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Abstract.—While it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant
across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his
highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms
transition into so called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic
changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated
phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains
computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer
the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model
evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does
not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer
evolutionary jumps in Anolis lizards and Loriinag parrots where we find strong signal for such jumps at the basis of

clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis.

Quantitative traits; Phenotyic evolution; Lévy process; Evolutionary jump; Punctuated equilibrium.

A key goal of evolutionary biology is to understand the
mechanisms by which the large phenotypic diversity seen
today evolved. Our understanding of these mechanisms
is improving rapidly with the advent of increasingly
powerful sequencing approaches. For instance, the huge
amount of molecular data has led to the resolution of
phylogenetic trees encompassing entire orders. Further,
methods to reliably identify substitutions that likely
resulted from selection, and to accurately place them on a
phylogeny have been developed. In contrast, methods to
infer events of rapid evolution from phenotypic data have
lagged and are mostly restricted to inferring independent
evolutionary rates for different clades.

In general, quantitative studies of the evolution of
phenotypic/quantitative traits date back to just a few
decades. A first attempt was by Edwards et al. (1964)
and Cavalli-Sforza and Edwards (1967), who modeled
quantitative traits stochastically as ” Brownian motion”
(BM). However, given the current wealth of molecular
data available, a more realistic goal is to only aim at
inferring the rates at which quantitative traits evolve,
while assuming the underlying phylogeny to be known.
This has been successfully done using a BM model in
multiple taxa. Freckleton et al. (2002), for instance, used
a BM model on a given phylogeny to test if traits showed

phylogenetic associations. More recently, Brawand et al.
(2011) modeled gene expression evolution as BM and
rejected evolution at a constant rate for several genes.
Several extensions to a basic BM model have been
proposed. Butler and King (2004) were the first to
implement Ornstein-Uhlenbeck (OU) processes with
multiple evolutionary optima, as initially described
by Hansen (1997), and recently used to describe the
evolution of gene expression (e.g. Bedford and Hartl,
2009; Rohlfs et al., 2013). Other extentions to BM allow
evolutionary rates to change over time. O’Meara et al.
(2006), for instance, contrasted maximum likelihood
(ML) estimates of evolutionary rates under BM and
showed that major clades of angiosperms vastly differ
in their rate of genome size evolution. More recently,
Eastman et al. (2011) developed a Bayesian method to
jointly infer evolutionary rates in different clades and
found evidence for multiple rate shifts in body size
evolution in emydid turtles. Shortly after, Slater et al.
(2012) have introduced an extension to incompletely
sampled phylogenies and trait data using Approximate
Bayesian Computation. However, they found no evidence
for an elevated rate of body size evolution in pinnipeds in
comparison to terrestrial carnivores, despite considerable
power. This suggests that the larger body size found
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2 SYSTEMATIC BIOLOGY

in pinnipeds may be the result of rapid evolutionary
changes early in the clade, rather than a change in
the rate itself, and hence that models of occasional
“evolutionary jumps” may often more accurately explain
the evolution of quantitative traits.

According to Simpson (1944), such evolutionary jumps
are triggered by shifts of lineages into different adaptive
zones, either by dispersal into new geographic areas, the
appearance of evolutionary novelties, key innovations,
the extinction of lineages leaving niches empty, or by
rapid changes in the environment (climatic or ecological).
Additionally, the existence of “ecological opportunities”
(Losos, 2010) might also trigger such jumps. While OU
processes have been proposed to model the dynamics
of adaptive landscapes (e.g. Ingram and Mahler, 2013;
Uyeda and Harmon, 2014), a promising alternative
is to model this type of evolution as a compound
process (or Lévy process) consisting of a continuous
background process and a discrete jump process. The
first implementation of such a model assumed that jumps
only occured at speciation events (Bokma, 2008), but
Landis et al. (2013) recently described Lévy processes
in a much more general way and showed that while
the likelihood functions of most of these models are
intractable, inference is possible under a Bayesian
framework. For instance, when modeling the evolution
of quantitative traits as a Poisson compound process,
in which traits are assumed to evolve under BM with
occasional jumps that occur as a Poisson process on the
tree, the likelihood can be calculated analytically when
conditioning on a jump configuration (a placement of
jumps on the tree). Under the assumption that jump
effects are normally distributed, a jump configuration
can be seen as simply stretching the branches of the tree
on which they occur, and the likelihood is then given
by a multivariate normal distribution with the variance-
covariance matrix resulting from the stretched tree. The
numerical integration is then limited to sampling jump
configurations, which is readily done using Markov Chain
Monte Carlo (MCMC).

Unfortunately, two computational challenges prohibit
the application of this approach to larger trees. First,
the space of jump configurations grows exponentially
with tree size, leading to very long MCMC chains.
Second, the evaluation of the likelihood requires the
computation of the inverse of the variance-covariance
matrix, which is computationally very demanding since
it scales exponentially with tree size (Tung Ho and
Ané, 2014). Here, we address these computational issues
using an empirical Bayes approach in which we first
infer the hierarchical parameters of the Brownian and
Poissonian processes using Maximum Likelihood, and
then fix those when inferring posterior probabilities on
jump locations. This approach allows us to run MCMC
chains with fixed hierarchical parameters, for which we
find a computationally highly efficient approach that
does not require matrix inversions. As a result, this
approach readily scales up to very large phylogenies.

We then demonstrate the power and accuracy of our
approach with extensive simulations and find that our

approach hardly misses any jumps with a meaningful
strength. We then illustrate the usefulness of our
approach by identifying evolutionary jumps in Anolis
lizards and Loriini parrots, two well-studied groups
for which morphological data is available. We identify
few but important evolutionary jumps in both groups,
suggesting such periods of rapid evolutionary change to
be rare but crucial in shaping the morphological diversity
observed today.

THEORY

The null hypothesis: Brownian motion

We first consider a Brownian motion (BM) process
on a phylogenetic tree 7 with root @ where time is
measured in the unit of the branch lengths. The process
starts at O with value pe€R (root state) and then
proceeds with variance 8(2) along the branches. The values
of the BM process, as observed at the L leaves, give rise
to the random vector

x=(z1,....,x1)"

Let us fix the notation: The lenghts of the (inner and
outer) branches of T are called 71,...,7g where B is the
number of branches. For two leaves 7,5 we denote by
To=(7;;) the length of their common branch in 7 as
measured from the root O. Now, under the assumption
of a pure BM, and defining 1=(1,1,...,1)’, the values z
at the leaves have the multivariate normal distribution

x~N(p1,55T)
or written more conveniently:
x=pl+e (1)

with GNN(O,S%T()). Since Ty is positive definite and
symmetric, it has a symmetric and positive definite
square root Q, i.e. Q2=T(. Multiplying both sides of
(1) with Q! we get the homoskedastic model

o= pvo+e€o,

where £p=Q 'z, vo=Q 1, and €y~N(0,s3I). For
this we have the usual OLS estimators (see e.g. Davidson
and MacKinnon (2004), ch. 3.2)

1T

~ / -1, 0
= (vpv VYTO= ———
fi=(vgvo) ™ o VT

and
a2 1 / / -1,/
0= 770 (I—vg(vovo) v0>:cg

—1

L—1 0 Ty
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Lévy process

We now extend the BM model by super-imposing an
independent Poissonian jump-process with rate A. The
jumps shall be normally distributed with zero mean and

i 1. Th bservabl d t
variance s7. The (unobservable) random vector

v=(v1,...,vg)

counts the number of Poisson events (jumps) on each of
the B branches. By assumption,

(A7p)"

67)\7'1,
nb!

P(I/b:nb>: 5 nb:(),l,Z,....

For a multi-index n=(ny,...,ng), we have

B -
Plv=n)= He_MbM. (2)

I
ng.
k=1 b

Recall that for two leaves 4,j we denote by 7;; the length
of their common branch in 7 as measured from the
root O. In particular, 74; is the distance (sum of branch
lengths) of the leaf ¢ from the root O.

We denote by n;; for two leaves i,j the number of
Poisson events along the common branch of length 7;;.
Conditional on v=n=(ny,...,ng), the random vector
x is multivariate normal with mean pl1 and the Lx L
variance-covariance matrix 3(n)=(o;;(n)) where

Uz‘j(n) :Tijs(%—i-nijs%, 1<4,5<L.
The conditional density of x given v=mn is
1
(27)LdetX(n)
1 _
o (o= @) 6)

The likelihood of x given the four parameters p (root
state), so (Brownian motion) and \,s; (Poissonian jump
process) is the mixture distribution

¢(z|n)=

0o
f(w\u,s%,)\,s%): Z

ni=0 n

Plv=n)é(x|n)  (4)
=0

where we used expressions (2) and (3). It is not hard to
show that

E(z;)=p and Cov(z;,x;) :sz(s%—i—)\s%).

Inference under the Lévy process

Here we develop a computationally efficient approach
to maximize the likelihood function given in equation
(4). While the infinite sums in (4) prohibit an analytical
solution, they are readily evaluated using numerical
approaches. Landis et al. (2013), for instance, proposed
to use an MCMC approach to integrate over jump
configurations. Unfortunately, however, such a solution
does not scale to large trees, because the calculation
of the conditional density values in (3) involves the

computation of the inverse of ¥ (n) and its determinant,
which are computationally very demanding.

We propose to address this problem by introducing an
algorithm to calculate these matrix inversions efficiently
under this model. While this algorithm can readily be
incorporated into the MCMC approach proposed by
Landis et al. (2013), we will then propose an alternative
hierarchical Bayes approach that makes even better use
of it and leads to a computationally highly efficient
inference approach to obtain point estimates of the
parameters p, sg, A, and s%, as well as posterior
probabilities on the location of evolutionary jumps.

Efficient calculation of inverses and determinants For a
symmetric non-singular matrix A and a (column) vector
a, we have

(Ataa ) '=A"17 (A ta)(A7 1 a) (5)

1+a’A a
(see Izenman (2008), p. 47) and
det(A+aa’)=detA-(1+a’A"la) (6)

(see Anderson (2003), Corollary A.3.1). These formulae
have recently been shown to speed up the calculation of
the likelihodo function under Brownian motion models
(Tung Ho and Ané, 2014). Here we use them to develop
a fast algorithm applicable to Lévy processes.

Let us first fix some notation: For each branch b, we
define the L x L incidence matrix Ib:(If’j) by setting

If’jzl if the branch b is common to the pair of leaves

1,7, and Ilbj =0 otherwise. Clearly,

B
b

b=1

In the following we replace the parameter s% with the
positive factor « given by
s% = as%.
Observe that
S (n)=sT(n,a)

and
det2(n)=s3FdetT(n,a)
where
B
T(n,a)=Ty —i—aanIb
b=1

and To=(7;;). Finally, we introduce for b=1,...,B the
(column) vectors u®, each one with L components. The
i-th component ui-’ is equal to 1 if leaf i is subordinate
to branch b (i.e. the path from the root O to node i
contains branch b). Otherwise, if leaf 7 is not subordinate

to branch b, then uf =0. It is easy to see that I =ub(ub)’
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4 SYSTEMATIC BIOLOGY

and thus
B
T(n,a)zTo—i—aanub(ub)/. (7)
b=1
We can now apply formulae (5) and (6) to obtain
the following iterative scheme for the computation of
T (n,a) and detT(n,q):
First, determine T L and detTy. Then, for each term

with ny >0 in the sum (7), update T,_q to T} etc. as

follows: Let
_ by, n—1 b
rpy=1+any (u’) T) ju

and calculate

-1 -1 @1 1.0 -1 .0
T, = Tb—1_Tb'(Tb—1“ T,y w ),
deth = rb-deth,l. (8)

When all non-zero terms in (7) have been considered,
we arrive at TTBI:T’l(n,a) and detTg=detT(n,q).
Observe that in this scheme, the only matrix inverse that
ever has to be determined is T'y ! The number of non-
zero ny will frequently be small compared to B and so
will be the number of iterations (8).

Monte Carlo EM algorithm The scheme to calculate
the inverse of X(n) allows to find the ML estimates of
the parameters ,u,s% and A by means of a Monte Carlo
version of the classical Expectation Maximization (EM)
algorithm, in which we treat the random variable v as
missing (unobserved) data. While this approach does not
allow us to find the ML estimate of o, we discuss below
how this can be achieved using a simple grid search.

Recall that each iteration of the EM algorithm consists
of an estimation (E) and a maximization (M) step. Let
us denote the old parameters determined in the previous
M-step by 6= (ﬂ,sg,/\,ao), and the new parameters with
respect to which the Q-function has to be maximized in
the next M-step by Hz(u,s%,)\,ozo), where aq is a fixed
value for a. The two steps of the EM algorithm are then
as follows:

Monte Carlo E-step. Simulate stochastically K vectors
n according to the multi-Poisson distribution P(v=

n|)). Determine the weights
M = ¢(@|nk,i1,55,00)

1 N _ N
ck-exp(%,(mul)'-T 1<nk,ao>-<azul>),
0

with
= (27r§(2))_L/2 (detT(ny,a0)) " /2.

In the M-step we have to maximize the function

Q0)6) =E [1og1p>(m,n|e)\x,é] 9)

= "P(n|a,0)logP(z,n|0)
n

with respect to the parameters 6 = (,u,sg,)\,ozo) where
P(m,n|9):gb(:c\n,u,sg,ag)ﬂ”(u:np\)
From Bayes’ theorem we have
o(|n. f1,55,00)P(v=n|A)
P(x|0)
Thus, according to our Monte Carlo scheme and up

to the factor 1/P(x|f), the infinite sum in (9) can be
approximated by

K

Q(0) o< > mploglp(@|ny)P(v=ny)]

k=1

P(n|z,0)= (10)

(11)

where ¢(x|ny) and P(v=mny) are given by (2) and (3),
respectively. ~

M-step. In this step we seek the parameters 6 which
maximize the sum in (11) and which will serve as “old”
parameters in the next E-step. We have

P(v=mny)=e A"*l¢(ny)

where 7=>"7; is the total length of the tree T, |ng|
denotes the sum of the components of ny, and c¢(ny) is
a factor that does not depend on any of the parameters
0. From this it is easy to see that

5= 22Tkl
Tk
independently of the wvalues of the other three
parameters. Since we assume the value of « to be fixed,
we can also give explicit expressions for the values of p
and s3 which maximize Q(6|a=qy). First, determine the
matrix

(12)

K
S=> mT ! (ny,a0). (13)
k=1
Standard calculus shows that
. 1Sz
=181 (14)
and
2= (x—1)'S(x—fl)
07 LY
1 , (1'Sx)?

Simulating . with MCMC In this section we describe
how to sample the states m from the probability
distribution P(n|x,d) using the Metropolis scheme.
(To unburden the notation in the description of the
MCMC algorithm, we drop the tilde overscript on the
parameters.) At each state we will need the inverse
matrix T~ of T(n,aq) given by (7). Start the chain

e.g. at n=(0,...,0) and with Tal.

1. Let n denote the current state of the Markov
chain and T~! the inverse matrix of T(n,aq).
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Choose an index b=1,...,B with equal probability
(or with a probability proportional to 7)) and an
increment Any=+1 or =—1 with probability 1/2.
The candidate state n/ is given by in- or decreasing
the b-th index n by Any: nj =mny,+Any,.

2. Using (10) and the iteration formula (8) it is not
hard to check that the Hastings ratio (proposal
probability) can be calculated by

Any,
h = min 1,r_1/2 (MJZ))

ny,

2
2rsg

where n;r =np+max(0,Any) and

r=1+aAny- (ub) T ub.

If the candidate state contains a negative
component (i.e. if ny=0 and Any=-—1) then
set h=0. This ensures that the chain is indeed
symmetric.

3. With probability A jump to the candidate state n’,
otherwise stay at m. In the first case, update

n«n

A
71t Q02T Ly by lyby
T

and go to step 1.

No matrix inverse must ever be calculated in this scheme
thanks to the update in step 3. (To counterbalance the
accumulation of numerical errors it might however be
wise to occasionally calculate T_lzT_l(n,ao) from
scratch.)

After the burn-in phase, a fraction ny,...,n; of the
simulated states will be retained (“thinning out”). These
will be used to replace the matrix (13) in the M-step of
the EM algorithm by

1 M
S=+7 ZIT_l(n,maO). (16)
o

Estimating factor o« The Monte Carlo EM algorithm
proposed above, while computationally highly efficient,
does not allow for the estimation of the factor a. We
thus use a numerical approach to iteratively approach
the ML estimate of «. Specifically, we start at a value
ag and then iteratively increase that value such that
logqgat =logigor—1+ Ay until the likelihood decreases.
The algorithm then turns back by setting Ay —Ay/e
and proceeds again until the likelihood decreases. With
every switch, the step size gets smaller and the estimate
closer to the true MLE value. In each step we use
the Monte Carlo EM algorithm described above to
calculate the likelihood at the MLE estimates of all
other parameters conditioned on that « value. In all

application we set ag=0.1 and the initial A, =0.1 and
found estimates to be accurate within five switches.

Identifying jump locations To infer the location of
jumps on a phylogenetic tree we implement an empirical
Bayes approach. As is commonly done in such a setting,

we assume the ML estimates ﬂ,s%)\ and & obtained
using our Monte Carlo EM scheme are accurate and
thus known constants when inferring jump locations.
Under this assumption, the MCMC approach introduced
above can also be used to sample configurations of jumps
n from the probability distribution ]P’(n|a:,ﬂ,s(2),5\,d).
This allows us to numerically infer for each branch k
the posterior probabilities of ]P’(nk:0|:c7/l,s%,3\,d) and
P(nk>0|m,,&,sg,;\,&), and thus to identify branches for
which there is convincing evidence for an evolutionary
jump.

Implementation We implemented the algorithm
introduced here in C++4 and optimized the
code for speed. A wuser-friendly program to

apply it to data is available at our lab website
(http://www.unifr.ch/biology /research /wegmann/).

SIMULATIONS

Convergence

Convergence of the MCMC We assessed the
convergence of MCMC chains by comparing parameter
estimates between two independent and parallel chain
runs until 10,000 jump vectors n were sampled. We run
a total of 100 such chain pairs for each of two starting
locations with values differing ten fold and discarded the
first 100 such vectors as burn-in. We also compared two
different values to thin the chains: either we sampled
every 10th or every 5000th step.

Regardless of the starting values, convergence was
reached rather fast but with some variation across
parameters (Fig. S1). The parameter to converge fastest
was p, for which the difference in estimates was below
0.01 within 2,000 sampled jump vectors for 90% of all
chain pairs. Similarly small differences for 3% and A\ were
only reached after sampling about 4,000 jump vectors
(Fig. S1). Interestingly, a larger thinning did not improve
convergence, suggesting that the variance in estimates is
dominated by variation in the jump vectors sampled, but
not by autocorrelation along the chain. For subsequent
analyses, we used a thinning of 10 and sample a total of
5,000 jump vectors.

We next assessed the convergence of the MCMC
for the inference of jumps on trees by assessing the
difference in posterior probabilities between independent
chains (Figure S2). We again run 100 chain pairs, fixed
the thinning to 10 and discarded the first 100 jump
vectors as burn-in. While we found convergence to be
reached within less than 2,000 iterations for branches
with very low (<0.05) and very high (>0.95) posterior
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FIGURE 1.
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Power to reject the null model (Brownian motion) using a likelihood ratio test (LRT) (a), or the Akaike information

criterion (AIC) (b) as a function of the number of simulated jumps n and the jump strengths «.

probabilities, more iterations were required for branches
with intermediate posterior probabilities. We found that
sampling 5,000 jump vectors gave very consistent results
also for inferring the location of jumps.

Convergence of the EM for parameter inference To
test if the stochastic EM algorithm converges with the
MCMC settings found above (5,000 jump vectors, a
burn-in of 100 such vectors and a thinning of 10), we run
the EM for a wide range of parameter values for up to 100
iterations. Since the EM algorithm is stochastic, it does
not converge onto a single value unless an infinitely large
sample of n vectors are used. We thus first inspected
obtained patterns visually and found that parameter
estimates stabilized after only a few iterations, usually
between 10 and 20 (Figure S3).

We then implemented two different measurements
to assess convergence more formally: the first is a
test statistics assessing the presence of a trend in the
parameter estimates, and the second is quantifying the
number of slope changes in the individual parameter
updates (see Appendix).

Power to reject Brownian motion

To assess the power of our approach to identify Lévy
processes and to estimate associated parameters, we run
our EM algorithm on data simulated with jumps on trees
of 100 leaves, each simulated using a birth-death model
(Stadler, 2011) and scaled to a total length of 1. We
generated 100 such simulations for many combinations
of number of jumps and « values but fixed p=0 and
s%:l since changing these parameters does not affect
the inference. We then inferred the MLE estimates for
all parameters under both the null model (Brownian
motion) and under the alternative Lévy model.

Using both a likelihood ratio test (LRT) or the Akaike
information criterion resulted in generally substantial
power to reject the null model over a large range of
jumps simulated and for many different values of a (Fig.

1). Unsurprisingly, power was much lower if simulated
jumps were on the order of the change of the Brownian
background process or lower. Here we simulated trees
of length 1, and thus the average length of each of the
~ 200 branches is roughly 0.005. Hence with «=0.01, the
strength of half of the evolutionary jumps are expected
to be smaller or equal to the effect of the background
process on an average branch. However, with a=0.1,
the power to reject the null model was >80% if multiple
jumps were present on the tree.

Interestingly, we also found our approach to regularly
fail to reject the null model if the number of jumps was
very large, i.e. on the order of the number of branches
(50 jumps correspond to a jump on every 4th branch).
In such situations, the large variance in traits observed
under the Lévy model is also perfectlzy explained by a
pure BM model with larger variance sfj (see below).

In summary, these results show that our method has
considerable power to detect Lévy process as long as
jumps are meaningfully strong and there are not too
many jumps, in which case the Lévy and BM models
become indistinguishable from each other.

Accuracy in inferring Lévy parameters

For the cases in which the Lévy model was preferred
we next evaluated the power of our approach to infer
the associated parameters, starting with the jump
strength a. We found that our approach infers a quite
accurately over the whole range, but we observed a slight
overestimation for lower « values. This is a direct result
of the low power to reject a model of Brownian rate at
these lower jump strengths such that for simulations that
resulted in larger jumps the Brownian model was more
easily rejected. But the inferred values for a <1 were
rarely further from the true value than a factor of 2
if multiple jumps were present (Fig. 2a), while it was
unsurprisingly much harder to accurately infer the jump
strength in case of a single jump.
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We next evaluated the accuracy of our approach
in inferring the jump rate A, again limited to the
simulations in which a Lévy model was preferred. As
shown in Fig. 2b, our method inferred this parameters
very accurately over a large range of jumps simulated
and for all values of «, with generally higher accuracy
with higher a values.

We then finally evaluated the accuracy in inferring the
Brownian background rate 5(2) (Fig. 2b) and found it to be
very accurately inferred whenever the Brownian model
was rejected. Interestingly, however, sg was overstimated
whenever the Brownian model could not be rejected
but jumps were simulated. This illustares that under
certain conditions a Lévy model is indistinguishable from
a model of pure Brownian motion with an elevated rate.
This is particularly true in the case of weak jumps (small
«) or if jumps are very common on the tree.

Jump location

We finally tested the power of our method to infer
the location of jumps on the tree. For this we simulated
trees with 100 leaves and trait data affected by 20 jumps
randomly placed on each tree for different jump strengths
« while fixing s%: 1. In each case we then assumed the
Lévy parameters to be known and used our MCMC
approach to calculate the posterior probability on there
being at least one jump for each branch.

We found our method to have a very low false positive
rate in identifying jumps in that a posterior probability

for jumps > 0.5 was never obtained for branches on which
we did not simulate any jumps (Fig. 3a), and 90% of
all such branches resulted in a posterior probability for
jumps below 0.2 even for the weakest jump strengths
simulated (a=0.1).

The power to infer true jumps (true positives) was
also considerably high, especially for jumps of meaningful
strength. For data simulated with =10, for instance,
90% of all branches on which jumps were simulated
resulted in a posterior probability >50%, and 75%
even even in a posterior probability >95%. The few
branches with jumps for which we did not obtain decisive
posterior probabilities in favor of jumps all contained
jumps that were considerably weak (Fig. 3b). Such jumps
are expected even for large « values since individual jump
strengths are assumed to be normally distributed around
Zero.

A similar pattern was observed when simulating data
with smaller «, but even in the case of a=0.1 we obtain
posterior probabilities in favor of jumps >0.5 for more
than one third of the branches on which jumps were
simulated (Fig. 3). At such small « values for a tree
of length 1, about 40% of all jumps are expected to
have a strength smaller than 10 times the effect of the
Brownian process on the same branch. But we note that
the difficulty in placing weak jumps did not affect the
power to infer the jump rate A, which was inferred quite
accurately even at such low « values (Fig. 2).
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FIGURE 2.  Accuracy in infering Lévy parameters. Each boxplot represents the distribution of inferred values across 100 replicates
simulated as described in the text for different combinations of jump strengths o and number of simulated jumps n. a) Accuracy in
inferring factor a. The true « values used in the simulations are indicated with red solid lines. b) Top row: distributions of inferred
jump rate A. Connected red open circles represent the true values. The numbers printed below the boxplots indicate the percetage of
simulations for which the Brownian model was rejected and are hence included here. Bottom row: distributions of inferred Brownian
background rates sg for simulations in which the Brownian null model was rejected (black) or not rejected (blue).
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Power to detect individual jumps. a) Cumulative distribution of jump posterior probabilities on all branches with

(solid lines) and without (dashed lines) simulated jumps. Notice that branches with jumps have posterior probabilities that accumulate
at 1, whereas branches without jumps accumulate at 0. b) Distribution of the absolute strengths of individual jumps that were either

detected (white) or not detected (gray).

APPLICATIONS

Quantum evolution in anoles

There have been a few direct tests of Simpsonian
jumps between adaptive zones using empirical data
(Uyeda et al., 2011). Here, we analyze “evolution by
jumps” in the adaptive radiation of anoles, lizards that
have adaptively radiated in the Caribbean and South
America (Losos, 2009). Following previous work, we
focused on anoles on the four islands of the Greater
Antilles, as they provide a unique opportunity for testing
Simpson’s theory of adaptive zones for two reasons.
First, there have been repeated dispersal events among
islands in the Greater Antilles (Losos et al., 1998;
Mabhler et al., 2010). These dispersal events represent
geographic opportunities, where anole lineages reach a
new island and are no longer sympatric with the former
set of competitors (Mahler et al., 2010). Second, most
anole species can be classified into ecomorphs, habitat
specialists that have evolved repeatedly on the four
islands of the Greater Antilles (Losos et al., 1998).
Transitions between ecomorph categories represent the
evolution of key characters in anole lineages that allow
them to invade novel habitats (see Losos (2009) for a
review).

Anoles have thus repeatedly experienced two
conditions under which Simpson expected evolutionary
jumps to be observed: dispersal into new geographic
areas and the appearance of evolutionary novelties.
Importantly, both ecomorph origins and transitions
among islands are replicated in the phylogeny of anoles,
but are still rare enough that we can estimate the
position of transitions on the phylogenetic tree with
some confidence (Huelsenbeck et al., 2003; Schluter,
1995).

With this background in mind we tested if a model
with evolutionary jumps fits the evolution of body size
in anoles better than pure Brownian motion, and if jumps
correspond with either of the two factors postulated by

Simpson: evolution of key characters and/or geographic
dispersal. To address this question, we made use of a
recent time-calibrated phylogeny of 170 Anolis lizards
(Thomas et al., 2009) and analyzed snout-to-vent length
(SVL), a standard phenotypic measurement of body size
in lizards. This trait is broadly correlated with habitat
partitioning in Greater Antillean anoles and represent
the primary axes of ecologically driven evolutionary
divergence in lizards (Beuttell and Losos, 1999; Losos,
2009; Schoener, 1970). We made use of the sex-specific
data of SVL from Thomas et al. (2009) and inferred
evolutionary parameters independently for females and
males, but excluded five species that lacked information
on SVL for one or both sexes (Anolis darlingtoni,
A. guamuhaya, A. loveridgei, A. oporinus, and A.
polyrhachis).

We found that the Lévy jump model is preferred over
a strict BM model in females, but not in males (Table 1).
Evolutionary jumps indicating rapid body size evolution
(Figure 4) were found precisely at the basis of the
clade comprising the ecomorph “crown giants” Thomas
et al. (2009), in which females exhibit particularly large
body sizes. The large sexual size dimorphism of this
group (Harmon et al., 2005) is also likely explaining
why the BM model fits the evolution of male body sizes
well. In addition to the clades of crown giants, we also
identify evolutionary jumps at the basis of the clade
consisting of the species A. barbatus, A. porcus, and
A. chamaeleonides. These species, which are known as
“false chamaleons” and are part of the former genus
Chameleolis have been called the “most bizarre West
Indian lizards” (Leal and Losos, 2000).

Our analyses support two main conclusions. First,
evolutionary change in female anoles is not well described
by a uniform random walk. A better description of
anole evolution combines a uniform component of change
that is punctuated by rapid jumps in trait values.
Second, these jumps in body size very well correspond to
ecological transitions to novel ecomorphs. The evolution
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FIGURE 4.

Inferred jumps for female body-size evolution on the anoles’ tree. The trait measured was the snout-to-vent length

(SVL). Branches are colored according to their inferred jump posterior probability (black to red scale going from posterior probability
0 to 1, respectively). Tips are colored according to ecomorphs as defined by Thomas et al. (2009).

of this trait is thus consistent with Simpson’s description
of evolutionary jumps associated with the entry into
new adaptive zones. The fact that we did not find such
jumps at the basis of clades of other ecomorphs suggests
that body size was not a trait strongly contributing to
the ecological transition of those. However, evolutionary
jumps might well be found at the basis of those clades
when focusing on more relevant traits.

Nectarivory evolution in Loriineg

The Australasian lories belong to the tribe Loriini
(Joseph et al., 2012) and are extremely species rich
(Schweizer et al., 2011). Their digestive tract is
highly adapted to a nectarivorous diet (Giintert, 2012)
and Schweizer et al. (2014) has shown quantitatively
that a switch in diet to mnectarivory might be
considered an evolutionary novelty that created an
ecological opportunity for species proliferation through
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10 SYSTEMATIC BIOLOGY

TABLE 1. Inferred Lévy parameters for Anolis and Loriinag, along with the log-likelihood (¢) obtained under the Lévy and BM
models and the p-value of a likelihood ratio test (LRT) contrasting these.
Anolis Loriini

logSVLy  logSVLm log Wgt PC1 PC2 PC3
o 3.93 4.18 5.33 -0.062 0.051 0.19
S% 5.06 10.34 44.40 7.68 7.35 5.80
o 0.11 - - 0.16 0.093 -
A 11.27 - - 11.95 7.38 -
‘BM 5.03 -15.19 -85.54 -65.00 -60.63 -6.22
gLévy 26.61 -13.89 -85.51 -31.99 -24.72 -4.97
LRT p 4.3-10710 0.28 097  4.7-1071% 23.10716  0.29
Preferred model Lévy BM BM Lévy Lévy BM

allopatric partitioning of the same new niche. Using
the methodology developed above we now tested if the
evolution of the morphology of the digestive tract in
parrots as a whole is better characterized by a model
of evolutionary jumps or Brownian motion. For this we
made use of data from Schweizer et al. (2014), to generate
a time-calibrated phylogeny of 78 parrot species using
BEAST (Drummond and Rambaut, 2007) implementing
a secondary calibration point from Schweizer et al.
(2011) for the initial split within parrots. The following
13 measurements of gut—merphelegy, were used: the
length of intestine, length of esophagus, extension of
esophagus glands, length of intermediate zone, length
of proventriculus, gizzard height, gizzard width, gizzard
depth, maximum gizzard height at main muscles, gizzard
thickness at main muscles, gizzard lumen width including
koilin layer, gizzard width at the caudoventral thin
muscle, maximum gizzard height at the thin muscle, and
the maximum gizzard lumen at the thin muscle. Since
many of the y considered are
both highly correlated with body size as well as among
themselves, we first regressed out body mass (Wgt)
from each gut—merphelegy trait and then summarized
the residuals of all traits using the first three principal
components (PCA; see also (Revell, 2009)).

We found that the evolution of both body weight
(Wgt) and the first PC axis of gut morphology were
much better explained by a model of evolutionary jumps
(p<10716 in both cases) with relatively high rates of
jumps (Table 1). Overall, the jumps for PC1 identified
with strongest support are both on branches basal to
clades of nectarivorous species, particularly at the base
of highly specialized nectar feeding Loriini, but also at
the base of the genus Loriculus (Figure 5). As postulated
by Simpson the niche shift to nectarivory especially in
Loriini involved a period of rapid evolution reflecting
adaptations to feed effectively on nectar (and pollen)
(Schweizer et al., 2014). While the jumps within the
Neotropical parrots are difficult to interpret in biological
terms, the shift along the branch leading to Psittrichas
fulgidus might be explained by its gizzard morphology
similar to that of the Loriini probably reflecting an
adaptation to its reportedly mainly frugivorous diet
(Schweizer et al., 2014). Some special structures in the

digestive tract of the genus Nestor have been described
in Giintert (2012).

DISCUSSION

While many traits appear to evolve at relatively
constant rates over long time periods and across many
taxa, some traits seem to undergo periods of rather
rapid evolution (see Arnold, 2014). Simpson (1944)
postulated that such evolutionary jumps are triggered by
a change in selection pressure after lineages transitioned
into different adaptive zones, for instance by dispersing
into new geographic areas, after the appearance of
evolutionary novelties, key innovations, or after rapid
climatic or ecological changes of the environment. The
appearance of well calibrated phylogenies along with
recent statistical developments now allow to test such
models on a wide variety of data.

Bokma (2008), for instance, proposed to model
evolutionary jumps as a compound process of a
continuous background process and a discrete jump
process. Recently, Landis et al. (2013) introduced a
general framework to infer parameters of such Lévy
processes under a Bayesian framework by means of
Markov Chain Monte Carlo (MCMC). Unfortunately
this approach, while elegant, requires the calculation of
the inverse of the variance-covariance matrix describing
the correlations between traits as a function of the
phylogenetic tree and the jump process, which is
computationally prohibitive for large trees.

Here we introduce a computationally highly efficient
variant of this approach that naturally scales to
large trees. The basis of our approach is an MCMC
algorithm in which we can update the inverse of the
above mentioned variance-covariance matrix directly
without inversion when sampling jump configurations
with fixed hierarchical parameters (root state, Brownian
rate, jump strength and jump rate). To make use of
this development for inference we propose a two-step
approach in which the MCMC algorithm is embedded
into an Expectation-Maximization (EM) approach to
obtain maximum likelihood (ML) estimates of the
hierarchical parameters while integrating over jump
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FIGURE 5.

Inferred jumps for nectarivory evolution on the Loriinae tree. Results for PC1 are shown on the left phylogeny,

and results for PC2 on the right phylogeny. Branches are colored according to their inferred jump posterior probability (black to red
scale going from posterior probability 0 to 1, respectively). Species names are colored according to their diet: nectarivorous (blue) and

non-nectarivorous (green).

configurations. In a second step, the location of jumps
can then be inferred under an empirical Bayes framework
in which the hierarchical parameters are fixed to their
ML estimate and the developed MCMC algorithm is used
to obtain for each branch the posterior probability that
a jump occurred at this location.

There are also other methods that deal with the
burden of calculating inverses and determinants of

variance-covariance matrices. For instance, Freckleton
(2012) applied the results of Felsenstein (1973) and
Felsenstein (1985) to calculate the likelihood in linear
time of a BM model. FitzJohn (2012) also proposed
a fast algorithm to calculate BM and OU likelihoods
using Gaussian elimination, but this is not applicable
to non-gaussian traits. Ho and Ané (2014) proposed a
new method, which efficiently calculates likelihoods by
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avoiding the calculation of the inverse and determinant
of the variance-covariance matrix. Their method requires
that this matrix belongs to a class of generalized 3-
point structured matrices. Our method, which applies an
iterative scheme, differs from the others in the sense that
the inverse and determinant of the variance-covariance
matrix has to be calculated only once when obtaining the
likelihoods, thus obtaining rather fast calculation times.

We demonstrated the applicability of our approach by
identifying evolutionary jumps for body size evolution in
Anolis lizards and the evolution of gut-morphology in
Australasian lories of the subfamilyLoriinag. We found
strong support for evolutionary jumps in both systems
that provide direct support for Simpson’s quantum
evolutionary hypothesis of adaptive zones. Among the
anoles, for instance, we identified evolutionary jumps on
the basal lineage leading to crown giants, a group of
lizards that transitioned into a novel niche for hunting:
the crowns of large tropical trees. Similarly, we identified
jumps at the basis of clades of lories that transitioned
to nectarivory, an evolutionary novelty that triggered
rapid changes in morphology of the digestive system
and promoted significant lineage diversification, which
was probably mainly non-adaptive after the basal diet
shift through allopatric partitioning of the same niche
(Schweizer et al., 2014, cf.).

These results also show that the distinction between
“gradual” and “punctuated” models of evolution is
a false dichotomy; instead, evolution has a gradual
component that may be frequently punctuated by
periods of rapid change (Levinton, 2001). We further
note that in both cases studied here a single jump at the
basis of clades is sufficient to explain their trait data,
suggesting that the period of rapid evolution was limited
to a single branch and that the background rate remained
constant. We suggest that future work should follow
Simpson’s lead and focus on the factors that promote
these pulses of evolutionary change.

Although we model evolutionary jumps as
instantaneous, we want to be clear that we are
not invoking actual instantaneous evolutionary

change (e.g. “hopeful monsters”) (Charlesworth et al.,
1982; Goldschmidt, 1940). Typical microevolutionary
processes of selection and drift can cause change that
would appear to be instantaneous when viewed over
the timescale of macroevolution. Our model is also
distinct from punctuated equilibrium, which requires
evolutionary jumps to occur only at speciation events
(Eldredge and Gould, 1972). The punctuated changes in
our model occur along branches in the tree and are not
necessarily associated with speciation events. In fact, for
the case of anoles, two lines of evidence argue against
punctuated equilibrium: first, most speciation events in
the tree are not associated with jumps; and second, we
know from detailed microevolutionary studies that anole
body size can evolve rapidly in response to selection
even in the absence of speciation (e.g. Losos et al.
(2006)).
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APPENDIX

Conditional likelihood

The EM algorithm can be implemented without the MC part if we impose a condition |v| <R on the likelihood,
i.e. if we suppose a priori that there have been only R or less Poisson events on the tree 7. In that case, the sum
in (9) is over all ny such that |ng| <R. Observe that we have to use the conditional probabilities

K
P(V:ni|V§N):P(V:ni)/ZIP’(V:nk).
k=1

The new Q-function is

K
QO)= mylog[p(alny) Py =nylv < R)] (17)
k=1
where we can use ~
=0 (@| g, 1,55, 0) P (1 = | X).
In the conditional case, there no longer seems to exists a closed formula like (12) for the optimal A Setting the
derivative of (17) w.r.t. A equal to 0, one can show that ) is the root of the following R-th order polynomial:

P(A)ZZR:Z (Zﬂklnkl—TZW) AT,
0

i.e. P(A\)=0. The estimation of & and §g, on the other hand, remains exactly as explained in section 1.4.

Assessing convergence of the EM

We introduce two measures to assess convergence of the Monte Carlo EM algorithm.

Regression criterion  'We consider a time series y1,...,yn and construct a test statistic which allows to reject the
null hypothesis that the time series exhibits no trend. For this we estimate the slope B of the regression line passing
through the data points

(11y1)3(27y2)7"'a(nayn)
and test for the null hypothesis §=0 (no trend). Determine the following quantities:

n

1 n(n?-1) 1 )
1= 1=

52

A_S:ry L2 1 n 2_ 72_/\ A e
B_ST;C’ o —H<(;yz) ny BSxy , se(ﬁ) Tm

The test statistic R
B
se(B)
has the Student t-distribution with n—2 degrees of freedom. We reject the null hypothesis on the level v if |T|>
ty/2,n—2- A good rule of thumb (for v roughly 5% and n>15) is |T|>2.

Proportion of slope sign changes We propose a second way of assessing convergence by taking the last n values of
the EM algorithm and counting the number of times c there is a change in the sign of the slope between consecutive
values. If convergence is reached, we expect the number of slopes with a positive sign to be similar to the number
of slopes with a negative sign. We report the test statistic IV

o
n—2
where n—2 represents the total number of possible sign changes among the last n values.






