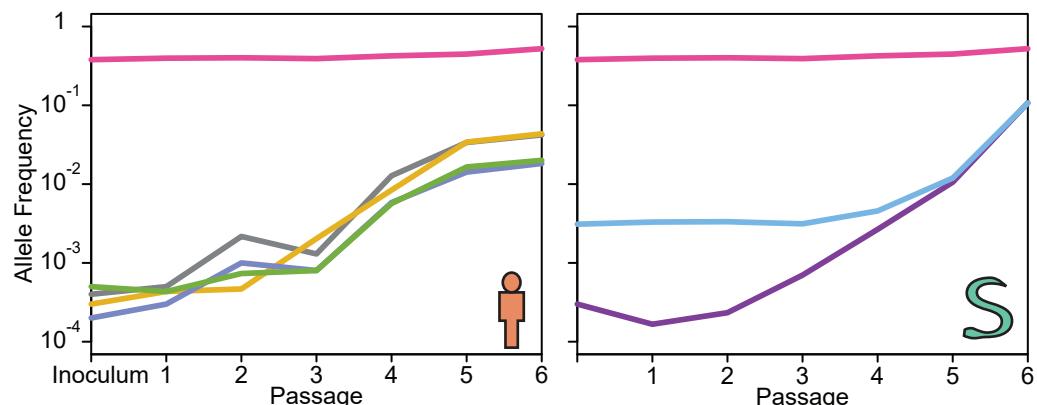


HeLa cells - EBOV



HeLa cells - mock




A

B

C

position	location	allele	codon
7669	GP	C->T	T544I
15608	L	C->T	R1343C
15701	L	T->G	Y1374D
17168	L	A->G	S1863G
18605	5' end	T->C	N/A

position	location	allele	codon
5780	VP40 5' UTR	T->C	N/A
7669	GP	C->T	T544I
18016	L	G->C	G2145

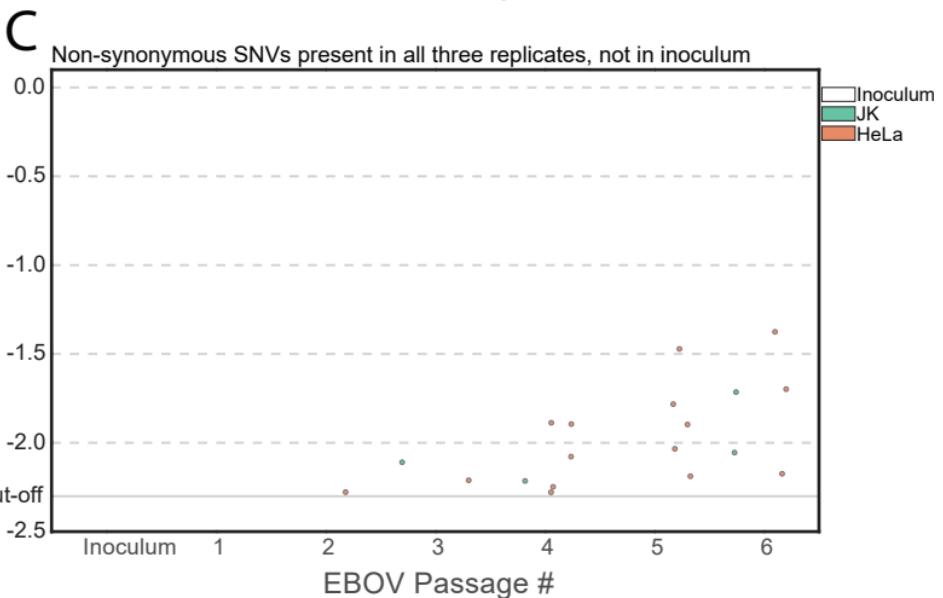
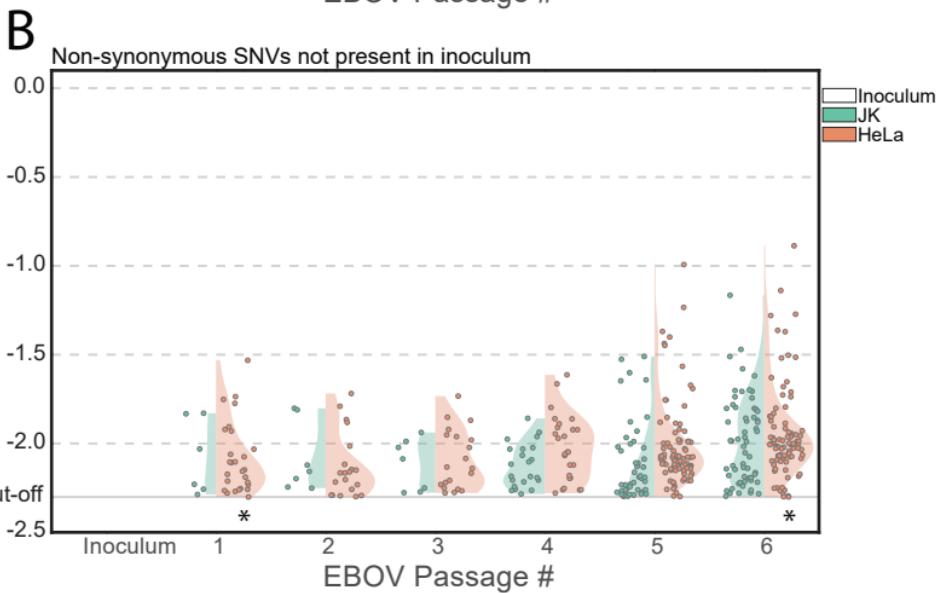
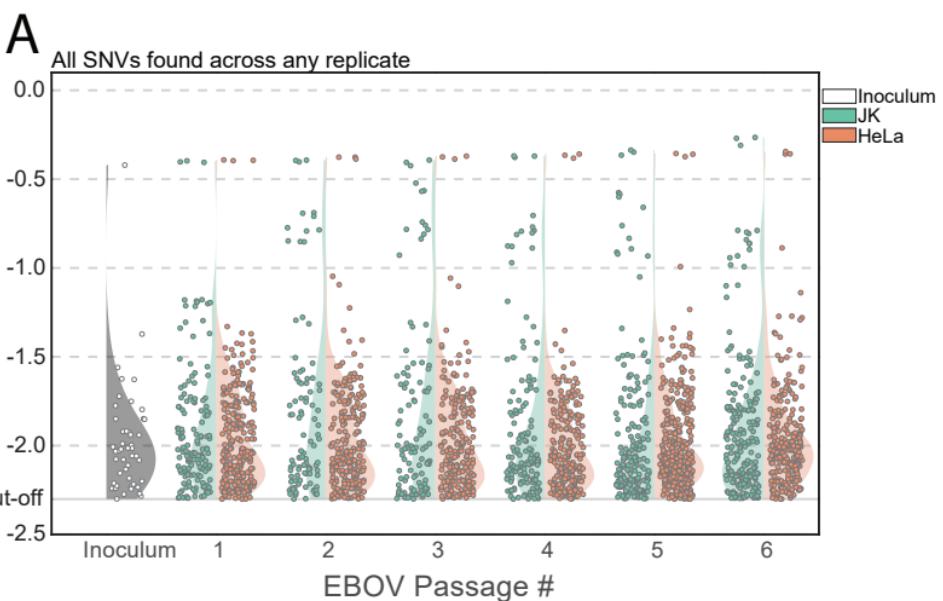




Table 1. Passage of EBOV in HeLa and JK cells

Host	Passage	Replicate	Mean coverage	Total SNVs	Non-syn SNVs	Coding Syn SNVs	Non-synSNVs not in inoculum	Non-syn SNVs in all replicates	Genome copies by RT-ddPCR	Genome copies per ml by RT-ddPCR	Genome copies per ml by RT-qPCR	DI read fraction
Vero E6	0		46599	48	21	6	N/A	N/A	2.46E+08	4.92E+08	N/A	0.000276
HeLa	1	1	114414	55	26	5	0	0	N/A	N/A	1.06E+10	N/A
		2	50683	113	52	19	14		3.11E+10	1.55E+10	1.14E+10	0.000286
		3	114461	102	46	19	13		3.11E+10	1.55E+10	1.14E+10	0.000344
	2	1	57860	70	32	9	5	1	3.84E+10	1.92E+10	6.60E+09	0.001306
		2	42273	79	38	12	8		1.69E+10	8.47E+09	4.26E+09	0.001207
		3	110186	86	36	12	7		2.86E+10	1.43E+10	5.39E+09	0.001629
	3	1	84746	87	37	12	8	1	2.43E+08	1.22E+08	8.61E+09	0.001437
		2	33734	54	21	8	2		1.27E+10	6.33E+09	3.49E+10	0.001587
		3	90833	89	41	10	10		5.39E+09	2.70E+09	2.23E+10	0.001721
	4	1	109716	80	35	13	10	5	1.97E+08	9.86E+07	1.34E+10	0.000351
		2	51857	80	38	11	9		8.60E+09	4.30E+09	8.53E+09	0.000364
		3	91247	80	35	10	7		9.15E+09	4.57E+09	7.36E+09	0.000314
	5	1	79159	120	60	20	23	5	7.43E+09	3.72E+09	5.12E+09	0.000320
		2	32086	147	76	37	51		5.59E+09	2.79E+09	5.61E+09	0.000368
		3	65817	90	43	12	14		9.33E+09	4.66E+09	3.12E+09	0.000365
	6	1	56325	42	25	7	12	3	1.91E+09	9.56E+08	9.17E+09	0.000512
		2	49650	165	91	43	61		7.14E+09	3.57E+09	7.73E+09	0.000549
		3	47332	57	30	7	14		1.89E+09	9.43E+08	6.98E+09	0.000595
JK	1	1	34972	71	27	8	4	0	1.71E+09	8.53E+08	2.59E+09	N/A
		2	70411	40	21	4	2		9.31E+09	4.65E+09	2.72E+09	0.000210
		3	103515	32	15	3	0		2.01E+09	1.01E+09	1.98E+09	0.000157
	2	1	7237	39	20	6	6	0	7.08E+08	3.54E+08	7.00E+08	N/A
		2	24005	25	13	1	0		1.25E+09	6.23E+08	3.88E+08	0.000208
		3	24138	31	13	3	1		4.72E+08	2.36E+08	3.15E+08	0.000209
	3	1	13131	33	15	3	2	1	5.03E+08	2.52E+08	6.97E+08	N/A
		2	19078	28	16	3	1		7.68E+08	3.84E+08	8.26E+08	0.000289
		3	20975	48	22	2	4		1.15E+09	5.76E+08	2.98E+10	0.000255
	4	1	18038	58	25	9	8	1	1.39E+09	6.95E+08	6.70E+08	N/A
		2	39866	49	22	8	8		2.50E+09	1.25E+09	6.78E+08	0.000215
		3	66186	37	19	3	6		1.63E+09	8.15E+08	6.10E+08	0.000225
	5	1	8475	71	32	18	12	0	3.07E+08	1.54E+08	2.28E+08	N/A
		2	14266	66	33	13	18		1.22E+09	6.10E+08	2.58E+08	0.000326
		3	16464	59	29	10	16		2.46E+08	1.23E+08	2.31E+08	0.000307
	6	1	56183	98	41	24	23	2	1.33E+09	6.66E+08	1.31E+09	N/A
		2	54147	64	33	9	18		9.81E+08	4.91E+08	6.21E+08	0.000188
		3	60200	63	31	15	20		3.07E+09	1.54E+09	1.17E+09	0.000225
	Mean		53521	69	33	11	15/8 (HeLa/JK)		1.27E+10/1.70E+09 (HeLa/JK)			0.00078/0.00023 (HeLa/JK)

DI, Defective interfering; EBOV, Ebola virus; non-syn, nonsynonymous; SNV, single nucleotide variants; syn, synonymous;

Table 2: EBOV inoculum population sequence variation

Position	Reference allele	SNV allele	SNV %	Gene	Codon change	Sequencing Depth
170	C	A	0.93	NP		3219
172	T	C	0.84	NP		3217
1805	C	T	1.60	NP	P446S	51212
1958	C	T	2.38	NP	P497S	60425
2209	T	C	1.20	NP	S580	29331
4397	A	G	1.18	VP35		61244
4441	C	T	1.42	VP40		52069
4643	C	T	0.78	VP40	A55	30954
4691	A	G	0.83	VP40	S71	28166
5125	T	C	0.52	VP40	I216T	28914
5878	T	G	4.25	VP40		36349
6023	G	T	1.15	GP		46354
6179	G	T	1.15	GP	E47D	47583
6324	G	A	2.75	GP	V96M	49964
6325	T	C	0.57	GP	V96A	46789
6493	C	T	0.74	GP	A152V	40212
6719	C	A	0.53	GP	T227	49001
7669	C	T	37.95	GP	T544I	36890
7672	A	C	2.36	GP	E545A	35520
7692	G	A	1.68	GP	D552N	35084
7888	A	C	1.01	GP	K617T	35011
8549	A	G	0.98	VP30	R14G	30390
9690	A	T	0.97	VP30		73597
9697	A	C	0.88	VP30		68562
9698	G	T	0.87	VP30		68992
9705	A	T	0.93	VP30		63785
9824	A	G	0.54			67238
10833	G	A	0.57	VP24	R163K	42279
10845	T	A	0.95	VP24	L167Q	47557
11498	G	A	1.21	VP24		43040
11695	T	C	1.41	L	N38	41717
13001	A	G	0.59	L	I480V	43053
13234	A	T	0.50	L	S551	39465
13240	A	T	0.59	L	K553N	36367
13497	C	T	0.57	L	A639V	69958
14043	G	A	1.41	L	R821K	47806
14412	A	G	1.78	L	E944G	49799
17507	G	T	0.66	L	D1976Y	46240
17510	A	C	0.58	L	N1977H	45945
18259	T	G	0.83	L		41881
18528	T	C	1.03			28861
18530	A	T	0.98			29397
18532	G	A	0.97			29743
18688	A	G	1.90			34663
18827	G	C	0.61			3908
18833	G	T	0.70			3573
18836	A	C	0.63			3331
18842	G	C	0.61			3133