

Statistical testing and power analysis for brain-wide association study

Weikang Gong^{1,2}, Lin Wan³, Wenlian Lu^{4,5}, Liang Ma⁶, Fan Cheng^{4,5}, Wei Cheng^{4,5}, Stefan Grünewald¹, and Jianfeng Feng^{4,5,7,†}

¹*CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China*

²*University of Chinese Academy of Sciences, Beijing 100049, China*

³*Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China*

⁴*Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China*

⁵*Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China*

⁶*Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China*

⁷*Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK*

†Correspondence author: jianfeng64@gmail.com

Abstract

The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression [Cheng et al., 2015a,b, 2016], the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method considerably reduces the computational complexity of a permutation- or simulation-based approach, thus, it can efficiently tackle large datasets with ultra-high resolution images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods failed. A software package is available at <https://github.com/weikanggong/BWAS>.

Keywords: brain-wide association study, random field theory, functional connectivity, statistical power

1 Introduction

2 The human brain connectome is usually modelled as a network. In the brain's network, accurately locating the connectivity variations associated with phenotypes, such as clinical symptoms, is critical for neuroscientists. With the development of neuroimaging technology and an increasing number of publicly available datasets, such as the 1000 Functional Connectomes Project (FCP) [Biswal et al., 2010], Human Connectome Project (HCP) [Glasser et al., 2016] and UK Biobank [Miller et al., 2016], large-scale, image-based association studies have become possible and should help us improve our understanding of human brain functions.

3 Using a priori knowledge of brain parcellation (e.g. AAL [Rolls et al., 2015]) or an adoption of data-driven parcellation (e.g. ICA [Beckmann and Smith, 2004]) to analyze the human connectome is the most popular approach, and many statistical methods have been designed for them [Zalesky et al., 2012; Kim et al., 2014]. However, with the availability of large datasets, increasing the spatial specificity in the functional connectivity analysis should provide a deeper insight into the brain connectome. Therefore, in this paper, a statistical framework for brain-wide association study (BWAS) is proposed [Cheng et al., 2015a,b, 2016]. It directly uses *voxels* as nodes to define brain networks, and then tests the associations of each *functional connectivity* with phenotypes.

4 To conduct a systematic, fully-powered BWAS, two main issues should be carefully addressed. First, a multiple correction method to control the false-positive rate of massive univariate statistical tests should be developed. Second, a power analysis method to estimate the required sample size should be designed. One may ask whether the methods widely used in region-level studies can be directly generalized to connexel-level studies. Two issues hinder such direct generalization. First, the statistical tests have more complex spatial structures in BWAS. Therefore, as shown in our analysis, some widely-used multiple correction methods which do not utilize the spatial information of data (e.g. Bonferroni correction and false discovery rate (FDR) [Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001]) may not be powerful enough to detect signals. Second, although non-parametric permutation methods [Nichols and Holmes, 2002] may account for the complex structures among hypothesis tests to provide a valid threshold, they are computationally very expensive in connexel-wise studies, owing to the requirement of performing billions of statistical tests. Therefore, an accurate and efficient method for multiple comparison problem and power analysis is needed.

5 Random field theory (RFT) is an important statistical tool in brain image analysis, and it has been widely used in the analysis of task fMRI data and structure data [Ashburner and Friston, 2000]. Statistical parametric maps (SPM) are usually modelled as a discrete sampling of smooth Gaussian or related random fields [Penny et al., 2011]. The random field theory can control the FWER of multiple hypothesis testings by evaluating whether the observed test statistic, or the spatial extent of clusters exceeding a cluster-defining threshold (CDT), is large by chance, which is known as peak-level and cluster-level inference respectively. Since Adler's early work on the geometry of random field [Adler, 1981; Adler and Taylor, 2009], theoretical results for different types of random fields have been obtained, such as the Gaussian random field [Friston et al., 1994; Worsley et al., 1996b], the t , χ^2 , F random fields [Worsley, 1994; Cao, 1999], the multivariate random field [Taylor and Worsley, 2008], the cross-correlation random

43 field [Cao et al., 1999]. Among them, only the cross-correlation field is designed for connectivity
44 analysis. In that framework, the voxel-level functional connectivity network is modelled as a six-
45 dimensional cross-correlation random field, and the maximum distribution of the random field
46 is used to identify strong between-voxel connections. Different from the above works, the aim of
47 BWAS is to identify connectivities that are associated with phenotypes. To our knowledge, no
48 previous works have addressed this problem. In this paper, we show that the statistical map of
49 BWAS, under the null hypothesis, can be modelled as a Gaussian random field with a suitable
50 smoothness adjustment. Therefore, topological inference methods, such as peak intensity and
51 cluster extent, are generalized from voxel-wise analysis to functional connectivity analysis.

52 Besides controlling the type I error rate, estimating power or the required sample size for
53 BWAS is also important. In genetics, for example, a high-quality GWAS analyzing one million
54 single nucleotide polymorphism (SNP) usually requires tens of thousands of samples to reach
55 adequate statistical power. In contrast, previous BWAS analyses of schizophrenia, autism and
56 depression have only had sample sizes less than one thousand [Cheng et al., 2015a,b, 2016].
57 Therefore, compared to GWAS, it is natural to ask if BWAS, which is usually based on a limited
58 sample size, can withstand the rigors of a large number of hypothesis tests. In this regard,
59 most existing power analysis methods are designed for voxel-wise fMRI studies, including, for
60 example, the simulation based method [Desmond and Glover, 2002], the non-central distribution
61 based method [Mumford and Nichols, 2008], and the method based on non-central random field
62 theory (ncRFT) [Hayasaka et al., 2007]. Among them, the ncRFT-based method can both take
63 into account the spatial structure of fMRI data and avoid time consuming simulation. Therefore,
64 to analyze the power of BWAS, we adopted a methodology similar to that of the ncRFT-based
65 method [Hayasaka et al., 2007]. The signals at functional connectivities are modelled as a non-
66 central Gaussian random field, and the power is estimated by a modified Gaussian random field
67 theory.

68 In this paper, a powerful method to address the multiple comparison problem is proposed
69 for BWAS (Figure 1). This method uses Gaussian random field theory to model the spatial
70 structure of voxel-level connectome. It can test the odds that either the effect size of every single
71 functional connectivity (peak-level inference) or the spatial extent of functional connectivity
72 clusters exceeding a cluster-defining threshold (cluster-level inference) is large by chance. The
73 performance of the method is tested in two resting-state fMRI datasets, and in both volume-
74 based and surface-based fMRI data. Our method can control the false-positive rate accurately.
75 Compared with Bonferroni correction and false discovery rate (FDR) approaches, our method
76 can achieve a higher power and filter out false-positive connectivities by utilizing the spatial
77 information. In addition, we develop a modified Gaussian random field theory to explicitly
78 approximate the power of peak-level inference (Figure 2). Power can be estimated in any specific
79 location of connectome efficiently, which can help to determine the sample size for BWAS. The
80 utility of our method is shown by identifying altered functional connectivities and estimating
81 the required sample sizes in major depression disorder. The software package for BWAS can be
82 downloaded at <https://github.com/weikanggong/BWAS>.

83 2 Materials and Methods

84 2.1 Connexel-wise general linear model

85 The popular general linear model approach is used in BWAS. Briefly, a voxel-level functional
86 network is estimated for each subject using the fMRI data, and the association between each
87 functional connectivity and phenotype of interest is tested using the general linear model.

In detail, the individual functional network is constructed first by calculating the Pearson correlation coefficients (PCC) between every pair of voxel time series. Let m be the number of voxels, s be the subject, and $R^{(s)} = [r_{ij}^{(s)}]_{m \times m}$ be the $m \times m$ functional network matrix for subject s . Each element of $R^{(s)}$ is the correlation coefficient between voxel time series i and j for subject s . An element-wise Fisher's Z transformation is then applied as $Z^{(s)} = [z_{ij}^{(s)}]_{m \times m} = [\frac{1}{2} \log(\frac{1+r_{ij}^{(s)}}{1-r_{ij}^{(s)}})]_{m \times m}$, so that $z_{ij}^{(s)}$ will approximate a normal distribution. For every functional connectivity, a general linear model (GLM) is fitted by

$$Y_{ij} = XB_{ij} + \epsilon_{ij}$$

where, $Y_{ij} = (z_{ij}^{(1)}, z_{ij}^{(2)}, \dots, z_{ij}^{(n)})$ is an $n \times 1$ vector of functional connectivities between voxel i and j across n subjects, X is the common $n \times q$ design matrix, $B_{ij} = (\beta_{ij}^1, \beta_{ij}^2, \dots, \beta_{ij}^q)$ is a $q \times 1$ vector of regression coefficients, and ϵ_{ij} is an $n \times 1$ vector of random error, which is assumed to be an independent and identically distributed Gaussian random variable $N(0, \sigma_{ij}^2)$ across subjects. The ordinary least square estimator for B_{ij} is $\hat{B}_{ij} = (X'X)^{-1}X'Y_{ij}$, and for σ_{ij}^2 , it is $\hat{\sigma}_{ij}^2 = (Y_{ij} - X\hat{B}_{ij})'(Y_{ij} - X\hat{B}_{ij})/(n - q)$. Then, a Student's t-statistic at functional connectivity between voxel i and j can be expressed as:

$$T_{ij} = \frac{\mathbf{c}\hat{B}_{ij}}{(\mathbf{c}(X'X)^{-1}\mathbf{c}'\hat{\sigma}_{ij}^2)^{\frac{1}{2}}}$$

88 where \mathbf{c} is a $1 \times q$ contrast vector. In BWAS, let β_{ij}^1 be the primary variable of interest,
89 and $\beta_{ij}^2, \dots, \beta_{ij}^q$ be the nuisance covariates included in the regression model. The contrast
90 $\mathbf{c} = (1, 0, \dots, 0)$ will be used to test the hypothesis $\beta_{ij}^1 = 0$, and the T_{ij} -statistics will re-
91 flect the significance of the primary variable. Other contrasts can also be used depending on
92 the study design. Finally, the Student's t random variable at each functional connectivity T_{ij}
93 is transformed to a Gaussian random variable Z_{ij} by transforming T -statistics to p -values and
94 then to Z -statistics.

95 After the above steps, the connexel-wise Z-statistics form a statistical parametric map in a
96 six-dimensional Euclidian space. The reason is that the spatial location of each Z statistic (or
97 functional connectivity) can be uniquely represented by the coordinates of its two endpoints,
98 each of which is a voxel in a three-dimensional space. Therefore, the structure of the statistical
99 map can be modelled by the random field theory, and the topological inference methods for
100 multiple hypothesis testings are developed in the subsequent Section.

101 **2.2 Multiple comparison correction using topological inference methods**

102 **2.2.1 Peak-level inference**

103 Peak-level inference controls FWER among multiple hypothesis testings on functional connectiv-
 104 ities, i.e., the probability of finding at least one false-positive functional connectivity is controlled
 105 under certain level α . It is assumed, under the null hypothesis, that the statistical parametric
 106 map of BWAS is a discrete sampling of smooth and stationary Gaussian random fields with
 107 mean zero and variance one. To control the FWER of multiple hypothesis testings, the max-
 108 imum distribution of the random field should be known. In our paper, its tail distribution is
 109 approximated by the expected Euler characteristic (EC) of the excursion set of random field.
 110 The detailed derivation is given in the Appendix. We sketch an overview of the result here.

111 Let $Z(p, q), p \in \mathcal{P}, q \in \mathcal{Q}$ be a $(P+Q)$ -dimensional Gaussian random field spanned by a
 112 P -dimensional random field \mathcal{P} and a Q -dimensional random field \mathcal{Q} . At high threshold z_0 , its
 113 maximum distribution has a general form [Adler and Taylor, 2009; Worsley et al., 1996b]:

$$\begin{aligned} \alpha = P(\max Z(p, q) > z_0) &\approx \mathbb{E}(EC) = \sum_{d=0}^{P+Q} \mu_d(\mathcal{P} \times \mathcal{Q}) \rho_d^Z(z_0) \\ &= \sum_{i=0}^P \sum_{j=0}^Q \mu_i(\mathcal{P}) \mu_j(\mathcal{Q}) \rho_{i+j}^Z(z_0) \end{aligned} \quad (1)$$

114 where the $\mu_d(\cdot)$ is the d -th dimensional intrinsic volume of the random field, and $\rho_d^Z(z_0)$ is the d -th
 115 dimensional EC-density for the Gaussian random field at threshold z_0 ($z_0 > 0$). The method for
 116 calculating $\mu_d(\cdot)$ and $\rho_d^Z(\cdot)$ are shown in the Appendix. Therefore, the α -level FWER-corrected
 117 threshold z_0 can be found using equation (1), and for one-tailed tests, functional connectivities
 118 with Z-values larger than z_0 (or smaller than $-z_0$) are declared as significant.

119 For different kinds of BWAS analysis, P and Q in (1) can take different values. For example,
 120 for the widely-used volume-based fMRI data, we use $P=Q=3$ (Result Section 3.2.1). If the con-
 121 nectivities are estimated between pairwise vertices on cortical surface, we use $P=Q=2$ (Result
 122 Section 3.2.1), and if the connectivities are estimated between subcortical structures and cortical
 123 surface, we use $P=3$ and $Q=2$. The estimated FWER-corrected threshold is usually less con-
 124 servative than Bonferroni correction method, because the intrinsic volume $\mu_d(\cdot)$ in equation (1)
 125 takes into account both the number of hypothesis tests performed and the correlations among
 126 tests, and an increasing of spatial smoothness can make the FWER-corrected threshold z_0 lower.
 127 For BWAS, the equation (1) can be approximately estimated using the results of Gaussian ran-
 128 dom field, provided that the spatial smoothness is estimated correctly. The reason is that the
 129 statistical map of BWAS is generated by a series of non-linear transformation of original fMRI
 130 images. As a result, we calculate equation (1) as:

$$\begin{aligned} \alpha = P(\max Z(p, q) > z_0) &\approx \sum_{i=0}^P \sum_{j=0}^Q \mu_i(\mathcal{P}) \mu_j(\mathcal{Q}) \frac{(2\pi)^{-\frac{i+j+1}{2}} (4 \log 2)^{\frac{i+j}{2}}}{\text{FWHM}_Z^{i+j}} \\ &\times e^{-\frac{z_0^2}{2}} \sum_{k=0}^{\lfloor \frac{i+j-1}{2} \rfloor} (-1)^k \frac{(2k)!}{k! 2^k} \binom{i+j-1}{2k} z_0^{d-1-2k} \end{aligned} \quad (2)$$

131 where FWHM_Z is the adjusted full-width at half maximum of the Gaussian smooth kernel,
 132 which is a function of the original smoothness of fMRI images. A proof of the equation (2) and
 133 smoothness estimation approach are shown in the Appendix.

134 **2.2.2 Cluster-level inference**

135 Cluster-level inference is also popular in brain image analysis. Here, inference is based on the
 136 observed cluster size exceeding certain cluster-defining threshold (CDT) [Friston et al., 1994].
 137 We are usually interested in whether the observed cluster size is large by chance, i.e., where the
 138 size is on the upper tail of the distribution of maximum cluster size under the null hypothesis. We
 139 show that, similar to the voxel clusters in three-dimensional space, the functional connectivity
 140 cluster (FC cluster) can also be defined rigorously. Its size can be used as a test statistic for
 141 statistical inference, and it has a clear interpretation.

142 A voxel cluster is a set of spatially connected voxels. To define a FC cluster, we first illustrate
 143 the neighbourhood relationship between two functional connectivities. Let the endpoints of two
 144 functional connectivity be (x_1, y_1) and (x_2, y_2) , if their endpoints are non-overlapped voxels,
 145 then two functional connectivities are neighbours if both x_1, x_2 and y_1, y_2 are spatially adjacent
 146 voxels. If they share a same endpoint (e.g. $x_1 = x_2$), then they are neighbours if y_1, y_2 are
 147 spatially adjacent voxels. Some examples of FC neighbours are shown in Figure 3A. Now,
 148 consider an undirected graph \mathcal{G} with k nodes, where the nodes are k functional connectivities
 149 and two nodes are connected if they are neighbours, then these k functional connectivities form
 150 a FC cluster if they form a connected component in the graph \mathcal{G} . Some examples of FC clusters
 151 are shown in Figure 3B. There are five voxel clusters A, B, C, D, E in a two-dimensional image.
 152 The FCs between AB, BC and AD are different FC clusters, and FCs within voxel cluster E
 153 also form a single FC cluster. An algorithm for finding FC clusters can be implemented based
 154 on the above definition. In our analysis, We use Dulmage-Mendelsohn decomposition to find
 155 connected components in graph \mathcal{G} .

Based on the normality and stationarity assumption as in peak-level inference, we propose to use Gaussian random field theory to approximate the null distribution of maximum cluster size. In brief, let M be the number of FCs exceeding a pre-specified CDT z_0 , N be the number of FC clusters, and S be size of a FC cluster. Suppose that separate FC clusters are independent, then the distribution of maximum cluster size S_{max} for Gaussian random field is [Adler, 1981; Friston et al., 1994]:

$$P(S_{max} > s) = 1 - \exp[-\mathbb{E}(N)P(S > s)]$$

The expected number of FC clusters $\mathbb{E}(N)$ at a high CDT z_0 can be approximated by the expected EC of Gaussian random field using equation (2):

$$\mathbb{E}(N) \approx \mathbb{E}(EC) = \sum_{i=0}^P \sum_{j=0}^Q \mu_i(\mathcal{P}) \mu_j(\mathcal{Q}) \rho_{i+j}^Z(z_0)$$

The distribution of S can be approximated by [Adler, 1981; Nosko, 1969]:

$$P(S > s) = \exp \left[- \left(\frac{\Gamma((P+Q)/2 + 1) \mathbb{E}(N)s}{\mathbb{E}(M)} \right)^{\frac{2}{(P+Q)}} \right]$$

156 and $\mathbb{E}(M) = m[1 - \Phi(z_0)]$, where m is the number of functional connectivities, and $\Phi(\bullet)$ is
157 the cumulative distribution function of standard normal distribution. The above theory is a
158 generalization of previous result (e.g. [Friston et al., 1994] and [Hayasaka and Nichols, 2003]),
159 except the use of equation (2) to approximate the expected number of clusters $\mathbb{E}(N)$.

160 Therefore, in the cluster-level inference, small-sized FC clusters are more likely to be identi-
161 fied as false positives and filtered out (e.g. the red link in Figure 3B). Large-sized FC clusters
162 represent an existence of association signals either between two different voxel clusters (e.g. the
163 blue and green ones in Figure 3B) or within a single voxel cluster (e.g. the yellow one in Figure
164 3B). For example, consider that one performed a case-control BWAS, then the identified FCs
165 can be either altered connections between two brain regions or within a single region.

166 2.3 Validating peak- and cluster-level inference in real data

167 2.3.1 Data

168 Two resting-state fMRI datasets are used in our analysis: (1) 197 subjects from the Cambridge
169 dataset in the 1000 Functional Connectomes Project (1000 FCP); (2) 222 subjects from the
170 Southwest University (SWU) dataset in the International Data-sharing Initiative (IDNI). The
171 subjects in the two datasets are all healthy people with similar demographic information. They
172 are preprocessed using standard preprocessing pipelines implemented in Data Processing and
173 Analysis for Brain Imaging (DPABI) [Yan et al., 2016]. Finally, All fMRI data are registered to
174 $3 \times 3 \times 3 \text{ mm}^3$ standard space, and 47636 voxel time series within each subject's 90 cerebrum
175 regions (based on AAL template) are extracted. They are then smoothed by 3D Gaussian kernels
176 with FWHM = 0, 2, 4, 6, 8, 10, 12 mm on each dimension. Therefore, for volume-based fMRI
177 data, a total number of 14 datasets (2 sites \times 7 smoothness) are used in our subsequent analysis.

178 In addition, the above data are also mapped on to the Conte69 surface-based atlas using the
179 Connectome Workbench software. They are smoothed by 2D Gaussian kernels restricted on the
180 cortical surface with FWHM = 0, 4, 8 mm. Finally, 32492 vertex time series on the left cortical
181 surface are used in our analysis. All details are provided in the Appendix.

182 2.3.2 Estimating the empirical FWER

183 To evaluate whether the random field theory can actually control the FWER in real data analysis,
184 we compared our method with empirical permutation results in real data. Similar approaches
185 have previously been adopted to validate the random field theory in task-activation studies
186 [Eklund et al., 2016, 2012].

187 The following procedures were carried out in each of the volume-based and surface-based
188 fMRI datasets. First, subjects were randomly divided into two groups. Second, BWAS was
189 performed to compare the whole brain functional connectivities between two groups (approx-
190 imately 1.13×10^9 connections in volume-based data, and 5.28×10^8 connections in surface-based
191 data). The peak- and cluster-level inference approaches were applied to find significant signals.
192 Third, the above two steps were repeated 2000 times. FWER was then estimated by computing
193 that proportion of permutations in which any significant signal is found. Since subjects were
194 all healthy people with similar demographic informations, and their group labels were randomly

195 assigned, we expected that there were no group differences. Therefore, if the proposed approach
196 is valid, the proportion of analysis with at least one significant effect should be close to the
197 nominal error rate 0.05.

198 2.4 Comparing with other multiple correction methods

199 We compared our proposed method with connexel-wise Bonferroni correction and false discovery
200 rate (FDR-BH [Benjamini and Hochberg, 1995], FDR-BY [Benjamini and Yekutieli, 2001]) in
201 terms of the observed power and false-discovery rate. To mimic real data, we did not use
202 completely simulated data, but rather, we adopted a widely used evaluation methodology in
203 GWAS (e.g. [Yang et al., 2014; Zhou and Stephens, 2012]), which directly simulated signals
204 that correlated with real data. The data used here were 197 subjects in the Cambridge dataset
205 in four smoothness levels (FWHM = 0, 4, 8, 12 mm).

206 2.4.1 Simulation procedures

207 In detail, two cerebrum regions within the AAL template were first randomly selected. BOLD
208 signals of voxels within these two regions were extracted and functional connectivities of pairwise
209 voxels between these two regions were estimated. Second, subjects were randomly divided
210 into two groups, and signals were added to a subset of functional connectivities in one group.
211 Specifically, the signals formed a single FC-cluster with different mean connectivity intensity
212 between the two groups. Third, a two-sample t-test was used to compare two groups of functional
213 connectivities. Five methods, including Bonferroni, FDR-BH [Benjamini and Hochberg, 1995],
214 FDR-BY [Benjamini and Yekutieli, 2001], peak-level inference, and cluster-level inference (with
215 different CDT), were used to control the false-positive rate of multiple hypothesis testings.

216 Four free parameters were found in our simulation: 1) voxels selected from real data, 2)
217 signal width, i.e., the number of altered functional connectivities, 3) effect size of the signal and
218 4) image smoothness. In the Results Section, we report the results of comparisons among the
219 different combinations of parameters.

220 2.4.2 Performance metrics

221 Two metrics were used to evaluate the performance: the observed power and false-discovery
222 rate. The observed power was calculated as the number of discovered true-positive functional
223 connectivities divided by the total number of true-positive connectivities. The observed false-
224 discovery rate was calculated as the number of discovered false-positive functional connectivities
225 divided by total number of discovered functional connectivities.

226 2.5 Statistical power analysis

227 A method to estimate the statistical power of peak-level inference is proposed. Power is defined
228 as the probability of finding at least one true-positive signal for a region (denoted as B) in which
229 the false-positive rate α is controlled at a certain level in the whole search region (denoted as A)
230 [Friston et al., 1994]. To estimate power, four parameters should be specified: (1) the threshold

231 that controls FWER α , (2) the effect size of true signal γ , (3) the sample size n , and (4) the
232 smoothness of image.

First, if we assume that the primary variable of interest, β_{ij}^1 , is subject to a normal distribution $N(\mu_{ij}, \sigma_{ij}^2)$, the null hypothesis is $H_0 : \mathbb{E}(\beta_{ij}^1) = 0$. Therefore, every test statistic Z_{ij} is subject to $N(0, 1)$. The whole search region A is a central Gaussian random field with mean zero and variance one at each point. The threshold z_0 to control the FWER at α is obtained by the random field theory (Formula 2):

$$\alpha = P(\max_{(p,q) \in A} Z(p,q) > z_0 | H_0)$$

233 where (p, q) are the coordinates of the functional connectivities.

Then, under the alternative hypothesis $H_1 : \mathbb{E}(\beta_{ij}^1) = \mu_{ij}$, the test statistics Z_{ij} is subject to $N(\sqrt{n}\mu_{ij}/\sigma_{ij}, 1)$, where n is the sample size. The $\gamma_{ij} = \mu_{ij}/\sigma_{ij}$ is called effect size at FC_{ij} . We further assume that the distribution of signals will be the same in region B , i.e., all β_{ij}^1 is subject to the same normal distribution $N(\mu, \sigma^2)$. Therefore, region B is a non-central Gaussian random field $Z^*(p, q)$ with mean $\sqrt{n}\gamma$ and variance one at each point. The power in the search region $B \subset A$ can be expressed as:

$$\text{Power} = P(\max_{(p,q) \in B} Z^*(p,q) > z_0 | H_1)$$

The non-central Gaussian random field $Z^*(p, q)$ can be transformed to a central Gaussian random field by the following element-wise transformation:

$$Z(p, q) = Z^*(p, q) - \sqrt{n}\gamma$$

therefore, the power in region B can still be calculated using Formula (2):

$$\text{Power} = P(\max_{(p,q) \in B} Z(p,q) > z_0 - \sqrt{n}\gamma | H_0)$$

234 Three issues remain. The first involves selecting region B . When estimating power, we select
235 region B as consisting of functional connectivities between two three-dimensional balls, with the
236 diameter of each ball being equal to the intrinsic FWHM of the image (Figure 2). The idea
237 is that signals within such ball are usually homogeneous as a result of the smoothness of the
238 image. Besides, the matched filter theorem suggests that the signal is best detected when the
239 width of the smooth kernel matches the width of the signal [Worsley et al., 1996a].

The second issue involves the random field theory which can only approximate the right tail of the maximum distribution. Therefore, the above method may lead to an inaccurate estimation when $z_0 - \sqrt{n}\gamma$ is small. To address this problem, we propose to use the following heuristic modification:

$$\text{Power} = 1 - \exp \left[-P(\max_{(p,q) \in B} Z(p,q) > z_0 - \sqrt{n}\gamma | H_0) \right]$$

240 This formula ensures that the power is between zero and one, which shows excellent performance
241 in the simulation.

The last issue concerns estimating the effect size, which is typically estimated from the statistical map of a pilot study using the same study design. Suppose that the pilot BWAS study used n^* samples. Then, the estimated effect size at FC_{ij} is [Joyce and Hayasaka, 2012]:

$$\hat{\gamma}_{ij} = Z_{ij}/\sqrt{n^*}$$

242 Using the above formula, the power can be estimated for each functional connectivity to form a
243 power map on six-dimensional space, but it is quite difficult to visualize such a maps. Therefore,
244 to report the power of a study, we estimate the effect size of every FC to form an empirical
245 distribution. The power curves of different sample sizes and effect sizes under certain power
246 (e.g. 90% power) are analyzed and reported.

247 2.5.1 Simulation-based validation for power analysis

248 To test whether the proposed method can estimate power accurately, we performed a simulation
249 study. Briefly, we simulated a case-control study with known effect size in a subset of functional
250 connectivities, and we compared the observed power and the theoretical power.

251 In detail, first, we generated two sets of 10000 three-dimensional independent Gaussian white
252 noise images, with 30 voxels per dimension. Second, the images were smoothed by Gaussian
253 kernels with FWHM ranging from 3 to 6 voxels. Third, a ball with radius 10 voxels located at
254 the center of each image was extracted. This guaranteed the uniform smoothness. Fourth, every
255 20 images were combined to form 500 simulated four-dimensional fMRI data. We denoted the
256 images in the first set as $(A_1, A_2, \dots, A_{500})$ and the images in the second set as $(B_1, B_2, \dots, B_{500})$.
257 Fifth, the Pearson correlation coefficients were calculated between time series of pairwise voxels
258 of images A_i and B_i , and a Fisher's Z transformation was then performed. Sixth, two groups
259 of images from two sets were randomly selected, with each group consisting of 200 samples. A
260 Z-map was then generated by fitting each functional connectivity to a general linear model to
261 compare the two groups. Seventh, signals were then added to functional connectivities between
262 two balls, which were located at the center of each images. The diameter of balls was equal
263 to the FWHM of images. Specifically, a signal was the mean intensity difference between two
264 groups. We then estimated power using simulated data under different parameters, including
265 image smoothness FWHM, sample size n and effect size γ (Figure 2). The steps six and seven
266 were repeated for 10000 times under each parameter setting, and its maximum statistics are
267 recorded at each simulation. The empirical power was estimated by the proportion of maximum
268 statistics exceeding the FWER 0.05 threshold. We compared the results of simulation with the
269 proposed theoretical method.

270 3 Results

271 3.1 Overview of the proposed approaches

272 Figure 1 and 2 show the diagrams of the proposed approaches. Figure 4 shows the multiple
273 comparison threshold of different approaches in a typical BWAS study. In the study, the fMRI
274 data have a spatial resolution of $3 \times 3 \times 3 \text{ mm}^3$. A total of 47636 voxels in the cerebrum regions
275 were used.

276 Methods that control connectivity-wise FWER, including Bonferroni correction and peak-
277 level inference, provide evidence of association of each individual functional connectivities that
278 survive the threshold. Bonferroni correction is always the most conservative one. The peak-
279 level inference is more powerful when the smoothness of images are increased. As shown in the
280 Figure 4, the FWER-corrected threshold can be 1 to 2 order of magnitudes less conservative
281 than Bonferroni correction. Methods that control connectivity-wise FDR, including FDR-BH
282 and FDR-BY approaches, control the proportion of false-positive findings smaller than a pre-
283 specified level q (e.g. 5%). For the widely-used FDR-BH approach, it compares the i -th smallest
284 p-value $p_{(i)}$ with $\frac{i}{n}q$, where n is the total number of hypothesis tests, and rejects the first k
285 hypothesis tests that satisfy $p_{(i)} < \frac{i}{n}q$ (Figure 4). Therefore, the power of FDR approaches
286 highly depends on the observed p-values, which can be more or less powerful than the peak-
287 and cluster-level inference. For example, FDR approaches require the most significant p-value
288 reaches the threshold of Bonferroni correction. This requirement is sometimes very conservative
289 in BWAS, owing to the billions of statistical tests performed. However, it can be more powerful
290 when many of the p-values meet the requirement of the data-driven threshold. A method
291 that controls connectivity-wise FWER can also control connectivity-wise FDR. The cluster-
292 level inference approach tests the size of the FC clusters exceeding a CDT. A significant FC
293 cluster can provide evidence that there exist association signals somewhere in this FC cluster.
294 None of the individual functional connectivities in the cluster can be declared as significant ones.
295 This approach is usually sensitive to spatially extended signals. Moreover, when the CDT equals
296 the FDR threshold, the connectivity-wise FDR can be controlled, and when the CDT equals the
297 FWER threshold, it is equivalent to control the connectivity-wise FWER.

298 3.2 Validating peak- and cluster-level inference in real data

299 3.2.1 Estimated FWER in real datasets

300 We evaluate whether the proposed method can control the FWER in real data analysis by com-
301 paring the theoretical FWER with the empirical FWER estimated by permutation approaches.
302 The experimental procedures are illustrated in Section 2.3.2. For volume-based fMRI data, we
303 used 14 datasets (2 sites \times 7 smoothness). For surface-based fMRI data, we used 6 datasets (2
304 site \times 3 smoothness). The estimated smoothness of different datasets are shown in Table 1.

305 Figure 5 shows the estimated FWER of peak- and cluster-level inference methods using
306 volume-based fMRI data. We found that the peak-level approach is valid, as most of the esti-
307 mated FWERS lie in the binomial confidence interval of 2000 permutations (dashed line). The
308 cluster-level inference is also valid if the CDT is larger than 5. However, when the CDT be-
309 comes smaller, the false-positive rate will exceed the nominal level, because the assumptions of
310 the theory may break down.

311 Figure 6 shows, for cluster-level inference, the comparison of the estimated cluster-size thresh-
312 old of random field theory and permutation approach at low smoothness levels. Different from
313 the above analysis, we directly compare two thresholds because the 95% quantiles of empirical
314 maximum cluster-size distribution can not be estimated accurately. The reason is that when
315 the smoothness is low, the size of FC clusters is usually small, thus, there are many ties in the
316 maximum cluster-size distribution. A good agreement between the two thresholds demonstrates

317 the validity of cluster-size inference at low smoothness level, and the CDT can even be lower
318 comparing with the above analysis ($Z=4.5$).

319 Figure 7 shows the estimated FWER of peak- and cluster-level inference methods using
320 surface-based fMRI data. We found that, when no spatial smoothing is applied ($FWHM = 0\text{mm}$),
321 our approach is more conservative than permutation approach. The method works well when
322 we smooth the data. However, to the best our knowledge, there are no standard preprocessing
323 pipelines for surface-based resting-state fMRI data, thus, our surface-mapping approach may
324 not be optimal for BWAS and different preprocessing pipelines may affect the performance of
325 our approach. Therefore, the robustness of the approach should be tested in the future.

326 **3.2.2 The choice of cluster-defining threshold**

327 For cluster-level inference, the expected Euler Characteristics is used to approximate the ex-
328 pected number of clusters in the random field theory, assuming that the absence of holes when
329 CDT is applied. However, this assumption may not be true when the CDT is not high enough
330 or the data are not smooth enough. Therefore, we compare the expected Euler characteris-
331 tics calculated based on the Gaussian random field theory with the observed expected number
332 of clusters across different levels of CDT in volume-based fMRI data in both Cambridge and
333 Southwest University datasets. The observed expected number of clusters is computed based on
334 an average of 2000 permutations of each dataset. The results are shown in Supplement Figure
335 2 and 4. We found that, when the applied smoothness is larger than 4mm, the choice of CDT
336 greater than 5 is very safe for $3 \times 3 \times 3 \text{ mm}^3$ resolution fMRI data to meet the assumption of
337 the random field theory. This is in agreement with our results in the previous Section (Figure
338 5). When the smoothness is low, we found that there exist a large deviation between theory and
339 real data when the CDT is smaller than 5.5. However, the results shown in Figure 6 indicate the
340 proposed method can provide a valid threshold when the CDT is as low as 4.5 in two datasets.
341 Therefore, more analysis should be done to validate the approach in the low smoothness cases.

342 **3.2.3 Distribution of functional connectivity data**

343 We test whether functional connectivities data, i.e., Fisher's Z transformed correlation coeffi-
344 cients, are subject to normal distributions, which is a critical assumption for Gaussian random
345 field theory. We performed one-sample Kolmogorov-Smirnov test to test the normality of each
346 functional connectivity in both Cambridge and Southwest University datasets. Supplement Fig-
347 ure 1 and 3 show the results. As most of the p-values are larger than 0.05, we conclude that the
348 normality assumption is met.

349 **3.3 Comparing peak- and cluster-level inference with other multiple correc- 350 tion methods**

351 Figure 8 shows the results of comparisons using 197 subjects in the Cambridge dataset. The
352 experimental procedures are illustrated in Section 2.4. In this analysis, we extracted time series
353 of 306 voxels from the left putamen region and 302 voxels from the left inferior frontal gyrus
354 in each of the 197 subjects, and $306 \times 302 = 92412$ functional connectivities between these two

355 regions were calculated. Signals were added to 2970 of the functional connectivities, with effect
356 size ranging from 0.15 to 0.3, and smoothness of 0, 4, 8, 12 mm was applied. For cluster-level
357 inference, we used CDT = 3, 3.5 and 4 (Z-value). The following observations are obtained from
358 this simulation:

- 359 • Almost all the methods can control false discovery rate in this simulation (below 5%).
- 360 • The power of peak-level inference is similar to Bonferroni correction when the smoothness
361 is low (e.g. no spatial smoothing), but it becomes close to FDR-BY and much higher than that
362 of Bonferroni correction when the smoothness is high (e.g. applied smoothness of 12 mm).
- 363 • The false discovery rate and power of cluster-level inference depends on the choice of CDT.
- 364 The lower the CDT, the higher the false discovery rate and power.
 - 365 • We can find a CDT whose power is higher than that of the FDR method. In the meantime,
366 the false discovery rate is lower. For example, for cluster-level inference with CDT=3, the power
367 is higher than that of the FDR-BH method, and the false discovery rate is lower. For cluster-
368 level inference with CDT=3.5, the power is higher than that of the FDR-BY method, and the
369 false discovery rate is lower.

370 Similar results can be obtained by changing the selected voxels and the width of the signal
371 added, as shown in the Appendix (Supplement Figure 5-7). In conclusion, cluster-level inference
372 can increase sensitivity and decrease false-positive rate by filtering out small FC-clusters gener-
373 ated by random noises. Peak-level inference shows increased power when the smoothness is large;
374 thus, it is recommended when performing group-level studies with large applied smoothness.

375 3.4 Real data analysis: identifying altered functional connectivities in major 376 depression disorder

377 We applied our method to identify functional connectivity difference between patients with
378 major depression disorder (MDD) and healthy controls. The data used here are part of the data
379 in our previous study [Cheng et al., 2016] which contained 282 patients and 254 demographic
380 information matched controls from Southwest University dataset. We applied BWAS approach
381 to test the connectivity difference between two groups, with age, gender, education year, head
382 motion (mean frame-wise displacement) being nuisance covariates.

383 The most significant p-value among all functional connectivities was $p = 5.5 \times 10^{-11}$. How-
384 ever, the Bonferroni correction, FDR-BH and FDR-BY approaches can not detect any significant
385 connectivities (FWER or FDR at 0.05). This is because Bonferroni correction requires the p-
386 value smaller than $p = 4.4 \times 10^{-11}$, and both FDR-BH and FDR-BY approaches require the most
387 significant p-value smaller than the same threshold as Bonferroni correction. See the Manhattan
388 plot for details (Figure 9).

389 The p-value threshold of peak-level inference approach was $p = 9.1 \times 10^{-10}$ (connectivity-wise
390 FWER=0.05). A total of 114 altered functional connectivities were found (Figure 10, left). We
391 applied cluster-level inference approach to identify significant FC clusters (CDT $p = 3 \times 10^{-7}$
392 ($Z=5$) and cluster-size FWER=0.05). A total of 12388 functional connectivities were found
393 with p-value smaller than the applied CDT, and they formed 117 FC clusters. The largest one
394 contains 2247 functional connectivities. Finally, 10 largest FC clusters survived the cluster-size
395 FWER 0.05 threshold (Figure 10, right). Almost all the significant FCs in peak-level inference
396 form FC clusters in the cluster-level inference. We could see that, although billions of hypothesis

397 tests were performed and tens of thousands of functional connectivities were found, the results
398 obtained by the cluster-level inference are very structured, thus, easy to be reported (Figure
399 10, right). The identified FC clusters can be used in subsequent analysis in several ways. For
400 example, we can calculate the mean functional connectivity within each FC clusters, and use
401 prediction models to classify patients and controls in a new dataset. For patients, we can also
402 test whether the mean functional connectivity within each FC clusters are associated with the
403 depression symptom severity scores.

404 3.5 Simulation-based validation for power analysis

405 Figure 11 shows the relationship between sample size and power estimated by two methods under
406 two combination of parameters: effect size $\gamma = 0.2, 0.4, 0.6$ and smoothness FWHM=3,4,5,6
407 voxels. The estimation error (mean squared error) shown in the figure is very low. Therefore,
408 the proposed method can estimate power accurately, and this proposed framework can save a
409 considerable amount of time in generating power curves.

410 3.6 The power of a future brain-wide association study on MDD

411 We show an example of how to perform a power analysis to estimate the minimum required
412 sample size for a BWAS. In this example, we will analyze the power of BWAS on MDD using
413 the results of the above study. The aim is to estimate the minimum required sample size to
414 find at least one altered functional connectivities. Base on the above study, the most significant
415 functional connectivities is $p = 5.5 \times 10^{-11}$, corresponding to an effect size of $\gamma = 0.28$. Assuming
416 that in the new dataset, this functional connectivity has a similar effect size, the power under
417 different sample sizes and smoothness levels are estimated and plotted in the Figure 12. Results
418 show that about 80 to 130 subjects are needed to reach 90% power under different smoothness
419 levels.

420 4 Discussion

421 Our proposed method can accurately control FWER, as demonstrated by comparing with the
422 empirical FWER obtained from two real datasets. To the best our knowledge, BWAS is the
423 first method to use the random field theory to analyze the voxel-wise functional connectome.
424 Random field theory makes some assumptions of data. [Eklund et al. \[2016\]](#) recently reported
425 that random field theory could lead to inflated false-positive rate in task-activation analysis,
426 particularly when the CDT is low ($p = 0.01$). This failure is well known since the choice of low
427 CDT violates the assumptions of the original theory [\[Friston et al., 1994\]](#). However, in this same
428 article [\[Eklund et al., 2016\]](#), FWER is closer to nominal level when CDT is higher ($p = 0.001$).
429 Another article [\[Flandin and Friston, 2016\]](#) has also pointed out that the random field theory
430 can provide acceptable FWER when using two-sample t-test instead of one-sample t-test and
431 resampling the data close to the original image resolution. In our analysis, we have demonstrated
432 that the random field theory is valid for both volume- and surface-based resting-state fMRI data
433 under different smoothness. Particularly, the CDT in cluster-level inference should be high
434 enough ($|Z| > 5$ for moderate or large smoothness and $|Z| > 4.5$ for low smoothness).

435 Importantly, our method is computationally efficient. It is a fully parametric approach which
436 is not based on any simulation or permutation. Although non-parametric approaches can also
437 perform multiple correction and power analysis [Nichols and Holmes, 2002], they are extremely
438 slow in connexel-wise analysis by the necessity of calculating billions of statistical tests many
439 times. Our empirical studies show that our approach is usually at least N times faster than
440 the non-parametric permutation approaches, where N is the number of permutations performed.
441 The reason is that, although the subject-level brain network can be computed only once in
442 non-parametric permutations, the fitting of connexel-wise GLM is usually much slower than
443 network construction, thus, it dominates the computation time. In addition, parallelization of
444 permutations will not save much time, because the transmission speed of large data between
445 processors is very slow.

446 There are also limitations in the current framework. The functional connectivities identified
447 by massive univariate statistical tests approach may not be predictive, e.g., in a case-control
448 study, the identified connectivities may not be able to classify patients and controls. A directly
449 construction of connexel-wise prediction model is also not practical, since the model constructed
450 on a few hundred subjects and billion of features usually has a large variance. Meanwhile, the
451 optimization of model parameters become very difficult in this ultra-high dimensional feature
452 space. One possible way to solve this problem is to adopt the current BWAS framework into
453 sure independence screening (SIS) approach [Fan and Lv, 2008; Fan et al., 2009, 2010]. In
454 SIS, each feature $x_i, i = 1, 2, \dots, p$ is ranked in a descending order according to its correlation
455 with the target variable y , and a prediction model is fitted using a subset of features whose
456 rank is high enough. The authors showed that this intuitive approach possesses a good sure
457 independence screening property. BWAS is a special case of the first step of SIS, thus, it is easy
458 to be incorporate into the SIS approach. Moreover, by filtering out small-sized FC clusters using
459 cluster-level inference approach, we expect that the prediction performance can be improved.
460 Therefore, based on SIS, we can try to establish a connection between BWAS and prediction
461 analysis.

462 Many possible extensions and improvements of the current framework can be developed in
463 the future. First, this framework can be extended to task fMRI analysis to identify network
464 configuration changes (e.g. [Lohmann et al., 2016]). It can support either single subject analysis
465 or group analysis provided that the task experiment is in block design and the length of each trial
466 is long enough to enable network construction. Second, the cluster-level inference proposed here
467 controls the FWER of cluster size. An alternative method of controlling the FDR of cluster size
468 was proposed in task-activation studies [Chumbley and Friston, 2009; Chumbley et al., 2010],
469 which can be easily adopted here. Third, the estimation of subject-level functional network
470 is based on the Pearson correlation between pairwise BOLD signal time series in the current
471 framework, which may be suboptimal [Westfall and Yarkoni, 2016; Bellec et al., 2008; Sahib
472 et al., 2016]. Therefore, a better approach for constructing a functional network at the voxel
473 level should be designed and validated in the future [Narayan and Allen, 2016; Bickel and Levina,
474 2008]. Fourth, with the higher volume of available data, statistical methods for combining BWAS
475 results from multiple imaging centers are needed. In BWAS, integrating results from different
476 datasets has been shown to greatly reduce the false-positive rate and increase sensitivity [Cheng
477 et al., 2015a,b, 2016]. However, the sample heterogeneity introduced by different sources, such

478 as different data acquisition pipelines, population stratification, and genetic background, may
479 make the traditional meta-analysis method used in our previous studies suboptimal.

480 In this paper, we developed a rigorous statistical framework for BWAS. Both peak- and
481 cluster-level inferences are introduced for the analysis of voxel-wise functional connectomes, and
482 the random field theory is developed to control FWER and estimate statistical power. We believe
483 that this method will be very useful for the neuroimaging fields in the context of understanding
484 the brain connectome.

485 5 Acknowledgements

486 Jianfeng Feng is supported by the National High Technology Research and Development Pro-
487 gram of China (No. 2015AA020507), the Key Program of National Natural Science Foundation
488 of China (No. 91230201), International (Regional) Collaborative and Exchange Program of
489 National Natural Science (No. 71661167002), the Key Project of Shanghai Science and Tech-
490 nology Innovation Plan (No. 15JC1400101), and the Shanghai Soft Science Research Program
491 (No. 15692106604), and the National Centre for Mathematics and Interdisciplinary Sciences
492 (NCMIS) of the Chinese Academy of Sciences. Jianfeng Feng is a Royal Society Wolfson Re-
493 search Merit Award holder. Lin Wan is supported by the NSFC grants (No. 11571349 and No.
494 11201460), the NCMIS of the CAS, the Youth Innovation Promotion Association of the CAS,
495 and the Strategic Priority Research Program of the CAS (XDB13040600).

496 References

497 Robert J Adler. *The geometry of random fields*, volume 62. Siam, 1981.

498 Robert J Adler and Jonathan E Taylor. *Random fields and geometry*. Springer Science &
499 Business Media, 2009.

500 John Ashburner and Karl J Friston. Voxel-based morphometry—the methods. *Neuroimage*, 11
501 (6):805–821, 2000.

502 Christian F Beckmann and Stephen M Smith. Probabilistic independent component analysis
503 for functional magnetic resonance imaging. *IEEE transactions on medical imaging*, 23(2):
504 137–152, 2004.

505 Pierre Bellec, Guillaume Marrelec, and Habib Benali. A bootstrap test to investigate changes
506 in brain connectivity for functional mri. *Statistica Sinica*, pages 1253–1268, 2008.

507 Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and pow-
508 erful approach to multiple testing. *Journal of the royal statistical society. Series B (Method-
509 ological)*, pages 289–300, 1995.

510 Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing
511 under dependency. *Annals of statistics*, pages 1165–1188, 2001.

512 Peter J Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. *The
513 Annals of Statistics*, pages 199–227, 2008.

514 Bharat B Biswal, Maarten Mennes, Xi-Nian Zuo, Suril Gohel, Clare Kelly, Steve M Smith,
515 Christian F Beckmann, Jonathan S Adelstein, Randy L Buckner, Stan Colcombe, et al. Toward
516 discovery science of human brain function. *Proceedings of the National Academy of Sciences*,
517 107(10):4734–4739, 2010.

518 J Cao. The size of the connected components of excursion sets of χ^2 , t and f fields. *Advances
519 in Applied Probability*, pages 579–595, 1999.

520 Jin Cao, Keith Worsley, et al. The geometry of correlation fields with an application to functional
521 connectivity of the brain. *The Annals of Applied Probability*, 9(4):1021–1057, 1999.

522 Wei Cheng, Lena Palaniyappan, Mingli Li, Keith M Kendrick, Jie Zhang, Qiang Luo, Zening
523 Liu, Rongjun Yu, Wei Deng, Qiang Wang, et al. Voxel-based, brain-wide association study
524 of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. *npj
525 Schizophrenia*, 1, 2015a.

526 Wei Cheng, Edmund T Rolls, Huaguang Gu, Jie Zhang, and Jianfeng Feng. Autism: reduced
527 connectivity between cortical areas involved in face expression, theory of mind, and the sense
528 of self. *Brain*, page awv051, 2015b.

529 Wei Cheng, Edmund T Rolls, Jiang Qiu, Wei Liu, Yanqing Tang, Chu-Chung Huang, XinFa
530 Wang, Jie Zhang, Wei Lin, Lirong Zheng, et al. Medial reward and lateral non-reward or-
531 bitofrontal cortex circuits change in opposite directions in depression. *Brain*, page aww255,
532 2016.

533 J Chumbley, Keith Worsley, Guillaume Flandin, and K Friston. Topological fdr for neuroimaging.
534 *Neuroimage*, 49(4):3057–3064, 2010.

535 Justin R Chumbley and Karl J Friston. False discovery rate revisited: Fdr and topological
536 inference using gaussian random fields. *Neuroimage*, 44(1):62–70, 2009.

537 John E Desmond and Gary H Glover. Estimating sample size in functional mri (fmri) neuroim-
538 aging studies: statistical power analyses. *Journal of neuroscience methods*, 118(2):115–128, 2002.

539 Anders Eklund, Mats Andersson, Camilla Josephson, Magnus Johannesson, and Hans Knutsson.
540 Does parametric fmri analysis with spm yield valid results?—an empirical study of 1484 rest
541 datasets. *NeuroImage*, 61(3):565–578, 2012.

542 Anders Eklund, Thomas E Nichols, and Hans Knutsson. Cluster failure: Why fmri inferences
543 for spatial extent have inflated false-positive rates. *Proceedings of the National Academy of
544 Sciences*, page 201602413, 2016.

545 Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature
546 space. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 70(5):
547 849–911, 2008.

548 Jianqing Fan, Richard Samworth, and Yichao Wu. Ultrahigh dimensional feature selection:
549 beyond the linear model. *Journal of Machine Learning Research*, 10(Sep):2013–2038, 2009.

550 Jianqing Fan, Rui Song, et al. Sure independence screening in generalized linear models with
551 np-dimensionality. *The Annals of Statistics*, 38(6):3567–3604, 2010.

552 Guillaume Flandin and Karl J Friston. Analysis of family-wise error rates in statistical para-
553 metric mapping using random field theory. *arXiv preprint arXiv:1606.08199*, 2016.

554 Karl J Friston, Keith J Worsley, RSJ Frackowiak, John C Mazziotta, and Alan C Evans. As-
555 ssuming the significance of focal activations using their spatial extent. *Human brain mapping*,
556 1(3):210–220, 1994.

557 Matthew F Glasser, Stephen M Smith, Daniel S Marcus, Jesper LR Andersson, Edward J
558 Auerbach, Timothy EJ Behrens, Timothy S Coalson, Michael P Harms, Mark Jenkinson, Steen
559 Moeller, et al. The human connectome project’s neuroimaging approach. *Nature Neuroscience*,
560 19(9):1175–1187, 2016.

561 Satoru Hayasaka and Thomas E Nichols. Validating cluster size inference: random field and
562 permutation methods. *Neuroimage*, 20(4):2343–2356, 2003.

563 Satoru Hayasaka, Ann M Peiffer, Christina E Hugenschmidt, and Paul J Laurienti. Power
564 and sample size calculation for neuroimaging studies by non-central random field theory.
565 *Neuroimage*, 37(3):721–730, 2007.

566 Karen E Joyce and Satoru Hayasaka. Development of powermap: a software package for statis-
567 tical power calculation in neuroimaging studies. *Neuroinformatics*, 10(4):351–365, 2012.

568 Junghi Kim, Jeffrey R Wozniak, Bryon A Mueller, Xiaotong Shen, and Wei Pan. Comparison of
569 statistical tests for group differences in brain functional networks. *NeuroImage*, 101:681–694,
570 2014.

571 Gabriele Lohmann, Johannes Stelzer, Verena Zuber, Tilo Buschmann, Daniel Margulies, Andreas
572 Bartels, and Klaus Scheffler. Task-related edge density (ted)– a new method for revealing
573 dynamic network formation in fmri data of the human brain. *PLoS One*, 11(6):e0158185,
574 2016.

575 Karla L Miller, Fidel Alfaro-Almagro, Neal K Bangerter, David L Thomas, Essa Yacoub, Junqian
576 Xu, Andreas J Bartsch, Saad Jbabdi, Stamatis N Sotiropoulos, Jesper LR Andersson, et al.
577 Multimodal population brain imaging in the uk biobank prospective epidemiological study.
578 *Nature Neuroscience*, 2016.

579 Jeanette A Mumford and Thomas E Nichols. Power calculation for group fmri studies accounting
580 for arbitrary design and temporal autocorrelation. *Neuroimage*, 39(1):261–268, 2008.

581 Manjari Narayan and Genevera I Allen. Mixed effects models for resampled network statistics
582 improves statistical power to find differences in multi-subject functional connectivity. *Frontiers
583 in neuroscience*, 10, 2016.

584 Thomas E Nichols and Andrew P Holmes. Nonparametric permutation tests for functional
585 neuroimaging: a primer with examples. *Human brain mapping*, 15(1):1–25, 2002.

586 VP Nosko. Local structure of gaussian random fields in the neighborhood of high-level shines.
587 In *Dokl. Akad. Nauk SSSR*, volume 189, pages 714–717, 1969.

588 William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E Nichols.
589 *Statistical parametric mapping: the analysis of functional brain images*. Academic press, 2011.

590 Edmund T Rolls, Marc Joliot, and Nathalie Tzourio-Mazoyer. Implementation of a new par-
591 cellation of the orbitofrontal cortex in the automated anatomical labeling atlas. *NeuroImage*,
592 122:1–5, 2015.

593 Ashish Kaul Sahib, Klaus Mathiak, Michael Erb, Adham Elshahabi, Silke Klamer, Klaus Schef-
594 fler, Niels K Focke, and Thomas Ethisofer. Effect of temporal resolution and serial autocorre-
595 lations in event-related functional mri. *Magnetic resonance in medicine*, 2016.

596 JE Taylor and KJ Worsley. Random fields of multivariate test statistics, with applications to
597 shape analysis. *The Annals of Statistics*, pages 1–27, 2008.

598 Jacob Westfall and Tal Yarkoni. Statistically controlling for confounding constructs is harder
599 than you think. *PloS one*, 11(3):e0152719, 2016.

600 Keith J Worsley. Local maxima and the expected euler characteristic of excursion sets of χ^2 , f
601 and t fields. *Advances in Applied Probability*, pages 13–42, 1994.

602 Keith J Worsley, S Marrett, P Neelin, and AC Evans. Searching scale space for activation in
603 pet images. *Human brain mapping*, 4(1):74–90, 1996a.

604 Keith J Worsley, Sean Marrett, Peter Neelin, Alain C Vandal, Karl J Friston, Alan C Evans,
605 et al. A unified statistical approach for determining significant signals in images of cerebral
606 activation. *Human brain mapping*, 4(1):58–73, 1996b.

607 Chao-Gan Yan, Xin-Di Wang, Xi-Nian Zuo, and Yu-Feng Zang. Dpabi: Data processing & analysis for
608 (resting-state) brain imaging. *Neuroinformatics*, pages 1–13, 2016.

609 Jian Yang, Noah A Zaitlen, Michael E Goddard, Peter M Visscher, and Alkes L Price. Advan-
610 tages and pitfalls in the application of mixed-model association methods. *Nature genetics*, 46
611 (2):100–106, 2014.

612 Andrew Zalesky, Luca Cocchi, Alex Fornito, Micah M Murray, and ED Bullmore. Connectivity
613 differences in brain networks. *Neuroimage*, 60(2):1055–1062, 2012.

614 Xiang Zhou and Matthew Stephens. Genome-wide efficient mixed-model analysis for association
615 studies. *Nature genetics*, 44(7):821–824, 2012.

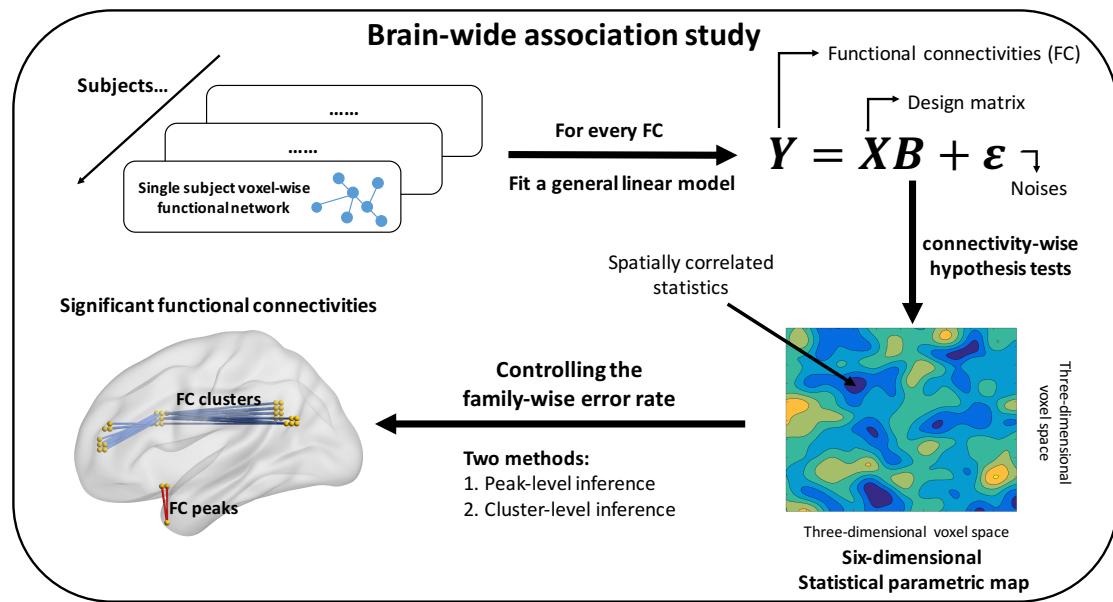


Figure 1: A flow chart of brain-wide association study. First, we estimate the voxel-level brain network for each individual. Then, we perform connectivity-wise statistical tests to test the association between each functional connectivity and a phenotype of interest. Finally, peak- and cluster-inference approaches are used to identify significant signals.

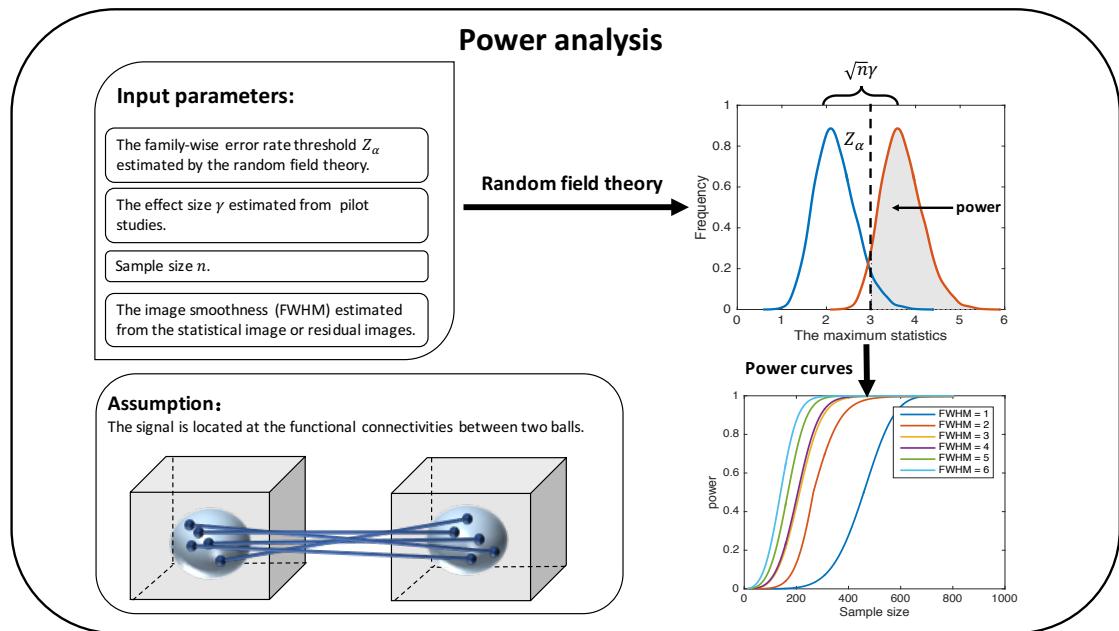


Figure 2: Power analysis for brain-wide association study. To estimate power, we first calculate the FWER-corrected threshold Z_α of peak-level inference, and then estimate the effect size γ from a prior statistical map of BWAS. For a target sample size n , and a smoothness level FWHM, we can estimate the power using the random field theory, which is defined as the probability of finding at least one true-positive signal in a region, in which the false-positive rate α is controlled at a certain level in the whole search region. Finally, the power under different sample sizes and smoothness levels can be estimated iteratively.

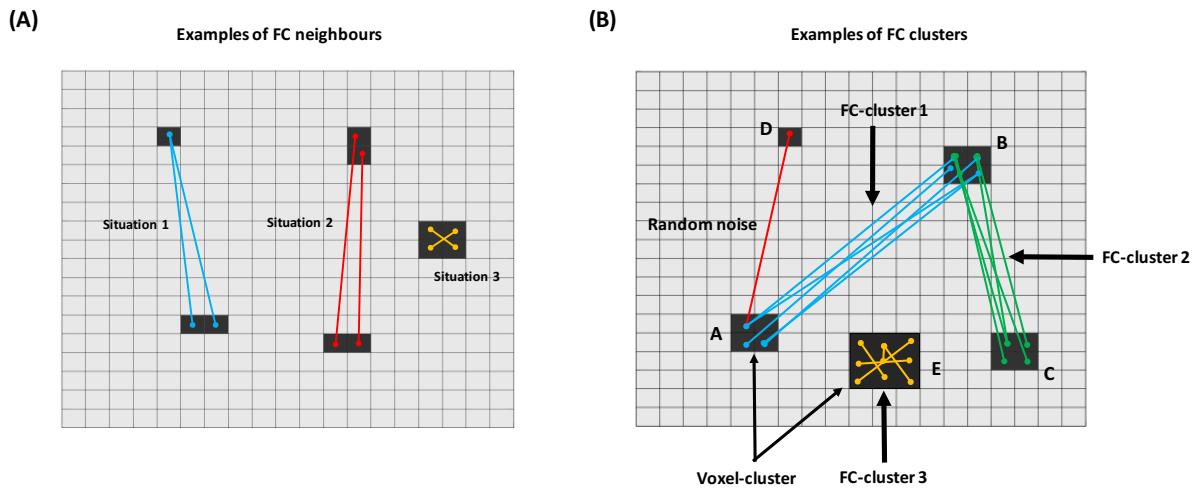


Figure 3: Two-dimensional diagrams of FC neighbours and FC clusters. The size of FC clusters exceeding a CDT is used as a test statistic in the cluster-level inference. (A) In BWAS, there are two cases that FCs are neighbours. In situation 1, two FCs share a common endpoint and another two endpoints are spatial neighbours. In situation 2, two pairs of endpoints of two FCs are all spatial neighbours. Situation 3 is a special case of situation 2. (B) In BWAS, FCs can form a cluster in two ways. The first one is the FCs between voxel cluster AB, BC and AD, and the second one is FCs within a voxel cluster E.

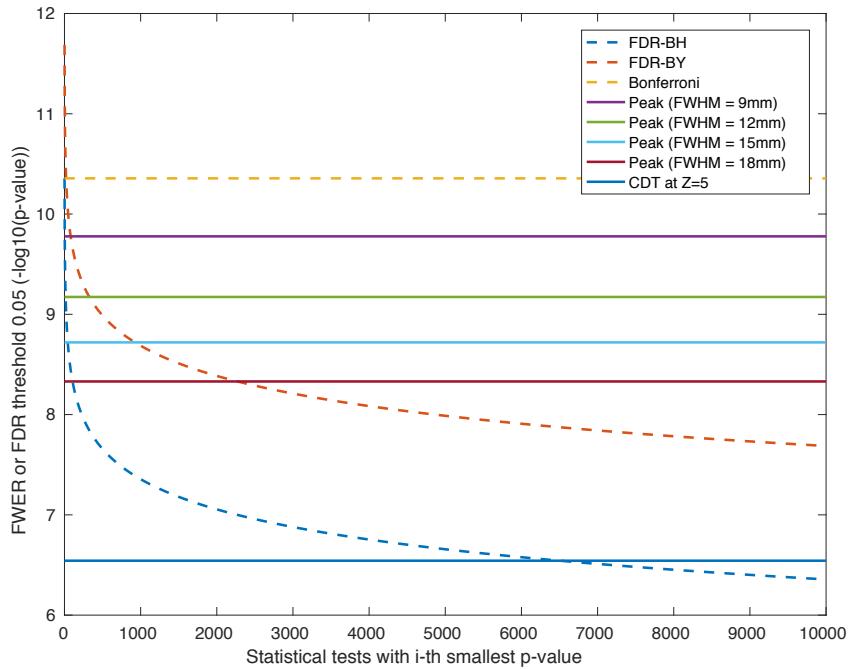


Figure 4: A comparison of the multiple comparison thresholds provided by different methods in BWAS (FWER or FDR 0.05) using $3 \times 3 \times 3 \text{ mm}^3$ volume-based fMRI data. Methods that control FWER (Bonferroni correction and peak-level inference) provide universal thresholds across FCs. The threshold of FDR approaches depend on the rank of p-values of FCs. The CDT of cluster-level inference is an universal threshold across FCs, and a subsequent correction on the size of FC clusters is applied.

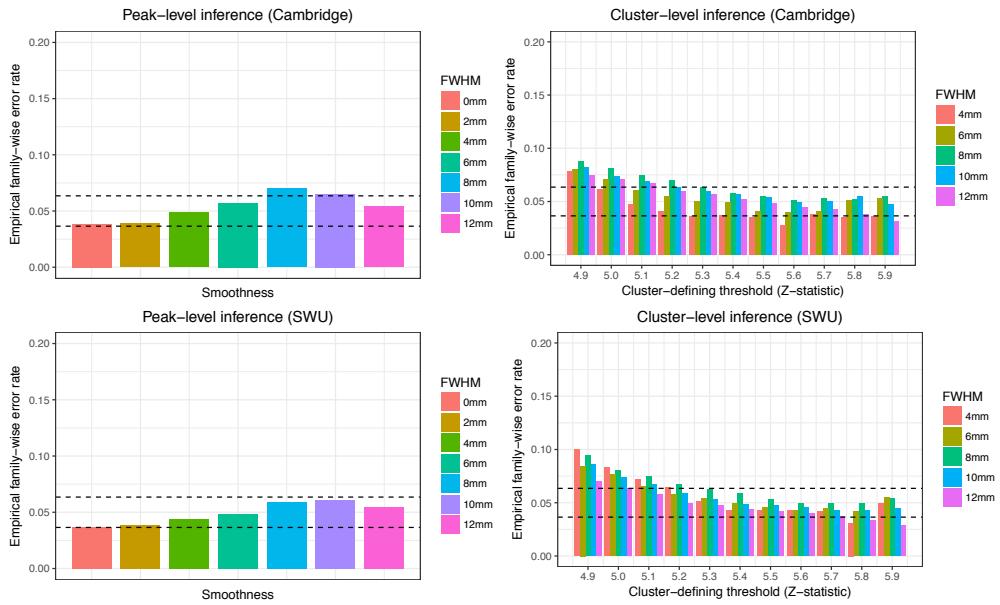


Figure 5: Validating peak- and cluster-level inference by comparing the theoretical FWER with permutation-based empirical FWER at 0.05. The methods are tested in 2 datasets (top: Cambridge; bottom: SWU) under 7 different smoothness levels (0 to 12 mm smoothing). The estimated FWER is that proportion of permutations in which any significant signals are found by the random field theory. Left: Results for peak-level inference. Right: Results for cluster-level inference with different CDT (from 4.9 to 5.9). Almost all the results lie in the binomial 95% confidence interval (the dashed line).

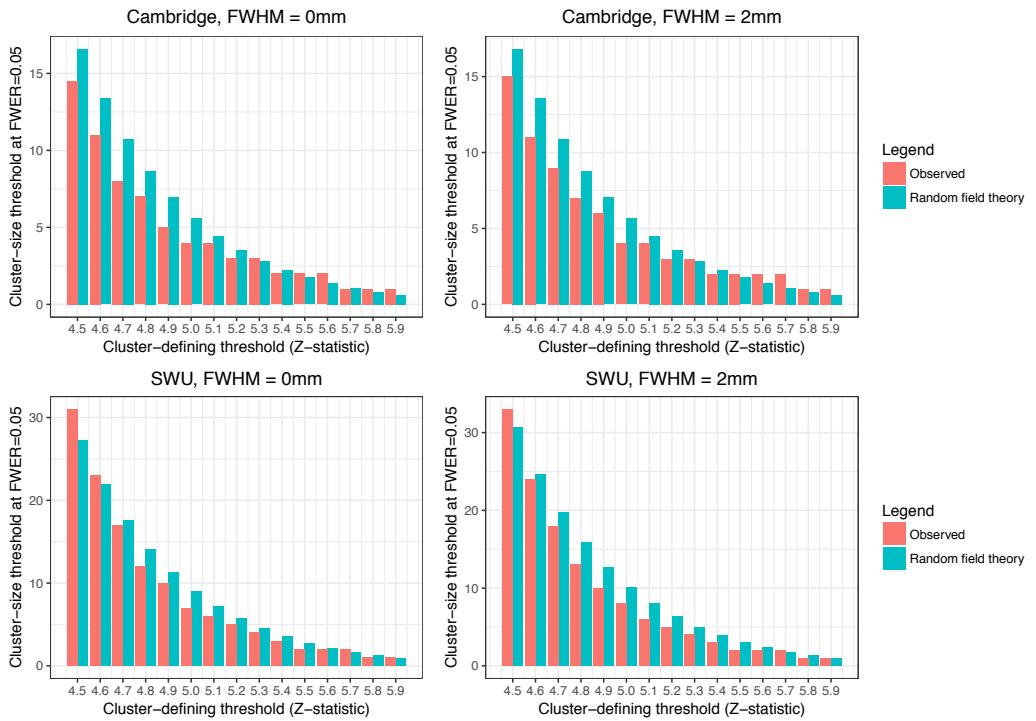


Figure 6: Validating cluster-level inference *at low smoothness* by comparing the theoretical cluster-size threshold with permutation-based empirical threshold at FWER 0.05 with different CDTs (from 4.5 to 5.9). The methods are tested in 2 datasets (top: Cambridge; bottom: SWU) under 2 different smoothness levels (0 mm and 2 mm smoothing).

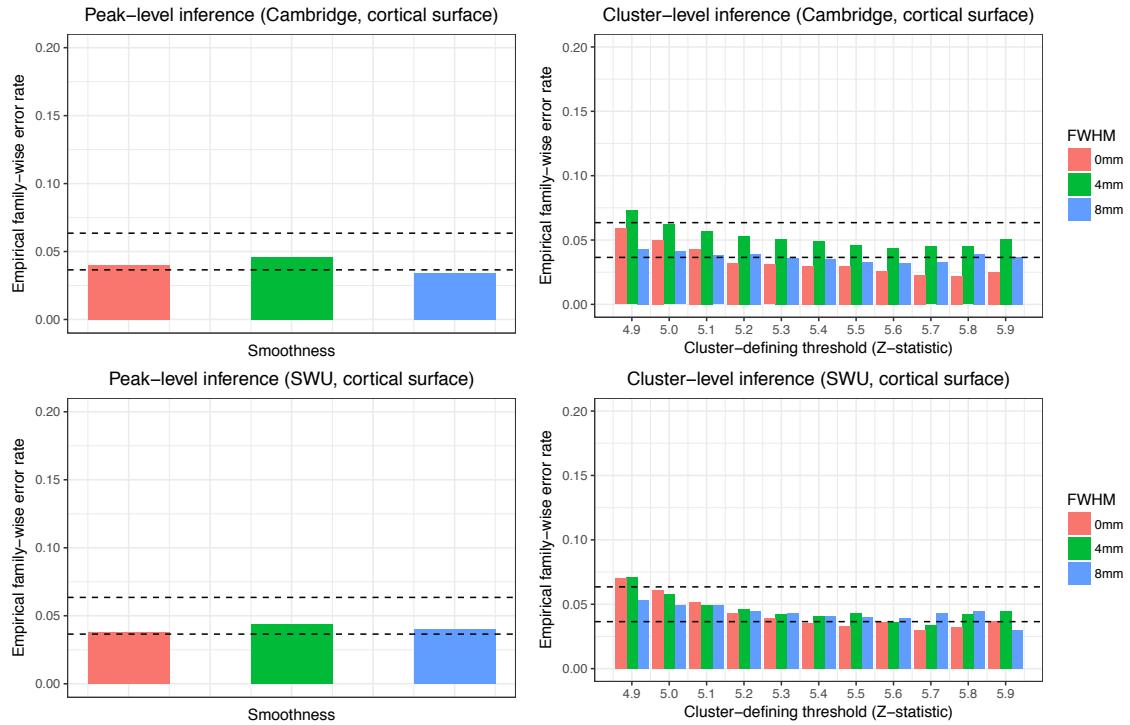


Figure 7: Validating peak- and cluster-level inference in *surface-based fMRI* data by comparing the theoretical FWER with permutation-based empirical FWER at 0.05. The methods are tested in 2 datasets (top: Cambridge; bottom: SWU) under 3 different smoothness levels (0, 4, 8mm smoothing). The estimated FWER is that proportion of permutations in which any significant signals are found by the random field theory. Left: Results for peak-level inference. Right: Results for cluster-level inference with different CDTs (from 4.9 to 5.9). Almost all the results lie in the binomial 95% confidence interval (the dashed line).

Table 1: The estimated smoothness of different datasets used in our analysis (FWHM in mm).

Applied smoothness		0 mm	2 mm	4 mm	6 mm	8 mm	10 mm	12 mm
Estimated smoothness	Cambridge volume-fMRI	4.5 mm	4.6 mm	7 mm	10.6 mm	13.2 mm	15.9 mm	17.6 mm
	Cambridge surface-fMRI	4.7 mm	NaN	6.9 mm	NaN	11.1 mm	NaN	NaN
	SWU volume-fMRI	5.1 mm	5.2 mm	7.5 mm	10.9 mm	13.4 mm	15.3 mm	17.9 mm
	SWU surface-fMRI	5.2 mm	NaN	7.7 mm	NaN	12.2 mm	NaN	NaN

Power and false discovery rate simulation in Cambridge dataset

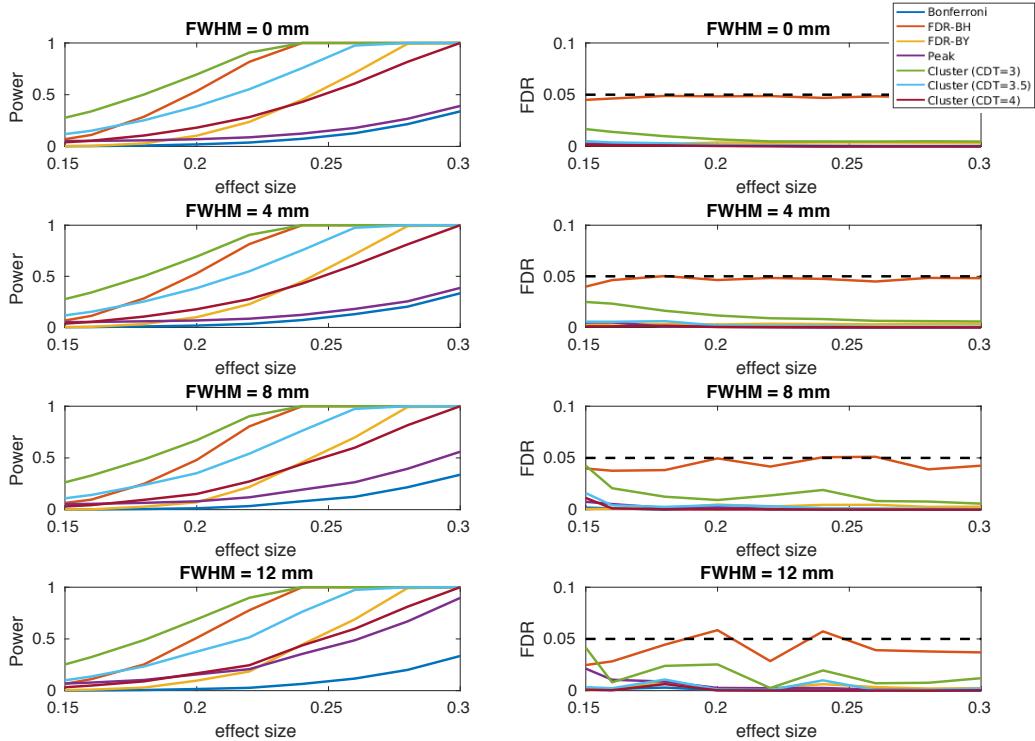


Figure 8: Comparing peak- and cluster-level inference methods with Bonferroni correction and two FDR methods in terms of power (first column) and false discovery rate (second column) across different levels of effect size and smoothness levels using the Cambridge dataset. Left: power curves of different approaches under different smoothness levels. Right: FDR curves of different approaches under different smoothness levels.

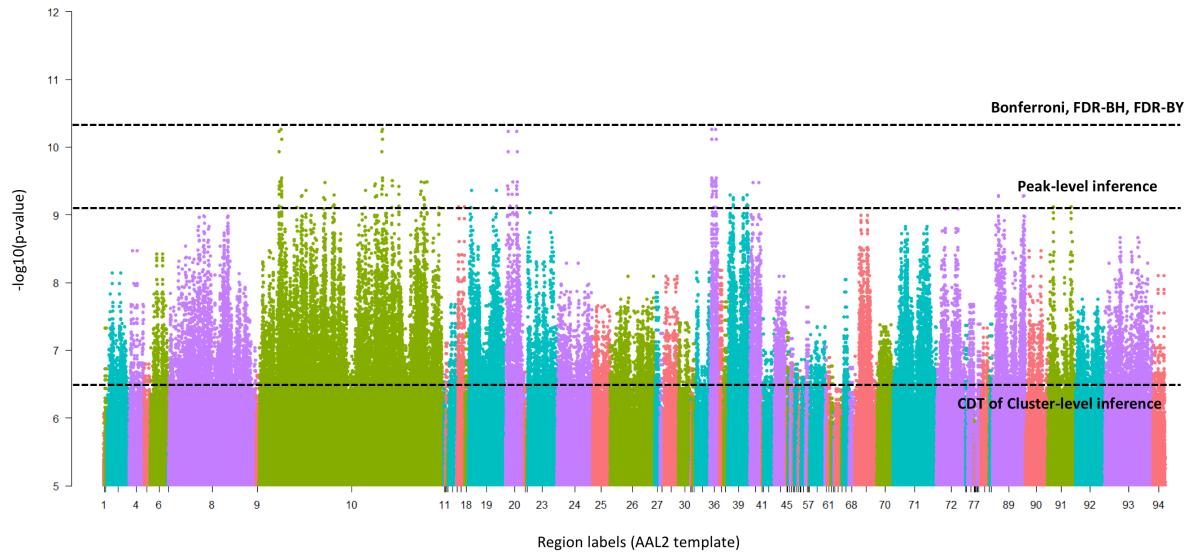


Figure 9: Manhattan plot of altered functional connectivities in major depression disorder ($p < 10^{-5}$ only). Each point represents a functional connectivity grouped by the 94 cerebrum regions of the AAL2 template. Bonferroni correction, FDR-BH and FDR-BY fail to identify any significant connections, while both peak- and cluster-level inference approaches identified many altered connectivities. Their brain locations are shown in the next two figures.

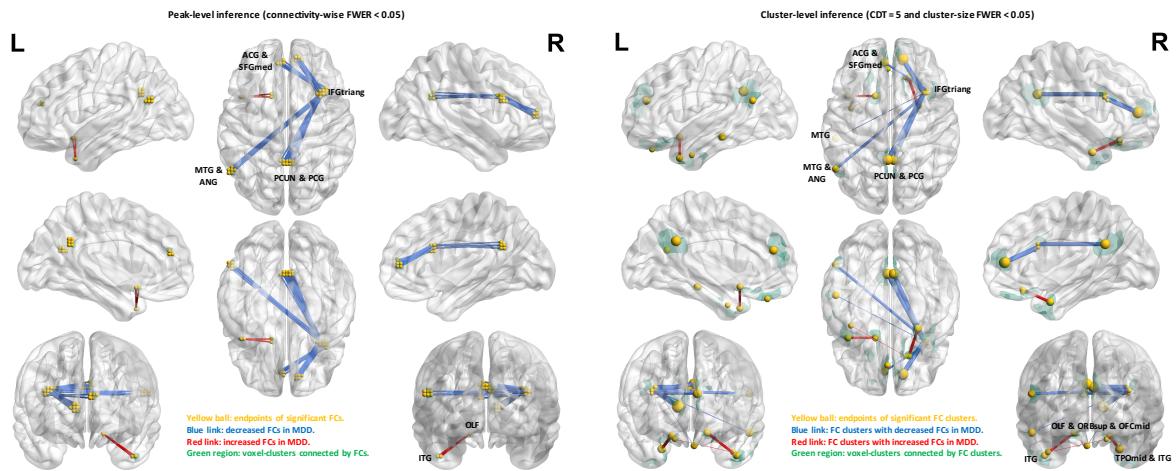


Figure 10: The altered functional connectivities in major depression disorder identified by peak-level inference (left) and cluster-level inference (right). For peak-level inference, the connectivity-wise FWER is 0.05, which corresponds to uncorrected p -value $< 9 \times 10^{-10}$. For cluster-level inference, the CDT is $Z=5$ ($p < 3 \times 10^7$) and cluster-size FWER is 0.05. Abbreviations of regions are listed in the Supplement Table 1.

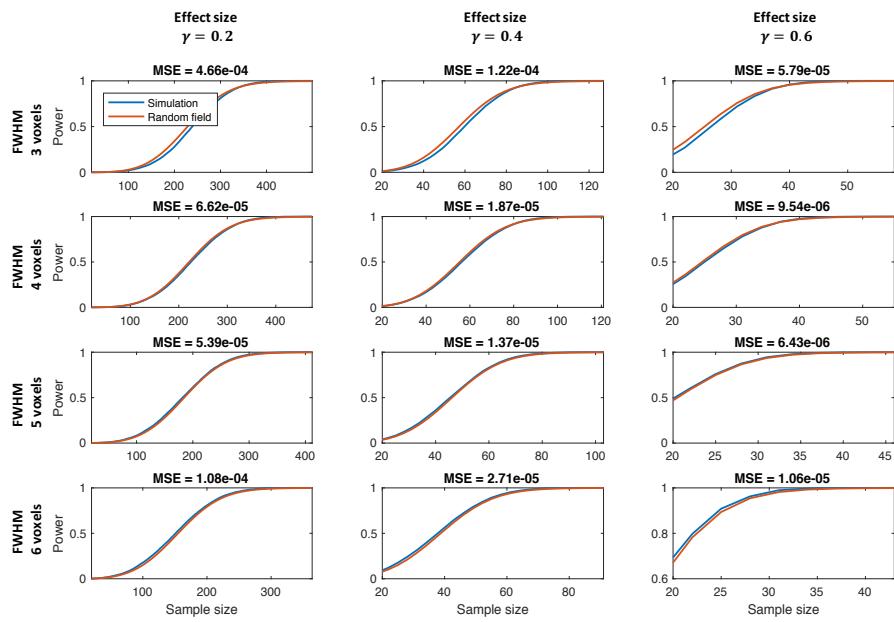


Figure 11: Comparing the theoretical power analysis method (red line) with the simulation result (blue line). Each figure shows the relationship between estimated power and sample size. From the left to the right, the effect sizes are 0.2, 0.4 and 0.6. From the top to the bottom, the FWHMs are 3 to 6 voxels.

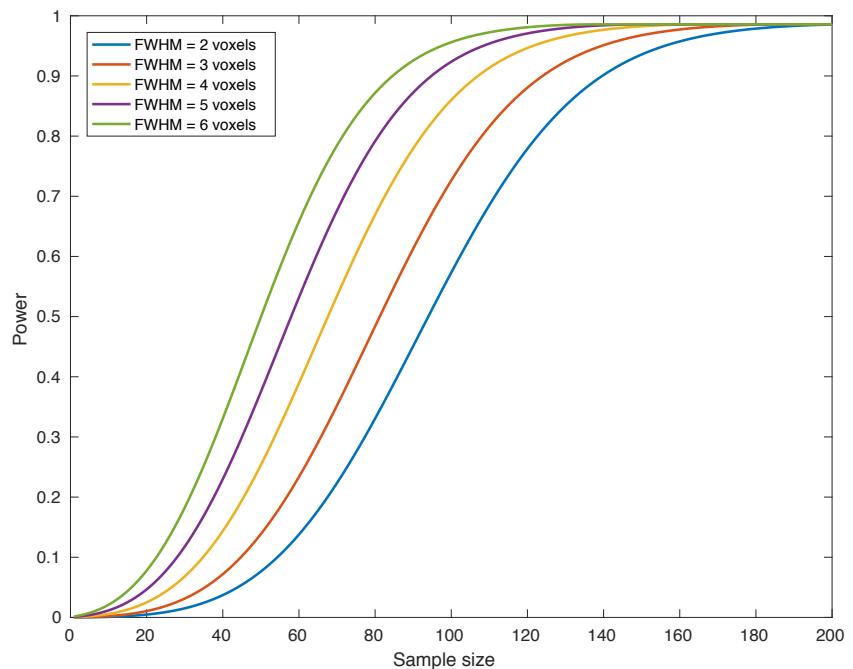


Figure 12: Power of detecting at least one altered functional connectivity in major depression disorder under different sample sizes and smoothness levels estimated by the proposed approach.

Appendix of "Statistical testing and power analysis for brain-wide association study"

Contents

A	Image acquisition and preprocessing	1
B	Calculating the intrinsic volume and Gaussian EC-density	2
C	Estimating the smoothness of the fMRI images	3
D	Proof of formula (1) in the main text	3
E	Proof of formula (2) in the main text	4
F	Supplement figures	8
G	Supplement tables	15

A Image acquisition and preprocessing

Only publicly available data are used in this article. Resting-state fMRI data are collected from two imaging sites: (1) 197 samples from the Cambridge dataset in 1000 Functional Connectomes Project (1000 FCP) [Biswal et al., 2010] (http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html); (2) 552 subjects from the Southwest University dataset in International Data-sharing Initiative (IDNI) (http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html). All subjects are normal people. As Southwest University dataset is a longitudinal dataset, only subjects who scanned at the first time are used in this paper.

All the data collected are subject to their local ethics review boards, the experiments and the dissemination of the anonymized data are approved. The detailed data acquisition methods may be found in the respective websites and papers. The data were preprocessed using SPM12 [Penny et al., 2011] and Data Processing and Analysis for Brain Imaging (DPABI) [Yan et al., 2016]. For each individual, the preprocessing steps included discarding the first 10 time points, slice timing correction, motion correction, coregistering the functional image to individual T1 structure image, segmenting structure images and DARTEL registration [Ashburner, 2007], regressing out nuisance covariates including 24 head motion parameters [Friston et al., 1996], white matter signals, cerebrospinal fluid signals, temporal filtering (0.01-0.1 Hz), normalizing to standard space of voxel size $3 \times 3 \times 3 \text{ mm}^3$ by DARTEL, and

smoothing by a 3D Gaussian kernel with FWHM = 0, 2, 4, 6, 8, 10, 12 mm. Finally, all the images are manually checked by experts to ensure preprocessing quality. Images that are not successfully preprocessed are discarded in our analysis.

The surface-based fMRI data are preprocessed using Connectome workbench. For the each volume-based fMRI data in the Cambridge and Southwest University dataset, we map it to the Conte69 surface-based atlas (http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas) using the command

‘wb_command -volume-to-surface-mapping’. Each fMRI images are then smoothed by a 2D Gaussian kernel with FWHM=0,4,8 mm using the command ‘wb_command cifti-smoothing’. Finally, the smoothness of each image is estimated by the command ‘wb_command -cifti-estimate-fwhm’. The surface area of Conte69 is estimated using the command ‘wb_command -surface-vertex-areas’, which is used in the random field theory.

B Calculating the intrinsic volume and Gaussian EC-density

To perform peak-level and cluster-level inference, we should calculate the 0- to 3-dimensional intrinsic volume and the 0- to 6-dimensional EC-densities for the Gaussian random field.

Let P be the number of voxels, E_x (or E_y, E_z) be number of x (or y, z)-direction edges (two adjacent voxels), F_{xy} (or F_{yz}, F_{xz}) be number of xy (or yz, xz)-direction surface (four adjacent voxels), and C be the number of cubes (eight adjacent voxels). The r_x (or r_y, r_z) be the resel size of x (or y, z)-direction, which is defined as the voxel size divided by FWHM (in mm). The 0 to 3 dimensional intrinsic volume of S can be calculated as:

$$\begin{aligned} u_0(S) &= P - (E_x + E_y + E_z) + (F_{yz} + F_{xz} + F_{xy}) - C \\ u_1(S) &= (E_x - F_{xy} - F_{xz} + C)r_x + (E_y - F_{xy} - F_{yz} + C)r_y + (E_z - F_{xz} - F_{yz} + C)r_z \\ u_2(S) &= (F_{xy} - C)r_x r_y + (F_{xz} - C)r_x r_z + (F_{yz} - C)r_y r_z \\ u_3(S) &= C r_x r_y r_z \end{aligned}$$

The above calculation has been implement in SPM package as *spm_resels_vol* function. Two other methods also work well in practice. One is to replace the original space with a equal volume ball, as implement in the *fmrifstat* package, the other is to use a linear regression model [Bartz et al., 2011], which do not need the knowledge of spatial smoothness. In whole-brain BWAS, for peak-level inference, the $u_i(\mathcal{P})$ and $u_i(\mathcal{Q})$ are the same. As there are $p(p-1)/2$ functional connectivities across p voxels, we divided the estimated intrinsic volume by $\sqrt{2}$, thus, the highest order term, $u_3(\mathcal{P}) \times u_3(\mathcal{Q})$, will approximate the total number of functional connectivities (in resel) in the brain.

The 0- to 6-dimensional EC-densities for Gaussian random field at t are:

$$\begin{aligned}
\rho_0(t) &= 1 - \Phi(t) \\
\rho_1(t) &= (4 \ln 2)^{\frac{1}{2}} (2\pi)^{-1} e^{\frac{-t^2}{2}} \\
\rho_2(t) &= (4 \ln 2) (2\pi)^{-\frac{3}{2}} t e^{\frac{-t^2}{2}} \\
\rho_3(t) &= (4 \ln 2)^{\frac{3}{2}} (2\pi)^{-2} (t^2 - 1) e^{\frac{-t^2}{2}} \\
\rho_4(t) &= (4 \ln 2)^2 (2\pi)^{-\frac{5}{2}} (t^3 - 3t) e^{\frac{-t^2}{2}} \\
\rho_5(t) &= (4 \ln 2)^{\frac{5}{2}} (2\pi)^{-3} (t^4 - 6t^2 + 3) e^{\frac{-t^2}{2}} \\
\rho_6(t) &= (4 \ln 2)^3 (2\pi)^{-\frac{7}{2}} (t^5 - 10t^3 + 15t) e^{\frac{-t^2}{2}}
\end{aligned}$$

where $\Phi(\bullet)$ is the cumulative distribution function of standard normal distribution.

C Estimating the smoothness of the fMRI images

The true smoothness of fMRI images is usually large than the applied smoothness. Therefore, an accurate estimation of smoothness is critical for Gaussian random field theory. The following approach is used to estimate the smoothness of 3D or 2D images [Hagler et al., 2006]:

$$\text{FWHM} = dv \sqrt{\frac{-2 \ln 2}{\ln(1 - \frac{\text{var}(ds)}{2\text{var}(s)})}}$$

where dv is the average inter-neighbour distance of voxels or vertices, $\text{var}(ds)$ is the variance of inter-neighbours differences, and $\text{var}(s)$ is the overall variance of the values at each voxels or vertices. The FWHM of fMRI image is the average smoothness of the 3D or 2D images across all time points.

D Proof of formula (1) in the main text

Using the property of d-dimensional intrinsic volume [Taylor and Worsley, 2008]

$$u_d(\mathcal{P} \times \mathcal{Q}) = \sum_{k=0}^d u_k(\mathcal{P}) u_{d-k}(\mathcal{Q})$$

When $d > P$, $u_d(\mathcal{P}) = 0$ and $d > Q$, $u_d(\mathcal{Q}) = 0$. It is easy to conclude that

$$\begin{aligned}
\sum_{d=0}^{P+Q} \mu_d(\mathcal{P} \times \mathcal{Q}) &= \sum_{d=0}^{P+Q} \sum_{k=0}^d u_k(\mathcal{P}) u_{d-k}(\mathcal{Q}) \\
&= \sum_{i=0}^P \sum_{j=0}^Q \mu_i(\mathcal{P}) \mu_j(\mathcal{Q})
\end{aligned}$$

In our case, we have $P = Q = 3$.

E Proof of formula (2) in the main text

The normal transformation of T-statistic makes the $\hat{\sigma}_{ij}^2$ fixed as $\hat{\sigma}_0^2$ [Worsley et al., 1992, 1996]. Therefore, the test statistic becomes

$$\begin{aligned} Z_{ij} &= \frac{\mathbf{c}' \hat{B}_{ij}}{\sqrt{\mathbf{c}' (X'X)^{-1} \mathbf{c}' \hat{\sigma}_0^2}} \\ &= \frac{\mathbf{c}' (X'X)^{-1} X' Y_{ij}}{\sqrt{\mathbf{c}' (X'X)^{-1} \mathbf{c}' \hat{\sigma}_0^2}} \\ &= \sum_{s=1}^n w^{(s)} z_{ij}^{(s)} \end{aligned}$$

where $w^{(s)}$ is the s -th element of row vector $\frac{\mathbf{c}' (X'X)^{-1} X'}{\sqrt{\mathbf{c}' (X'X)^{-1} \mathbf{c}' \hat{\sigma}_0^2}}$, which only depends on the subjects.

Let $M^{(s)}(p) = (M_1^{(s)}(p), \dots, M_{v^{(s)}}^{(s)}(p))'$, $p \in \mathcal{P} \subset \mathbb{R}^P$ and $N^{(s)}(q) = (N_1^{(s)}(q), \dots, N_{v^{(s)}}^{(s)}(q))'$, $q \in \mathcal{Q} \subset \mathbb{R}^Q$ be two vectors of $v^{(s)}$ independent and homogeneous Gaussian random fields with mean zeros and variance one. The index s denotes subjects, and the $v^{(s)}$ can be treated as the number of time points, while p, q are the coordinates of three-dimensional Euclidean space. The $(P+Q)$ -dimensional cross-correlation random field $R^{(s)}(p, q)$ is defined as follows [Cao et al., 1999]:

$$R^{(s)}(p, q) = \frac{M^{(s)}(p)' N^{(s)}(q)}{\sqrt{M^{(s)}(p)' M^{(s)}(p) N^{(s)}(q)' N^{(s)}(q)}}$$

In BWAS, the cross-correlation field is generated by calculating sample correlation coefficients between pairwise voxel time series. Next, the element-wise Fisher's Z transformation transforms this cross-correlation random field to a six-dimensional 'Gaussianized' random field as:

$$Z^{(s)}(p, q) = \frac{1}{2} \log \left[\frac{1 + R^{(s)}(p, q)}{1 - R^{(s)}(p, q)} \right]$$

It has mean zero and variance $\frac{1}{v^{(s)} - 3}$ [Kenney, 1939]. Our test statistic $Z_{ij}(p, q)$ forms a weighted sum of Fisher's Z transformed cross-correlation random field $Z(p, q)$ as:

$$Z(p, q) = \sum_{s=1}^n w^{(s)} Z^{(s)}(p, q)$$

The random field $Z(p, q)$ is a 'Gaussianized' random field with mean zero and variance one. Therefore, we can use formula (1) in the main text to approximate its maximum distribution at high threshold:

$$\begin{aligned} P(\max Z(p, q) > z_0) &\approx \mathbb{E}(EC) = \sum_{d=0}^{(P+Q)} \mu_d(\mathcal{P} \times \mathcal{Q}) \rho_d^Z(z_0) \\ &= \sum_{i=0}^P \sum_{j=0}^Q \mu_i(\mathcal{P}) \mu_j(\mathcal{Q}) \rho_{i+j}^Z(z_0) \end{aligned} \tag{1}$$

The EC-densities for the Gaussian random field $\rho_d^Z(z_0)$ in any dimensions can be expressed as [Adler and Taylor, 2009]:

$$\rho_d^Z(z_0) = (2\pi)^{-\frac{d+1}{2}} |\Lambda|^{\frac{d}{2(P+Q)}} e^{-\frac{z_0^2}{2}} \sum_{j=0}^{\lfloor \frac{d-1}{2} \rfloor} (-1)^j \frac{(2j)!}{j! 2^j} \binom{d-1}{2j} z_0^{d-1-2j}$$

where D is the highest dimension of $Z(p, q)$. The $|\Lambda| = |\text{Var}(\dot{Z}(p, q))|$ is the determinant of the variance-covariance matrix of the partial derivative of $Z(p, q)$. The $|\Lambda|$ can be replaced by FWHM_Z , the Full Width at Half Maximum (FWHM) of the random field Z averaged across all dimensions, using the equation:

$$\text{FWHM}_Z = (4 \log 2)^{\frac{1}{2}} |\Lambda|^{-\frac{1}{2D}}$$

and FWHM_Z is a corrected smoothness parameter, which can be calculated as:

$$\text{FWHM}_Z = \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \text{FWHM}_{M^{(s)}}^{-2} \right)^{-\frac{P}{2(P+Q)}} \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \text{FWHM}_{N^{(s)}}^{-2} \right)^{-\frac{Q}{2(P+Q)}}$$

where $\text{FWHM}_{M^{(s)}}$ and $\text{FWHM}_{N^{(s)}}$ are the average FWHM of the random field vectors $M^{(s)}(p)$ and $N^{(s)}(q)$ across three dimensions. The proof of this formula is given in the next section. Finally, the formula (2) in the main text is used in the peak-level inference:

$$\begin{aligned} P(\max Z(p, q) > z_0) &\approx \sum_{i=0}^P \sum_{j=0}^Q \mu_i(\mathcal{P}) \mu_j(\mathcal{Q}) \frac{(2\pi)^{-\frac{i+j+1}{2}} (4 \log 2)^{\frac{i+j}{2}}}{\text{FWHM}_Z^{i+j}} \\ &\times e^{-\frac{z_0^2}{2}} \sum_{k=0}^{\lfloor \frac{i+j-1}{2} \rfloor} (-1)^k \frac{(2k)!}{k! 2^k} \binom{i+j-1}{2k} z_0^{d-1-2k} \end{aligned} \quad (2)$$

We can see that FWHM_Z is a function of the number of time points $v^{(s)}$ and the $\text{FWHM}_{M^{(s)}}$ and $\text{FWHM}_{N^{(s)}}$ of the individual fMRI data. Assuming that the length of scanning time and image smoothness is the same for every subject in a study. Denoting them as v and FWHM, the formula for calculating FWHM_Z reduces to:

$$\begin{aligned} \text{FWHM}_Z &= \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v - 3} \text{FWHM}^{-2} \right)^{-\frac{P}{2(P+Q)}} \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v - 3} \text{FWHM}^{-2} \right)^{-\frac{Q}{2(P+Q)}} \\ &= \text{FWHM} \sqrt{v - 3} \left[\left(\frac{\mathbf{c}(X'X)^{-1}X'}{\sqrt{\mathbf{c}(X'X)\mathbf{c}'\hat{\sigma}_0^2}} \right) \left(\frac{\mathbf{c}(X'X)^{-1}X'}{\sqrt{\mathbf{c}(X'X)\mathbf{c}'\hat{\sigma}_0^2}} \right)' \right]^{-\frac{1}{2}} \\ &= \text{FWHM} \sqrt{(v - 3)\sigma_0^2} \\ &= \text{FWHM} \end{aligned}$$

where we treat the sample variance σ_0^2 as the theoretical variance $\frac{1}{v-3}$. This suggests that (1) the smoothness of random field $Z(p, q)$ equals the original image smoothness. A series of non-linear transformations will maintain the original smoothness of images. (2) the scanning time does not influence this formula.

In practice, for volume-base BWAS, we found that the formula one usually provide a slightly conservative estimation of FWER-corrected threshold. Therefore, we modify it as:

$$\alpha = P(\max Z(p, q) > z_0) \approx \mathbb{E}(EC) \approx \mu_2(\mathcal{P})\mu_2(\mathcal{Q})\rho_6^Z(z_0) \quad (3)$$

For surface-based BWAS, we use:

$$\alpha = P(\max Z(p, q) > z_0) \approx \mathbb{E}(EC) = \sum_{i=0}^2 \sum_{j=0}^2 \mu_i(\mathcal{P})\mu_j(\mathcal{Q})\rho_{i+j}^Z(z_0) \quad (4)$$

Finally, if we only analyse the functional connectivities between subcortical voxels \mathcal{P} and cortical vertices \mathcal{Q} , we use:

$$\alpha = P(\max Z(p, q) > z_0) \approx \mathbb{E}(EC) = \sum_{i=0}^3 \sum_{j=0}^2 \mu_i(\mathcal{P})\mu_j(\mathcal{Q})\rho_{i+j}^Z(z_0) \quad (5)$$

Proof of the formula for calculating FWHM_Z

Let $Var(\dot{M}^{(s)}(p)) = \Lambda_{M_s}$ and $Var(\dot{N}^{(s)}(q)) = \Lambda_{N_s}$, then according to the Lemma 4.2 in [Cao et al., 1999],

$$\frac{\partial R^{(s)}(p, q)}{\partial p} \stackrel{D}{=} (1 - R^{(s)}(p, q)^2)^{\frac{1}{2}} a_s^{-\frac{1}{2}} (\Lambda_{M_s})^{\frac{1}{2}} z_M^{(s)}$$

and

$$\frac{\partial R^{(s)}(p, q)}{\partial q} \stackrel{D}{=} (1 - R^{(s)}(p, q)^2)^{\frac{1}{2}} a_s^{-\frac{1}{2}} (\Lambda_{N_s})^{\frac{1}{2}} z_N^{(s)}$$

where $a_s \sim \chi_{v^{(s)}}^2$, $z_M^{(s)} \sim N(0, I_{P,P})$, $z_N^{(s)} \sim N(0, I_{Q,Q})$ and independent of $R^{(s)}(p, q)$, and $\stackrel{D}{=}$ means equal in distribution. Then, after the Fisher's Z transformation, we have

$$\frac{\partial Z^{(s)}(p, q)}{\partial p} \stackrel{D}{=} (1 - R^{(s)}(p, q)^2)^{-\frac{1}{2}} a_s^{-\frac{1}{2}} (\Lambda_{M_s})^{\frac{1}{2}} z_M^{(s)}$$

and

$$\frac{\partial Z^{(s)}(p, q)}{\partial q} \stackrel{D}{=} (1 - R^{(s)}(p, q)^2)^{-\frac{1}{2}} a_s^{-\frac{1}{2}} (\Lambda_{N_s})^{\frac{1}{2}} z_N^{(s)}$$

Then,

$$\frac{\partial Z(p, q)}{\partial p} \stackrel{D}{=} \sum_{s=1}^n w^{(s)} (1 - R^{(s)}(p, q)^2)^{-\frac{1}{2}} a_s^{-\frac{1}{2}} (\Lambda_{M_s})^{\frac{1}{2}} z_M^i$$

and

$$\frac{\partial Z(p, q)}{\partial q} \stackrel{D}{=} \sum_{s=1}^n w^{(s)} (1 - R^{(s)}(p, q)^2)^{-\frac{1}{2}} a_s^{-\frac{1}{2}} (\Lambda_{N_s})^{\frac{1}{2}} z_N^i$$

Since

$$Var(\dot{Z}(p, q)) = \begin{pmatrix} \mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial p} \frac{\partial Z^{(s)\prime}(p, q)}{\partial p}\right] & \mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial p} \frac{\partial Z^{(s)\prime}(p, q)}{\partial q}\right] \\ \mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial q} \frac{\partial Z^{(s)\prime}(p, q)}{\partial p}\right] & \mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial q} \frac{\partial Z^{(s)\prime}(p, q)}{\partial q}\right] \end{pmatrix}$$

and

$$\mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial p} \frac{\partial Z^{(s)\prime}(p, q)}{\partial q}\right] = \mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial q} \frac{\partial Z^{(s)\prime}(p, q)}{\partial p}\right] = 0$$

and

$$\begin{aligned}\mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial p} \frac{\partial Z^{(s)\prime}(p, q)}{\partial p}\right] &= \sum_{s=1}^n (w^{(s)})^2 \mathbb{E}[(1 - R^{(s)}(p, q)^2)^{-1}] \mathbb{E}[a_s^{-1}] \Lambda_{M_s} \\ \mathbb{E}\left[\frac{\partial Z^{(s)}(p, q)}{\partial q} \frac{\partial Z^{(s)\prime}(p, q)}{\partial q}\right] &= \sum_{s=1}^n (w^{(s)})^2 \mathbb{E}[(1 - R^{(s)}(p, q)^2)^{-1}] \mathbb{E}[a_s^{-1}] \Lambda_{N_s}\end{aligned}$$

The expectations in the above equations are

$$\begin{aligned}\mathbb{E}[a_s^{-1}] &= \frac{1}{v^{(s)} - 2} \\ \mathbb{E}[(1 - R^{(s)}(p, q)^2)^{-1}] &= \frac{v^{(s)} - 2}{v^{(s)} - 3}\end{aligned}$$

Finally we get

$$Var(\dot{Z}(p, q)) = \begin{pmatrix} \sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \Lambda_{M_s} & 0 \\ 0 & \sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \Lambda_{N_s} \end{pmatrix}_{6 \times 6}$$

Substituting the variance covariance matrix of partial derivative of the random field by the FWHM using its relationship with $|\Lambda|$, we could get:

$$\left(\frac{\text{FWHM}_Z}{(4 \ln 2)^{\frac{1}{2}}}\right)^{-2(P+Q)} = \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \frac{\text{FWHM}_{M^{(s)}}^{-2}}{(4 \ln 2)^{\frac{1}{2}}}\right)^P \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \frac{\text{FWHM}_{N^{(s)}}^{-2}}{(4 \ln 2)^{\frac{1}{2}}}\right)^Q$$

thus

$$\text{FWHM}_Z = \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \text{FWHM}_{M^{(s)}}^{-2}\right)^{-\frac{P}{2(P+Q)}} \left(\sum_{s=1}^n \frac{(w^{(s)})^2}{v^{(s)} - 3} \text{FWHM}_{N^{(s)}}^{-2}\right)^{-\frac{Q}{2(P+Q)}}$$

F Supplement figures

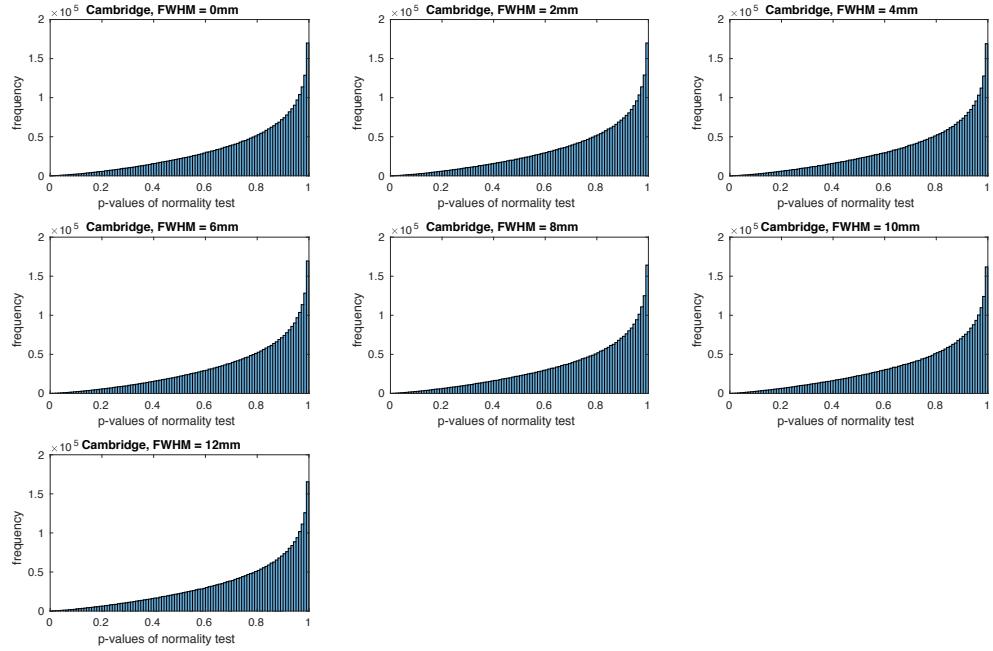


Figure 1: The p-values of normality tests in the Cambridge dataset.

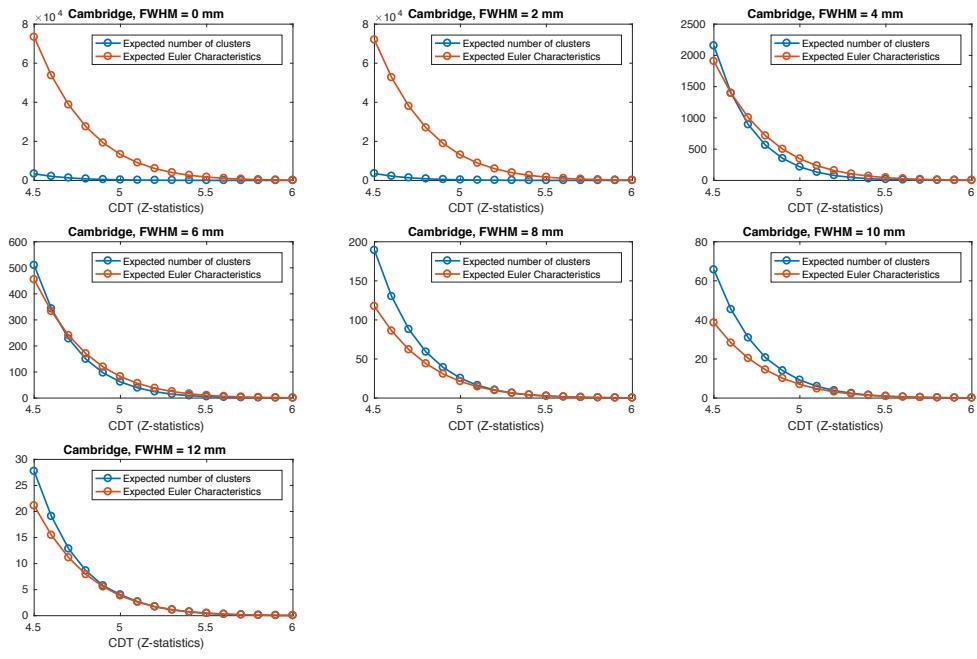


Figure 2: Comparing the expected Euler characteristics calculated by the Gaussian random field theory with the observed expected number of clusters across different levels of CDT under different smoothness in the Cambridge dataset.

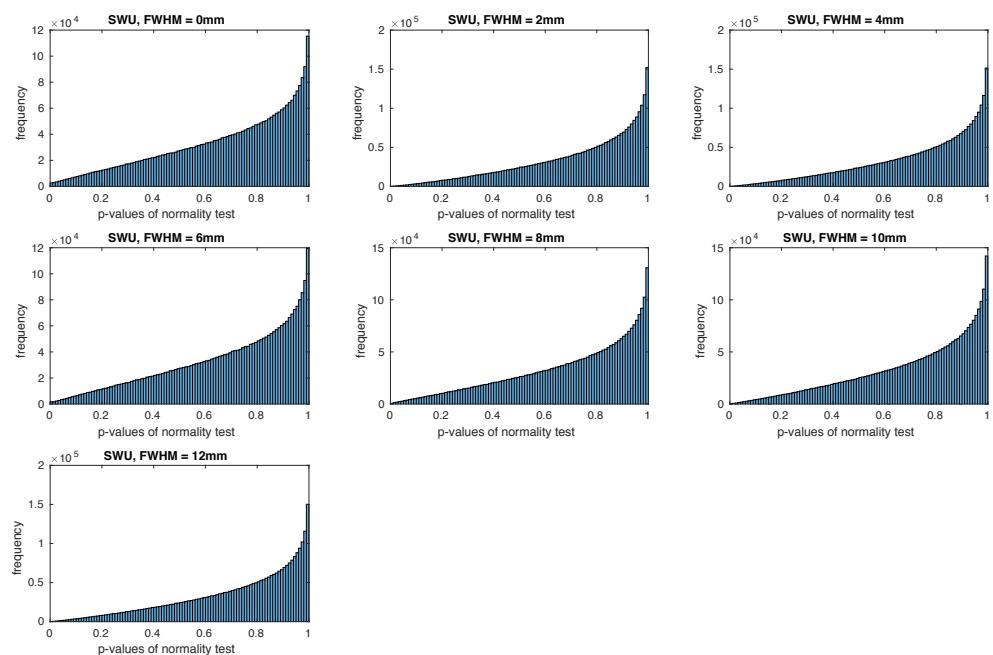


Figure 3: The p-values of normality tests in the Southwest University dataset.

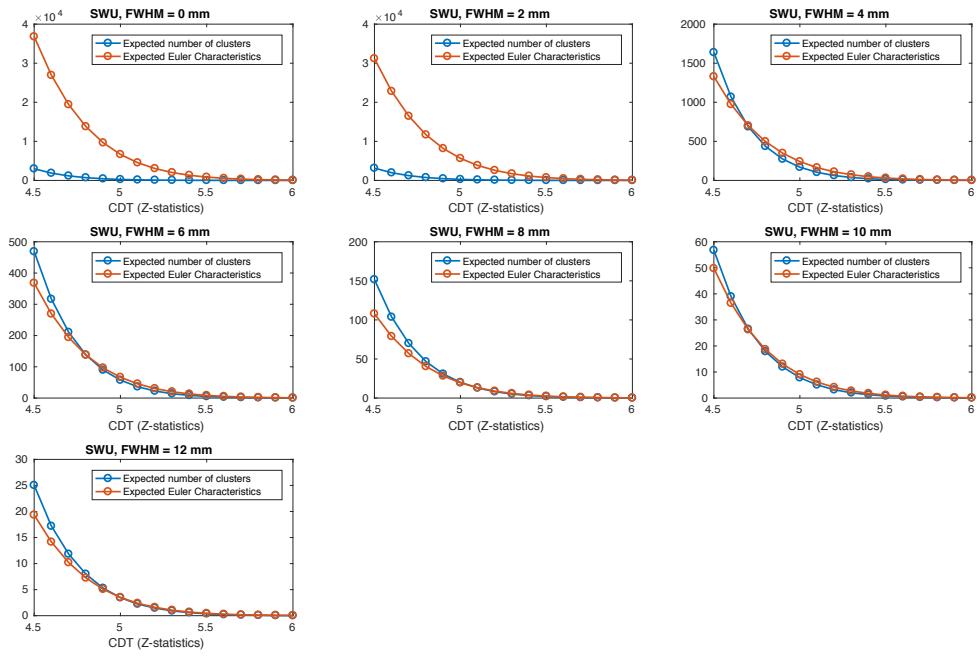


Figure 4: Comparing the expected Euler characteristics calculated by the Gaussian random field theory with the observed expected number of clusters across different levels of CDT under different smoothness in Southwest university dataset.

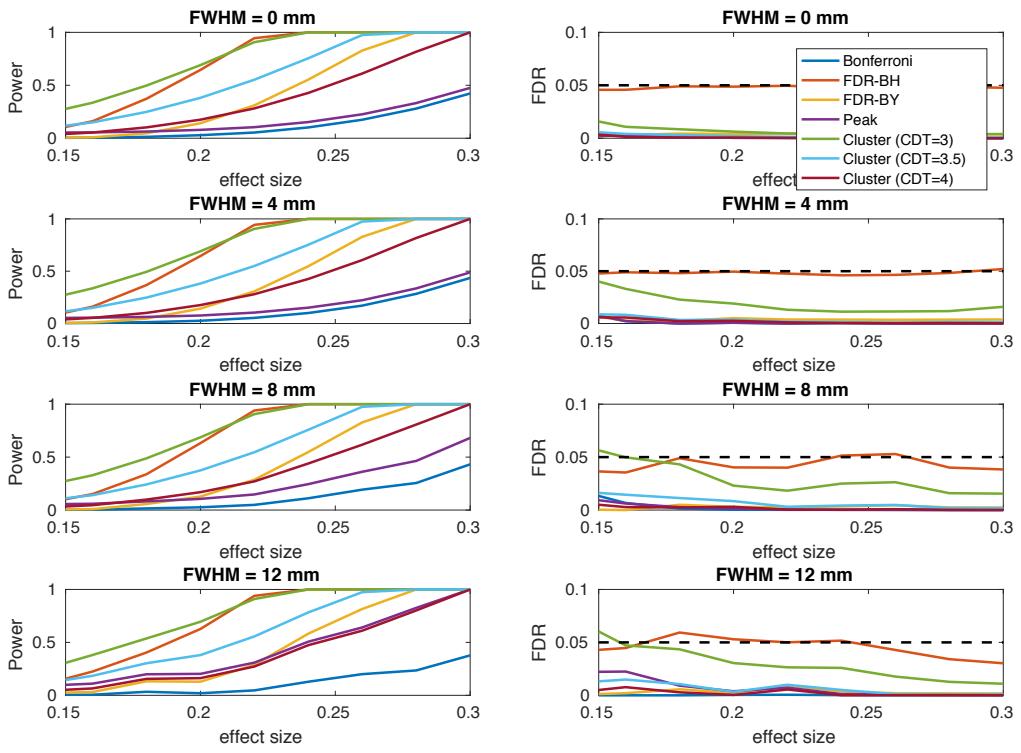


Figure 5: Similar to the Figure 8 in the main text, but this figure is generated by using different set of voxels.

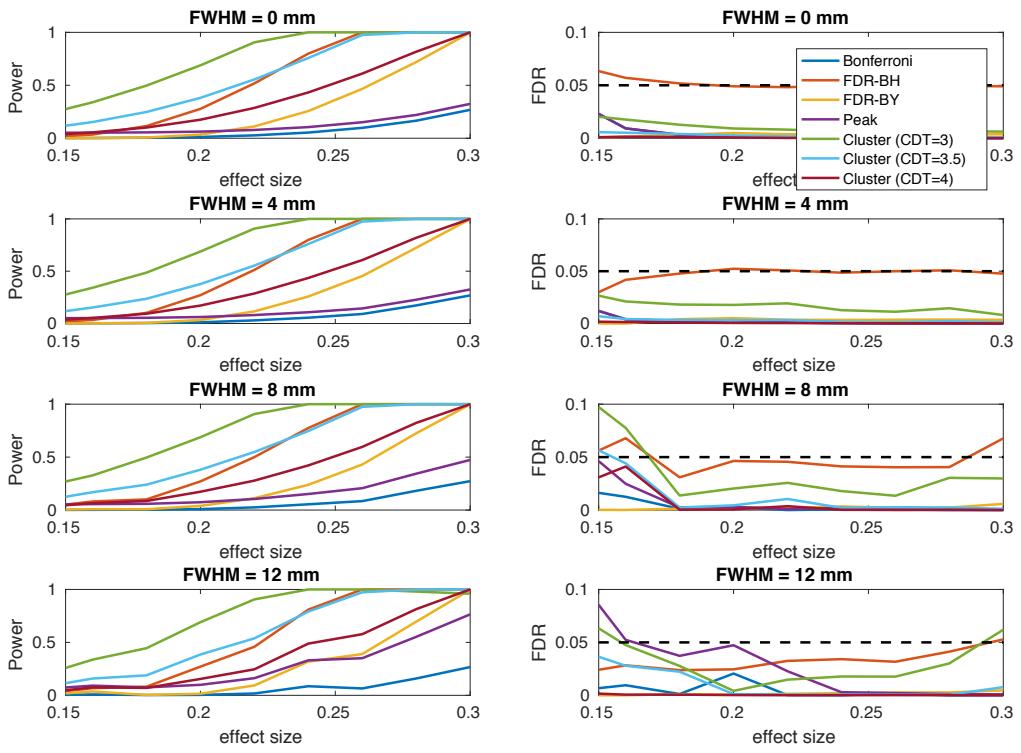


Figure 6: Similar to the Figure 8 in the main text, but this figure is generated by using different set of voxels.



Figure 7: Similar to the Figure 8 in the main text, but this figure is generated by using different set of voxels.

G Supplement tables

Table 1: The names and abbreviations of anatomical regions of interest.

No	Rigions	abbreviation	No	Rigions	abbreviation
1	Precentral_L	PreCG	47	Lingual_L	LING
2	Precentral_R		48	Lingual_R	
3	Frontal_Sup_L	SFGdor	49	Occipital_Sup_L	SOG
4	Frontal_Sup_R		50	Occipital_Sup_R	
5	Frontal_Sup_Orb_L	ORBsup	51	Occipital_Mid_L	MOG
6	Frontal_Sup_Orb_R		52	Occipital_Mid_R	
7	Frontal_Mid_L	MFG	53	Occipital_Inf_L	IOG
8	Frontal_Mid_R		54	Occipital_Inf_R	
9	Frontal_Mid_Orb_L	ORBmid	55	Fusiform_L	FFG
10	Frontal_Mid_Orb_R		56	Fusiform_R	
11	Frontal_Inf_Oper_L	IFGoperc	57	Postcentral_L	PoCG
12	Frontal_Inf_Oper_R		58	Postcentral_R	
13	Frontal_Inf_Tri_L	IFGtriang	59	Parietal_Sup_L	SPG
14	Frontal_Inf_Tri_R		60	Parietal_Sup_R	
15	Frontal_Inf_Orb_L	ORBinf	61	Parietal_Inf_L	IPL
16	Frontal_Inf_Orb_R		62	Parietal_Inf_R	
17	Rolandic_Oper_L	ROL	63	SupraMarginal_L	SMG
18	Rolandic_Oper_R		64	SupraMarginal_R	
19	Supp_Motor_Area_L	SMA	65	Angular_L	ANG
20	Supp_Motor_Area_R		66	Angular_R	
21	Olfactory_L	OLF	67	Precuneus_L	PCUN
22	Olfactory_R		68	Precuneus_R	
23	Frontal_Sup_Medial_L	SFGmed	69	Paracentral_Lobule_L	PCL
24	Frontal_Sup_Medial_R		70	Paracentral_Lobule_R	
25	Frontal_Med_Orb_L	ORBsupmed	71	Caudate_L	CAU
26	Frontal_Med_Orb_R		72	Caudate_R	
27	Rectus_L	REC	73	Putamen_L	PUT
28	Rectus_R		74	Putamen_R	
29	Insula_L	INS	75	Pallidum_L	PAL
30	Insula_R		76	Pallidum_R	
31	Cingulum_Ant_L	ACG	77	Thalamus_L	THA
32	Cingulum_Ant_R		78	Thalamus_R	
33	Cingulum_Mid_L	DCG	79	Heschl_L	HES
34	Cingulum_Mid_R		80	Heschl_R	
35	Cingulum_Post_L	PCG	81	Temporal_Sup_L	STG
36	Cingulum_Post_R		82	Temporal_Sup_R	
37	Hippocampus_L	HIP	83	Temporal_Pole_Sup_L	TPOsup
38	Hippocampus_R		84	Temporal_Pole_Sup_R	
39	ParaHippocampal_L	PHG	85	Temporal_Mid_L	MTG
40	ParaHippocampal_R		86	Temporal_Mid_R	
41	Amygdala_L	AMYG	87	Temporal_Pole_Mid_L	TPOmid
42	Amygdala_R		88	Temporal_Pole_Mid_R	
43	Calcarine_L	CAL	89	Temporal_Inf_L	ITG
44	Calcarine_R		90	Temporal_Inf_R	
45	Cuneus_L	CUN			
46	Cuneus_R				

References

Robert J Adler and Jonathan E Taylor. *Random fields and geometry*. Springer Science & Business Media, 2009.

John Ashburner. A fast diffeomorphic image registration algorithm. *Neuroimage*, 38(1):95–113, 2007.

Kevin Bartz, SC Kou, and Robert J Adler. Estimating thresholding levels for random fields via euler characteristics. 2011.

Bharat B Biswal, Maarten Mennes, Xi-Nian Zuo, Suril Gohel, Clare Kelly, Steve M Smith, Christian F Beckmann, Jonathan S Adelstein, Randy L Buckner, Stan Colcombe, et al. Toward discovery science of human brain function. *Proceedings of the National Academy of Sciences*, 107(10):4734–4739, 2010.

Jin Cao, Keith Worsley, et al. The geometry of correlation fields with an application to functional connectivity of the brain. *The Annals of Applied Probability*, 9(4):1021–1057, 1999.

Karl J Friston, Steven Williams, Robert Howard, Richard SJ Frackowiak, and Robert Turner. Movement-related effects in fmri time-series. *Magnetic resonance in medicine*, 35(3):346–355, 1996.

Donald J Hagler, Ayse Pinar Saygin, and Martin I Sereno. Smoothing and cluster thresholding for cortical surface-based group analysis of fmri data. *Neuroimage*, 33(4):1093–1103, 2006.

John F John F Kenney. Mathematics of statistics. Technical report, 1939.

William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E Nichols. *Statistical parametric mapping: the analysis of functional brain images*. Academic press, 2011.

JE Taylor and KJ Worsley. Random fields of multivariate test statistics, with applications to shape analysis. *The Annals of Statistics*, pages 1–27, 2008.

Keith J Worsley, Alan C Evans, S Marrett, P Neelin, et al. A three-dimensional statistical analysis for cbf activation studies in human brain. *Journal of Cerebral Blood Flow and Metabolism*, 12:900–900, 1992.

Keith J Worsley, Sean Marrett, Peter Neelin, Alain C Vandal, Karl J Friston, Alan C Evans, et al. A unified statistical approach for determining significant signals in images of cerebral activation. *Human brain mapping*, 4(1):58–73, 1996.

Chao-Gan Yan, Xin-Di Wang, Xi-Nian Zuo, and Yu-Feng Zang. Dpabi: Data processing & analysis for (resting-state) brain imaging. *Neuroinformatics*, pages 1–13, 2016.