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Abstract

The identification of connexel-wise associations, which involves examining functional con-
nectivities between pairwise voxels across the whole brain, is both statistically and computa-
tionally challenging. Although such a connexel-wise methodology has recently been adopted
by brain-wide association studies (BWAS) to identify connectivity changes in several mental
disorders, such as schizophrenia, autism and depression [Cheng et al., 2015a,b, 2016], the
multiple correction and power analysis methods designed specifically for connexel-wise anal-
ysis are still lacking. Therefore, we herein report the development of a rigorous statistical
framework for connexel-wise significance testing based on the Gaussian random field theory.
It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings us-
ing topological inference methods, and calculating power and sample size for a connexel-wise
study. Our theoretical framework can control the false-positive rate accurately, as validated
empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and
false discovery rate (FDR), it can reduce false-positive rate and increase statistical power
by appropriately utilizing the spatial information of fMRI data. Importantly, our method
considerably reduces the computational complexity of a permutation- or simulation-based
approach, thus, it can efficiently tackle large datasets with ultra-high resolution images. The
utility of our method is shown in a case-control study. Our approach can identify altered
functional connectivities in a major depression disorder dataset, whereas existing methods
failed. A software package is available at https://github.com/weikanggong/BWAS.

Keywords: brain-wide association study, random field theory, functional connectivity, statisti-
cal power
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1 Introduction1

The human brain connectome is usually modelled as a network. In the brain’s network, accu-2

rately locating the connectivity variations associated with phenotypes, such as clinical symptoms,3

is critical for neuroscientists. With the development of neuroimaging technology and an increas-4

ing number of publicly available datasets, such as the 1000 Functional Connectomes Project5

(FCP) [Biswal et al., 2010], Human Connectome Project (HCP) [Glasser et al., 2016] and UK6

Biobank [Miller et al., 2016], large-scale, image-based association studies have become possible7

and should help us improve our understanding of human brain functions.8

Using a priori knowledge of brain parcellation (e.g. AAL [Rolls et al., 2015]) or an adop-9

tion of data-driven parcellation (e.g. ICA [Beckmann and Smith, 2004]) to analyze the human10

connectome is the most popular approach, and many statistical methods have been designed for11

them [Zalesky et al., 2012; Kim et al., 2014]. However, with the availability of large datasets,12

increasing the spatial specificity in the functional connectivity analysis should provide a deeper13

insight into the brain connectome. Therefore, in this paper, a statistical framework for brain-14

wide association study (BWAS) is proposed [Cheng et al., 2015a,b, 2016]. It directly uses voxels15

as nodes to define brain networks, and then tests the associations of each functional connectivity16

with phenotypes.17

To conduct a systematic, fully-powered BWAS, two main issues should be carefully addressed.18

First, a multiple correction method to control the false-positive rate of massive univariate sta-19

tistical tests should be developed. Second, a power analysis method to estimate the required20

sample size should be designed. One may ask whether the methods widely used in region-level21

studies can be directly generalized to connexel-level studies. Two issues hinder such direct gener-22

alization. First, the statistical tests have more complex spatial structures in BWAS. Therefore,23

as shown in our analysis, some widely-used multiple correction methods which do not utilize the24

spatial information of data (e.g. Bonferroni correction and false discovery rate (FDR) [Benjamini25

and Hochberg, 1995; Benjamini and Yekutieli, 2001]) may not be powerful enough to detect sig-26

nals. Second, although non-parametric permutation methods [Nichols and Holmes, 2002] may27

account for the complex structures among hypothesis tests to provide a valid threshold, they are28

computationally very expensive in connexel-wise studies, owing to the requirement of performing29

billions of statistical tests. Therefore, an accurate and efficient method for multiple comparison30

problem and power analysis is needed.31

Random field theory (RFT) is an important statistical tool in brain image analysis, and32

it has been widely used in the analysis of task fMRI data and structure data [Ashburner and33

Friston, 2000]. Statistical parametric maps (SPM) are usually modelled as a discrete sampling34

of smooth Gaussian or related random fields [Penny et al., 2011]. The random field theory35

can control the FWER of multiple hypothesis testings by evaluating whether the observed test36

statistic, or the spatial extent of clusters exceeding a cluster-defining threshold (CDT), is large37

by chance, which is known as peak-level and cluster-level inference respectively. Since Adler’s38

early work on the geometry of random field [Adler, 1981; Adler and Taylor, 2009], theoretical39

results for different types of random fields have been obtained, such as the Gaussian random40

field [Friston et al., 1994; Worsley et al., 1996b], the t, �2, F random fields [Worsley, 1994; Cao,41

1999], the multivariate random field [Taylor and Worsley, 2008], the cross-correlation random42

2
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field [Cao et al., 1999]. Among them, only the cross-correlation field is designed for connectivity43

analysis. In that framework, the voxel-level functional connectivity network is modelled as a six-44

dimensional cross-correlation random field, and the maximum distribution of the random field45

is used to identify strong between-voxel connections. Different from the above works, the aim of46

BWAS is to identify connectivities that are associated with phenotypes. To our knowledge, no47

previous works have addressed this problem. In this paper, we show that the statistical map of48

BWAS, under the null hypothesis, can be modelled as a Gaussian random field with a suitable49

smoothness adjustment. Therefore, topological inference methods, such as peak intensity and50

cluster extent, are generalized from voxel-wise analysis to functional connectivity analysis.51

Besides controlling the type I error rate, estimating power or the required sample size for52

BWAS is also important. In genetics, for example, a high-quality GWAS analyzing one million53

single nucleotide polymorphism (SNP) usually requires tens of thousands of samples to reach54

adequate statistical power. In contrast, previous BWAS analyses of schizophrenia, autism and55

depression have only had sample sizes less than one thousand [Cheng et al., 2015a,b, 2016].56

Therefore, compared to GWAS, it is natural to ask if BWAS, which is usually based on a limited57

sample size, can withstand the rigors of a large number of hypothesis tests. In this regard,58

most existing power analysis methods are designed for voxel-wise fMRI studies, including, for59

example, the simulation based method [Desmond and Glover, 2002], the non-central distribution60

based method [Mumford and Nichols, 2008], and the method based on non-central random field61

theory (ncRFT) [Hayasaka et al., 2007]. Among them, the ncRFT-based method can both take62

into account the spatial structure of fMRI data and avoid time consuming simulation. Therefore,63

to analyze the power of BWAS, we adopted a methodology similar to that of the ncRFT-based64

method [Hayasaka et al., 2007]. The signals at functional connectivities are modelled as a non-65

central Gaussian random field, and the power is estimated by a modified Gaussian random field66

theory.67

In this paper, a powerful method to address the multiple comparison problem is proposed68

for BWAS (Figure 1). This method uses Gaussian random field theory to model the spatial69

structure of voxel-level connectome. It can test the odds that either the effect size of every single70

functional connectivity (peak-level inference) or the spatial extent of functional connectivity71

clusters exceeding a cluster-defining threshold (cluster-level inference) is large by chance. The72

performance of the method is tested in two resting-state fMRI datasets, and in both volume-73

based and surface-based fMRI data. Our method can control the false-positive rate accurately.74

Compared with Bonferroni correction and false discovery rate (FDR) approaches, our method75

can achieve a higher power and filter out false-positive connectivities by utilizing the spatial76

information. In addition, we develop a modified Gaussian random field theory to explicitly77

approximate the power of peak-level inference (Figure 2). Power can be estimated in any specific78

location of connectome efficiently, which can help to determine the sample size for BWAS. The79

utility of our method is shown by identifying altered functional connectivities and estimating80

the required sample sizes in major depression disorder. The software package for BWAS can be81

downloaded at https://github.com/weikanggong/BWAS.82
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2 Materials and Methods83

2.1 Connexel-wise general linear model84

The popular general linear model approach is used in BWAS. Briefly, a voxel-level functional85

network is estimated for each subject using the fMRI data, and the association between each86

functional connectivity and phenotype of interest is tested using the general linear model.87

In detail, the individual functional network is constructed first by calculating the Pearson
correlation coefficients (PCC) between every pair of voxel time series. Let m be the number
of voxels, s be the subject, and R(s)

= [r
(s)
ij

]

m⇥m

be the m ⇥m functional network matrix for
subject s. Each element of R(s) is the correlation coefficient between voxel time series i and j

for subject s. An element-wise Fisher’s Z transformation is then applied as Z(s)
= [z

(s)
ij

]

m⇥m

=

[

1
2 log(

1+r

(s)
ij

1�r

(s)
ij

)]

m⇥m

, so that z
(s)
ij

will approximate a normal distribution. For every functional

connectivity, a general linear model (GLM) is fitted by

Y
ij

= XB
ij

+ ✏
ij

where, Y
ij

= (z
(1)
ij

, z
(2)
ij

, . . . , z
(n)
ij

) is an n ⇥ 1 vector of functional connectivities between voxel
i and j across n subjects, X is the common n ⇥ q design matrix, B

ij

= (�1
ij

,�2
ij

, . . . ,�q

ij

) is
a q ⇥ 1 vector of regression coefficients, and ✏

ij

is an n ⇥ 1 vector of random error, which is
assumed to be an independent and identically distributed Gaussian random variable N(0,�2

ij

)

across subjects. The ordinary least square estimator for B
ij

is ˆB
ij

= (X 0X)

�1X 0Y
ij

, and for
�2
ij

, it is �̂2
ij

= (Y
ij

� X ˆB
ij

)

0
(Y

ij

� X ˆB
ij

)/(n � q). Then, a Student’s t-statistic at functional
connectivity between voxel i and j can be expressed as:

T
ij

=

c ˆB
ij

(c(X 0X)

�1c0�̂2
ij

)

1
2

where c is a 1 ⇥ q contrast vector. In BWAS, let �1
ij

be the primary variable of interest,88

and �2
ij

, . . . ,�q

ij

be the nuisance covariates included in the regression model. The contrast89

c = (1, 0, . . . , 0) will be used to test the hypothesis �1
ij

= 0, and the T
ij

-statistics will re-90

flect the significance of the primary variable. Other contrasts can also be used depending on91

the study design. Finally, the Student’s t random variable at each functional connectivity T
ij

92

is transformed to a Gaussian random variable Z
ij

by transforming T -statistics to p-values and93

then to Z-statistics.94

After the above steps, the connexel-wise Z-statistics form a statistical parametric map in a95

six-dimensional Euclidian space. The reason is that the spatial location of each Z statistic (or96

functional connectivity) can be uniquely represented by the coordinates of its two endpoints,97

each of which is a voxel in a three-dimensional space. Therefore, the structure of the statistical98

map can be modelled by the random field theory, and the topological inference methods for99

multiple hypothesis testings are developed in the subsequent Section.100

4
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2.2 Multiple comparison correction using topological inference methods101

2.2.1 Peak-level inference102

Peak-level inference controls FWER among multiple hypothesis testings on functional connectiv-103

ities, i.e., the probability of finding at least one false-positive functional connectivity is controlled104

under certain level ↵. It is assumed, under the null hypothesis, that the statistical parametric105

map of BWAS is a discrete sampling of smooth and stationary Gaussian random fields with106

mean zero and variance one. To control the FWER of multiple hypothesis testings, the max-107

imum distribution of the random field should be known. In our paper, its tail distribution is108

approximated by the expected Euler characteristic (EC) of the excursion set of random field.109

The detailed derivation is given in the Appendix. We sketch an overview of the result here.110

Let Z(p, q), p 2 P , q 2 Q be a (P+Q)-dimensional Gaussian random field spanned by a111

P-dimensional random field P and a Q-dimensional random field Q. At high threshold z0, its112

maximum distribution has a general form [Adler and Taylor, 2009; Worsley et al., 1996b]:113

↵ = P (max Z(p, q) > z0) ⇡ E(EC) =

P+QX

d=0

µ
d

(P ⇥Q)⇢Z
d

(z0)

=

PX

i=0

QX

j=0

µ
i

(P)µ
j

(Q)⇢Z
i+j

(z0)

(1)

where the µ
d

(·) is the d-th dimensional intrinsic volume of the random field, and ⇢Z
d

(z0) is the d-th114

dimensional EC-density for the Gaussian random field at threshold z0 (z0 > 0). The method for115

calculating µ
d

(·) and ⇢Z
d

(·) are shown in the Appendix. Therefore, the ↵-level FWER-corrected116

threshold z0 can be found using equation (1), and for one-tailed tests, functional connectivities117

with Z-values larger than z0 (or smaller than �z0) are declared as significant.118

For different kinds of BWAS analysis, P and Q in (1) can take different values. For example,119

for the widely-used volume-based fMRI data, we use P=Q=3 (Result Section 3.2.1). If the con-120

nectivities are estimated between pairwise vertices on cortical surface, we use P=Q=2 (Result121

Section 3.2.1), and if the connectivities are estimated between subcortical structures and cortical122

surface, we use P=3 and Q=2. The estimated FWER-corrected threshold is usually less con-123

servative than Bonferroni correction method, because the intrinsic volume µ
d

(·) in equation (1)124

takes into account both the number of hypothesis tests performed and the correlations among125

tests, and an increasing of spatial smoothness can make the FWER-corrected threshold z0 lower.126

For BWAS, the equation (1) can be approximately estimated using the results of Gaussian ran-127

dom field, provided that the spatial smoothness is estimated correctly. The reason is that the128

statistical map of BWAS is generated by a series of non-linear transformation of original fMRI129

images. As a result, we calculate equation (1) as:130

↵ = P (max Z(p, q) > z0) ⇡
PX

i=0

QX

j=0

µ
i

(P)µ
j

(Q)

(2⇡)�
i+j+1

2
(4 log 2)

i+j
2

FWHMi+j

Z

⇥ e�
z20
2

b i+j�1
2 cX

k=0

(�1)

k

(2k)!

k!2k

✓
i+ j � 1

2k

◆
zd�1�2k
0

(2)
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where FWHM
Z

is the adjusted full-width at half maximum of the Gaussian smooth kernel,131

which is a function of the original smoothness of fMRI images. A proof of the equation (2) and132

smoothness estimation approach are shown in the Appendix.133

2.2.2 Cluster-level inference134

Cluster-level inference is also popular in brain image analysis. Here, inference is based on the135

observed cluster size exceeding certain cluster-defining threshold (CDT) [Friston et al., 1994].136

We are usually interested in whether the observed cluster size is large by chance, i.e., where the137

size is on the upper tail of the distribution of maximum cluster size under the null hypothesis. We138

show that, similar to the voxel clusters in three-dimensional space, the functional connectivity139

cluster (FC cluster) can also be defined rigorously. Its size can be used as a test statistic for140

statistical inference, and it has a clear interpretation.141

A voxel cluster is a set of spatially connected voxels. To define a FC cluster, we first illustrate142

the neighbourhood relationship between two functional connectivities. Let the endpoints of two143

functional connectivity be (x1, y1) and (x2, y2), if their endpoints are non-overlapped voxels,144

then two functional connectivities are neighbours if both x1, x2 and y1, y2 are spatially adjacent145

voxels. If they share a same endpoint (e.g. x1 = x2), then they are neighbours if y1, y2 are146

spatially adjacent voxels. Some examples of FC neighbours are shown in Figure 3A. Now,147

consider an undirected graph G with k nodes, where the nodes are k functional connectivities148

and two nodes are connected if they are neighbours, then these k functional connectivities form149

a FC cluster if they form a connected component in the graph G. Some examples of FC clusters150

are shown in Figure 3B. There are five voxel clusters A, B, C, D, E in a two-dimensional image.151

The FCs between AB, BC and AD are different FC clusters, and FCs within voxel cluster E152

also form a single FC cluster. An algorithm for finding FC clusters can be implemented based153

on the above definition. In our analysis, We use Dulmage-Mendelsohn decomposition to find154

connected components in graph G.155

Based on the normality and stationarity assumption as in peak-level inference, we propose to
use Gaussian random field theory to approximate the null distribution of maximum cluster size.
In brief, let M be the number of FCs exceeding a pre-specified CDT z0, N be the number of
FC clusters, and S be size of a FC cluster. Suppose that separate FC clusters are independent,
then the distribution of maximum cluster size S

max

for Gaussian random field is [Adler, 1981;
Friston et al., 1994]:

P (S
max

> s) = 1� exp [�E(N)P (S > s)]

The expected number of FC clusters E(N) at a high CDT z0 can be approximated by the
expected EC of Gaussian random field using equation (2):

E(N) ⇡ E(EC) =

PX

i=0

QX

j=0

µ
i

(P)µ
j

(Q)⇢Z
i+j

(z0)

The distribution of S can be approximated by [Adler, 1981; Nosko, 1969]:

P (S > s) = exp

"
�
✓
�((P +Q)/2 + 1)E(N)s

E(M)

◆ 2
(P+Q)

#
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and E(M) = m[1 � �(z0)], where m is the number of functional connectivities, and �(•) is156

the cumulative distribution function of standard normal distribution. The above theory is a157

generalization of previous result (e.g. [Friston et al., 1994] and [Hayasaka and Nichols, 2003]),158

except the use of equation (2) to approximate the expected number of clusters E(N).159

Therefore, in the cluster-level inference, small-sized FC clusters are more likely to be identi-160

fied as false positives and filtered out (e.g. the red link in Figure 3B). Large-sized FC clusters161

represent an existence of association signals either between two different voxel clusters (e.g. the162

blue and green ones in Figure 3B) or within a single voxel cluster (e.g. the yellow one in Figure163

3B). For example, consider that one performed a case-control BWAS, then the identified FCs164

can be either altered connections between two brain regions or within a single region.165

2.3 Validating peak- and cluster-level inference in real data166

2.3.1 Data167

Two resting-state fMRI datasets are used in our analysis: (1) 197 subjects from the Cambridge168

dataset in the 1000 Functional Connectomes Project (1000 FCP); (2) 222 subjects from the169

Southwest University (SWU) dataset in the International Data-sharing Initiative (IDNI). The170

subjects in the two datasets are all healthy people with similar demographic information. They171

are preprocessed using standard preprocessing pipelines implemented in Data Processing and172

Analysis for Brain Imaging (DPABI) [Yan et al., 2016]. Finally, All fMRI data are registered to173

3 ⇥ 3 ⇥ 3 mm3 standard space, and 47636 voxel time series within each subject’s 90 cerebrum174

regions (based on AAL template) are extracted. They are then smoothed by 3D Gaussian kernels175

with FWHM = 0, 2, 4, 6, 8, 10, 12 mm on each dimension. Therefore, for volume-based fMRI176

data, a total number of 14 datasets (2 sites ⇥ 7 smoothness) are used in our subsequent analysis.177

In addition, the above data are also mapped on to the Conte69 surface-based atlas using the178

Connectome Workbench software. They are smoothed by 2D Gaussian kernels restricted on the179

cortical surface with FWHM = 0, 4, 8 mm. Finally, 32492 vertex time series on the left cortical180

surface are used in our analysis. All details are provided in the Appendix.181

2.3.2 Estimating the empirical FWER182

To evaluate whether the random field theory can actually control the FWER in real data analysis,183

we compared our method with empirical permutation results in real data. Similar approaches184

have previously been adopted to validate the random field theory in task-activation studies185

[Eklund et al., 2016, 2012].186

The following procedures were carried out in each of the volume-based and surface-based187

fMRI datasets. First, subjects were randomly divided into two groups. Second, BWAS was188

performed to compare the whole brain functional connectivities between two groups (approxi-189

mately 1.13⇥10

9 connections in volume-based data, and 5.28⇥10

8 connections in surface-based190

data). The peak- and cluster-level inference approaches were applied to find significant signals.191

Third, the above two steps were repeated 2000 times. FWER was then estimated by computing192

that proportion of permutations in which any significant signal is found. Since subjects were193

all healthy people with similar demographic informations, and their group labels were randomly194
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assigned, we expected that there were no group differences. Therefore, if the proposed approach195

is valid, the proportion of analysis with at least one significant effect should be close to the196

nominal error rate 0.05.197

2.4 Comparing with other multiple correction methods198

We compared our proposed method with connexel-wise Bonferroni correction and false discovery199

rate (FDR-BH [Benjamini and Hochberg, 1995], FDR-BY [Benjamini and Yekutieli, 2001]) in200

terms of the observed power and false-discovery rate. To mimic real data, we did not use201

completely simulated data, but rather, we adopted a widely used evaluation methodology in202

GWAS (e.g. [Yang et al., 2014; Zhou and Stephens, 2012]), which directly simulated signals203

that correlated with real data. The data used here were 197 subjects in the Cambridge dataset204

in four smoothness levels (FWHM = 0, 4, 8, 12 mm).205

2.4.1 Simulation procedures206

In detail, two cerebrum regions within the AAL template were first randomly selected. BOLD207

signals of voxels within these two regions were extracted and functional connectivities of pairwise208

voxels between these two regions were estimated. Second, subjects were randomly divided209

into two groups, and signals were added to a subset of functional connectivities in one group.210

Specifically, the signals formed a single FC-cluster with different mean connectivity intensity211

between the two groups. Third, a two-sample t-test was used to compare two groups of functional212

connectivities. Five methods, including Bonferroni, FDR-BH [Benjamini and Hochberg, 1995],213

FDR-BY [Benjamini and Yekutieli, 2001], peak-level inference, and cluster-level inference (with214

different CDT), were used to control the false-positive rate of multiple hypothesis testings.215

Four free parameters were found in our simulation: 1) voxels selected from real data, 2)216

signal width, i.e., the number of altered functional connectivities, 3) effect size of the signal and217

4) image smoothness. In the Results Section, we report the results of comparisons among the218

different combinations of parameters.219

2.4.2 Performance metrics220

Two metrics were used to evaluate the performance: the observed power and false-discovery221

rate. The observed power was calculated as the number of discovered true-positive functional222

connectivities divided by the total number of true-positive connectivities. The observed false-223

discovery rate was calculated as the number of discovered false-positive functional connectivities224

divided by total number of discovered functional connectivities.225

2.5 Statistical power analysis226

A method to estimate the statistical power of peak-level inference is proposed. Power is defined227

as the probability of finding at least one true-positive signal for a region (denoted as B) in which228

the false- positive rate ↵ is controlled at a certain level in the whole search region (denoted as A)229

[Friston et al., 1994]. To estimate power, four parameters should be specified: (1) the threshold230
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that controls FWER ↵, (2) the effect size of true signal �, (3) the sample size n, and (4) the231

smoothness of image.232

First, if we assume that the primary variable of interest, �1
ij

, is subject to a normal distri-
bution N(µ

ij

,�2
ij

), the null hypothesis is H0 : E(�1
ij

) = 0. Therefore, every test statistic Z
ij

is
subject to N(0, 1). The whole search region A is a central Gaussian random field with mean
zero and variance one at each point. The threshold z0 to control the FWER at ↵ is obtained by
the random field theory (Formula 2):

↵ = P ( max

(p,q)2A
Z(p, q) > z0|H0)

where (p, q) are the coordinates of the functional connectivities.233

Then, under the alternative hypothesis H1 : E(�1
ij

) = µ
ij

, the test statistics Z
ij

is subject
to N(

p
nµ

ij

/�
ij

, 1), where n is the sample size. The �
ij

= µ
ij

/�
ij

is called effect size at FC
ij

.
We further assume that the distribution of signals will be the same in region B, i.e., all �1

ij

is
subject to the same normal distribution N(µ,�2

). Therefore, region B is a non-central Gaussian
random field Z⇤

(p, q) with mean
p
n� and variance one at each point. The power in the search

region B ⇢ A can be expressed as:

Power = P ( max

(p,q)2B
Z⇤

(p, q) > z0|H1)

The non-central Gaussian random field Z⇤
(p, q) can be transformed to a central Gaussian

random field by the following element-wise transformation:

Z(p, q) = Z⇤
(p, q)�

p
n�

therefore, the power in region B can still be calculated using Formula (2):

Power = P ( max

(p,q)2B
Z(p, q) > z0 �

p
n�|H0)

Three issues remain. The first involves selecting region B. When estimating power, we select234

region B as consisting of functional connectivities between two three-dimensional balls, with the235

diameter of each ball being equal to the intrinsic FWHM of the image (Figure 2). The idea236

is that signals within such ball are usually homogeneous as a result of the smoothness of the237

image. Besides, the matched filter theorem suggests that the signal is best detected when the238

width of the smooth kernel matches the width of the signal [Worsley et al., 1996a].239

The second issue involves the random field theory which can only approximate the right
tail of the maximum distribution. Therefore, the above method may lead to an inaccurate
estimation when z0 �

p
n� is small. To address this problem, we propose to use the following

heuristic modification:

Power = 1� exp


�P ( max

(p,q)2B
Z(p, q) > z0 �

p
n�|H0)

�

This formula ensures that the power is between zero and one, which shows excellent performance240

in the simulation.241
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The last issue concerns estimating the effect size, which is typically estimated from the
statistical map of a pilot study using the same study design. Suppose that the pilot BWAS
study used n? samples. Then, the estimated effect size at FC

ij

is [Joyce and Hayasaka, 2012]:

�̂
ij

= Z
ij

/
p
n?

Using the above formula, the power can be estimated for each functional connectivity to form a242

power map on six-dimensional space, but it is quite difficult to visualize such a maps. Therefore,243

to report the power of a study, we estimate the effect size of every FC to form an empirical244

distribution. The power curves of different sample sizes and effect sizes under certain power245

(e.g. 90% power) are analyzed and reported.246

2.5.1 Simulation-based validation for power analysis247

To test whether the proposed method can estimate power accurately, we performed a simulation248

study. Briefly, we simulated a case-control study with known effect size in a subset of functional249

connectivities, and we compared the observed power and the theoretical power.250

In detail, first, we generated two sets of 10000 three-dimensional independent Gaussian white251

noise images, with 30 voxels per dimension. Second, the images were smoothed by Gaussian252

kernels with FWHM ranging from 3 to 6 voxels. Third, a ball with radius 10 voxels located at253

the center of each image was extracted. This guaranteed the uniform smoothness. Fourth, every254

20 images were combined to form 500 simulated four-dimensional fMRI data. We denoted the255

images in the first set as (A1, A2, . . . , A500) and the images in the second set as (B1, B2, . . . , B500).256

Fifth, the Pearson correlation coefficients were calculated between time series of pairwise voxels257

of images A
i

and B
i

, and a Fisher’s Z transformation was then performed. Sixth, two groups258

of images from two sets were randomly selected, with each group consisting of 200 samples. A259

Z-map was then generated by fitting each functional connectivity to a general linear model to260

compare the two groups. Seventh, signals were then added to functional connectivities between261

two balls, which were located at the center of each images. The diameter of balls was equal262

to the FWHM of images. Specifically, a signal was the mean intensity difference between two263

groups. We then estimated power using simulated data under different parameters, including264

image smoothness FWHM, sample size n and effect size � (Figure 2). The steps six and seven265

were repeated for 10000 times under each parameter setting, and its maximum statistics are266

recorded at each simulation. The empirical power was estimated by the proportion of maximum267

statistics exceeding the FWER 0.05 threshold. We compared the results of simulation with the268

proposed theoretical method.269

3 Results270

3.1 Overview of the proposed approaches271

Figure 1 and 2 show the diagrams of the proposed approaches. Figure 4 shows the multiple272

comparison threshold of different approaches in a typical BWAS study. In the study, the fMRI273

data have a spatial resolution of 3⇥ 3⇥ 3 mm3. A total of 47636 voxels in the cerebrum regions274

were used.275
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Methods that control connectivity-wise FWER, including Bonferroni correction and peak-276

level inference, provide evidence of association of each individual functional connectivities that277

survive the threshold. Bonferroni correction is always the most conservative one. The peak-278

level inference is more powerful when the smoothness of images are increased. As shown in the279

Figure 4, the FWER-corrected threshold can be 1 to 2 order of magnitudes less conservative280

than Bonferroni correction. Methods that control connectivity-wise FDR, including FDR-BH281

and FDR-BY approaches, control the proportion of false-positive findings smaller than a pre-282

specified level q (e.g. 5%). For the widely-used FDR-BH approach, it compares the i-th smallest283

p-value p(i) with i

n

q, where n is the total number of hypothesis tests, and rejects the first k284

hypothesis tests that satisfy p(i) < i

n

q (Figure 4). Therefore, the power of FDR approaches285

highly depends on the observed p-values, which can be more or less powerful than the peak-286

and cluster-level inference. For example, FDR approaches require the most significant p-value287

reaches the threshold of Bonferroni correction. This requirement is sometimes very conservative288

in BWAS, owing to the billions of statistical tests performed. However, it can be more powerful289

when many of the p-values meet the requirement of the data-driven threshold. A method290

that controls connectivity-wise FWER can also control connectivity-wise FDR. The cluster-291

level inference approach tests the size of the FC clusters exceeding a CDT. A significant FC292

cluster can provide evidence that there exist association signals somewhere in this FC cluster.293

None of the individual functional connectivities in the cluster can be declared as significant ones.294

This approach is usually sensitive to spatially extended signals. Moreover, when the CDT equals295

the FDR threshold, the connectivity-wise FDR can be controlled, and when the CDT equals the296

FWER threshold, it is equivalent to control the connectivity-wise FWER.297

3.2 Validating peak- and cluster-level inference in real data298

3.2.1 Estimated FWER in real datasets299

We evaluate whether the proposed method can control the FWER in real data analysis by com-300

paring the theoretical FWER with the empirical FWER estimated by permutation approaches.301

The experimental procedures are illustrated in Section 2.3.2. For volume-based fMRI data, we302

used 14 datasets (2 sites ⇥ 7 smoothness). For surface-based fMRI data, we used 6 datasets (2303

site ⇥ 3 smoothness). The estimated smoothness of different datasets are shown in Table 1.304

Figure 5 shows the estimated FWER of peak- and cluster-level inference methods using305

volume-based fMRI data. We found that the peak-level approach is valid, as most of the esti-306

mated FWERs lie in the binomial confidence interval of 2000 permutations (dashed line). The307

cluster-level inference is also valid if the CDT is larger than 5. However, when the CDT be-308

comes smaller, the false-positive rate will exceed the nominal level, because the assumptions of309

the theory may break down.310

Figure 6 shows, for cluster-level inference, the comparison of the estimated cluster-size thresh-311

old of random field theory and permutation approach at low smoothness levels. Different from312

the above analysis, we directly compare two thresholds because the 95% quantiles of empirical313

maximum cluster-size distribution can not be estimated accurately. The reason is that when314

the smoothness is low, the size of FC clusters is usually small, thus, there are many ties in the315

maximum cluster-size distribution. A good agreement between the two thresholds demonstrates316
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the validity of cluster-size inference at low smoothness level, and the CDT can even be lower317

comparing with the above analysis (Z=4.5).318

Figure 7 shows the estimated FWER of peak- and cluster-level inference methods using319

surface-based fMRI data. We found that, when no spatial smoothing is applied (FWHM = 0mm),320

our approach is more conservative than permutation approach. The method works well when321

we smooth the data. However, to the best our knowledge, there are no standard preprocessing322

pipelines for surface-based resting-state fMRI data, thus, our surface-mapping approach may323

not be optimal for BWAS and different preprocessing pipelines may affect the performance of324

our approach. Therefore, the robustness of the approach should be tested in the future.325

3.2.2 The choice of cluster-defining threshold326

For cluster-level inference, the expected Euler Characteristics is used to approximate the ex-327

pected number of clusters in the random field theory, assuming that the absence of holes when328

CDT is applied. However, this assumption may not be true when the CDT is not high enough329

or the data are not smooth enough. Therefore, we compare the expected Euler characteris-330

tics calculated based on the Gaussian random field theory with the observed expected number331

of clusters across different levels of CDT in volume-based fMRI data in both Cambridge and332

Southwest University datasets. The observed expected number of clusters is computed based on333

an average of 2000 permutations of each dataset. The results are shown in Supplement Figure334

2 and 4. We found that, when the applied smoothness is larger than 4mm, the choice of CDT335

greater than 5 is very safe for 3 ⇥ 3 ⇥ 3 mm3 resolution fMRI data to meet the assumption of336

the random field theory. This is in agreement with our results in the previous Section (Figure337

5). When the smoothness is low, we found that there exist a large deviation between theory and338

real data when the CDT is smaller than 5.5. However, the results shown in Figure 6 indicate the339

proposed method can provide a valid threshold when the CDT is as low as 4.5 in two datasets.340

Therefore, more analysis should be done to validate the approach in the low smoothness cases.341

3.2.3 Distribution of functional connectivity data342

We test whether functional connectivities data, i.e., Fisher’s Z transformed correlation coeffi-343

cients, are subject to normal distributions, which is a critical assumption for Gaussian random344

field theory. We performed one-sample Kolmogorov-Smirnov test to test the normality of each345

functional connectivity in both Cambridge and Southwest University datasets. Supplement Fig-346

ure 1 and 3 show the results. As most of the p-values are larger than 0.05, we conclude that the347

normality assumption is met.348

3.3 Comparing peak- and cluster-level inference with other multiple correc-349

tion methods350

Figure 8 shows the results of comparisons using 197 subjects in the Cambridge dataset. The351

experimental procedures are illustrated in Section 2.4. In this analysis, we extracted time series352

of 306 voxels from the left putamen region and 302 voxels from the left inferior frontal gyrus353

in each of the 197 subjects, and 306⇥ 302 = 92412 functional connectivities between these two354
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regions were calculated. Signals were added to 2970 of the functional connectivities, with effect355

size ranging from 0.15 to 0.3, and smoothness of 0, 4, 8, 12 mm was applied. For cluster-level356

inference, we used CDT = 3, 3.5 and 4 (Z-value). The following observations are obtained from357

this simulation:358

• Almost all the methods can control false discovery rate in this simulation (below 5%).359

• The power of peak-level inference is similar to Bonferroni correction when the smoothness360

is low (e.g. no spatial smoothing), but it becomes close to FDR-BY and much higher than that361

of Bonferroni correction when the smoothness is high (e.g. applied smoothness of 12 mm).362

• The false discovery rate and power of cluster-level inference depends on the choice of CDT.363

The lower the CDT, the higher the false discovery rate and power.364

• We can find a CDT whose power is higher than that of the FDR method. In the meantime,365

the false discovery rate is lower. For example, for cluster-level inference with CDT=3, the power366

is higher than that of the FDR-BH method, and the false discovery rate is lower. For cluster-367

level inference with CDT=3.5, the power is higher than that of the FDR-BY method, and the368

false discovery rate is lower.369

Similar results can be obtained by changing the selected voxels and the width of the signal370

added, as shown in the Appendix (Supplement Figure 5-7). In conclusion, cluster-level inference371

can increase sensitivity and decrease false-positive rate by filtering out small FC-clusters gener-372

ated by random noises. Peak-level inference shows increased power when the smoothness is large;373

thus, it is recommended when performing group-level studies with large applied smoothness.374

3.4 Real data analysis: identifying altered functional connectivities in major375

depression disorder376

We applied our method to identify functional connectivity difference between patients with377

major depression disorder (MDD) and healthy controls. The data used here are part of the data378

in our previous study [Cheng et al., 2016] which contained 282 patients and 254 demographic379

information matched controls from Southwest University dataset. We applied BWAS approach380

to test the connectivity difference between two groups, with age, gender, education year, head381

motion (mean frame-wise displacement) being nuisance covariates.382

The most significant p-value among all functional connectivities was p = 5.5⇥ 10

�11. How-383

ever, the Bonferroni correction, FDR-BH and FDR-BY approaches can not detect any significant384

connectivities (FWER or FDR at 0.05). This is because Bonferroni correction requires the p-385

value smaller than p = 4.4⇥10

�11, and both FDR-BH and FDR-BY approaches require the most386

significant p-value smaller than the same threshold as Bonferroni correction. See the Manhattan387

plot for details (Figure 9).388

The p-value threshold of peak-level inference approach was p = 9.1⇥10

�10 (connectivity-wise389

FWER=0.05). A total of 114 altered functional connectivities were found (Figure 10, left). We390

applied cluster-level inference approach to identify significant FC clusters (CDT p = 3 ⇥ 10

�7391

(Z=5) and cluster-size FWER=0.05 ). A total of 12388 functional connectivities were found392

with p-value smaller than the applied CDT, and they formed 117 FC clusters. The largest one393

contains 2247 functional connectivities. Finally, 10 largest FC clusters survived the cluster-size394

FWER 0.05 threshold (Figure 10, right). Almost all the significant FCs in peak-level inference395

form FC clusters in the cluster-level inference. We could see that, although billions of hypothesis396
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tests were performed and tens of thousands of functional connectivities were found, the results397

obtained by the cluster-level inference are very structured, thus, easy to be reported (Figure398

10, right). The identified FC clusters can be used in subsequent analysis in several ways. For399

example, we can calculate the mean functional connectivity within each FC clusters, and use400

prediction models to classify patients and controls in a new dataset. For patients, we can also401

test whether the mean functional connectivity within each FC clusters are associated with the402

depression symptom severity scores.403

3.5 Simulation-based validation for power analysis404

Figure 11 shows the relationship between sample size and power estimated by two methods under405

two combination of parameters: effect size � = 0.2, 0.4, 0.6 and smoothness FWHM=3,4,5,6406

voxels. The estimation error (mean squared error) shown in the figure is very low. Therefore,407

the proposed method can estimate power accurately, and this proposed framework can save a408

considerable amount of time in generating power curves.409

3.6 The power of a future brain-wide association study on MDD410

We show an example of how to perform a power analysis to estimate the minimum required411

sample size for a BWAS. In this example, we will analyze the power of BWAS on MDD using412

the results of the above study. The aim is to estimate the minimum required sample size to413

find at least one altered functional connectivities. Base on the above study, the most significant414

functional connectivities is p = 5.5⇥10

�11, corresponding to an effect size of � = 0.28. Assuming415

that in the new dataset, this functional connectivity has a similar effect size, the power under416

different sample sizes and smoothness levels are estimated and plotted in the Figure 12. Results417

show that about 80 to 130 subjects are needed to reach 90% power under different smoothness418

levels.419

4 Discussion420

Our proposed method can accurately control FWER, as demonstrated by comparing with the421

empirical FWER obtained from two real datasets. To the best our knowledge, BWAS is the422

first method to use the random field theory to analyze the voxel-wise functional connectome.423

Random field theory makes some assumptions of data. Eklund et al. [2016] recently reported424

that random field theory could lead to inflated false-positive rate in task-activation analysis,425

particularly when the CDT is low (p = 0.01). This failure is well known since the choice of low426

CDT violates the assumptions of the original theory [Friston et al., 1994]. However, in this same427

article [Eklund et al., 2016], FWER is closer to nominal level when CDT is higher (p = 0.001).428

Another article [Flandin and Friston, 2016] has also pointed out that the random field theory429

can provide acceptable FWER when using two-sample t-test instead of one-sample t-test and430

resampling the data close to the original image resolution. In our analysis, we have demonstrated431

that the random field theory is valid for both volume- and surface-based resting-state fMRI data432

under different smoothness. Particularly, the CDT in cluster-level inference should be high433

enough (|Z| > 5 for moderate or large smoothness and |Z| > 4.5 for low smoothness).434
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Importantly, our method is computationally efficient. It is a fully parametric approach which435

is not based on any simulation or permutation. Although non-parametric approaches can also436

perform multiple correction and power analysis [Nichols and Holmes, 2002], they are extremely437

slow in connexel-wise analysis by the necessity of calculating billions of statistical tests many438

times. Our empirical studies show that our approach is usually at least N times faster than439

the non-parametric permutation approaches, where N is the number of permutations performed.440

The reason is that, although the subject-level brain network can be computed only once in441

non-parametric permutations, the fitting of connexel-wise GLM is usually much slower than442

network construction, thus, it dominates the computation time. In addition, parallelization of443

permutations will not save much time, because the transmission speed of large data between444

processors is very slow.445

There are also limitations in the current framework. The functional connectivities identified446

by massive univariate statistical tests approach may not be predictive, e.g., in a case-control447

study, the identified connectivities may not be able to classify patients and controls. A directly448

construction of connexel-wise prediction model is also not practical, since the model constructed449

on a few hundred subjects and billion of features usually has a large variance. Meanwhile, the450

optimization of model parameters become very difficult in this ultra-high dimensional feature451

space. One possible way to solve this problem is to adopt the current BWAS framework into452

sure independence screening (SIS) approach [Fan and Lv, 2008; Fan et al., 2009, 2010]. In453

SIS, each feature x
i

, i = 1, 2, . . . , p is ranked in a descending order according to its correlation454

with the target variable y, and a prediction model is fitted using a subset of features whose455

rank is high enough. The authors showed that this intuitive approach possesses a good sure456

independence screening property. BWAS is a special case of the first step of SIS, thus, it is easy457

to be incorporate into the SIS approach. Moreover, by filtering out small-sized FC clusters using458

cluster-level inference approach, we expect that the prediction performance can be improved.459

Therefore, based on SIS, we can try to establish a connection between BWAS and prediction460

analysis.461

Many possible extensions and improvements of the current framework can be developed in462

the future. First, this framework can be extended to task fMRI analysis to identify network463

configuration changes (e.g. [Lohmann et al., 2016]). It can support either single subject analysis464

or group analysis provided that the task experiment is in block design and the length of each trial465

is long enough to enable network construction. Second, the cluster-level inference proposed here466

controls the FWER of cluster size. An alternative method of controlling the FDR of cluster size467

was proposed in task-activation studies [Chumbley and Friston, 2009; Chumbley et al., 2010],468

which can be easily adopted here. Third, the estimation of subject-level functional network469

is based on the Pearson correlation between pairwise BOLD signal time series in the current470

framework, which may be suboptimal [Westfall and Yarkoni, 2016; Bellec et al., 2008; Sahib471

et al., 2016]. Therefore, a better approach for constructing a functional network at the voxel472

level should be designed and validated in the future [Narayan and Allen, 2016; Bickel and Levina,473

2008]. Fourth, with the higher volume of available data, statistical methods for combining BWAS474

results from multiple imaging centers are needed. In BWAS, integrating results from different475

datasets has been shown to greatly reduce the false-positive rate and increase sensitivity [Cheng476

et al., 2015a,b, 2016]. However, the sample heterogeneity introduced by different sources, such477
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as different data acquisition pipelines, population stratification, and genetic background, may478

make the traditional meta-analysis method used in our previous studies suboptimal.479

In this paper, we developed a rigorous statistical framework for BWAS. Both peak- and480

cluster-level inferences are introduced for the analysis of voxel-wise functional connectomes, and481

the random field theory is developed to control FWER and estimate statistical power. We believe482

that this method will be very useful for the neuroimaging fields in the context of understanding483

the brain connectome.484
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Figure 1: A flow chart of brain-wide association study. First, we estimate the voxel-level brain
network for each individual. Then, we perform connectivity-wise statistical tests to test the
association between each functional connectivity and a phenotype of interest. Finally, peak-
and cluster-inference approaches are used to identify significant signals.
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Figure 2: Power analysis for brain-wide association study. To estimate power, we first calculate
the FWER-corrected threshold Z

↵

of peak-level inference, and then estimate the effect size �
from a prior statistical map of BWAS. For a target sample size n, and a smoothness level FWHM,
we can estimate the power using the random field theory, which is defined as the probability of
finding at least one true-positive signal in a region, in which the false- positive rate ↵ is controlled
at a certain level in the whole search region. Finally, the power under different sample sizes and
smoothness levels can be estimated iteratively.
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Figure 3: Two-dimensional diagrams of FC neighbours and FC clusters. The size of FC clusters
exceeding a CDT is used as a test statistic in the cluster-level inference. (A) In BWAS, there
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another two endpoints are spatial neighbours. In situation 2, two pairs of endpoints of two FCs
are all spatial neighbours. Situation 3 is a special case of situation 2. (B) In BWAS, FCs can
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Figure 5: Validating peak- and cluster-level inference by comparing the theoretical FWER
with permutation-based empirical FWER at 0.05. The methods are tested in 2 datasets (top:
Cambridge; bottom: SWU ) under 7 different smoothness levels (0 to 12 mm smoothing). The
estimated FWER is that proportion of permutations in which any significant signals are found
by the random field theory. Left: Results for peak-level inference. Right: Results for cluster-
level inference with different CDT (from 4.9 to 5.9). Almost all the results lie in the binomial
95% confidence interval (the dashed line).
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Figure 6: Validating cluster-level inference at low smoothness by comparing the theoretical
cluster-size threshold with permutation-based empirical threshold at FWER 0.05 with different
CDTs (from 4.5 to 5.9). The methods are tested in 2 datasets (top: Cambridge; bottom: SWU
) under 2 different smoothness levels (0 mm and 2 mm smoothing).

25



0.00

0.05

0.10

0.15

0.20

Smoothness

Em
pi

ric
al

 fa
m

ily
−w

is
e 

er
ro

r r
at

e

FWHM
0mm

4mm

8mm

Peak−level inference (Cambridge, cortical surface)

0.00

0.05

0.10

0.15

0.20

Smoothness

Em
pi

ric
al

 fa
m

ily
−w

is
e 

er
ro

r r
at

e

FWHM
0mm

4mm

8mm

Peak−level inference (SWU, cortical surface)

0.00

0.05

0.10

0.15

0.20

4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
Cluster−defining threshold (Z−statistic)

Em
pi

ric
al

 fa
m

ily
−w

is
e 

er
ro

r r
at

e

FWHM
0mm

4mm

8mm

Cluster−level inference (Cambridge, cortical surface)

0.00

0.05

0.10

0.15

0.20

4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
Cluster−defining threshold (Z−statistic)

Em
pi

ric
al

 fa
m

ily
−w

is
e 

er
ro

r r
at

e

FWHM
0mm

4mm

8mm

Cluster−level inference (SWU, cortical surface)

Figure 7: Validating peak- and cluster-level inference in surface-based fMRI data by comparing
the theoretical FWER with permutation-based empirical FWER at 0.05. The methods are
tested in 2 datasets (top: Cambridge; bottom: SWU ) under 3 different smoothness levels (0,
4, 8mm smoothing). The estimated FWER is that proportion of permutations in which any
significant signals are found by the random field theory. Left: Results for peak-level inference.
Right: Results for cluster-level inference with different CDTs (from 4.9 to 5.9). Almost all the
results lie in the binomial 95% confidence interval (the dashed line).
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Table 1: The estimated smoothness of different datasets used in our analysis (FWHM in mm).
Applied smoothness 0 mm 2 mm 4 mm 6 mm 8 mm 10 mm 12 mm

Estimated smoothness
Cambridge volume-fMRI 4.5 mm 4.6 mm 7 mm 10.6 mm 13.2 mm 15.9 mm 17.6 mm
Cambridge surface-fMRI 4.7 mm NaN 6.9 mm NaN 11.1 mm NaN NaN
SWU volume-fMRI 5.1 mm 5.2 mm 7.5 mm 10.9 mm 13.4 mm 15.3 mm 17.9 mm
SWU surface-fMRI 5.2 mm NaN 7.7 mm NaN 12.2 mm NaN NaN
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across different levels of effect size and smoothness levels using the Cambridge dataset. Left:
power curves of different approaches under different smoothness levels. Right: FDR curves of
different approaches under different smoothness levels.
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Figure 9: Manhattan plot of altered functional connectivities in major depression disorder (p
< 10

�5 only). Each point represents a functional connectivity grouped by the 94 cerebrum
regions of the AAL2 template. Bonferroni correction, FDR-BH and FDR-BY fail to identify
any significant connections, while both peak- and cluster-level inference approaches identified
many altered connectivities. Their brain locations are shown in the next two figures.
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Yellow ball: endpoints of significant FCs.
Blue link: decreased FCs in MDD.
Red link: increased FCs in MDD.
Green region: voxel-clusters connected by FCs.

Peak-level inference (connectivity-wise FWER < 0.05)

Yellow ball: endpoints of significant FC clusters.
Blue link: FC clusters with decreased FCs in MDD.
Red link: FC clusters with increased FCs in MDD.
Green region: voxel-clusters connected by FC clusters.

Cluster-level inference (CDT = 5 and cluster-size FWER < 0.05)
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Figure 10: The altered functional connectivities in major depression disorder identified by peak-
level inference (left) and cluster-level inference (right). For peak-level inference, the connectivity-
wise FWER is 0.05, which corresponds to uncorrected p-value<9 ⇥ 10

�10. For cluster-level
inference, the CDT is Z=5 (p < 3 ⇥ 10

7) and cluster-size FWER is 0.05. Abbreviations of
regions are listed in the Supplement Table 1.
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Figure 11: Comparing the theoretical power analysis method (red line) with the simulation
result (blue line). Each figure shows the relationship between estimated power and sample size.
From the left to the right, the effect sizes are 0.2, 0.4 and 0.6. From the top to the bottom, the
FWHMs are 3 to 6 voxels.
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A Image acquisition and preprocessing

Only publicly available data are used in this article. Resting-state fMRI data are collected from two
imaging sites: (1) 197 samples from the Cambridge dataset in 1000 Functional Connectomes Project
(1000 FCP) [Biswal et al., 2010] (http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.
html); (2) 552 subjects from the Southwest University dataset in International Data-sharing Initiative
(IDNI) (http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html). All
subjects are normal people. As Southwest University dataset is a longitudinal dataset, only subjects
who scanned at the first time are used in this paper.

All the data collected are subject to their local ethics review boards, the experiments and the dis-
semination of the anonymized data are approved. The detailed data acquisition methods may be found
in the respective websites and papers. The data were preprocessed using SPM12 [Penny et al., 2011]
and Data Processing and Analysis for Brain Imaging (DPABI) [Yan et al., 2016]. For each individual,
the preprocessing steps included discarding the first 10 time points, slice timing correction, motion
correction, coregistering the functional image to individual T1 structure image, segmenting structure
images and DARTEL registration [Ashburner, 2007], regressing out nuisance covariates including 24
head motion parameters [Friston et al., 1996], white matter signals, cerebrospinal fluid signals, tempo-
ral filtering (0.01-0.1 Hz), normalizing to standard space of voxel size 3⇥ 3⇥ 3 mm3 by DARTEL, and

1

http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html


smoothing by a 3D Gaussian kernel with FWHM = 0, 2, 4, 6, 8, 10, 12 mm. Finally, all the images
are manually checked by experts to ensure preprocessing quality. Images that are not successfully
preprocessed are discarded in our analysis.

The surface-based fMRI data are preprocessed using Connectome workbench. For the each volume-
based fMRI data in the Cambridge and Southwest University dataset, we map it to the Conte69 surface-
based atlas (http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas) using
the command
‘wb_command -volume-to-surface-mapping’. Each fMRI images are then smoothed by a 2D Gaus-
sian kernel with FWHM=0,4,8 mm using the command ‘wb_command cifti-smoothing’. Finally, the
smoothness of each image is estimated by the command ‘wb_command -cifti-estimate-fwhm’. The
surface area of Conte69 is estimated using the command ‘wb_command -surface-vertex-areas’, which
is used in the random field theory.

B Calculating the intrinsic volume and Gaussian EC-density

To perform peak-level and cluster-level inference, we should calculate the 0- to 3-dimensional intrinsic
volume and the 0- to 6-dimensional EC-densities for the Gaussian random field.

Let P be the number of voxels, E
x

(or E
y

, E

z

) be number of x (or y, z)-direction edges (two adjacent
voxels), F

xy

(or F
yz

, F

xz

) be number of xy (or yz, xz)-direction surface (four adjacent voxels), and C be
the number of cubes (eight adjacent voxels). The r

x

(or r
y

, r

z

) be the resel size of x (or y, z)-direction,
which is defined as the voxel size divided by FWHM (in mm). The 0 to 3 dimensional intrinsic volume
of S can be calculated as:

u0(S) = P � (E
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z

) + (F
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)� C
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u3(S) = Cr

x

r
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r

z

The above calculation has been implement in SPM package as spm_resels_vol function. Two other
methods also work well in practice. One is to replace the original space with a equal volume ball,
as implement in the fmristat package, the other is to use a linear regression model [Bartz et al.,
2011], which do not need the knowledge of spatial smoothness. In whole-brain BWAS, for peak-level
inference, the u

i

(P) and u

i

(Q) are the same. As there are p(p� 1)/2 functional connectivities across p
voxels, we divided the estimated intrinsic volume by

p
2, thus, the highest order term, u3(P)⇥ u3(Q),

will approximate the total number of functional connectivities (in resel) in the brain.

2
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The 0- to 6-dimensional EC-densities for Gaussian random field at t are:

⇢0(t) = 1� �(t)

⇢1(t) = (4 ln 2)
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where �(•) is the cumulative distribution function of standard normal distribution.

C Estimating the smoothness of the fMRI images

The true smoothness of fMRI images is usually large than the applied smoothness. Therefore, an
accurate estimation of smoothness is critical for Gaussian random field theory. The following approach
is used to estimate the smoothness of 3D or 2D images [Hagler et al., 2006]:

FWHM = dv

vuut �2 ln 2

ln(1� var(ds)
2var(s))

where dv is the average inter-neighbour distance of voxels or vertices, var(ds) is the variance of inter-
neighbours differences, and var(s) is the overall variance of the values at each voxels or vertices. The
FWHM of fMRI image is the average smoothness of the 3D or 2D images across all time points.

D Proof of formula (1) in the main text

Using the property of d-dimensional intrinsic volume [Taylor and Worsley, 2008]

u

d

(P ⇥Q) =

dX

k=0

u

k

(P)u

d�k

(Q)

When d > P , u
d

(P) = 0 and d > Q, u
d

(Q) = 0. It is easy to conclude that
P+QX

d=0

µ

d

(P ⇥Q) =

P+QX

d=0

dX

k=0

u

k

(P)u

d�k

(Q)

=

PX

i=0

QX

j=0

µ

i

(P)µ

j

(Q)

In our case, we have P = Q = 3.
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E Proof of formula (2) in the main text

The normal transformation of T-statistic makes the �̂

2
ij

fixed as �̂2
0 [Worsley et al., 1992, 1996]. There-

fore, the test statistic becomes

Z

ij

=

c ˆB
ijp

c(X 0
X)

�1c0�̂2
0

=

c(X 0
X)

�1
X

0
Y

ijp
c(X 0

X)

�1c0�̂2
0

=

nX

s=1

w

(s)
z

(s)
ij

where w

(s) is the s-th element of row vector c(X0
X)�1

X

0p
c(X0

X)�1c0�̂2
0

, which only depends on the subjects.

Let M

(s)
(p) = (M

(s)
1 (p), . . . ,M

(s)
v

(s)(p))
0, p 2 P ⇢ RP and N

(s)
(q) = (N

(s)
1 (q), . . . , N

(s)
v

(s)(q))
0, q 2

Q ⇢ RQ be two vectors of v(s) independent and homogeneous Gaussian random fields with mean zeros
and variance one. The index s denotes subjects, and the v

(s) can be treated as the number of time
points, while p, q are the coordinates of three-dimensional Euclidean space. The (P+Q)-dimensional
cross-correlation random field R

(s)
(p, q) is defined as follows [Cao et al., 1999]:

R

(s)
(p, q) =

M

(s)
(p)

0
N

(s)
(q)p

M

(s)
(p)

0
M

(s)
(p)N

(s)
(q)

0
N

(s)
(q)

In BWAS, the cross-correlation field is generated by calculating sample correlation coefficients between
pairwise voxel time series. Next, the element-wise Fisher’s Z transformation transforms this cross-
correlation random field to a six-dimensional ‘Gaussianized’ random field as:

Z

(s)
(p, q) =

1

2

log

"
1 +R

(s)
(p, q)

1�R

(s)
(p, q)

#

It has mean zero and variance 1
v

(s)�3
[Kenney, 1939]. Our test statistic Z

ij

(p, q) forms a weighted sum
of Fisher’s Z transformed cross-correlation random field Z(p, q) as:

Z(p, q) =

nX

s=1

w

(s)
Z

(s)
(p, q)

The random field Z(p, q) is a ‘Gaussianized’ random field with mean zero and variance one. Therefore,
we can use formula (1) in the main text to approximate its maximum distribution at high threshold:

P (max Z(p, q) > z0) ⇡ E(EC) =

(P+Q)X
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d
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=

PX
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i

(P)µ

j
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Z
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(1)
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The EC-densities for the Gaussian random field ⇢

Z

d

(z0) in any dimensions can be expressed as
[Adler and Taylor, 2009]:
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where D is the highest dimension of Z(p, q). The |⇤| = |Var( ˙Z(p, q))| is the determinant of the
variance-covariance matrix of the partial derivative of Z(p, q). The |⇤| can be replaced by FWHM

Z

,
the Full Width at Half Maximum (FWHM) of the random field Z averaged across all dimensions, using
the equation:

FWHM
Z

= (4 log 2)

1
2 |⇤|�

1
2D

and FWHM
Z

is a corrected smoothness parameter, which can be calculated as:

FWHM
Z

=

 
nX

s=1

(w

(s)
)

2

v

(s) � 3

FWHM�2
M

(s)

!� P
2(P+Q)

 
nX

s=1

(w

(s)
)

2

v

(s) � 3

FWHM�2
N

(s)

!� Q
2(P+Q)

where FWHM
M

(s) and FWHM
N

(s) are the average FWHM of the random field vectors M

(s)
(p) and

N

(s)
(q) across three dimensions. The proof of this formula is given in the next section. Finally, the

formula (2) in the main text is used in the peak-level inference:
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(2)

We can see that FWHM
Z

is a function of the number of time points v

(s) and the FWHM
M

(s)

and FWHM
N

(s) of the individual fMRI data. Assuming that the length of scanning time and image
smoothness is the same for every subject in a study. Denoting them as v and FWHM, the formula for
calculating FWHM

Z

reduces to:
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where we treat the sample variance �

2
0 as the theoretical variance 1

v�3 . This suggests that (1) the
smoothness of random field Z(p, q) equals the original image smoothness. A series of non-linear trans-
formations will maintain the original smoothness of images. (2) the scanning time does not influence
this formula.
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In practice, for volume-base BWAS, we found that the formula one usually provide a slightly
conservative estimation of FWER-corrected threshold. Therefore, we modify it as:

↵ = P (max Z(p, q) > z0) ⇡ E(EC) ⇡ µ2(P)µ2(Q)⇢

Z

6 (z0) (3)

For surface-based BWAS, we use:

↵ = P (max Z(p, q) > z0) ⇡ E(EC) =
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Finally, if we only analyse the functional connectivities between subcortical voxels P and cortical
vertices Q, we use:

↵ = P (max Z(p, q) > z0) ⇡ E(EC) =

3X

i=0

2X

j=0

µ

i

(P)µ

j

(Q)⇢

Z

i+j

(z0) (5)

Proof of the formula for calculating FWHM
Z

Let V ar(

˙

M

(s)
(p)) = ⇤

Ms and V ar(

˙

N

(s)
(q)) = ⇤

Ns , then according to the Lemma 4.2 in [Cao et al.,
1999],

@R

(s)
(p, q)

@p

D

= (1�R

(s)
(p, q)

2
)

1
2
a

� 1
2

s

(⇤

Ms)
1
2
z

(s)
M

and
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(s)
(p, q)

@q

D

= (1�R

(s)
(p, q)

2
)

1
2
a

� 1
2

s

(⇤

Ns)
1
2
z

(s)
N

where a

s

⇠ �

2
v

(s) , z

(s)
M

⇠ N(0, I

P,P

), z

(s)
N

⇠ N(0, I

Q,Q

) and independent of R

(s)
(p, q), and D

= means
equal in distribution. Then, after the Fisher’s Z transformation, we have

@Z

(s)
(p, q)

@p

D

= (1�R

(s)
(p, q)

2
)

� 1
2
a

� 1
2

s

(⇤

Ms)
1
2
z

(s)
M

and
@Z

(s)
(p, q)

@q

D

= (1�R

(s)
(p, q)

2
)

� 1
2
a

� 1
2

s

(⇤

Ns)
1
2
z

(s)
N

Then,
@Z(p, q)

@p

D

=

nX

s=1

w

(s)
(1�R

(s)
(p, q)

2
)

� 1
2
a

� 1
2

s

(⇤

Ms)
1
2
z

i

M

and
@Z(p, q)

@q

D

=

nX

s=1

w

(s)
(1�R

(s)
(p, q)

2
)

� 1
2
a

� 1
2

s

(⇤

Ns)
1
2
z

i

N

Since

V ar(

˙

Z(p, q)) =

 
E[@Z

(s)(p,q)
@p

@Z

(s)0(p,q)
@p

] E[@Z
(s)(p,q)
@p

@Z

(s)0(p,q)
@q

]

E[@Z
(s)(p,q)
@q

@Z

(s)0(p,q)
@p

] E[@Z
(s)(p,q)
@q

@Z

(s)0(p,q)
@q

]

!
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and

E[@Z
(s)

(p, q)

@p

@Z

(s)0
(p, q)

@q

] = E[@Z
(s)

(p, q)

@q

@Z

(s)0
(p, q)

@p

] = 0

and

E[@Z
(s)

(p, q)

@p

@Z

(s)0
(p, q)

@p

] =

nX

s=1

(w

(s)
)

2E[(1�R

(s)
(p, q)

2
)

�1
]E[a�1

s

]⇤

Ms

E[@Z
(s)

(p, q)

@q

@Z

(s)0
(p, q)

@q

] =

nX

s=1

(w

(s)
)

2E[(1�R

(s)
(p, q)

2
)

�1
]E[a�1

s

]⇤

Ns

The expectations in the above equations are

E[a�1
s

] =

1

v

(s) � 2

E[(1�R

(s)
(p, q)

2
)

�1
] =

v

(s) � 2

v

(s) � 3

Finally we get

V ar(

˙

Z(p, q)) =

0

BB@

nP
s=1

(w(s))2

v

(s)�3
⇤

Ms 0

0

nP
s=1

(w(s))2

v

(s)�3
⇤

Ns

1

CCA

6⇥6

Substituting the variance covariance matrix of partial derivative of the random field by the FWHM
using its relationship with |⇤|, we could get:

 
FWHM

Z

(4 ln 2)

1
2

!�2(P+Q)
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(s)
)

2
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2

!
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(s)
)

2
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2
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Q

thus

FWHM
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(s)
)

2
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F Supplement figures
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Figure 1: The p-values of normality tests in the Cambridge dataset.
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Figure 2: Comparing the expected Euler characteristics calculated by the Gaussian random field theory
with the observed expected number of clusters across different levels of CDT under different smoothness
in the Cambridge dataset.

9



SWU, FWHM = 0mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

2

4

6

8

10

12

fre
qu

en
cy

10 4 SWU, FWHM = 2mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

0.5

1

1.5

2

fre
qu

en
cy

10 5 SWU, FWHM = 4mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

0.5

1

1.5

2

fre
qu

en
cy

10 5

SWU, FWHM = 6mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

2

4

6

8

10

12

fre
qu

en
cy

10 4 SWU, FWHM = 8mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

5

10

15

fre
qu

en
cy

10 4 SWU, FWHM = 10mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

5

10

15

fre
qu

en
cy

10 4

SWU, FWHM = 12mm

0 0.2 0.4 0.6 0.8 1
p-values of normality test

0

0.5

1

1.5

2

fre
qu

en
cy

10 5

Figure 3: The p-values of normality tests in the Southwest University dataset.
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Figure 4: Comparing the expected Euler characteristics calculated by the Gaussian random field theory
with the observed expected number of clusters across different levels of CDT under different smoothness
in Southwest university dataset.
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Figure 5: Similar to the Figure 8 in the main text, but this figure is generated by using different set of
voxels.
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Figure 6: Similar to the Figure 8 in the main text, but this figure is generated by using different set of
voxels.
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Figure 7: Similar to the Figure 8 in the main text, but this figure is generated by using different set of
voxels.
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Table 1: The names and abbreviations of anatomical regions of interest.
No Rigions abbreviation No Rigions abbreviation

1 Precentral_L PreCG 47 Lingual_L LING
2 Precentral_R 48 Lingual_R
3 Frontal_Sup_L SFGdor 49 Occipital_Sup_L SOG
4 Frontal_Sup_R 50 Occipital_Sup_R
5 Frontal_Sup_Orb_L ORBsup 51 Occipital_Mid_L MOG
6 Frontal_Sup_Orb_R 52 Occipital_Mid_R
7 Frontal_Mid_L MFG 53 Occipital_Inf_L IOG
8 Frontal_Mid_R 54 Occipital_Inf_R
9 Frontal_Mid_Orb_L ORBmid 55 Fusiform_L FFG
10 Frontal_Mid_Orb_R 56 Fusiform_R
11 Frontal_Inf_Oper_L IFGoperc 57 Postcentral_L PoCG
12 Frontal_Inf_Oper_R 58 Postcentral_R
13 Frontal_Inf_Tri_L IFGtriang 59 Parietal_Sup_L SPG
14 Frontal_Inf_Tri_R 60 Parietal_Sup_R
15 Frontal_Inf_Orb_L ORBinf 61 Parietal_Inf_L IPL
16 Frontal_Inf_Orb_R 62 Parietal_Inf_R
17 Rolandic_Oper_L ROL 63 SupraMarginal_L SMG
18 Rolandic_Oper_R 64 SupraMarginal_R
19 Supp_Motor_Area_L SMA 65 Angular_L ANG
20 Supp_Motor_Area_R 66 Angular_R
21 Olfactory_L OLF 67 Precuneus_L PCUN
22 Olfactory_R 68 Precuneus_R
23 Frontal_Sup_Medial_L SFGmed 69 Paracentral_Lobule_L PCL
24 Frontal_Sup_Medial_R 70 Paracentral_Lobule_R
25 Frontal_Med_Orb_L ORBsupmed 71 Caudate_L CAU
26 Frontal_Med_Orb_R 72 Caudate_R
27 Rectus_L REC 73 Putamen_L PUT
28 Rectus_R 74 Putamen_R
29 Insula_L INS 75 Pallidum_L PAL
30 Insula_R 76 Pallidum_R
31 Cingulum_Ant_L ACG 77 Thalamus_L THA
32 Cingulum_Ant_R 78 Thalamus_R
33 Cingulum_Mid_L DCG 79 Heschl_L HES
34 Cingulum_Mid_R 80 Heschl_R
35 Cingulum_Post_L PCG 81 Temporal_Sup_L STG
36 Cingulum_Post_R 82 Temporal_Sup_R
37 Hippocampus_L HIP 83 Temporal_Pole_Sup_L TPOsup
38 Hippocampus_R 84 Temporal_Pole_Sup_R
39 ParaHippocampal_L PHG 85 Temporal_Mid_L MTG
40 ParaHippocampal_R 86 Temporal_Mid_R
41 Amygdala_L AMYG 87 Temporal_Pole_Mid_L TPOmid
42 Amygdala_R 88 Temporal_Pole_Mid_R
43 Calcarine_L CAL 89 Temporal_Inf_L ITG
44 Calcarine_R 90 Temporal_Inf_R
45 Cuneus_L CUN
46 Cuneus_R
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