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PABLO DUCHEN1, CHRISTOPH LEUENBERGER1,2, SÁNDOR M. SZILÁGYI3−5, LUKE HARMON6,
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Boulevard de Péroles 90, 1700 Fribourg, Switzerland 4Faculty of Sciences and Letters, Department of Informatics, Petru Maior
University, Str. N. Iorga Nr. 1, 540088 Tı̂rgu Mures., Romania 5Faculty of Electrical Engineering and Informatics, Department of

Control Engineering and Information Technology, Budapest University of Technology and Economics, Magyar tudósok krt. 2, H-1117
Budapest, Hungary 6Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, 1700 Moscow-Idaho,

United States 7Bern Natural History Museum, Bernastrasse 15, 3005 Bern, Switzerland
∗Correspondence to be sent to: Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland;

E-mail: daniel.wegmann@unifr.ch

Received 00 Xxxxxx 0000; reviews returned 00 Xxxxx 0000; accepted 00 Xxxxx 0000
Associate Editor: Xxxxx Xxxx

Abstract.—While it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant
across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his
highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms
transition into so called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic
changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated
phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains
computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer
the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model
evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does
not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer
evolutionary jumps in Anolis lizards and Loriinae parrots where we find strong signal for such jumps at the basis of
clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis.

Quantitative traits; Phenotyic evolution; Lévy process; Evolutionary jump; Punctuated equilibrium.

A key goal of evolutionary biology is to understand the1

mechanisms by which the large phenotypic diversity seen2

today evolved. Our understanding of these mechanisms3

is improving rapidly with the advent of increasingly4

powerful sequencing approaches. For instance, the huge5

amount of molecular data has led to the resolution of6

phylogenetic trees encompassing entire orders. Further,7

methods to reliably identify substitutions that likely8

resulted from selection, and to accurately place them on a9

phylogeny have been developed. In contrast, methods to10

infer events of rapid evolution from phenotypic data have11

lagged and are mostly restricted to inferring independent12

evolutionary rates for different clades.13

In general, quantitative studies of the evolution of14

phenotypic/quantitative traits date back to just a few15

decades. A first attempt was by Edwards et al. (1964)16

and Cavalli-Sforza and Edwards (1967), who modeled17

quantitative traits stochastically as ”Brownian motion”18

(BM). However, given the current wealth of molecular19

data available, a more realistic goal is to only aim at20

inferring the rates at which quantitative traits evolve,21

while assuming the underlying phylogeny to be known.22

This has been successfully done using a BM model in23

multiple taxa. Freckleton et al. (2002), for instance, used24

a BM model on a given phylogeny to test if traits showed25

phylogenetic associations. More recently, Brawand et al. 26

(2011) modeled gene expression evolution as BM and 27

rejected evolution at a constant rate for several genes. 28

Several extensions to a basic BM model have been 29

proposed. Butler and King (2004) were the first to 30

implement Ornstein-Uhlenbeck (OU) processes with 31

multiple evolutionary optima, as initially described 32

by Hansen (1997), and recently used to describe the 33

evolution of gene expression (e.g. Bedford and Hartl, 34

2009; Rohlfs et al., 2013). Other extentions to BM allow 35

evolutionary rates to change over time. O’Meara et al. 36

(2006), for instance, contrasted maximum likelihood 37

(ML) estimates of evolutionary rates under BM and 38

showed that major clades of angiosperms vastly differ 39

in their rate of genome size evolution. More recently, 40

Eastman et al. (2011) developed a Bayesian method to 41

jointly infer evolutionary rates in different clades and 42

found evidence for multiple rate shifts in body size 43

evolution in emydid turtles. Shortly after, Slater et al. 44

(2012) have introduced an extension to incompletely 45

sampled phylogenies and trait data using Approximate 46

Bayesian Computation. However, they found no evidence 47

for an elevated rate of body size evolution in pinnipeds in 48

comparison to terrestrial carnivores, despite considerable 49

power. This suggests that the larger body size found 50
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in pinnipeds may be the result of rapid evolutionary1

changes early in the clade, rather than a change in2

the rate itself, and hence that models of occasional3

“evolutionary jumps” may often more accurately explain4

the evolution of quantitative traits.5

According to Simpson (1944), such evolutionary jumps6

are triggered by shifts of lineages into different adaptive7

zones, either by dispersal into new geographic areas, the8

appearance of evolutionary novelties, key innovations,9

the extinction of lineages leaving niches empty, or by10

rapid changes in the environment (climatic or ecological).11

Additionally, the existence of “ecological opportunities”12

(Losos, 2010) might also trigger such jumps. While OU13

processes have been proposed to model the dynamics14

of adaptive landscapes (e.g. Ingram and Mahler, 2013;15

Uyeda and Harmon, 2014), a promising alternative16

is to model this type of evolution as a compound17

process (or Lévy process) consisting of a continuous18

background process and a discrete jump process. The19

first implementation of such a model assumed that jumps20

only occured at speciation events (Bokma, 2008), but21

Landis et al. (2013) recently described Lévy processes22

in a much more general way and showed that while23

the likelihood functions of most of these models are24

intractable, inference is possible under a Bayesian25

framework. For instance, when modeling the evolution26

of quantitative traits as a Poisson compound process,27

in which traits are assumed to evolve under BM with28

occasional jumps that occur as a Poisson process on the29

tree, the likelihood can be calculated analytically when30

conditioning on a jump configuration (a placement of31

jumps on the tree). Under the assumption that jump32

effects are normally distributed, a jump configuration33

can be seen as simply stretching the branches of the tree34

on which they occur, and the likelihood is then given35

by a multivariate normal distribution with the variance-36

covariance matrix resulting from the stretched tree. The37

numerical integration is then limited to sampling jump38

configurations, which is readily done using Markov Chain39

Monte Carlo (MCMC).40

Unfortunately, two computational challenges prohibit41

the application of this approach to larger trees. First,42

the space of jump configurations grows exponentially43

with tree size, leading to very long MCMC chains.44

Second, the evaluation of the likelihood requires the45

computation of the inverse of the variance-covariance46

matrix, which is computationally very demanding since47

it scales exponentially with tree size (Tung Ho and48

Ané, 2014). Here, we address these computational issues49

using an empirical Bayes approach in which we first50

infer the hierarchical parameters of the Brownian and51

Poissonian processes using Maximum Likelihood, and52

then fix those when inferring posterior probabilities on53

jump locations. This approach allows us to run MCMC54

chains with fixed hierarchical parameters, for which we55

find a computationally highly efficient approach that56

does not require matrix inversions. As a result, this57

approach readily scales up to very large phylogenies.58

We then demonstrate the power and accuracy of our59

approach with extensive simulations and find that our60

approach hardly misses any jumps with a meaningful 61

strength. We then illustrate the usefulness of our 62

approach by identifying evolutionary jumps in Anolis 63

lizards and Loriini parrots, two well-studied groups 64

for which morphological data is available. We identify 65

few but important evolutionary jumps in both groups, 66

suggesting such periods of rapid evolutionary change to 67

be rare but crucial in shaping the morphological diversity 68

observed today. 69

THEORY 70

The null hypothesis: Brownian motion 71

We first consider a Brownian motion (BM) process 72

on a phylogenetic tree T with root O where time is 73

measured in the unit of the branch lengths. The process 74

starts at O with value µ∈R (root state) and then 75

proceeds with variance s2
0 along the branches. The values 76

of the BM process, as observed at the L leaves, give rise 77

to the random vector 78

x=(x1,...,xL)′.

Let us fix the notation: The lenghts of the (inner and 79

outer) branches of T are called τ1,...,τB where B is the 80

number of branches. For two leaves i,j we denote by 81

T 0 =(τij) the length of their common branch in T as 82

measured from the root O. Now, under the assumption 83

of a pure BM, and defining 1=(1,1,...,1)′, the values x 84

at the leaves have the multivariate normal distribution 85

x∼N (µ1,s2
0T 0)

or written more conveniently: 86

x=µ1+ε (1)

with ε∼N (0,s2
0T 0). Since T 0 is positive definite and

symmetric, it has a symmetric and positive definite
square root Q, i.e. Q2 =T 0. Multiplying both sides of
(1) with Q−1 we get the homoskedastic model

x0 =µv0 +ε0,

where x0 =Q−1x, v0 =Q−11, and ε0∼N (0,s2
0I). For

this we have the usual OLS estimators (see e.g. Davidson
and MacKinnon (2004), ch. 3.2)

µ̂=(v′0v0)−1v′0x0 =
1′T−1

0 x

1′T−1
0 1

and 87

ŝ2
0 =

1

L−1
v′0

(
I−v0(v′0v0)−1v′0

)
x0

=
1

L−1

(
x′T−1

0 x−
(1′T−1

0 x)2

1′T−1
0 1

)
.



Copyedited by: XX MANUSCRIPT CATEGORY: Articles

[16:51 1/7/2016 Sysbio-Levolution_manuscript_June29.tex] Page: 3 1–14

2016 DUCHEN ET AL.—Inference of evolutionary jumps 3

Lévy process1

We now extend the BM model by super-imposing an
independent Poissonian jump-process with rate λ. The
jumps shall be normally distributed with zero mean and
variance s2

1. The (unobservable) random vector

ν=(ν1,...,νB)′

counts the number of Poisson events (jumps) on each of
the B branches. By assumption,

P(νb=nb)=e−λτb
(λτb)

nb

nb!
, nb=0,1,2,....

For a multi-index n=(n1,...,nB), we have2

P(ν=n)=

B∏
k=1

e−λτb
(λτb)

nb

nb!
. (2)

Recall that for two leaves i,j we denote by τij the length3

of their common branch in T as measured from the4

root O. In particular, τii is the distance (sum of branch5

lengths) of the leaf i from the root O.6

We denote by nij for two leaves i,j the number of
Poisson events along the common branch of length τij .
Conditional on ν=n=(n1,...,nB), the random vector
x is multivariate normal with mean µ1 and the L×L
variance-covariance matrix Σ(n)=(σij(n)) where

σij(n)=τijs
2
0 +nijs

2
1, 1≤ i,j≤L.

The conditional density of x given ν=n is

φ(x|n)=
1√

(2π)LdetΣ(n)

·exp

(
−1

2
(x−µ1)′Σ−1(n)(x−µ1)

)
. (3)

The likelihood of x given the four parameters µ (root7

state), s0 (Brownian motion) and λ,s1 (Poissonian jump8

process) is the mixture distribution9

f(x|µ,s2
0,λ,s

2
1)=

∞∑
n1=0

···
∞∑

nB=0

P(ν=n)φ(x|n) (4)

where we used expressions (2) and (3). It is not hard to
show that

E(xi)=µ and Cov(xi,xj)=τij(s
2
0 +λs2

1).

Inference under the Lévy process10

Here we develop a computationally efficient approach11

to maximize the likelihood function given in equation12

(4). While the infinite sums in (4) prohibit an analytical13

solution, they are readily evaluated using numerical14

approaches. Landis et al. (2013), for instance, proposed15

to use an MCMC approach to integrate over jump16

configurations. Unfortunately, however, such a solution17

does not scale to large trees, because the calculation18

of the conditional density values in (3) involves the19

computation of the inverse of Σ(n) and its determinant, 20

which are computationally very demanding. 21

We propose to address this problem by introducing an 22

algorithm to calculate these matrix inversions efficiently 23

under this model. While this algorithm can readily be 24

incorporated into the MCMC approach proposed by 25

Landis et al. (2013), we will then propose an alternative 26

hierarchical Bayes approach that makes even better use 27

of it and leads to a computationally highly efficient 28

inference approach to obtain point estimates of the 29

parameters µ, s2
0, λ, and s2

1, as well as posterior 30

probabilities on the location of evolutionary jumps. 31

Efficient calculation of inverses and determinants For a 32

symmetric non-singular matrix A and a (column) vector 33

a, we have 34

(A±aa′)−1 =A−1∓ 1

1±a′A−1a
(A−1a)(A−1a)′ (5)

(see Izenman (2008), p. 47) and 35

det(A±aa′)=detA ·(1±a′A−1a) (6)

(see Anderson (2003), Corollary A.3.1). These formulae 36

have recently been shown to speed up the calculation of 37

the likelihodo function under Brownian motion models 38

(Tung Ho and Ané, 2014). Here we use them to develop 39

a fast algorithm applicable to Lévy processes. 40

Let us first fix some notation: For each branch b, we
define the L×L incidence matrix Ib=(Ibij) by setting

Ibij=1 if the branch b is common to the pair of leaves

i,j, and Ibij=0 otherwise. Clearly,

nij=

B∑
b=1

nbI
b
ij .

In the following we replace the parameter s2
1 with the

positive factor α given by

s2
1 =αs2

0.

Observe that

Σ(n)=s2
0T (n,α)

and

detΣ(n)=s2L
0 detT (n,α)

where

T (n,α)=T 0 +α

B∑
b=1

nbI
b

and T 0 =(τij). Finally, we introduce for b=1,...,B the 41

(column) vectors ub, each one with L components. The 42

i-th component ubi is equal to 1 if leaf i is subordinate 43

to branch b (i.e. the path from the root O to node i 44

contains branch b). Otherwise, if leaf i is not subordinate 45

to branch b, then ubi =0. It is easy to see that Ib=ub(ub)′ 46
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and thus1

T (n,α)=T 0 +α

B∑
b=1

nbu
b(ub)′. (7)

We can now apply formulae (5) and (6) to obtain2

the following iterative scheme for the computation of3

T−1(n,α) and detT (n,α):4

First, determine T−1
0 and detT 0. Then, for each term

with nb>0 in the sum (7), update T b−1 to T b etc. as
follows: Let

rb=1+α nb ·(ub)′ T−1
b−1u

b

and calculate5

T−1
b = T−1

b−1−
α nb
rb
·(T−1

b−1u
b)(T−1

b−1u
b)′,

detT b = rb ·detT b−1. (8)

When all non-zero terms in (7) have been considered,6

we arrive at T−1
B =T−1(n,α) and detTB=detT (n,α).7

Observe that in this scheme, the only matrix inverse that8

ever has to be determined is T−1
0 . The number of non-9

zero nb will frequently be small compared to B and so10

will be the number of iterations (8).11

Monte Carlo EM algorithm The scheme to calculate12

the inverse of Σ(n) allows to find the ML estimates of13

the parameters µ,s2
0 and λ by means of a Monte Carlo14

version of the classical Expectation Maximization (EM)15

algorithm, in which we treat the random variable ν as16

missing (unobserved) data. While this approach does not17

allow us to find the ML estimate of α, we discuss below18

how this can be achieved using a simple grid search.19

Recall that each iteration of the EM algorithm consists20

of an estimation (E) and a maximization (M) step. Let21

us denote the old parameters determined in the previous22

M-step by θ̃=(µ̃,s̃2
0,λ̃,α0), and the new parameters with23

respect to which the Q-function has to be maximized in24

the next M-step by θ=(µ,s2
0,λ,α0), where α0 is a fixed25

value for α. The two steps of the EM algorithm are then26

as follows:27

Monte Carlo E-step. Simulate stochastically K vectors28

nk according to the multi-Poisson distribution P(ν=29

n|λ̃). Determine the weights30

πk = φ(x|nk,µ̃,s̃2
0,α0)

= ck ·exp

(
− 1

2s̃2
0

·(x−µ̃1)′ ·T−1(nk,α0)·(x−µ̃1)

)
,

with

ck=(2πs̃2
0)−L/2 ·(detT (nk,α0))−1/2.

In the M-step we have to maximize the function31

Q(θ|θ̃) = E
[
logP(x,n|θ)|x,θ̃

]
(9)

=
∑
n

P(n|x,θ̃)logP(x,n|θ)

with respect to the parameters θ=(µ,s2
0,λ,α0) where

P(x,n|θ)=φ(x|n,µ,s2
0,α0)P(ν=n|λ)

From Bayes’ theorem we have 32

P(n|x,θ̃)=
φ(x|n,µ̃,s̃2

0,α0)P(ν=n|λ̃)

P(x|θ̃)
. (10)

Thus, according to our Monte Carlo scheme and up 33

to the factor 1/P(x|θ̃), the infinite sum in (9) can be 34

approximated by 35

Q(θ)∝
K∑
k=1

πk log[φ(x|nk)P(ν=nk)] (11)

where φ(x|nk) and P(ν=nk) are given by (2) and (3), 36

respectively. 37

M-step. In this step we seek the parameters θ̃ which
maximize the sum in (11) and which will serve as “old”
parameters in the next E-step. We have

P(ν=nk)=e−λτλ|nk|c(nk)

where τ=
∑
τi is the total length of the tree T , |nk| 38

denotes the sum of the components of nk, and c(nk) is 39

a factor that does not depend on any of the parameters 40

θ. From this it is easy to see that 41

λ̃=

∑
πk|nk|
τ
∑
πk

, (12)

independently of the values of the other three 42

parameters. Since we assume the value of α to be fixed, 43

we can also give explicit expressions for the values of µ 44

and s2
0 which maximize Q(θ|α=α0). First, determine the 45

matrix 46

S=

K∑
k=1

πkT
−1(nk,α0). (13)

Standard calculus shows that 47

µ̃=
1′Sx
1′S1

(14)

and 48

s̃2
0 =

1

L
∑
πk

(x−µ̃1)′S(x−µ̃1)

=
1

L
∑
πk

(
x′Sx− (1′Sx)2

1′S1

)
. (15)

Simulating n with MCMC In this section we describe 49

how to sample the states n from the probability 50

distribution P(n|x,θ) using the Metropolis scheme. 51

(To unburden the notation in the description of the 52

MCMC algorithm, we drop the tilde overscript on the 53

parameters.) At each state we will need the inverse 54

matrix T−1 of T (n,α0) given by (7). Start the chain 55

e.g. at n=(0,...,0) and with T−1
0 . 56

1. Let n denote the current state of the Markov 57

chain and T−1 the inverse matrix of T (n,α0). 58
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Choose an index b=1,...,B with equal probability1

(or with a probability proportional to τb) and an2

increment ∆nb=+1 or =−1 with probability 1/2.3

The candidate state n′ is given by in- or decreasing4

the b-th index n by ∆nb: n
′
b=nb+∆nb.5

2. Using (10) and the iteration formula (8) it is not6

hard to check that the Hastings ratio (proposal7

probability) can be calculated by8

h = min

1,r−1/2

(
λτb

n+
b

)∆nb

· ...

· exp

(
α∆nb
2rs2

0

∣∣∣(x−µ1)′T−1ub
∣∣∣2)]

where n+
b =nb+max(0,∆nb) and

r=1+α∆nb ·(ub)′T−1ub.

If the candidate state contains a negative9

component (i.e. if nb=0 and ∆nb=−1) then10

set h=0. This ensures that the chain is indeed11

symmetric.12

3. With probability h jump to the candidate state n′,13

otherwise stay at n. In the first case, update14

n← n′

T−1 ← T−1− α0∆nb
r
·(T−1ub)(T−1ub)′

and go to step 1.15

No matrix inverse must ever be calculated in this scheme16

thanks to the update in step 3. (To counterbalance the17

accumulation of numerical errors it might however be18

wise to occasionally calculate T−1 =T−1(n,α0) from19

scratch.)20

After the burn-in phase, a fraction n1,...,nM of the21

simulated states will be retained (“thinning out”). These22

will be used to replace the matrix (13) in the M-step of23

the EM algorithm by24

S=
1

M

M∑
m=1

T−1(nm,α0). (16)

Estimating factor α The Monte Carlo EM algorithm25

proposed above, while computationally highly efficient,26

does not allow for the estimation of the factor α. We27

thus use a numerical approach to iteratively approach28

the ML estimate of α. Specifically, we start at a value29

α0 and then iteratively increase that value such that30

log10αt=log10αt−1 +∆α until the likelihood decreases.31

The algorithm then turns back by setting ∆α←−∆α/e32

and proceeds again until the likelihood decreases. With33

every switch, the step size gets smaller and the estimate34

closer to the true MLE value. In each step we use35

the Monte Carlo EM algorithm described above to36

calculate the likelihood at the MLE estimates of all37

other parameters conditioned on that α value. In all38

application we set α0 =0.1 and the initial ∆α=0.1 and 39

found estimates to be accurate within five switches. 40

Identifying jump locations To infer the location of 41

jumps on a phylogenetic tree we implement an empirical 42

Bayes approach. As is commonly done in such a setting, 43

we assume the ML estimates µ̂,ŝ2
0,λ̂ and α̂ obtained 44

using our Monte Carlo EM scheme are accurate and 45

thus known constants when inferring jump locations. 46

Under this assumption, the MCMC approach introduced 47

above can also be used to sample configurations of jumps 48

n from the probability distribution P(n|x,µ̂,ŝ2
0,λ̂,α̂). 49

This allows us to numerically infer for each branch k 50

the posterior probabilities of P(nk=0|x,µ̂,ŝ2
0,λ̂,α̂) and 51

P(nk>0|x,µ̂,ŝ2
0,λ̂,α̂), and thus to identify branches for 52

which there is convincing evidence for an evolutionary 53

jump. 54

Implementation We implemented the algorithm 55

introduced here in C++ and optimized the 56

code for speed. A user-friendly program to 57

apply it to data is available at our lab website 58

(http://www.unifr.ch/biology/research/wegmann/). 59

SIMULATIONS 60

Convergence 61

Convergence of the MCMC We assessed the 62

convergence of MCMC chains by comparing parameter 63

estimates between two independent and parallel chain 64

runs until 10,000 jump vectors n were sampled. We run 65

a total of 100 such chain pairs for each of two starting 66

locations with values differing ten fold and discarded the 67

first 100 such vectors as burn-in. We also compared two 68

different values to thin the chains: either we sampled 69

every 10th or every 5000th step. 70

Regardless of the starting values, convergence was 71

reached rather fast but with some variation across 72

parameters (Fig. S1). The parameter to converge fastest 73

was µ, for which the difference in estimates was below 74

0.01 within 2,000 sampled jump vectors for 90% of all 75

chain pairs. Similarly small differences for s2
0 and λ were 76

only reached after sampling about 4,000 jump vectors 77

(Fig. S1). Interestingly, a larger thinning did not improve 78

convergence, suggesting that the variance in estimates is 79

dominated by variation in the jump vectors sampled, but 80

not by autocorrelation along the chain. For subsequent 81

analyses, we used a thinning of 10 and sample a total of 82

5,000 jump vectors. 83

We next assessed the convergence of the MCMC 84

for the inference of jumps on trees by assessing the 85

difference in posterior probabilities between independent 86

chains (Figure S2). We again run 100 chain pairs, fixed 87

the thinning to 10 and discarded the first 100 jump 88

vectors as burn-in. While we found convergence to be 89

reached within less than 2,000 iterations for branches 90

with very low (<0.05) and very high (>0.95) posterior 91
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FIGURE 1. Power to reject the null model (Brownian motion) using a likelihood ratio test (LRT) (a), or the Akaike information
criterion (AIC) (b) as a function of the number of simulated jumps n and the jump strengths α.

probabilities, more iterations were required for branches1

with intermediate posterior probabilities. We found that2

sampling 5,000 jump vectors gave very consistent results3

also for inferring the location of jumps.4

Convergence of the EM for parameter inference To5

test if the stochastic EM algorithm converges with the6

MCMC settings found above (5,000 jump vectors, a7

burn-in of 100 such vectors and a thinning of 10), we run8

the EM for a wide range of parameter values for up to 1009

iterations. Since the EM algorithm is stochastic, it does10

not converge onto a single value unless an infinitely large11

sample of n vectors are used. We thus first inspected12

obtained patterns visually and found that parameter13

estimates stabilized after only a few iterations, usually14

between 10 and 20 (Figure S3).15

We then implemented two different measurements16

to assess convergence more formally: the first is a17

test statistics assessing the presence of a trend in the18

parameter estimates, and the second is quantifying the19

number of slope changes in the individual parameter20

updates (see Appendix).21

Power to reject Brownian motion22

To assess the power of our approach to identify Lévy23

processes and to estimate associated parameters, we run24

our EM algorithm on data simulated with jumps on trees25

of 100 leaves, each simulated using a birth-death model26

(Stadler, 2011) and scaled to a total length of 1. We27

generated 100 such simulations for many combinations28

of number of jumps and α values but fixed µ=0 and29

s2
0 =1 since changing these parameters does not affect30

the inference. We then inferred the MLE estimates for31

all parameters under both the null model (Brownian32

motion) and under the alternative Lévy model.33

Using both a likelihood ratio test (LRT) or the Akaike34

information criterion resulted in generally substantial35

power to reject the null model over a large range of36

jumps simulated and for many different values of α (Fig.37

1). Unsurprisingly, power was much lower if simulated 38

jumps were on the order of the change of the Brownian 39

background process or lower. Here we simulated trees 40

of length 1, and thus the average length of each of the 41

∼200 branches is roughly 0.005. Hence with α=0.01, the 42

strength of half of the evolutionary jumps are expected 43

to be smaller or equal to the effect of the background 44

process on an average branch. However, with α=0.1, 45

the power to reject the null model was >80% if multiple 46

jumps were present on the tree. 47

Interestingly, we also found our approach to regularly 48

fail to reject the null model if the number of jumps was 49

very large, i.e. on the order of the number of branches 50

(50 jumps correspond to a jump on every 4th branch). 51

In such situations, the large variance in traits observed 52

under the Lévy model is also perfectly explained by a 53

pure BM model with larger variance s2
0 (see below). 54

In summary, these results show that our method has 55

considerable power to detect Lévy process as long as 56

jumps are meaningfully strong and there are not too 57

many jumps, in which case the Lévy and BM models 58

become indistinguishable from each other. 59

Accuracy in inferring Lévy parameters 60

For the cases in which the Lévy model was preferred 61

we next evaluated the power of our approach to infer 62

the associated parameters, starting with the jump 63

strength α. We found that our approach infers α quite 64

accurately over the whole range, but we observed a slight 65

overestimation for lower α values. This is a direct result 66

of the low power to reject a model of Brownian rate at 67

these lower jump strengths such that for simulations that 68

resulted in larger jumps the Brownian model was more 69

easily rejected. But the inferred values for α≤1 were 70

rarely further from the true value than a factor of 2 71

if multiple jumps were present (Fig. 2a), while it was 72

unsurprisingly much harder to accurately infer the jump 73

strength in case of a single jump. 74
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We next evaluated the accuracy of our approach1

in inferring the jump rate λ, again limited to the2

simulations in which a Lévy model was preferred. As3

shown in Fig. 2b, our method inferred this parameters4

very accurately over a large range of jumps simulated5

and for all values of α, with generally higher accuracy6

with higher α values.7

We then finally evaluated the accuracy in inferring the8

Brownian background rate s2
0 (Fig. 2b) and found it to be9

very accurately inferred whenever the Brownian model10

was rejected. Interestingly, however, s2
0 was overstimated11

whenever the Brownian model could not be rejected12

but jumps were simulated. This illustares that under13

certain conditions a Lévy model is indistinguishable from14

a model of pure Brownian motion with an elevated rate.15

This is particularly true in the case of weak jumps (small16

α) or if jumps are very common on the tree.17

Jump location18

We finally tested the power of our method to infer19

the location of jumps on the tree. For this we simulated20

trees with 100 leaves and trait data affected by 20 jumps21

randomly placed on each tree for different jump strengths22

α while fixing s2
0 =1. In each case we then assumed the23

Lévy parameters to be known and used our MCMC24

approach to calculate the posterior probability on there25

being at least one jump for each branch.26

We found our method to have a very low false positive27

rate in identifying jumps in that a posterior probability28

for jumps >0.5 was never obtained for branches on which 29

we did not simulate any jumps (Fig. 3a), and 90% of 30

all such branches resulted in a posterior probability for 31

jumps below 0.2 even for the weakest jump strengths 32

simulated (α=0.1). 33

The power to infer true jumps (true positives) was 34

also considerably high, especially for jumps of meaningful 35

strength. For data simulated with α=10, for instance, 36

90% of all branches on which jumps were simulated 37

resulted in a posterior probability >50%, and 75% 38

even even in a posterior probability >95%. The few 39

branches with jumps for which we did not obtain decisive 40

posterior probabilities in favor of jumps all contained 41

jumps that were considerably weak (Fig. 3b). Such jumps 42

are expected even for large α values since individual jump 43

strengths are assumed to be normally distributed around 44

zero. 45

A similar pattern was observed when simulating data 46

with smaller α, but even in the case of α=0.1 we obtain 47

posterior probabilities in favor of jumps >0.5 for more 48

than one third of the branches on which jumps were 49

simulated (Fig. 3). At such small α values for a tree 50

of length 1, about 40% of all jumps are expected to 51

have a strength smaller than 10 times the effect of the 52

Brownian process on the same branch. But we note that 53

the difficulty in placing weak jumps did not affect the 54

power to infer the jump rate λ, which was inferred quite 55

accurately even at such low α values (Fig. 2). 56

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Real α

E
st

im
at

ed
 α

0.1 1 10

0.
1

1
10

Jumps

1
5
20

●

●

●

●

●

●
● ●

●

●

●

●

1 2 5 10 20 50

−
0.

5
0.

5
1.

5

 α = 0.1

lo
g 1

0(λ
)

●

●

●

●

●

●

23 23 46 69 70 46

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

1 2 5 10 20 50

−
0.

5
0.

5
1.

5

 α = 1

●

●

●

●

●

●

62 89 100 100 98 69

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

1 2 5 10 20 50

−
0.

5
0.

5
1.

5
 α = 10

●

●

●

●

●

●

87 98 100 100 98 58

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

−
1

0
1

2
3

Number of jumps (n)

lo
g 1

0(s
02 )

1 2 5 10 20 50

Lévy
Null (Brownian)

●

●

●

●●

●

● ●

●
●

●

●

●

●●

●

● ●

●
●

−
1

0
1

2
3

Number of jumps (n)
1 2 5 10 20 50

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

−
1

0
1

2
3

Number of jumps (n)
1 2 5 10 20 50
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APPLICATIONS1

Quantum evolution in anoles2

There have been a few direct tests of Simpsonian3

jumps between adaptive zones using empirical data4

(Uyeda et al., 2011). Here, we analyze “evolution by5

jumps” in the adaptive radiation of anoles, lizards that6

have adaptively radiated in the Caribbean and South7

America (Losos, 2009). Following previous work, we8

focused on anoles on the four islands of the Greater9

Antilles, as they provide a unique opportunity for testing10

Simpson’s theory of adaptive zones for two reasons.11

First, there have been repeated dispersal events among12

islands in the Greater Antilles (Losos et al., 1998;13

Mahler et al., 2010). These dispersal events represent14

geographic opportunities, where anole lineages reach a15

new island and are no longer sympatric with the former16

set of competitors (Mahler et al., 2010). Second, most17

anole species can be classified into ecomorphs, habitat18

specialists that have evolved repeatedly on the four19

islands of the Greater Antilles (Losos et al., 1998).20

Transitions between ecomorph categories represent the21

evolution of key characters in anole lineages that allow22

them to invade novel habitats (see Losos (2009) for a23

review).24

Anoles have thus repeatedly experienced two25

conditions under which Simpson expected evolutionary26

jumps to be observed: dispersal into new geographic27

areas and the appearance of evolutionary novelties.28

Importantly, both ecomorph origins and transitions29

among islands are replicated in the phylogeny of anoles,30

but are still rare enough that we can estimate the31

position of transitions on the phylogenetic tree with32

some confidence (Huelsenbeck et al., 2003; Schluter,33

1995).34

With this background in mind we tested if a model35

with evolutionary jumps fits the evolution of body size36

in anoles better than pure Brownian motion, and if jumps37

correspond with either of the two factors postulated by38

Simpson: evolution of key characters and/or geographic 39

dispersal. To address this question, we made use of a 40

recent time-calibrated phylogeny of 170 Anolis lizards 41

(Thomas et al., 2009) and analyzed snout-to-vent length 42

(SVL), a standard phenotypic measurement of body size 43

in lizards. This trait is broadly correlated with habitat 44

partitioning in Greater Antillean anoles and represent 45

the primary axes of ecologically driven evolutionary 46

divergence in lizards (Beuttell and Losos, 1999; Losos, 47

2009; Schoener, 1970). We made use of the sex-specific 48

data of SVL from Thomas et al. (2009) and inferred 49

evolutionary parameters independently for females and 50

males, but excluded five species that lacked information 51

on SVL for one or both sexes (Anolis darlingtoni, 52

A. guamuhaya, A. loveridgei, A. oporinus, and A. 53

polyrhachis). 54

We found that the Lévy jump model is preferred over 55

a strict BM model in females, but not in males (Table 1). 56

Evolutionary jumps indicating rapid body size evolution 57

(Figure 4) were found precisely at the basis of the 58

clade comprising the ecomorph “crown giants” Thomas 59

et al. (2009), in which females exhibit particularly large 60

body sizes. The large sexual size dimorphism of this 61

group (Harmon et al., 2005) is also likely explaining 62

why the BM model fits the evolution of male body sizes 63

well. In addition to the clades of crown giants, we also 64

identify evolutionary jumps at the basis of the clade 65

consisting of the species A. barbatus, A. porcus, and 66

A. chamaeleonides. These species, which are known as 67

“false chamaleons” and are part of the former genus 68

Chameleolis have been called the “most bizarre West 69

Indian lizards” (Leal and Losos, 2000). 70

Our analyses support two main conclusions. First, 71

evolutionary change in female anoles is not well described 72

by a uniform random walk. A better description of 73

anole evolution combines a uniform component of change 74

that is punctuated by rapid jumps in trait values. 75

Second, these jumps in body size very well correspond to 76

ecological transitions to novel ecomorphs. The evolution 77
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of this trait is thus consistent with Simpson’s description1

of evolutionary jumps associated with the entry into2

new adaptive zones. The fact that we did not find such3

jumps at the basis of clades of other ecomorphs suggests4

that body size was not a trait strongly contributing to5

the ecological transition of those. However, evolutionary6

jumps might well be found at the basis of those clades7

when focusing on more relevant traits.8

Nectarivory evolution in Loriinae 9

The Australasian lories belong to the tribe Loriini 10

(Joseph et al., 2012) and are extremely species rich 11

(Schweizer et al., 2011). Their digestive tract is 12

highly adapted to a nectarivorous diet (Güntert, 2012) 13

and Schweizer et al. (2014) has shown quantitatively 14

that a switch in diet to nectarivory might be 15

considered an evolutionary novelty that created an 16

ecological opportunity for species proliferation through 17

schweizer
Durchstreichen

schweizer
Eingefügter Text
i

schweizer
Kommentar zu Text
Please add (Schweizer et al. 2015).

Schweizer, M., T.F. Wright, J.V. Peñalba, E. Schirtzinger & L. Joseph 2015. Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes). Molecular Phylogenetics and Evolution 90: 34-48.
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TABLE 1. Inferred Lévy parameters for Anolis and Loriinae, along with the log-likelihood (`) obtained under the Lévy and BM
models and the p-value of a likelihood ratio test (LRT) contrasting these.

Anolis Loriini

logSVLf logSVLm log Wgt PC1 PC2 PC3

µ 3.93 4.18 5.33 -0.062 0.051 0.19
s2
0 5.06 10.34 44.40 7.68 7.35 5.80
α 0.11 - - 0.16 0.093 -
λ 11.27 - - 11.95 7.38 -
`BM 5.03 -15.19 -85.54 -65.00 -60.63 -6.22
`Lévy 26.61 -13.89 -85.51 -31.99 -24.72 -4.97

LRT p 4.3 ·10−10 0.28 0.97 4.7 ·10−15 2.3 ·10−16 0.29
Preferred model Lévy BM BM Lévy Lévy BM

allopatric partitioning of the same new niche. Using1

the methodology developed above we now tested if the2

evolution of the morphology of the digestive tract in3

parrots as a whole is better characterized by a model4

of evolutionary jumps or Brownian motion. For this we5

made use of data from Schweizer et al. (2014), to generate6

a time-calibrated phylogeny of 78 parrot species using7

BEAST (Drummond and Rambaut, 2007) implementing8

a secondary calibration point from Schweizer et al.9

(2011) for the initial split within parrots. The following10

13 measurements of gut morphology were used: the11

length of intestine, length of esophagus, extension of12

esophagus glands, length of intermediate zone, length13

of proventriculus, gizzard height, gizzard width, gizzard14

depth, maximum gizzard height at main muscles, gizzard15

thickness at main muscles, gizzard lumen width including16

koilin layer, gizzard width at the caudoventral thin17

muscle, maximum gizzard height at the thin muscle, and18

the maximum gizzard lumen at the thin muscle. Since19

many of the gut morphology characters considered are20

both highly correlated with body size as well as among21

themselves, we first regressed out body mass (Wgt)22

from each gut morphology trait and then summarized23

the residuals of all traits using the first three principal24

components (PCA; see also (Revell, 2009)).25

We found that the evolution of both body weight26

(Wgt) and the first PC axis of gut morphology were27

much better explained by a model of evolutionary jumps28

(p<10−16 in both cases) with relatively high rates of29

jumps (Table 1). Overall, the jumps for PC1 identified30

with strongest support are both on branches basal to31

clades of nectarivorous species, particularly at the base32

of highly specialized nectar feeding Loriini, but also at33

the base of the genus Loriculus (Figure 5). As postulated34

by Simpson the niche shift to nectarivory especially in35

Loriini involved a period of rapid evolution reflecting36

adaptations to feed effectively on nectar (and pollen)37

(Schweizer et al., 2014). While the jumps within the38

Neotropical parrots are difficult to interpret in biological39

terms, the shift along the branch leading to Psittrichas40

fulgidus might be explained by its gizzard morphology41

similar to that of the Loriini probably reflecting an42

adaptation to its reportedly mainly frugivorous diet43

(Schweizer et al., 2014). Some special structures in the44

digestive tract of the genus Nestor have been described 45

in Güntert (2012). 46

DISCUSSION 47

While many traits appear to evolve at relatively 48

constant rates over long time periods and across many 49

taxa, some traits seem to undergo periods of rather 50

rapid evolution (see Arnold, 2014). Simpson (1944) 51

postulated that such evolutionary jumps are triggered by 52

a change in selection pressure after lineages transitioned 53

into different adaptive zones, for instance by dispersing 54

into new geographic areas, after the appearance of 55

evolutionary novelties, key innovations, or after rapid 56

climatic or ecological changes of the environment. The 57

appearance of well calibrated phylogenies along with 58

recent statistical developments now allow to test such 59

models on a wide variety of data. 60

Bokma (2008), for instance, proposed to model 61

evolutionary jumps as a compound process of a 62

continuous background process and a discrete jump 63

process. Recently, Landis et al. (2013) introduced a 64

general framework to infer parameters of such Lévy 65

processes under a Bayesian framework by means of 66

Markov Chain Monte Carlo (MCMC). Unfortunately 67

this approach, while elegant, requires the calculation of 68

the inverse of the variance-covariance matrix describing 69

the correlations between traits as a function of the 70

phylogenetic tree and the jump process, which is 71

computationally prohibitive for large trees. 72

Here we introduce a computationally highly efficient 73

variant of this approach that naturally scales to 74

large trees. The basis of our approach is an MCMC 75

algorithm in which we can update the inverse of the 76

above mentioned variance-covariance matrix directly 77

without inversion when sampling jump configurations 78

with fixed hierarchical parameters (root state, Brownian 79

rate, jump strength and jump rate). To make use of 80

this development for inference we propose a two-step 81

approach in which the MCMC algorithm is embedded 82

into an Expectation-Maximization (EM) approach to 83

obtain maximum likelihood (ML) estimates of the 84

hierarchical parameters while integrating over jump 85
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PC1

Eos cyanogenia
Trichoglossus johnstoniae
Trichoglossus haematodus

Psitteuteles goldiei
Lorius garrulus

Chalcopsitta cardinalis
Phigys solitarius

Vini australis
Charmosyna pulchella

Melopsittacus undulatus
Cyclopsitta diophthalma

Psittaculirostris desmarestii
Agapornis nigrigenis

Agapornis fischeri
Agapornis personatus

Agapornis lilianae
Agapornis roseicollis

Agapornis canus
Loriculus philippensis

Loriculus galgulus
Psephotus chrysopterygius

Psephotus dissimilis
Psephotus varius

Purpureicephalus spurius
Northiella haematogaster
Psephotus haematonotus
Platycercus caledonicus

Platycercus flaveolus
Platycercus eximius

Platycercus venustus
Barnardius barnardi
Barnardius zonarius

Eunymphicus cornutus uvaeensis
Eunymphicus cornutus cornutus
Cyanoramphus novaezelandiae

Cyanoramphus auriceps
Prosopeia tabuensis
Lathamus discolor

Neophema pulchella
Neophema splendida

Neophema chrysostoma
Neopsephotos bourkii

Tanygnathus megalorhynchus
Psittacula eupatria
Psittinus cyanurus
Eclectus roratus

Prioniturus luconensis
Alisterus scapularis

Alisterus chloropterus
Polytelis anthopeplus

Aprosmictus jonquillaceus
Polytelis alexandrae
Micropsitta finschii
Psittrichas fulgidus
Coracopsis vasa
Amazona aestiva
Amazona pretrei

Amazona dufresniana
Pionus menstruus
Pionus maximiliani
Amazona xanthops

Triclaria malachitacea
Brotogeris jugularis
Forpus passerinus
Aratinga solstitialis
Guaruba guarouba

Anodohynchus hyacinthinus
Ara ararauna
Ara macao

Aratinga leucophthalmus
Deroptyus accipitrinus
Poicephalus gulielmi

Poicephalus senegalus
Psittacus erithacus
Cacatua sulphurea

Cacatua moluccensis
Cacatua goffini
Nestor notabilis

PC2

FIGURE 5. Inferred jumps for nectarivory evolution on the Loriinae tree. Results for PC1 are shown on the left phylogeny,
and results for PC2 on the right phylogeny. Branches are colored according to their inferred jump posterior probability (black to red
scale going from posterior probability 0 to 1, respectively). Species names are colored according to their diet: nectarivorous (blue) and
non-nectarivorous (green).

configurations. In a second step, the location of jumps1

can then be inferred under an empirical Bayes framework2

in which the hierarchical parameters are fixed to their3

ML estimate and the developed MCMC algorithm is used4

to obtain for each branch the posterior probability that5

a jump occurred at this location.6

There are also other methods that deal with the7

burden of calculating inverses and determinants of8

variance-covariance matrices. For instance, Freckleton 9

(2012) applied the results of Felsenstein (1973) and 10

Felsenstein (1985) to calculate the likelihood in linear 11

time of a BM model. FitzJohn (2012) also proposed 12

a fast algorithm to calculate BM and OU likelihoods 13

using Gaussian elimination, but this is not applicable 14

to non-gaussian traits. Ho and Ané (2014) proposed a 15

new method, which efficiently calculates likelihoods by 16
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avoiding the calculation of the inverse and determinant1

of the variance-covariance matrix. Their method requires2

that this matrix belongs to a class of generalized 3-3

point structured matrices. Our method, which applies an4

iterative scheme, differs from the others in the sense that5

the inverse and determinant of the variance-covariance6

matrix has to be calculated only once when obtaining the7

likelihoods, thus obtaining rather fast calculation times.8

We demonstrated the applicability of our approach by9

identifying evolutionary jumps for body size evolution in10

Anolis lizards and the evolution of gut morphology in11

Australasian lories of the subfamily Loriinae. We found12

strong support for evolutionary jumps in both systems13

that provide direct support for Simpson’s quantum14

evolutionary hypothesis of adaptive zones. Among the15

anoles, for instance, we identified evolutionary jumps on16

the basal lineage leading to crown giants, a group of17

lizards that transitioned into a novel niche for hunting:18

the crowns of large tropical trees. Similarly, we identified19

jumps at the basis of clades of lories that transitioned20

to nectarivory, an evolutionary novelty that triggered21

rapid changes in morphology of the digestive system22

and promoted significant lineage diversification, which23

was probably mainly non-adaptive after the basal diet24

shift through allopatric partitioning of the same niche25

(Schweizer et al., 2014, cf.).26

These results also show that the distinction between27

“gradual” and “punctuated” models of evolution is28

a false dichotomy; instead, evolution has a gradual29

component that may be frequently punctuated by30

periods of rapid change (Levinton, 2001). We further31

note that in both cases studied here a single jump at the32

basis of clades is sufficient to explain their trait data,33

suggesting that the period of rapid evolution was limited34

to a single branch and that the background rate remained35

constant. We suggest that future work should follow36

Simpson’s lead and focus on the factors that promote37

these pulses of evolutionary change.38

Although we model evolutionary jumps as39

instantaneous, we want to be clear that we are40

not invoking actual instantaneous evolutionary41

change (e.g. “hopeful monsters”) (Charlesworth et al.,42

1982; Goldschmidt, 1940). Typical microevolutionary43

processes of selection and drift can cause change that44

would appear to be instantaneous when viewed over45

the timescale of macroevolution. Our model is also46

distinct from punctuated equilibrium, which requires47

evolutionary jumps to occur only at speciation events48

(Eldredge and Gould, 1972). The punctuated changes in49

our model occur along branches in the tree and are not50

necessarily associated with speciation events. In fact, for51

the case of anoles, two lines of evidence argue against52

punctuated equilibrium: first, most speciation events in53

the tree are not associated with jumps; and second, we54

know from detailed microevolutionary studies that anole55

body size can evolve rapidly in response to selection56

even in the absence of speciation (e.g. Losos et al.57

(2006)).58
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Ho, T. and C. Ané. 2014. A linear-time algorithm for gaussian and4

non-gaussian trait evolution models. Systematic biology 63:397–5

408.6

Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003.7

Stochastic mapping of morphological characters. Systematic8

Biology 52:131–158.9

Ingram, T. and D. L. Mahler. 2013. SURFACE: detecting10

convergent evolution from comparative data by fitting Ornstein-11

Uhlenbeck models with stepwise Akaike Information Criterion.12

Methods in Ecology and Evolution 4:416–425.13

Izenman, A. 2008. Modern multivariate statistical techniques14

vol. 1. Springer.15

Joseph, L., A. Toon, E. E. Schirtzinger, T. F. Wright, and16

R. Schodde. 2012. A revised nomenclature and classification for17

family-group taxa of parrots (Psittaciformes). Zootaxa 3205.18

Landis, M. J., J. G. Schraiber, and M. Liang. 2013. Phylogenetic19
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APPENDIX1

Conditional likelihood2

The EM algorithm can be implemented without the MC part if we impose a condition |ν|≤R on the likelihood,
i.e. if we suppose a priori that there have been only R or less Poisson events on the tree T . In that case, the sum
in (9) is over all nk such that |nk|≤R. Observe that we have to use the conditional probabilities

P(ν=ni|ν≤N)=P(ν=ni)/

K∑
k=1

P(ν=nk).

The new Q-function is3

Q(θ)=

K∑
k=1

πk log[φ(x|nk)P(ν=nk|ν≤R)] (17)

where we can use
πk=φ(x|nk,µ̃,s̃2

0,α̃)P(ν=nk|λ̃).

In the conditional case, there no longer seems to exists a closed formula like (12) for the optimal λ̃. Setting the

derivative of (17) w.r.t. λ equal to 0, one can show that λ̃ is the root of the following R-th order polynomial:

P (λ)=

R∑
r=0

τr

r!

(∑
πk|nk|−r

∑
πk

)
λr,

i.e. P (λ̃)=0. The estimation of µ̃ and s̃0, on the other hand, remains exactly as explained in section 1.4.4

Assessing convergence of the EM5

We introduce two measures to assess convergence of the Monte Carlo EM algorithm.6

Regression criterion We consider a time series y1,...,yn and construct a test statistic which allows to reject the

null hypothesis that the time series exhibits no trend. For this we estimate the slope β̂ of the regression line passing
through the data points

(1,y1),(2,y2),...,(n,yn)

and test for the null hypothesis β=0 (no trend). Determine the following quantities:7

ȳ=
1

n

n∑
i=1

yi, Sxx =
n(n2−1)

12
, Sxy=−1

2

n∑
i=1

(n+1−2i)yi,

β̂=
Sxy
Sxx

, σ̂2 =
1

n−2

(
(

n∑
i=1

y2
i )−nȳ2−β̂Sxy

)
, se(β̂)=

√
σ̂2

Sxx
.

The test statistic

T =
β̂

se(β̂)

has the Student t-distribution with n−2 degrees of freedom. We reject the null hypothesis on the level γ if |T |≥8

tγ/2,n−2. A good rule of thumb (for γ roughly 5% and n>15) is |T |≥2.9

Proportion of slope sign changes We propose a second way of assessing convergence by taking the last n values of10

the EM algorithm and counting the number of times c there is a change in the sign of the slope between consecutive11

values. If convergence is reached, we expect the number of slopes with a positive sign to be similar to the number12

of slopes with a negative sign. We report the test statistic N13

N=
c

n−2
where n−2 represents the total number of possible sign changes among the last n values.14




