bioRxiv preprint doi: hitps://doi.org/10.1101/089870; this version posted November 27, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Statistical testing and power analysis for brain-wide
association study

Weikang Gong!?, Lin Wan?®, Wenlian Lu*®, Liang MaS Fan Cheng*®, Wei Cheng*?,
Stefan Griinewald!, and Jianfeng Feng*®"f

LCAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences, Shanghai 200031, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

4 Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai
200433, China

5 Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
S Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
" Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

t Correspondence author: jianfeng64@gmail.com

Abstract

The identification of connexel-wise associations, which involves examining functional con-
nectivities between pairwise voxels across the whole brain, is both statistically and computa-
tionally challenging. Although such a connexel-wise methodology has recently been adopted
by brain-wide association studies (BWAS) to identify connectivity changes in several mental
disorders, such as schizophrenia, autism and depression [Cheng et al., 2015a,b, 2016], the
multiple correction and power analysis methods designed specifically for connexel-wise anal-
ysis are still lacking. Therefore, we herein report the development of a rigorous statistical
framework for connexel-wise significance testing based on the Gaussian random field theory.
It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings us-
ing topological inference methods, and calculating power and sample size for a connexel-wise
study. Our theoretical framework can control the false-positive rate accurately, as validated
empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and
false discovery rate (FDR), it can reduce false-positive rate and increase statistical power
by appropriately utilizing the spatial information of fMRI data. Importantly, our method
considerably reduces the computational complexity of a permutation- or simulation-based
approach, thus, it can efficiently tackle large datasets with ultra-high resolution images. The
utility of our method is shown in a case-control study. Our approach can identify altered
functional connectivities in a major depression disorder dataset, whereas existing methods
failed. A software package is available at https://github.com/weikanggong/BWAS.

Keywords: brain-wide association study, random field theory, functional connectivity, statisti-
cal power
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1 1 Introduction

2 The human brain connectome is usually modelled as a network. In the brain’s network, accu-
3 rately locating the connectivity variations associated with phenotypes, such as clinical symptoms,
4 is critical for neuroscientists. With the development of neuroimaging technology and an increas-
5 ing number of publicly available datasets, such as the 1000 Functional Connectomes Project
6 (FCP) |Biswal et al., 2010|, Human Connectome Project (HCP) |Glasser et al., 2016] and UK
7 Biobank [Miller et al., 2016], large-scale, image-based association studies have become possible
s and should help us improve our understanding of human brain functions.

0 Using a priori knowledge of brain parcellation (e.g. AAL [Rolls et al., 2015]) or an adop-
10 tion of data-driven parcellation (e.g. ICA [Beckmann and Smith, 2004]) to analyze the human
11 connectome is the most popular approach, and many statistical methods have been designed for
12 them |[Zalesky et al., 2012; Kim et al., 2014]. However, with the availability of large datasets,
13 increasing the spatial specificity in the functional connectivity analysis should provide a deeper
14 insight into the brain connectome. Therefore, in this paper, a statistical framework for brain-
15 wide association study (BWAS) is proposed [Cheng et al., 2015a,b, 2016|. It directly uses vozels
16 as nodes to define brain networks, and then tests the associations of each functional connectivity
17 with phenotypes.

18 To conduct a systematic, fully-powered BWAS, two main issues should be carefully addressed.
10 First, a multiple correction method to control the false-positive rate of massive univariate sta-
20 tistical tests should be developed. Second, a power analysis method to estimate the required
21 sample size should be designed. One may ask whether the methods widely used in region-level
22 studies can be directly generalized to connexel-level studies. Two issues hinder such direct gener-
23 alization. First, the statistical tests have more complex spatial structures in BWAS. Therefore,
24 as shown in our analysis, some widely-used multiple correction methods which do not utilize the
25 spatial information of data (e.g. Bonferroni correction and false discovery rate (FDR) [Benjamini
26 and Hochberg, 1995; Benjamini and Yekutieli, 2001]) may not be powerful enough to detect sig-
27 mnals. Second, although non-parametric permutation methods [Nichols and Holmes, 2002] may
28 account for the complex structures among hypothesis tests to provide a valid threshold, they are
20 computationally very expensive in connexel-wise studies, owing to the requirement of performing
30 billions of statistical tests. Therefore, an accurate and efficient method for multiple comparison
31 problem and power analysis is needed.

32 Random field theory (RFT) is an important statistical tool in brain image analysis, and
33 it has been widely used in the analysis of task fMRI data and structure data [Ashburner and
3¢ Friston, 2000]. Statistical parametric maps (SPM) are usually modelled as a discrete sampling
35 of smooth Gaussian or related random fields [Penny et al., 2011]. The random field theory
36 can control the FWER of multiple hypothesis testings by evaluating whether the observed test
37 statistic, or the spatial extent of clusters exceeding a cluster-defining threshold (CDT), is large
38 by chance, which is known as peak-level and cluster-level inference respectively. Since Adler’s
30 early work on the geometry of random field [Adler, 1981; Adler and Taylor, 2009]|, theoretical
a0 results for different types of random fields have been obtained, such as the Gaussian random
s field [Friston et al., 1994; Worsley et al., 1996b], the ¢, x2, I’ random fields [Worsley, 1994; Cao,
a2 1999], the multivariate random field [Taylor and Worsley, 2008|, the cross-correlation random
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a3 field [Cao et al., 1999]. Among them, only the cross-correlation field is designed for connectivity
a2 analysis. In that framework, the voxel-level functional connectivity network is modelled as a six-
a5 dimensional cross-correlation random field, and the maximum distribution of the random field
a6 is used to identify strong between-voxel connections. Different from the above works, the aim of
a7 BWAS is to identify connectivities that are associated with phenotypes. To our knowledge, no
48 previous works have addressed this problem. In this paper, we show that the statistical map of
29 BWAS, under the null hypothesis, can be modelled as a Gaussian random field with a suitable
so smoothness adjustment. Therefore, topological inference methods, such as peak intensity and
51 cluster extent, are generalized from voxel-wise analysis to functional connectivity analysis.

52 Besides controlling the type I error rate, estimating power or the required sample size for
53 BWAS is also important. In genetics, for example, a high-quality GWAS analyzing one million
ss single nucleotide polymorphism (SNP) usually requires tens of thousands of samples to reach
ss adequate statistical power. In contrast, previous BWAS analyses of schizophrenia, autism and
ss depression have only had sample sizes less than one thousand [Cheng et al., 2015a,b, 2016].
57 Therefore, compared to GWAS it is natural to ask if BWAS, which is usually based on a limited
ss sample size, can withstand the rigors of a large number of hypothesis tests. In this regard,
5o most existing power analysis methods are designed for voxel-wise fMRI studies, including, for
60 example, the simulation based method [Desmond and Glover, 2002|, the non-central distribution
61 based method [Mumford and Nichols, 2008], and the method based on non-central random field
62 theory (ncRFT) [Hayasaka et al., 2007]. Among them, the ncRFT-based method can both take
63 into account the spatial structure of fMRI data and avoid time consuming simulation. Therefore,
62 to analyze the power of BWAS, we adopted a methodology similar to that of the ncRFT-based
es method [Hayasaka et al., 2007]. The signals at functional connectivities are modelled as a non-
66 central Gaussian random field, and the power is estimated by a modified Gaussian random field
67 theory.

68 In this paper, a powerful method to address the multiple comparison problem is proposed
6o for BWAS (Figure 1). This method uses Gaussian random field theory to model the spatial
70 structure of voxel-level connectome. It can test the odds that either the effect size of every single
7 functional connectivity (peak-level inference) or the spatial extent of functional connectivity
72 clusters exceeding a cluster-defining threshold (cluster-level inference) is large by chance. The
73 performance of the method is tested in two resting-state fMRI datasets, and in both volume-
72 based and surface-based fMRI data. Our method can control the false-positive rate accurately.
75 Compared with Bonferroni correction and false discovery rate (FDR) approaches, our method
76 can achieve a higher power and filter out false-positive connectivities by utilizing the spatial
77 information. In addition, we develop a modified Gaussian random field theory to explicitly
78 approximate the power of peak-level inference (Figure 2). Power can be estimated in any specific
79 location of connectome efficiently, which can help to determine the sample size for BWAS. The
so utility of our method is shown by identifying altered functional connectivities and estimating
81 the required sample sizes in major depression disorder. The software package for BWAS can be
s2 downloaded at https://github.com/weikanggong/BWAS.
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s 2 Materials and Methods

sa 2.1 Connexel-wise general linear model

ss  The popular general linear model approach is used in BWAS. Briefly, a voxel-level functional
ss network is estimated for each subject using the fMRI data, and the association between each
g7 functional connectivity and phenotype of interest is tested using the general linear model.
In detail, the individual functional network is constructed first by calculating the Pearson
correlation coefficients (PCC) between every pair of voxel time series. Let m be the number

(S)]

of voxels, s be the subject, and R() = [rij mxm be the m x m functional network matrix for

subject s. Each element of R(®) is the correlation coefficient between voxel time series i and j

for subject s. An element-wise Fisher’s Z transformation is then applied as Z(5) = [Zz(j)]me =

()

147, . . C . .

E; log(?:g))]mxm, so that zi(;) will approximate a normal distribution. For every functional
ij

connectivity, a general linear model (GLM) is fitted by
}/ij =X Bij + €5

1 (2 (n)

where, Y;; = (zij s 25y R ) is an n x 1 vector of functional connectivities between voxel
. . . . . . R 1 2 q .
i and j across n subjects, X is the common n x ¢ design matrix, B;; = ( o ij,...,,Bij) is

a g X 1 vector of regression coefficients, and €;; is an n x 1 vector of random error, which is
assumed to be an independent and identically distributed Gaussian random variable N (0, O'Z-Zj)
across subjects. The ordinary least square estimator for Bj; is Eij = (X'X)"'Xx 'Y;j, and for

afj, it is &% = (Yij — XB;;)(Yij — XBij)/(n — q). Then, a Student’s t-statistic at functional

connectivity between voxel 7 and j can be expressed as:
CBij

oL
(c(X’X)*lc’Jizj)z

T;; =

ss where ¢ is a 1 X ¢ contrast vector. In BWAS, let 21] be the primary variable of interest,
so and Bi?j,..., fj be the nuisance covariates included in the regression model. The contrast
90 ¢ = (1,0,...,0) will be used to test the hypothesis Bilj = 0, and the Tjj-statistics will re-
o1 flect the significance of the primary variable. Other contrasts can also be used depending on
92 the study design. Finally, the Student’s t random variable at each functional connectivity T;;
o3 is transformed to a Gaussian random variable Z;; by transforming T-statistics to p-values and
o2 then to Z-statistics.

95 After the above steps, the connexel-wise Z-statistics form a statistical parametric map in a
96 six-dimensional Euclidian space. The reason is that the spatial location of each Z statistic (or
o7 functional connectivity) can be uniquely represented by the coordinates of its two endpoints,
o8 each of which is a voxel in a three-dimensional space. Therefore, the structure of the statistical
9o map can be modelled by the random field theory, and the topological inference methods for
100 multiple hypothesis testings are developed in the subsequent Section.
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101 2.2 Multiple comparison correction using topological inference methods
102 2.2.1 Peak-level inference

103 Peak-level inference controls FWER among multiple hypothesis testings on functional connectiv-
104 ities, i.e., the probability of finding at least one false-positive functional connectivity is controlled
105 under certain level . It is assumed, under the null hypothesis, that the statistical parametric
106 map of BWAS is a discrete sampling of smooth and stationary Gaussian random fields with
107 mean zero and variance one. To control the FWER of multiple hypothesis testings, the max-
108 imum distribution of the random field should be known. In our paper, its tail distribution is
100 approximated by the expected Euler characteristic (EC) of the excursion set of random field.
110 The detailed derivation is given in the Appendix. We sketch an overview of the result here.

111 Let Z(p,q),p € P,q € Q be a (P+Q)-dimensional Gaussian random field spanned by a
112 P-dimensional random field P and a Q-dimensional random field Q. At high threshold zy, its
13 maximum distribution has a general form [Adler and Taylor, 2009; Worsley et al., 1996b]:

P+Q
a = P(max Z(p,q) > z0) * E(EC) = > pa(P x Q)pf(20)
d=0
P Q (1)
ZZ pz—i—] (0)
i=0 j=0

ua  where the p4(+) is the d-th dimensional intrinsic volume of the random field, and de (z0) is the d-th
115 dimensional EC-density for the Gaussian random field at threshold zg (29 > 0). The method for
ue calculating p4(-) and pZ(-) are shown in the Appendix. Therefore, the a-level FWER-corrected
17 threshold zp can be found using equation (1), and for one-tailed tests, functional connectivities
us  with Z-values larger than zp (or smaller than —z() are declared as significant.

119 For different kinds of BWAS analysis, P and Q in (1) can take different values. For example,
120 for the widely-used volume-based fMRI data, we use P=Q=3 (Result Section 3.2.1). If the con-
121 nectivities are estimated between pairwise vertices on cortical surface, we use P=Q=2 (Result
122 Section 3.2.1), and if the connectivities are estimated between subcortical structures and cortical
123 surface, we use P=3 and Q=2. The estimated FWER-corrected threshold is usually less con-
124 servative than Bonferroni correction method, because the intrinsic volume p4(+) in equation (1)
125 takes into account both the number of hypothesis tests performed and the correlations among
126 tests, and an increasing of spatial smoothness can make the FWER-corrected threshold zy lower.
127 For BWAS, the equation (1) can be approximately estimated using the results of Gaussian ran-
128 dom field, provided that the spatial smoothness is estimated correctly. The reason is that the
120 statistical map of BWAS is generated by a series of non-linear transformation of original fMRI
130 images. As a result, we calculate equation (1) as:

+Jj+1 itj
(277)_ z (4log2)2
a = P(max Z(p,q) > 20) ZZMZ -
=0 j=0 FWHM”
o @
_7 KR+ =1\ 4ok
DY “”m«:( o )
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131 where FWHMy is the adjusted full-width at half maximum of the Gaussian smooth kernel,
132 which is a function of the original smoothness of fMRI images. A proof of the equation (2) and
133 smoothness estimation approach are shown in the Appendix.

132 2.2.2 Cluster-level inference

135 Cluster-level inference is also popular in brain image analysis. Here, inference is based on the
136 observed cluster size exceeding certain cluster-defining threshold (CDT) [Friston et al., 1994].
137 We are usually interested in whether the observed cluster size is large by chance, i.e., where the
138 size is on the upper tail of the distribution of maximum cluster size under the null hypothesis. We
130 show that, similar to the voxel clusters in three-dimensional space, the functional connectivity
1o cluster (FC cluster) can also be defined rigorously. Its size can be used as a test statistic for
141 statistical inference, and it has a clear interpretation.
142 A voxel cluster is a set of spatially connected voxels. To define a FC cluster, we first illustrate
143 the neighbourhood relationship between two functional connectivities. Let the endpoints of two
¢ functional connectivity be (z1,y1) and (x2,y2), if their endpoints are non-overlapped voxels,
145 then two functional connectivities are neighbours if both x1, z9 and y1, y2 are spatially adjacent
e voxels. If they share a same endpoint (e.g. x; = z2), then they are neighbours if y;,y2 are
147 spatially adjacent voxels. Some examples of FC neighbours are shown in Figure 3A. Now,
14s consider an undirected graph G with k nodes, where the nodes are k functional connectivities
149 and two nodes are connected if they are neighbours, then these k£ functional connectivities form
150 a FC cluster if they form a connected component in the graph G. Some examples of FC clusters
151 are shown in Figure 3B. There are five voxel clusters A, B, C, D, E in a two-dimensional image.
152 The FCs between AB, BC and AD are different FC clusters, and FCs within voxel cluster E
153 also form a single FC cluster. An algorithm for finding FC clusters can be implemented based
152 on the above definition. In our analysis, We use Dulmage-Mendelsohn decomposition to find
155 connected components in graph G.
Based on the normality and stationarity assumption as in peak-level inference, we propose to

use Gaussian random field theory to approximate the null distribution of maximum cluster size.

In brief, let M be the number of FCs exceeding a pre-specified CDT zp, N be the number of

FC clusters, and S be size of a FC cluster. Suppose that separate FC clusters are independent,

then the distribution of maximum cluster size Sy, for Gaussian random field is [Adler, 1981;

Friston et al., 1994]:

P(Spmaz > s) =1 —exp[-E(N)P(S > s)]

The expected number of FC clusters E(N) at a high CDT 2y can be approximated by the
expected EC of Gaussian random field using equation (2):

P Q
E(N) % E(EC) =Y Y ui(P)pj(Q)pfi(20)

i=0 j=0

The distribution of S can be approximated by [Adler, 1981; Nosko, 1969]:

I(P+Q)/2+ 1>E<N>s)wice>

P(S > s) =exp [—( ()

| IS |
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156 and E(M) = m[l — ®(zp)], where m is the number of functional connectivities, and ®(e) is
157 the cumulative distribution function of standard normal distribution. The above theory is a
158 generalization of previous result (e.g. [Friston et al., 1994] and [Hayasaka and Nichols, 2003]),
150 except the use of equation (2) to approximate the expected number of clusters E(N).

160 Therefore, in the cluster-level inference, small-sized FC clusters are more likely to be identi-
161 fied as false positives and filtered out (e.g. the red link in Figure 3B). Large-sized FC clusters
162 Tepresent an existence of association signals either between two different voxel clusters (e.g. the
163 blue and green ones in Figure 3B) or within a single voxel cluster (e.g. the yellow one in Figure
164 3B). For example, consider that one performed a case-control BWAS, then the identified FCs
165 can be either altered connections between two brain regions or within a single region.

16 2.3 Validating peak- and cluster-level inference in real data
167 2.3.1 Data

168 Two resting-state fMRI datasets are used in our analysis: (1) 197 subjects from the Cambridge
10 dataset in the 1000 Functional Connectomes Project (1000 FCP); (2) 222 subjects from the
170 Southwest University (SWU) dataset in the International Data-sharing Initiative (IDNI). The
171 subjects in the two datasets are all healthy people with similar demographic information. They
172 are preprocessed using standard preprocessing pipelines implemented in Data Processing and
173 Analysis for Brain Imaging (DPABI) [Yan et al., 2016]. Finally, All fMRI data are registered to
174 3 % 3 x 3 mm? standard space, and 47636 voxel time series within each subject’s 90 cerebrum
175 regions (based on AAL template) are extracted. They are then smoothed by 3D Gaussian kernels
e with FWHM = 0, 2, 4, 6, 8, 10, 12 mm on each dimension. Therefore, for volume-based fMRI
177 data, a total number of 14 datasets (2 sites X 7 smoothness) are used in our subsequent analysis.
178 In addition, the above data are also mapped on to the Conte69 surface-based atlas using the
179 Connectome Workbench software. They are smoothed by 2D Gaussian kernels restricted on the
180 cortical surface with FWHM = 0, 4, 8 mm. Finally, 32492 vertex time series on the left cortical
181 surface are used in our analysis. All details are provided in the Appendix.

12 2.3.2 Estimating the empirical FWER

183 To evaluate whether the random field theory can actually control the FWER in real data analysis,
184 we compared our method with empirical permutation results in real data. Similar approaches
185 have previously been adopted to validate the random field theory in task-activation studies
18 |Eklund et al., 2016, 2012].

187 The following procedures were carried out in each of the volume-based and surface-based
188 fMRI datasets. First, subjects were randomly divided into two groups. Second, BWAS was
180 performed to compare the whole brain functional connectivities between two groups (approxi-
100 mately 1.13 x 10° connections in volume-based data, and 5.28 x 108 connections in surface-based
11 data). The peak- and cluster-level inference approaches were applied to find significant signals.
102 Third, the above two steps were repeated 2000 times. FWER was then estimated by computing
103 that proportion of permutations in which any significant signal is found. Since subjects were
104 all healthy people with similar demographic informations, and their group labels were randomly
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105 assigned, we expected that there were no group differences. Therefore, if the proposed approach
106 is valid, the proportion of analysis with at least one significant effect should be close to the
107 nominal error rate 0.05.

s 2.4 Comparing with other multiple correction methods

100 We compared our proposed method with connexel-wise Bonferroni correction and false discovery
200 rate (FDR-BH [Benjamini and Hochberg, 1995], FDR-BY [Benjamini and Yekutieli, 2001]) in
200 terms of the observed power and false-discovery rate. To mimic real data, we did not use
202 completely simulated data, but rather, we adopted a widely used evaluation methodology in
20 GWAS (e.g. [Yang et al., 2014; Zhou and Stephens, 2012|), which directly simulated signals
204 that correlated with real data. The data used here were 197 subjects in the Cambridge dataset
205 in four smoothness levels (FWHM = 0,4, 8,12 mm).

206 2.4.1 Simulation procedures

207 In detail, two cerebrum regions within the AAL template were first randomly selected. BOLD
208 signals of voxels within these two regions were extracted and functional connectivities of pairwise
200 voxels between these two regions were estimated. Second, subjects were randomly divided
210 into two groups, and signals were added to a subset of functional connectivities in one group.
211 Specifically, the signals formed a single FC-cluster with different mean connectivity intensity
212 between the two groups. Third, a two-sample t-test was used to compare two groups of functional
213 connectivities. Five methods, including Bonferroni, FDR-BH [Benjamini and Hochberg, 1995],
214 FDR-BY [Benjamini and Yekutieli, 2001], peak-level inference, and cluster-level inference (with
215 different CDT), were used to control the false-positive rate of multiple hypothesis testings.

216 Four free parameters were found in our simulation: 1) voxels selected from real data, 2)
217 signal width, i.e., the number of altered functional connectivities, 3) effect size of the signal and
218 4) image smoothness. In the Results Section, we report the results of comparisons among the
210 different combinations of parameters.

220 2.4.2 Performance metrics

221 Two metrics were used to evaluate the performance: the observed power and false-discovery
222 rate. The observed power was calculated as the number of discovered true-positive functional
23 connectivities divided by the total number of true-positive connectivities. The observed false-
222 discovery rate was calculated as the number of discovered false-positive functional connectivities
225 divided by total number of discovered functional connectivities.

»s 2.5 Statistical power analysis

27 A method to estimate the statistical power of peak-level inference is proposed. Power is defined
228 as the probability of finding at least one true-positive signal for a region (denoted as B) in which
220 the false- positive rate « is controlled at a certain level in the whole search region (denoted as A)
230 [Friston et al., 1994]. To estimate power, four parameters should be specified: (1) the threshold
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231 that controls FWER «, (2) the effect size of true signal 7, (3) the sample size n, and (4) the
232 smoothness of image.

First, if we assume that the primary variable of interest, 5}

ij
bution N(,ul-j,o?j), the null hypothesis is Hp : E( le) = 0. Therefore, every test statistic Z;; is
subject to N(0,1). The whole search region A is a central Gaussian random field with mean
zero and variance one at each point. The threshold zg to control the FWER at « is obtained by

the random field theory (Formula 2):

is subject to a normal distri-

a = P( max Z(p,q) > zo|Hp)
(pg)€A

233 where (p, q) are the coordinates of the functional connectivities.
Then, under the alternative hypothesis Hj : E(B}j) = 15, the test statistics Z;; is subject
to N(v/npij/oij, 1), where n is the sample size. The 7;; = p;;/04; is called effect size at FC;;.
We further assume that the distribution of signals will be the same in region B, i.e., all le is
subject to the same normal distribution N (i, 0?). Therefore, region B is a non-central Gaussian
random field Z*(p, ¢) with mean /n~vy and variance one at each point. The power in the search
region B C A can be expressed as:

Power = P( max Z*(p,q) > zo|H1)
(p.9)eB

The non-central Gaussian random field Z*(p, q) can be transformed to a central Gaussian
random field by the following element-wise transformation:

Z(p,q) = Z"(p,q) — Vny
therefore, the power in region B can still be calculated using Formula (2):

Power = P( max Z(p,q) > zo — v/ny|Ho)
(p,9)€B

234 Three issues remain. The first involves selecting region B. When estimating power, we select
235 region B as consisting of functional connectivities between two three-dimensional balls, with the
236 diameter of each ball being equal to the intrinsic FWHM of the image (Figure 2). The idea
237 is that signals within such ball are usually homogeneous as a result of the smoothness of the
238 image. Besides, the matched filter theorem suggests that the signal is best detected when the
230 width of the smooth kernel matches the width of the signal [Worsley et al., 1996a].

The second issue involves the random field theory which can only approximate the right
tail of the maximum distribution. Therefore, the above method may lead to an inaccurate
estimation when 2y — y/n7y is small. To address this problem, we propose to use the following
heuristic modification:

Power = 1 —exp |—P( max Z(p,q) > 20 — v/ny|Ho)
(p.q)eB

220 This formula ensures that the power is between zero and one, which shows excellent performance
241 in the simulation.
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The last issue concerns estimating the effect size, which is typically estimated from the
statistical map of a pilot study using the same study design. Suppose that the pilot BWAS
study used n* samples. Then, the estimated effect size at FC;; is [Joyce and Hayasaka, 2012]:

Vi = Zig/Vn*

222 Using the above formula, the power can be estimated for each functional connectivity to form a
243 power map on six-dimensional space, but it is quite difficult to visualize such a maps. Therefore,
224 to report the power of a study, we estimate the effect size of every FC to form an empirical
25 distribution. The power curves of different sample sizes and effect sizes under certain power
26 (e.g. 90% power) are analyzed and reported.

27 2.5.1 Simulation-based validation for power analysis

28 'To test whether the proposed method can estimate power accurately, we performed a simulation
220 study. Briefly, we simulated a case-control study with known effect size in a subset of functional
250 connectivities, and we compared the observed power and the theoretical power.

251 In detail, first, we generated two sets of 10000 three-dimensional independent Gaussian white
252 noise images, with 30 voxels per dimension. Second, the images were smoothed by Gaussian
253 kernels with FWHM ranging from 3 to 6 voxels. Third, a ball with radius 10 voxels located at
254 the center of each image was extracted. This guaranteed the uniform smoothness. Fourth, every
255 20 images were combined to form 500 simulated four-dimensional fMRI data. We denoted the
256 images in the first set as (A1, Aa, ..., Aspp) and the images in the second set as (B1, Ba, . . ., Bsoo)-
257 Fifth, the Pearson correlation coefficients were calculated between time series of pairwise voxels
258 of images A; and B;, and a Fisher’s Z transformation was then performed. Sixth, two groups
250 of images from two sets were randomly selected, with each group consisting of 200 samples. A
260 Z-map was then generated by fitting each functional connectivity to a general linear model to
261 compare the two groups. Seventh, signals were then added to functional connectivities between
22 two balls, which were located at the center of each images. The diameter of balls was equal
263 to the FWHM of images. Specifically, a signal was the mean intensity difference between two
264 groups. We then estimated power using simulated data under different parameters, including
265 image smoothness FWHM, sample size n and effect size v (Figure 2). The steps six and seven
266 were repeated for 10000 times under each parameter setting, and its maximum statistics are
267 recorded at each simulation. The empirical power was estimated by the proportion of maximum
268 statistics exceeding the FWER 0.05 threshold. We compared the results of simulation with the
260 proposed theoretical method.

0 3 Results

on 3.1  Overview of the proposed approaches

272 Figure 1 and 2 show the diagrams of the proposed approaches. Figure 4 shows the multiple
273 comparison threshold of different approaches in a typical BWAS study. In the study, the fMRI
272 data have a spatial resolution of 3 x 3 x 3 mm?®. A total of 47636 voxels in the cerebrum regions
275 were used.
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276 Methods that control connectivity-wise FWER, including Bonferroni correction and peak-
277 level inference, provide evidence of association of each individual functional connectivities that
2713 survive the threshold. Bonferroni correction is always the most conservative one. The peak-
279 level inference is more powerful when the smoothness of images are increased. As shown in the
280 Figure 4, the FWER-corrected threshold can be 1 to 2 order of magnitudes less conservative
281 than Bonferroni correction. Methods that control connectivity-wise FDR, including FDR-BH
222 and FDR-BY approaches, control the proportion of false-positive findings smaller than a pre-
283 specified level g (e.g. 5%). For the widely-used FDR-BH approach, it compares the i-th smallest
284 p-value p(;y with %q, where n is the total number of hypothesis tests, and rejects the first k
25 hypothesis tests that satisfy p(;) < %q (Figure 4). Therefore, the power of FDR approaches
286 highly depends on the observed p-values, which can be more or less powerful than the peak-
287 and cluster-level inference. For example, FDR approaches require the most significant p-value
288 reaches the threshold of Bonferroni correction. This requirement is sometimes very conservative
200 in BWAS, owing to the billions of statistical tests performed. However, it can be more powerful
200 when many of the p-values meet the requirement of the data-driven threshold. A method
201 that controls connectivity-wise FWER can also control connectivity-wise FDR. The cluster-
202 level inference approach tests the size of the FC clusters exceeding a CDT. A significant FC
203 cluster can provide evidence that there exist association signals somewhere in this FC cluster.
204  None of the individual functional connectivities in the cluster can be declared as significant ones.
205 This approach is usually sensitive to spatially extended signals. Moreover, when the CDT equals
206 the FDR threshold, the connectivity-wise FDR can be controlled, and when the CDT equals the
207  FWER threshold, it is equivalent to control the connectivity-wise FWER.

28 3.2 Validating peak- and cluster-level inference in real data
200 3.2.1 Estimated FWER in real datasets

300 We evaluate whether the proposed method can control the FWER in real data analysis by com-
301 paring the theoretical FWER with the empirical FWER, estimated by permutation approaches.
302 The experimental procedures are illustrated in Section 2.3.2. For volume-based fMRI data, we
303 used 14 datasets (2 sites X 7 smoothness). For surface-based fMRI data, we used 6 datasets (2
s04 site X 3 smoothness). The estimated smoothness of different datasets are shown in Table 1.

305 Figure 5 shows the estimated FWER of peak- and cluster-level inference methods using
306 volume-based fMRI data. We found that the peak-level approach is valid, as most of the esti-
s07 mated FWERs lie in the binomial confidence interval of 2000 permutations (dashed line). The
308 cluster-level inference is also valid if the CDT is larger than 5. However, when the CDT be-
300 comes smaller, the false-positive rate will exceed the nominal level, because the assumptions of
s10  the theory may break down.

311 Figure 6 shows, for cluster-level inference, the comparison of the estimated cluster-size thresh-
312 old of random field theory and permutation approach at low smoothness levels. Different from
;13 the above analysis, we directly compare two thresholds because the 95% quantiles of empirical
314 maximum cluster-size distribution can not be estimated accurately. The reason is that when
315 the smoothness is low, the size of FC clusters is usually small, thus, there are many ties in the
316 maximum cluster-size distribution. A good agreement between the two thresholds demonstrates
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a1z the validity of cluster-size inference at low smoothness level, and the CDT can even be lower
a8 comparing with the above analysis (Z=4.5).

319 Figure 7 shows the estimated FWER of peak- and cluster-level inference methods using
320 surface-based fMRI data. We found that, when no spatial smoothing is applied (FWHM = Omm),
321 our approach is more conservative than permutation approach. The method works well when
322 we smooth the data. However, to the best our knowledge, there are no standard preprocessing
323 pipelines for surface-based resting-state fMRI data, thus, our surface-mapping approach may
322 not be optimal for BWAS and different preprocessing pipelines may affect the performance of
325 our approach. Therefore, the robustness of the approach should be tested in the future.

3226 3.2.2 The choice of cluster-defining threshold

327 For cluster-level inference, the expected Euler Characteristics is used to approximate the ex-
328 pected number of clusters in the random field theory, assuming that the absence of holes when
320 CDT is applied. However, this assumption may not be true when the CDT is not high enough
330 or the data are not smooth enough. Therefore, we compare the expected Euler characteris-
331 tics calculated based on the Gaussian random field theory with the observed expected number
332 of clusters across different levels of CDT in volume-based fMRI data in both Cambridge and
333 Southwest University datasets. The observed expected number of clusters is computed based on
33¢ an average of 2000 permutations of each dataset. The results are shown in Supplement Figure
35 2 and 4. We found that, when the applied smoothness is larger than 4mm, the choice of CDT
336 greater than 5 is very safe for 3 x 3 x 3 mm? resolution fMRI data to meet the assumption of
337 the random field theory. This is in agreement with our results in the previous Section (Figure
338 5). When the smoothness is low, we found that there exist a large deviation between theory and
330 real data when the CDT is smaller than 5.5. However, the results shown in Figure 6 indicate the
30 proposed method can provide a valid threshold when the CDT is as low as 4.5 in two datasets.
sa1 Therefore, more analysis should be done to validate the approach in the low smoothness cases.

2 3.2.3 Distribution of functional connectivity data

33 We test whether functional connectivities data, i.e., Fisher’s Z transformed correlation coefhi-
aaa  cients, are subject to normal distributions, which is a critical assumption for Gaussian random
a5 field theory. We performed one-sample Kolmogorov-Smirnov test to test the normality of each
a6 functional connectivity in both Cambridge and Southwest University datasets. Supplement Fig-
sa7 ure 1 and 3 show the results. As most of the p-values are larger than 0.05, we conclude that the
a8 normality assumption is met.

0 3.3 Comparing peak- and cluster-level inference with other multiple correc-
350 tion methods

351 Figure 8 shows the results of comparisons using 197 subjects in the Cambridge dataset. The
ss2  experimental procedures are illustrated in Section 2.4. In this analysis, we extracted time series
33 of 306 voxels from the left putamen region and 302 voxels from the left inferior frontal gyrus
ssa  in each of the 197 subjects, and 306 x 302 = 92412 functional connectivities between these two
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355 regions were calculated. Signals were added to 2970 of the functional connectivities, with effect
356 size ranging from 0.15 to 0.3, and smoothness of 0,4,8,12 mm was applied. For cluster-level
357 inference, we used CDT = 3, 3.5 and 4 (Z-value). The following observations are obtained from
3s8  this simulation:

350 e Almost all the methods can control false discovery rate in this simulation (below 5%).

360 e The power of peak-level inference is similar to Bonferroni correction when the smoothness
361 is low (e.g. no spatial smoothing), but it becomes close to FDR-BY and much higher than that
32 of Bonferroni correction when the smoothness is high (e.g. applied smoothness of 12 mm).

363 e The false discovery rate and power of cluster-level inference depends on the choice of CDT.
ssa  The lower the CDT, the higher the false discovery rate and power.

365 e We can find a CDT whose power is higher than that of the FDR method. In the meantime,
366 the false discovery rate is lower. For example, for cluster-level inference with CDT=3, the power
367 is higher than that of the FDR-BH method, and the false discovery rate is lower. For cluster-
38 level inference with CDT=3.5, the power is higher than that of the FDR-BY method, and the
360 false discovery rate is lower.

370 Similar results can be obtained by changing the selected voxels and the width of the signal
snn added, as shown in the Appendix (Supplement Figure 5-7). In conclusion, cluster-level inference
372 can increase sensitivity and decrease false-positive rate by filtering out small FC-clusters gener-
373 ated by random noises. Peak-level inference shows increased power when the smoothness is large;
374 thus, it is recommended when performing group-level studies with large applied smoothness.

s 3.4 Real data analysis: identifying altered functional connectivities in major
376 depression disorder

a7z We applied our method to identify functional connectivity difference between patients with
s7s major depression disorder (MDD) and healthy controls. The data used here are part of the data
379 in our previous study |Cheng et al., 2016] which contained 282 patients and 254 demographic
ss0 information matched controls from Southwest University dataset. We applied BWAS approach
ss1  to test the connectivity difference between two groups, with age, gender, education year, head
382 motion (mean frame-wise displacement) being nuisance covariates.

383 The most significant p-value among all functional connectivities was p = 5.5 x 1071, How-
ssa ever, the Bonferroni correction, FDR-BH and FDR-BY approaches can not detect any significant
sss  connectivities (FWER or FDR at 0.05). This is because Bonferroni correction requires the p-
a6 value smaller than p = 4.4x 10~ and both FDR-BH and FDR-BY approaches require the most
387 significant p-value smaller than the same threshold as Bonferroni correction. See the Manhattan
sss  plot for details (Figure 9).

380 The p-value threshold of peak-level inference approach was p = 9.1 x 10~!? (connectivity-wise
a0 FWER=0.05). A total of 114 altered functional connectivities were found (Figure 10, left). We
so1  applied cluster-level inference approach to identify significant FC clusters (CDT p = 3 x 1077
302 (Z=5) and cluster-size FWER=0.05 ). A total of 12388 functional connectivities were found
303 with p-value smaller than the applied CDT, and they formed 117 FC clusters. The largest one
32 contains 2247 functional connectivities. Finally, 10 largest FC clusters survived the cluster-size
305 FWER 0.05 threshold (Figure 10, right). Almost all the significant FCs in peak-level inference
306 form FC clusters in the cluster-level inference. We could see that, although billions of hypothesis
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307 tests were performed and tens of thousands of functional connectivities were found, the results
308 obtained by the cluster-level inference are very structured, thus, easy to be reported (Figure
300 10, right). The identified FC clusters can be used in subsequent analysis in several ways. For
a0 example, we can calculate the mean functional connectivity within each FC clusters, and use
s01  prediction models to classify patients and controls in a new dataset. For patients, we can also
402 test whether the mean functional connectivity within each FC clusters are associated with the
403 depression symptom severity scores.

204 3.5 Simulation-based validation for power analysis

405 Figure 11 shows the relationship between sample size and power estimated by two methods under
406 two combination of parameters: effect size v = 0.2,0.4,0.6 and smoothness FWHM=34,5,6
a7 voxels. The estimation error (mean squared error) shown in the figure is very low. Therefore,
a8 the proposed method can estimate power accurately, and this proposed framework can save a
400 considerable amount of time in generating power curves.

a0 3.6 The power of a future brain-wide association study on MDD

a1 We show an example of how to perform a power analysis to estimate the minimum required
412 sample size for a BWAS. In this example, we will analyze the power of BWAS on MDD using
413 the results of the above study. The aim is to estimate the minimum required sample size to
a4 find at least one altered functional connectivities. Base on the above study, the most significant
a5 functional connectivities is p = 5.5x 10711, corresponding to an effect size of vy = 0.28. Assuming
a16  that in the new dataset, this functional connectivity has a similar effect size, the power under
417 different sample sizes and smoothness levels are estimated and plotted in the Figure 12. Results
a1 show that about 80 to 130 subjects are needed to reach 90% power under different smoothness
410 levels.

20 4 Discussion

421 Our proposed method can accurately control FWER, as demonstrated by comparing with the
422 empirical FWER obtained from two real datasets. To the best our knowledge, BWAS is the
423 first method to use the random field theory to analyze the voxel-wise functional connectome.
422 Random field theory makes some assumptions of data. Eklund et al. [2016| recently reported
425 that random field theory could lead to inflated false-positive rate in task-activation analysis,
426 particularly when the CDT is low (p = 0.01). This failure is well known since the choice of low
a2z CDT violates the assumptions of the original theory [Friston et al., 1994|. However, in this same
28 article [Eklund et al., 2016], FWER is closer to nominal level when CDT is higher (p = 0.001).
420 Another article [Flandin and Friston, 2016] has also pointed out that the random field theory
430 can provide acceptable FWER when using two-sample t-test instead of one-sample t-test and
431 resampling the data close to the original image resolution. In our analysis, we have demonstrated
432 that the random field theory is valid for both volume- and surface-based resting-state fMRI data
433 under different smoothness. Particularly, the CDT in cluster-level inference should be high
a3 enough (|Z| > 5 for moderate or large smoothness and |Z| > 4.5 for low smoothness).
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435 Importantly, our method is computationally efficient. It is a fully parametric approach which
436 is not based on any simulation or permutation. Although non-parametric approaches can also
437 perform multiple correction and power analysis [Nichols and Holmes, 2002], they are extremely
438 slow in connexel-wise analysis by the necessity of calculating billions of statistical tests many
430 times. Our empirical studies show that our approach is usually at least N times faster than
420 the non-parametric permutation approaches, where N is the number of permutations performed.
421 The reason is that, although the subject-level brain network can be computed only once in
422 non-parametric permutations, the fitting of connexel-wise GLM is usually much slower than
a3 network construction, thus, it dominates the computation time. In addition, parallelization of
424 permutations will not save much time, because the transmission speed of large data between
as5  processors is very slow.

446 There are also limitations in the current framework. The functional connectivities identified
427 by massive univariate statistical tests approach may not be predictive, e.g., in a case-control
as study, the identified connectivities may not be able to classify patients and controls. A directly
420 construction of connexel-wise prediction model is also not practical, since the model constructed
450 on a few hundred subjects and billion of features usually has a large variance. Meanwhile, the
451 optimization of model parameters become very difficult in this ultra-high dimensional feature
452 space. One possible way to solve this problem is to adopt the current BWAS framework into
453 sure independence screening (SIS) approach [Fan and Lv, 2008; Fan et al., 2009, 2010]. In
a4 SIS) each feature x;,7 = 1,2,...,p is ranked in a descending order according to its correlation
455 with the target variable y, and a prediction model is fitted using a subset of features whose
456 rank is high enough. The authors showed that this intuitive approach possesses a good sure
47 independence screening property. BWAS is a special case of the first step of SIS, thus, it is easy
458 to be incorporate into the SIS approach. Moreover, by filtering out small-sized FC clusters using
a0 cluster-level inference approach, we expect that the prediction performance can be improved.
a0 Therefore, based on SIS, we can try to establish a connection between BWAS and prediction
461 analysis.

462 Many possible extensions and improvements of the current framework can be developed in
463 the future. First, this framework can be extended to task fMRI analysis to identify network
s62 configuration changes (e.g. [Lohmann et al., 2016]). It can support either single subject analysis
a5 or group analysis provided that the task experiment is in block design and the length of each trial
466 is long enough to enable network construction. Second, the cluster-level inference proposed here
a7 controls the FWER of cluster size. An alternative method of controlling the FDR of cluster size
a8 was proposed in task-activation studies [Chumbley and Friston, 2009; Chumbley et al., 2010],
a0 which can be easily adopted here. Third, the estimation of subject-level functional network
a70 is based on the Pearson correlation between pairwise BOLD signal time series in the current
ar1 framework, which may be suboptimal [Westfall and Yarkoni, 2016; Bellec et al., 2008; Sahib
a2 et al., 2016]. Therefore, a better approach for constructing a functional network at the voxel
473 level should be designed and validated in the future [Narayan and Allen, 2016; Bickel and Levina,
aza  2008|. Fourth, with the higher volume of available data, statistical methods for combining BWAS
475 results from multiple imaging centers are needed. In BWAS, integrating results from different
476 datasets has been shown to greatly reduce the false-positive rate and increase sensitivity [Cheng
a7 et al., 2015a,b, 2016]. However, the sample heterogeneity introduced by different sources, such
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478 as different data acquisition pipelines, population stratification, and genetic background, may
470 make the traditional meta-analysis method used in our previous studies suboptimal.

480 In this paper, we developed a rigorous statistical framework for BWAS. Both peak- and
481 cluster-level inferences are introduced for the analysis of voxel-wise functional connectomes, and
as2  the random field theory is developed to control FWER and estimate statistical power. We believe
483 that this method will be very useful for the neuroimaging fields in the context of understanding
484 the brain connectome.
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Figure 1: A flow chart of brain-wide association study. First, we estimate the voxel-level brain
network for each individual. Then, we perform connectivity-wise statistical tests to test the
association between each functional connectivity and a phenotype of interest. Finally, peak-
and cluster-inference approaches are used to identify significant signals.
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Figure 2: Power analysis for brain-wide association study. To estimate power, we first calculate
the FWER-corrected threshold Z, of peak-level inference, and then estimate the effect size ~
from a prior statistical map of BWAS. For a target sample size n, and a smoothness level FWHM,
we can estimate the power using the random field theory, which is defined as the probability of
finding at least one true-positive signal in a region, in which the false- positive rate « is controlled
at a certain level in the whole search region. Finally, the power under different sample sizes and
smoothness levels can be estimated iteratively.
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Figure 3: Two-dimensional diagrams of FC neighbours and FC clusters. The size of FC clusters
exceeding a CDT is used as a test statistic in the cluster-level inference. (A) In BWAS, there
are two cases that FCs are neighbours. In situation 1, two FCs share a common endpoint and
another two endpoints are spatial neighbours. In situation 2, two pairs of endpoints of two FCs
are all spatial neighbours. Situation 3 is a special case of situation 2. (B) In BWAS, FCs can
form a cluster in two ways. The first one is the FCs between voxel cluster AB, BC and AD, and
the second one is FCs within a voxel cluster E.
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Figure 4: A comparison of the multiple comparison thresholds provided by different methods in
BWAS (FWER or FDR 0.05) using 3x 3 x 3 mm? volume-based fMRI data. Methods that control
FWER (Bonferroni correction and peak-level inference) provide universal thresholds across FCs.
The threshold of FDR approaches depend on the rank of p-values of FCs. The CDT of cluster-
level inference is an universal threshold across FCs, and a subsequent correction on the size of
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Figure 5: Validating peak- and cluster-level inference by comparing the theoretical FWER
with permutation-based empirical FWER at 0.05. The methods are tested in 2 datasets (top:
Cambridge; bottom: SWU ) under 7 different smoothness levels (0 to 12 mm smoothing). The
estimated FWER is that proportion of permutations in which any significant signals are found
by the random field theory. Left: Results for peak-level inference. Right: Results for cluster-
level inference with different CDT (from 4.9 to 5.9). Almost all the results lie in the binomial
95% confidence interval (the dashed line).
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Figure 7: Validating peak- and cluster-level inference in surface-based fMRI data by comparing
the theoretical FWER with permutation-based empirical FWER at 0.05. The methods are
tested in 2 datasets (top: Cambridge; bottom: SWU ) under 3 different smoothness levels (0,
4, 8mm smoothing). The estimated FWER is that proportion of permutations in which any
significant signals are found by the random field theory. Left: Results for peak-level inference.
Right: Results for cluster-level inference with different CDTs (from 4.9 to 5.9). Almost all the
results lie in the binomial 95% confidence interval (the dashed line).
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Table 1: The estimated smoothness of different datasets used in our analysis (FWHM in mm).

Applied smoothness ‘ 0 mm 2 mm 4 mm 6 mm 8 mm 10 mm 12 mm

Cambridge volume-fMRI | 45 mm 4.6mm 7mm 106 mm 13.2mm 159 mm 17.6 mm

Estimated smoothness | Cambridge surface-fMRI | 4.7 mm  NaN 6.9 mm NaN 11.1 mm NaN NaN
SWU volume-fMRI 50mm 52mm 75 mm 109 mm 134 mm 153 mm 17.9 mm
SWU surface-fMRI 52mm  NaN 7.7 mm NaN 12.2 mm NaN NaN
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Power and false discovery rate simulation in Cambridge dataset
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Figure 8: Comparing peak- and cluster-level inference methods with Bonferroni correction and
two FDR methods in terms of power (first column) and false discovery rate (second column)
across different levels of effect size and smoothness levels using the Cambridge dataset. Left:
power curves of different approaches under different smoothness levels. Right: FDR curves of
different approaches under different smoothness levels.

28



Bonferroni, FDR-BH, FDR-BY

Peak-level inference

-log10(p-value)
ERqige ! mee

1 4 6 8 9 10 11 18 19 20 23 24 25 26 27 30 36 39 41 45 57 61 68 0 7 72 77 89 90 91 92 93 94

Region labels (AAL2 template)

Figure 9: Manhattan plot of altered functional connectivities in major depression disorder (p
< 107 only). Each point represents a functional connectivity grouped by the 94 cerebrum
regions of the AAL2 template. Bonferroni correction, FDR-BH and FDR-BY fail to identify
any significant connections, while both peak- and cluster-level inference approaches identified
many altered connectivities. Their brain locations are shown in the next two figures.
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Peal-level inference (connedtivity-wise FWER <0.05)
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Figure 10: The altered functional connectivities in major depression disorder identified by peak-
level inference (left) and cluster-level inference (right). For peak-level inference, the connectivity-
wise FWER is 0.05, which corresponds to uncorrected p-value<9 x 10719 For cluster-level
inference, the CDT is Z=5 (p < 3 x 107) and cluster-size FWER. is 0.05. Abbreviations of
regions are listed in the Supplement Table 1.
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Figure 11: Comparing the theoretical power analysis method (red line) with the simulation
result (blue line). Each figure shows the relationship between estimated power and sample size.
From the left to the right, the effect sizes are 0.2, 0.4 and 0.6. From the top to the bottom, the
FWHMSs are 3 to 6 voxels.
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Figure 12: Power of detecting at least one altered functional connectivity in major depression
disorder under different sample sizes and smoothness levels estimated by the proposed approach.
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A Image acquisition and preprocessing

Only publicly available data are used in this article. Resting-state fMRI data are collected from two
imaging sites: (1) 197 samples from the Cambridge dataset in 1000 Functional Connectomes Project
(1000 FCP) [Biswal et al., 2010] (http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.
html); (2) 552 subjects from the Southwest University dataset in International Data-sharing Initiative
(IDNI) (http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html). All
subjects are normal people. As Southwest University dataset is a longitudinal dataset, only subjects
who scanned at the first time are used in this paper.

All the data collected are subject to their local ethics review boards, the experiments and the dis-
semination of the anonymized data are approved. The detailed data acquisition methods may be found
in the respective websites and papers. The data were preprocessed using SPM12 [Penny et al., 2011]
and Data Processing and Analysis for Brain Imaging (DPABI) [Yan et al., 2016|. For each individual,
the preprocessing steps included discarding the first 10 time points, slice timing correction, motion
correction, coregistering the functional image to individual T1 structure image, segmenting structure
images and DARTEL registration |Ashburner, 2007|, regressing out nuisance covariates including 24
head motion parameters [Friston et al., 1996], white matter signals, cerebrospinal fluid signals, tempo-
ral filtering (0.01-0.1 Hz), normalizing to standard space of voxel size 3 x 3 x 3 mm® by DARTEL, and


http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html

smoothing by a 3D Gaussian kernel with FWHM = 0, 2, 4, 6, 8, 10, 12 mm. Finally, all the images
are manually checked by experts to ensure preprocessing quality. Images that are not successfully
preprocessed are discarded in our analysis.

The surface-based fMRI data are preprocessed using Connectome workbench. For the each volume-
based fMRI data in the Cambridge and Southwest University dataset, we map it to the Conte69 surface-
based atlas (http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas) using
the command
‘wb__command -volume-to-surface-mapping’. Each fMRI images are then smoothed by a 2D Gaus-
sian kernel with FWHM=0,4,8 mm using the command ‘wb_command cifti-smoothing’. Finally, the
smoothness of each image is estimated by the command ‘wb_command -cifti-estimate-fwhm’. The
surface area of Conte69 is estimated using the command ‘wb command -surface-vertex-areas’, which
is used in the random field theory.

B Calculating the intrinsic volume and Gaussian EC-density

To perform peak-level and cluster-level inference, we should calculate the 0- to 3-dimensional intrinsic
volume and the 0- to 6-dimensional EC-densities for the Gaussian random field.

Let P be the number of voxels, E, (or Ey, E,) be number of  (or y, z)-direction edges (two adjacent
voxels), Fyy (or Fy, Fy.) be number of zy (or yz, zz)-direction surface (four adjacent voxels), and C be
the number of cubes (eight adjacent voxels). The 7, (or ry,7,) be the resel size of « (or y, z)-direction,
which is defined as the voxel size divided by FWHM (in mm). The 0 to 3 dimensional intrinsic volume
of S can be calculated as:

ug(S) = P — (Ey + By + E,) + (Fys + Fpp + Fyy) — C

ur(S) = (E — Fpy — Foo + O)rg + (By — Foy — Fyo + C)ry + (BEy — Fyp — Fye + C)r,
up(S) = (Fopy — CO)rary + (Fyz — C)rgre + (Fyz — C)ryrs,

us(S) = Crxryrz

The above calculation has been implement in SPM package as spm_resels wvol function. Two other
methods also work well in practice. One is to replace the original space with a equal volume ball,
as implement in the fmristat package, the other is to use a linear regression model [Bartz et al.,
2011], which do not need the knowledge of spatial smoothness. In whole-brain BWAS, for peak-level
inference, the u;(P) and u;(Q) are the same. As there are p(p —1)/2 functional connectivities across p
voxels, we divided the estimated intrinsic volume by v/2, thus, the highest order term, uz(P) x u3(Q),
will approximate the total number of functional connectivities (in resel) in the brain.


http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas

The 0- to 6-dimensional EC-densities for Gaussian random field at ¢ are:

2
ps(t) = (41n2)3 (27) (¢ — 6t + 3)e =
“2(t° — 1063 + 15t)e 2

where ®(e) is the cumulative distribution function of standard normal distribution.

C Estimating the smoothness of the fMRI images

The true smoothness of fMRI images is usually large than the applied smoothness. Therefore, an
accurate estimation of smoothness is critical for Gaussian random field theory. The following approach
is used to estimate the smoothness of 3D or 2D images [Hagler et al., 2006]:

—2In2

In(1 — e

FWHM = dv

where dv is the average inter-neighbour distance of voxels or vertices, var(ds) is the variance of inter-
neighbours differences, and var(s) is the overall variance of the values at each voxels or vertices. The
FWHM of fMRI image is the average smoothness of the 3D or 2D images across all time points.

D Proof of formula (1) in the main text

Using the property of d-dimensional intrinsic volume [Taylor and Worsley, 2008]

a(P x Q) = Zuk Jug—r(Q)

When d > P, ug(P) =0 and d > @, uq(Q) = 0. It is easy to conclude that

P+Q P+Q d
Y P x Q) =" up(P)ua—r(Q)
=0 d=0 k=0
P Q
= pi(P) i (Q)
i=0 j=0

In our case, we have P = () = 3.



E Proof of formula (2) in the main text

The normal transformation of T-statistic makes the &gj fixed as &(2) [Worsley et al., 1992, 1996]. There-
fore, the test statistic becomes R
CBij
c(X'X)"1c/63
B (X' X)1X'Y;;

- Ve(X'X) 162
DR
s=1

M, which only depends on the subjects.
Ve(X'X)"1e/62

Let M@ (p) = (M7 (p),..., M) (@), p € P C R and NO(q) = (N[V(9),..., N (@))', q €
Q c R? be two vectors of v(*) independent and homogeneous Gaussian random fields with mean zeros
and variance one. The index s denotes subjects, and the v(®) can be treated as the number of time
points, while p, ¢ are the coordinates of three-dimensional Euclidean space. The (P+Q)-dimensional

cross-correlation random field R(*)(p, q) is defined as follows [Cao et al., 1999):

Zij =

where w(®) is the s-th element of row vector

M@ (p) N (q)
VM (p) ME) (p) N (q) N (q)
In BWAS;, the cross-correlation field is generated by calculating sample correlation coefficients between

pairwise voxel time series. Next, the element-wise Fisher’s Z transformation transforms this cross-
correlation random field to a six-dimensional ‘Gaussianized’ random field as:

1+ R¥(p,q)
1—RG)(p,q)

R (p,q) =

1
79 (p,q) = 5 log

It has mean zero and variance ﬁ [Kenney, 1939]. Our test statistic Z;;(p, ¢) forms a weighted sum

of Fisher’s Z transformed cross-correlation random field Z(p, q) as:

n

Z(p,q) =Y wZ2¥(p,q)

s=1

The random field Z(p, q) is a ‘Gaussianized’ random field with mean zero and variance one. Therefore,
we can use formula (1) in the main text to approximate its maximum distribution at high threshold:



The EC-densities for the Gaussian random field pg (20) in any dimensions can be expressed as
[Adler and Taylor, 2009]:

2
20
2

2 .
7 o _d+1 _d (2])' d—1 d—1-2j
Pd (Z(]) - (27T) 2 |A|2(P+Q) e Z (_1)j '2] 2,] ZO
where D is the highest dimension of Z(p,q). The |A| = |[Var(Z(p,q))| is the determinant of the
variance-covariance matrix of the partial derivative of Z(p,q). The |A| can be replaced by FWHMz,

the Full Width at Half Maximum (FWHM) of the random field Z averaged across all dimensions, using
the equation:

<

FWHMj = (4log 2)2|A| 25

and FWHM 7 is a corrected smoothness parameter, which can be calculated as:

P Q
n (s) T 2(P1Q) n (s) T 2(PHQ)
FWHM = (Z (W) FWHMM(S)> (Z (w)” FWHMNM>

()—3 ,U(s)_

s=1

where FWHM, ;) and FWHM ys) are the average FWHM of the random field vectors M (s) (p) and
NG) (q) across three dimensions. The proof of this formula is given in the next section. Finally, the
formula (2) in the main text is used in the peak—level inference:

1+J

27T) (4log2)
P(max Z(p,q) > =z i
( v, 4) > 20) Z;JZ;“’ FWHM?J
, Li+32'—1j (2)
_% k(2R (it =1\ 41 o
IR 7 P

We can see that FWHM is a function of the number of time points v(*) and the FWHM (s
and FWHM y(.) of the individual fMRI data. Assuming that the length of scanning time and image
smoothness is the same for every subject in a study. Denoting them as v and FWHM, the formula for
calculating FWHM 7 reduces to:

__ P __Q
B n (w(s))Q L 2(P+Q) n (w(s))2 L 2(P+Q)
FWHM, = (Z — FWHM ; 2 FWHM

s=1
= FWHMm [( C(X,X)_lX’ > < C(X/X)_lX/ )/]
C(X/X)C’é'g C(X/X)c’&g

N

= FWHM,/ (v — 3)0?
= FWHM

where we treat the sample variance o2 as the theoretical variance ﬁ This suggests that (1) the
smoothness of random field Z(p, q) equals the original image smoothness. A series of non-linear trans-
formations will maintain the original smoothness of images. (2) the scanning time does not influence

this formula.



In practice, for volume-base BWAS, we found that the formula one usually provide a slightly
conservative estimation of FWER-corrected threshold. Therefore, we modify it as:

a = P(max Z(p,q) > z0) = E(EC) = pa(P)2(Q)pf (20) (3)

For surface-based BWAS, we use:

2 2
a = P(max Z(p,q) > 20) ® E(EC) = > Y " mi(P)p;(Q)p7j(20) (4)

i=0 j=0

Finally, if we only analyse the functional connectivities between subcortical voxels P and cortical
vertices Q, we use:

3 2
a = P(max Z(p,q) > 20) * E(EC) = Y > ui(P)u;(Q)pf,(20) (5)
i=0 j=0
Proof of the formula for calculating FWHM »

Let Var(M® (p)) = Ay, and Var(N®)(q)) = Ay,, then according to the Lemma 4.2 in [Cao et al.,
1999,

op
and (s)
s _1
OR 8(p, ) (1= RO (p,q)%)2as  (An,)22)
q

where ag ~ sz, z](\f[) ~ N(O,IRP),ZJ(\‘;) ~ N(0,1p,) and independent of R®)(p,q), and 2 means
equal in distribution. Then, after the Fisher’s Z transformation, we have

(s) -1
W 2 (1= RO(p,q)*) " 2as ? (Ang,) 225
d
a 929 (p,q) b L1 ()
Rl 2 (1= B0 Ra (A )R
Then,
8Zép’ 9) D w® (1 - R (p, q)2)_%as_%(AMs)%Z§w
b s=1 |
and n
8Z((9p7 Q) 2 w(S)(l _ R(S) (p7 q)g)_%a;%(ANg)%Zj\f
q s=1 |
Since

Op Op op Jq
92 (p,q) 32(5”(1041)] E[aZ(S)(p,q) 3Z<S)’(nq)]
dq op

Var(Z(p,q)) =

(E[az(s)(p,q) 82(5”(1),61)] E[Bz(s)(p,q) 82(5)’(1@4}”)
E[ dq dq
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and

g0Z00.0) 02 (p.9), _ 020 (p.9) 02 (p.a), _
dp dq dq dp
and (s) (s)
02 (p,q) 02 (p, q < . -
g 07 0D 070Dy S0 E](1 - RO (p,9)%) Elay A,
6]) 8}9 s=1
02 (p,q) 0Z (p,q), _ =, (s ]
g7 0D 070Dy Sy 0)PE](1 - RO (p.9)%) Elay A,
0q 0q —~
The expectations in the above equations are
1
-1
Elo;"]= 5
(s) —_9
_ pls) 2y-17 _ Y
E[(1 - R™(p,q)")""] o) —3
Finally we get
T ())2
. > S, 0
Var(Z(p,q)) = | *= w®)?
’ Z CEE 6x6
s=1 X

Substituting the variance covariance matrix of partial derivative of the random field by the FWHM
using its relationship with |A|, we could get:

FwEM,) Y En:( w2 FWHM&(S) g E":( w®)? FWHMN(S ¢
(41n2)2 — o) =3 (4In2)2 o) =3 (4In2)2

thus

__Q
2(P+Q)

"L (w®))? TP+ [ (w(®)2
FWHMZ:( 53 FWHM, 2 ZU(S)_ FWHM 7,

s=1 s=1
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Figure 1: The p-values of normality tests in the Cambridge dataset.
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Figure 2: Comparing the expected FEuler characteristics calculated by the Gaussian random field theory
with the observed expected number of clusters across different levels of CDT under different smoothness
in the Cambridge dataset.
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Figure 3: The p-values of normality tests in the Southwest University dataset.

10



4 x10* SWU, FWHM =0 mm 4 %104 SWU, FWHM =2 mm SWU, FWHM =4 mm

2000
—6— Expected number of clusters —6— Expected number of clusters —6— Expected number of clusters
3 —O— Expected Euler Characteristics 3 —O— Expected Euler Characteristics 1500 —O— Expected Euler Characteristics
2 1000
1 500
o 0 0o
45 5 55 6 4.5 5 55 6 45 5 5.5 6
CDT (Z-statistics) CDT (Z-statistics) CDT (Z-statistics)
SWU, FWHM = 6 mm SWU, FWHM = 8 mm SWU, FWHM = 10 mm
500 200 60
—6— Expected number of clusters —6— Expected number of clusters 50 —6— Expected number of clusters
400 —O— Expected Euler Characteristics 150 —O— Expected Euler Characteristics —O— Expected Euler Characteristics
40
300
100 30
200
20
50
100 10
o 0 o
45 5 55 6 45 5 55 6 45 5 55 6
CDT (Z-statistics) CDT (Z-statistics) CDT (Z-statistics)
%0 SWU, FWHM = 12 mm

25 —6— Expected number of clusters
—O— Expected Euler Characteristics

CDT (Z-statistics)

Figure 4: Comparing the expected FEuler characteristics calculated by the Gaussian random field theory
with the observed expected number of clusters across different levels of CDT under different smoothness
in Southwest university dataset.
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Figure 5: Similar to the Figure 8 in the main text, but this figure is generated by using different set of
voxels.
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Figure 6: Similar to the Figure 8 in the main text, but this figure is generated by using different set of
voxels.
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Figure 7: Similar to the Figure 8 in the main text, but this figure is generated by using different set of

voxels.
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Table 1: The names and abbreviations of anatomical regions of interest.

No Rigions abbreviation ‘ No Rigions abbreviation
1 Precentral L PreCG 47  Lingual L LING
2 Precentral_R 48 Lingual R
3  Frontal Sup_ L SFGdor 49 Occipital _Sup_L SOG
4  Frontal Sup R 50  Occipital _Sup_ R
5 Frontal Sup Orb L ORBsup 51  Occipital Mid L MOG
6  Frontal Sup_Orb_R 52 Occipital _Mid_R
7  Frontal Mid L MFG 53  Occipital Inf L 10G
8  Frontal Mid R 54 Occipital Inf R
9  Frontal Mid Orb L ORBmid 55 Fusiform L FFG

10 Frontal Mid_Orb_R 56  Fusiform_ R

11 Frontal Inf Oper L IFGoperc 57  Postcentral L PoCG
12 Frontal Inf Oper R 58 Postcentral R

13 Frontal Inf Tri L IFGtriang 59 Parietal Sup L SPG
14 Frontal Inf Tri_ R 60 Parietal Sup_R

15 Frontal Inf Orb L ORBinf 61 Parietal Inf L IPL

16  Frontal Inf Orb_ R 62 Parietal Inf R

17  Rolandic_Oper_L ROL 63 SupraMarginal L SMG
18 Rolandic_Oper_R 64 SupraMarginal R

19  Supp Motor Area L SMA 65 Angular L ANG

20  Supp_Motor_Area R 66 Angular R

21  Olfactory L OLF 67 Precuneus L PCUN

22 Olfactory R 68 Precuneus R

23  Frontal Sup Medial L SFGmed 69 Paracentral Lobule L PCL

24  Frontal Sup Medial R 70 Paracentral Lobule R

25  Frontal Med Orb_L ORBsupmed | 71 Caudate L CAU

26 Frontal Med_Orb_R 72 Caudate_R

27  Rectus L REC 73 Putamen L PUT

28 Rectus_R 74 Putamen R

29 Insula_L INS 75  Pallidum_L PAL

30  Insula_R 76  Pallidum_R

31 Cingulum Ant L ACG 77  Thalamus L THA

32  Cingulum Ant R 78 Thalamus R

33 Cingulum Mid L DCG 79 Heschl L HES

34 Cingulum Mid R 80 Heschl R

35 Cingulum Post L PCG 81 Temporal Sup L STG

36  Cingulum Post R 82 Temporal Sup R

37 Hippocampus L HIP 83 Temporal Pole Sup L TPOsup

38 Hippocampus_ R 84 Temporal Pole Sup R

39 ParaHippocampal L PHG 85  Temporal Mid L MTG

40  ParaHippocampal R 86  Temporal Mid R

41  Amygdala L AMYG 87 Temporal Pole Mid L TPOmid

42 Amygdala R 88 Temporal Pole Mid R

43  Calcarine L CAL 89 Temporal Inf L ITG

44 Calcarine R 90 Temporal Inf R

45 Cuneus_L CUN

>
>

Cuneus_ R
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