

Syst. Biol. 00(0):114, 2016

© The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<http://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

DOI:10.1093/sysbio/syvxxx

Advance Access publication XXX XX, XXXX

Inference of evolutionary jumps in large phylogenies using Lévy processesPABLO DUCHEN¹, CHRISTOPH LEUENBERGER^{1,2}, SÁNDOR M. SZILÁGYI^{3–5}, LUKE HARMON⁶, JONATHAN EASTMAN⁶, MANUEL SCHWEIZER⁷, AND DANIEL WEGMANN^{1,*}¹Faculty of Mathematics and Natural Sciences, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland²Faculty of Mathematics and Natural Sciences, Department of Mathematics, University of Fribourg, Chemin du Musée 23, 1700 Fribourg, Switzerland³Faculty of Mathematics and Natural Sciences, Department of Informatics, University of Fribourg, Boulevard de Pérolles 90, 1700 Fribourg, Switzerland⁴Faculty of Sciences and Letters, Department of Informatics, Petru Maior University, Str. N. Iorga Nr. 1, 540088 Tîrgu Mureş, Romania⁵Faculty of Electrical Engineering and Informatics, Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Magyar tudósok krt. 2, H-1117 Budapest, Hungary⁶Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, 1700 Moscow-Idaho, United States⁷Bern Natural History Museum, Bernastrasse 15, 3005 Bern, Switzerland

*Correspondence to be sent to: Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; E-mail: daniel.wegmann@unifr.ch

Received 00 XXXXX 0000; reviews returned 00 XXXXX 0000; accepted 00 XXXXX 0000

Associate Editor: XXXXX XXXX

Abstract.—While it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in *Anolis* lizards and *Loriinae* parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson's hypothesis.

Quantitative traits; Phenotypic evolution; Lévy process; Evolutionary jump; Punctuated equilibrium.

1 A key goal of evolutionary biology is to understand the
 2 mechanisms by which the large phenotypic diversity seen
 3 today evolved. Our understanding of these mechanisms
 4 is improving rapidly with the advent of increasingly
 5 powerful sequencing approaches. For instance, the huge
 6 amount of molecular data has led to the resolution of
 7 phylogenetic trees encompassing entire orders. Further,
 8 methods to reliably identify substitutions that likely
 9 resulted from selection, and to accurately place them on a
 10 phylogeny have been developed. In contrast, methods to
 11 infer events of rapid evolution from phenotypic data have
 12 lagged and are mostly restricted to inferring independent
 13 evolutionary rates for different clades.

14 In general, quantitative studies of the evolution of
 15 phenotypic/quantitative traits date back to just a few
 16 decades. A first attempt was by Edwards et al. (1964)
 17 and Cavalli-Sforza and Edwards (1967), who modeled
 18 quantitative traits stochastically as "Brownian motion"
 19 (BM). However, given the current wealth of molecular
 20 data available, a more realistic goal is to only aim at
 21 inferring the rates at which quantitative traits evolve,
 22 while assuming the underlying phylogeny to be known.
 23 This has been successfully done using a BM model in
 24 multiple taxa. Freckleton et al. (2002), for instance, used
 25 a BM model on a given phylogeny to test if traits showed

phylogenetic associations. More recently, Brawand et al. (2011) modeled gene expression evolution as BM and rejected evolution at a constant rate for several genes.

Several extensions to a basic BM model have been proposed. Butler and King (2004) were the first to implement Ornstein-Uhlenbeck (OU) processes with multiple evolutionary optima, as initially described by Hansen (1997), and recently used to describe the evolution of gene expression (e.g. Bedford and Hartl, 2009; Rohlf et al., 2013). Other extinctions to BM allow evolutionary rates to change over time. O'Meara et al. (2006), for instance, contrasted maximum likelihood (ML) estimates of evolutionary rates under BM and showed that major clades of angiosperms vastly differ in their rate of genome size evolution. More recently, Eastman et al. (2011) developed a Bayesian method to jointly infer evolutionary rates in different clades and found evidence for multiple rate shifts in body size evolution in emydid turtles. Shortly after, Slater et al. (2012) have introduced an extension to incompletely sampled phylogenies and trait data using Approximate Bayesian Computation. However, they found no evidence for an elevated rate of body size evolution in pinnipeds in comparison to terrestrial carnivores, despite considerable power. This suggests that the larger body size found

1 in pinnipeds may be the result of rapid evolutionary
 2 changes early in the clade, rather than a change in
 3 the rate itself, and hence that models of occasional
 4 “evolutionary jumps” may often more accurately explain
 5 the evolution of quantitative traits.

6 According to [Simpson \(1944\)](#), such evolutionary jumps
 7 are triggered by shifts of lineages into different adaptive
 8 zones, either by dispersal into new geographic areas, the
 9 appearance of evolutionary novelties, key innovations,
 10 the extinction of lineages leaving niches empty, or by
 11 rapid changes in the environment (climatic or ecological).
 12 Additionally, the existence of “ecological opportunities”
 13 ([Losos, 2010](#)) might also trigger such jumps. While OU
 14 processes have been proposed to model the dynamics
 15 of adaptive landscapes (e.g. [Ingram and Mahler, 2013](#);
 16 [Uyeda and Harmon, 2014](#)), a promising alternative
 17 is to model this type of evolution as a compound
 18 process (or Lévy process) consisting of a continuous
 19 background process and a discrete jump process. The
 20 first implementation of such a model assumed that jumps
 21 only occurred at speciation events ([Bokma, 2008](#)), but
 22 [Landis et al. \(2013\)](#) recently described Lévy processes
 23 in a much more general way and showed that while
 24 the likelihood functions of most of these models are
 25 intractable, inference is possible under a Bayesian
 26 framework. For instance, when modeling the evolution
 27 of quantitative traits as a Poisson compound process,
 28 in which traits are assumed to evolve under BM with
 29 occasional jumps that occur as a Poisson process on the
 30 tree, the likelihood can be calculated analytically when
 31 conditioning on a jump configuration (a placement of
 32 jumps on the tree). Under the assumption that jump
 33 effects are normally distributed, a jump configuration
 34 can be seen as simply stretching the branches of the tree
 35 on which they occur, and the likelihood is then given
 36 by a multivariate normal distribution with the variance-
 37 covariance matrix resulting from the stretched tree. The
 38 numerical integration is then limited to sampling jump
 39 configurations, which is readily done using Markov Chain
 40 Monte Carlo (MCMC).

41 Unfortunately, two computational challenges prohibit
 42 the application of this approach to larger trees. First,
 43 the space of jump configurations grows exponentially
 44 with tree size, leading to very long MCMC chains.
 45 Second, the evaluation of the likelihood requires the
 46 computation of the inverse of the variance-covariance
 47 matrix, which is computationally very demanding since
 48 it scales exponentially with tree size ([Tung Ho and
 49 Ané, 2014](#)). Here, we address these computational issues
 50 using an empirical Bayes approach in which we first
 51 infer the hierarchical parameters of the Brownian and
 52 Poissonian processes using Maximum Likelihood, and
 53 then fix those when inferring posterior probabilities on
 54 jump locations. This approach allows us to run MCMC
 55 chains with fixed hierarchical parameters, for which we
 56 find a computationally highly efficient approach that
 57 does not require matrix inversions. As a result, this
 58 approach readily scales up to very large phylogenies.

59 We then demonstrate the power and accuracy of our
 60 approach with extensive simulations and find that our

61 approach hardly misses any jumps with a meaningful
 62 strength. We then illustrate the usefulness of our
 63 approach by identifying evolutionary jumps in *Anolis*
 64 lizards and Loriini parrots, two well-studied groups
 65 for which morphological data is available. We identify
 66 few but important evolutionary jumps in both groups,
 67 suggesting such periods of rapid evolutionary change to
 68 be rare but crucial in shaping the morphological diversity
 69 observed today.

THEORY

The null hypothesis: Brownian motion

70 We first consider a Brownian motion (BM) process
 71 on a phylogenetic tree \mathcal{T} with root \mathcal{O} where time is
 72 measured in the unit of the branch lengths. The process
 73 starts at \mathcal{O} with value $\mu \in \mathbb{R}$ (root state) and then
 74 proceeds with variance s_0^2 along the branches. The values
 75 of the BM process, as observed at the L leaves, give rise
 76 to the random vector
 77

$$\mathbf{x} = (x_1, \dots, x_L)'$$

78 Let us fix the notation: The lengths of the (inner and
 79 outer) branches of \mathcal{T} are called τ_1, \dots, τ_B where B is the
 80 number of branches. For two leaves i, j we denote by
 81 $\mathbf{T}_0 = (\tau_{ij})$ the length of their common branch in \mathcal{T} as
 82 measured from the root \mathcal{O} . Now, under the assumption
 83 of a pure BM, and defining $\mathbf{1} = (1, 1, \dots, 1)'$, the values \mathbf{x}
 84 at the leaves have the multivariate normal distribution
 85

$$\mathbf{x} \sim \mathcal{N}(\mu \mathbf{1}, s_0^2 \mathbf{T}_0)$$

86 or written more conveniently:

$$\mathbf{x} = \mu \mathbf{1} + \boldsymbol{\epsilon} \quad (1)$$

87 with $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, s_0^2 \mathbf{T}_0)$. Since \mathbf{T}_0 is positive definite and
 88 symmetric, it has a symmetric and positive definite
 89 square root \mathbf{Q} , i.e. $\mathbf{Q}^2 = \mathbf{T}_0$. Multiplying both sides of
 90 (1) with \mathbf{Q}^{-1} we get the homoskedastic model

$$\mathbf{x}_0 = \mu \mathbf{v}_0 + \boldsymbol{\epsilon}_0,$$

91 where $\mathbf{x}_0 = \mathbf{Q}^{-1} \mathbf{x}$, $\mathbf{v}_0 = \mathbf{Q}^{-1} \mathbf{1}$, and $\boldsymbol{\epsilon}_0 \sim \mathcal{N}(\mathbf{0}, s_0^2 \mathbf{I})$. For
 92 this we have the usual OLS estimators (see e.g. [Davidson
 93 and MacKinnon \(2004\)](#), ch. 3.2)

$$\hat{\mu} = (\mathbf{v}'_0 \mathbf{v}_0)^{-1} \mathbf{v}'_0 \mathbf{x}_0 = \frac{\mathbf{1}' \mathbf{T}_0^{-1} \mathbf{x}}{\mathbf{1}' \mathbf{T}_0^{-1} \mathbf{1}}$$

94 and

$$\begin{aligned} \hat{s}_0^2 &= \frac{1}{L-1} \mathbf{v}'_0 (\mathbf{I} - \mathbf{v}_0 (\mathbf{v}'_0 \mathbf{v}_0)^{-1} \mathbf{v}'_0) \mathbf{x}_0 \\ &= \frac{1}{L-1} \left(\mathbf{x}' \mathbf{T}_0^{-1} \mathbf{x} - \frac{(\mathbf{1}' \mathbf{T}_0^{-1} \mathbf{x})^2}{\mathbf{1}' \mathbf{T}_0^{-1} \mathbf{1}} \right). \end{aligned}$$

1 *Lévy process*

We now extend the BM model by super-imposing an independent Poissonian jump-process with rate λ . The jumps shall be normally distributed with zero mean and variance s_1^2 . The (unobservable) random vector

$$\nu = (\nu_1, \dots, \nu_B)'$$

counts the number of Poisson events (jumps) on each of the B branches. By assumption,

$$\mathbb{P}(\nu_b = n_b) = e^{-\lambda\tau_b} \frac{(\lambda\tau_b)^{n_b}}{n_b!}, \quad n_b = 0, 1, 2, \dots$$

2 For a multi-index $\mathbf{n} = (n_1, \dots, n_B)$, we have

$$\mathbb{P}(\nu = \mathbf{n}) = \prod_{k=1}^B e^{-\lambda\tau_b} \frac{(\lambda\tau_b)^{n_b}}{n_b!}. \quad (2)$$

3 Recall that for two leaves i, j we denote by τ_{ij} the length
4 of their common branch in \mathcal{T} as measured from the
5 root \mathcal{O} . In particular, τ_{ii} is the distance (sum of branch
6 lengths) of the leaf i from the root \mathcal{O} .

We denote by n_{ij} for two leaves i, j the number of Poisson events along the common branch of length τ_{ij} . Conditional on $\nu = \mathbf{n} = (n_1, \dots, n_B)$, the random vector \mathbf{x} is multivariate normal with mean $\mu\mathbf{1}$ and the $L \times L$ variance-covariance matrix $\Sigma(\mathbf{n}) = (\sigma_{ij}(\mathbf{n}))$ where

$$\sigma_{ij}(\mathbf{n}) = \tau_{ij}s_0^2 + n_{ij}s_1^2, \quad 1 \leq i, j \leq L.$$

The conditional density of \mathbf{x} given $\nu = \mathbf{n}$ is

$$\begin{aligned} \phi(\mathbf{x} | \mathbf{n}) &= \frac{1}{\sqrt{(2\pi)^L \det \Sigma(\mathbf{n})}} \\ &\cdot \exp\left(-\frac{1}{2}(\mathbf{x} - \mu\mathbf{1})' \Sigma^{-1}(\mathbf{n})(\mathbf{x} - \mu\mathbf{1})\right). \end{aligned} \quad (3)$$

7 The likelihood of \mathbf{x} given the four parameters μ (root
8 state), s_0 (Brownian motion) and λ, s_1 (Poissonian jump
9 process) is the mixture distribution

$$f(\mathbf{x} | \mu, s_0^2, \lambda, s_1^2) = \sum_{n_1=0}^{\infty} \dots \sum_{n_B=0}^{\infty} \mathbb{P}(\nu = \mathbf{n}) \phi(\mathbf{x} | \mathbf{n}) \quad (4)$$

where we used expressions (2) and (3). It is not hard to show that

$$\mathbb{E}(x_i) = \mu \quad \text{and} \quad \text{Cov}(x_i, x_j) = \tau_{ij}(s_0^2 + \lambda s_1^2).$$

10 *Inference under the Lévy process*

11 Here we develop a computationally efficient approach
12 to maximize the likelihood function given in equation
13 (4). While the infinite sums in (4) prohibit an analytical
14 solution, they are readily evaluated using numerical
15 approaches. Landis et al. (2013), for instance, proposed
16 to use an MCMC approach to integrate over jump
17 configurations. Unfortunately, however, such a solution
18 does not scale to large trees, because the calculation
19 of the conditional density values in (3) involves the

computation of the inverse of $\Sigma(\mathbf{n})$ and its determinant, which are computationally very demanding.

We propose to address this problem by introducing an algorithm to calculate these matrix inversions efficiently under this model. While this algorithm can readily be incorporated into the MCMC approach proposed by Landis et al. (2013), we will then propose an alternative hierarchical Bayes approach that makes even better use of it and leads to a computationally highly efficient inference approach to obtain point estimates of the parameters μ , s_0^2 , λ , and s_1^2 , as well as posterior probabilities on the location of evolutionary jumps.

32 *Efficient calculation of inverses and determinants* For a
33 symmetric non-singular matrix \mathbf{A} and a (column) vector
34 \mathbf{a} , we have

$$(\mathbf{A} \pm \mathbf{a}\mathbf{a}')^{-1} = \mathbf{A}^{-1} \mp \frac{1}{1 \pm \mathbf{a}'\mathbf{A}^{-1}\mathbf{a}} (\mathbf{A}^{-1}\mathbf{a})(\mathbf{A}^{-1}\mathbf{a})' \quad (5)$$

(see Izenman (2008), p. 47) and

$$\det(\mathbf{A} \pm \mathbf{a}\mathbf{a}') = \det \mathbf{A} \cdot (1 \pm \mathbf{a}'\mathbf{A}^{-1}\mathbf{a}) \quad (6)$$

(see Anderson (2003), Corollary A.3.1). These formulae have recently been shown to speed up the calculation of the likelihood function under Brownian motion models (Tung Ho and Ané, 2014). Here we use them to develop a fast algorithm applicable to Lévy processes.

Let us first fix some notation: For each branch b , we define the $L \times L$ incidence matrix $\mathbf{I}^b = (I_{ij}^b)$ by setting $I_{ij}^b = 1$ if the branch b is common to the pair of leaves i, j , and $I_{ij}^b = 0$ otherwise. Clearly,

$$n_{ij} = \sum_{b=1}^B n_b I_{ij}^b.$$

In the following we replace the parameter s_1^2 with the positive factor α given by

$$s_1^2 = \alpha s_0^2.$$

Observe that

$$\Sigma(\mathbf{n}) = s_0^2 \mathbf{T}(\mathbf{n}, \alpha)$$

and

$$\det \Sigma(\mathbf{n}) = s_0^{2L} \det \mathbf{T}(\mathbf{n}, \alpha)$$

where

$$\mathbf{T}(\mathbf{n}, \alpha) = \mathbf{T}_0 + \alpha \sum_{b=1}^B n_b \mathbf{I}^b$$

and $\mathbf{T}_0 = (\tau_{ij})$. Finally, we introduce for $b = 1, \dots, B$ the (column) vectors \mathbf{u}^b , each one with L components. The i -th component u_i^b is equal to 1 if leaf i is subordinate to branch b (i.e. the path from the root \mathcal{O} to node i contains branch b). Otherwise, if leaf i is not subordinate to branch b , then $u_i^b = 0$. It is easy to see that $\mathbf{I}^b = \mathbf{u}^b(\mathbf{u}^b)'$

1 and thus

$$\mathbf{T}(\mathbf{n}, \alpha) = \mathbf{T}_0 + \alpha \sum_{b=1}^B n_b \mathbf{u}^b (\mathbf{u}^b)' \quad (7)$$

2 We can now apply formulae (5) and (6) to obtain
3 the following iterative scheme for the computation of
4 $\mathbf{T}^{-1}(\mathbf{n}, \alpha)$ and $\det \mathbf{T}(\mathbf{n}, \alpha)$:

First, determine \mathbf{T}_0^{-1} and $\det \mathbf{T}_0$. Then, for each term with $n_b > 0$ in the sum (7), update \mathbf{T}_{b-1} to \mathbf{T}_b etc. as follows: Let

$$r_b = 1 + \alpha n_b \cdot (\mathbf{u}^b)' \mathbf{T}_{b-1}^{-1} \mathbf{u}^b$$

5 and calculate

$$\begin{aligned} \mathbf{T}_b^{-1} &= \mathbf{T}_{b-1}^{-1} - \frac{\alpha n_b}{r_b} \cdot (\mathbf{T}_{b-1}^{-1} \mathbf{u}^b) (\mathbf{T}_{b-1}^{-1} \mathbf{u}^b)', \\ \det \mathbf{T}_b &= r_b \cdot \det \mathbf{T}_{b-1}. \end{aligned} \quad (8)$$

6 When all non-zero terms in (7) have been considered,
7 we arrive at $\mathbf{T}_B^{-1} = \mathbf{T}^{-1}(\mathbf{n}, \alpha)$ and $\det \mathbf{T}_B = \det \mathbf{T}(\mathbf{n}, \alpha)$.
8 Observe that in this scheme, the only matrix inverse that
9 ever has to be determined is \mathbf{T}_0^{-1} . The number of non-
10 zero n_b will frequently be small compared to B and so
11 will be the number of iterations (8).

12 *Monte Carlo EM algorithm* The scheme to calculate
13 the inverse of $\Sigma(\mathbf{n})$ allows to find the ML estimates of
14 the parameters μ, s_0^2 and λ by means of a Monte Carlo
15 version of the classical Expectation Maximization (EM)
16 algorithm, in which we treat the random variable $\boldsymbol{\nu}$ as
17 missing (unobserved) data. While this approach does not
18 allow us to find the ML estimate of α , we discuss below
19 how this can be achieved using a simple grid search.

20 Recall that each iteration of the EM algorithm consists
21 of an estimation (E) and a maximization (M) step. Let
22 us denote the old parameters determined in the previous
23 M-step by $\tilde{\theta} = (\tilde{\mu}, \tilde{s}_0^2, \tilde{\lambda}, \alpha_0)$, and the new parameters with
24 respect to which the Q -function has to be maximized in
25 the next M-step by $\theta = (\mu, s_0^2, \lambda, \alpha_0)$, where α_0 is a fixed
26 value for α . The two steps of the EM algorithm are then
27 as follows:

28 *Monte Carlo E-step.* Simulate stochastically K vectors
29 \mathbf{n}_k according to the multi-Poisson distribution $\mathbb{P}(\boldsymbol{\nu} =
30 \mathbf{n} | \tilde{\lambda})$. Determine the weights

$$\begin{aligned} \pi_k &= \phi(\mathbf{x} | \mathbf{n}_k, \tilde{\mu}, \tilde{s}_0^2, \alpha_0) \\ &= c_k \cdot \exp \left(-\frac{1}{2\tilde{s}_0^2} \cdot (\mathbf{x} - \tilde{\mu}\mathbf{1})' \cdot \mathbf{T}^{-1}(\mathbf{n}_k, \alpha_0) \cdot (\mathbf{x} - \tilde{\mu}\mathbf{1}) \right), \end{aligned}$$

with

$$c_k = (2\pi\tilde{s}_0^2)^{-L/2} \cdot (\det \mathbf{T}(\mathbf{n}_k, \alpha_0))^{-1/2}.$$

31 In the M-step we have to maximize the function

$$\begin{aligned} Q(\theta | \tilde{\theta}) &= \mathbb{E} \left[\log \mathbb{P}(\mathbf{x}, \mathbf{n} | \theta) | \mathbf{x}, \tilde{\theta} \right] \\ &= \sum_{\mathbf{n}} \mathbb{P}(\mathbf{n} | \mathbf{x}, \tilde{\theta}) \log \mathbb{P}(\mathbf{x}, \mathbf{n} | \theta) \end{aligned} \quad (9)$$

with respect to the parameters $\theta = (\mu, s_0^2, \lambda, \alpha_0)$ where

$$\mathbb{P}(\mathbf{x}, \mathbf{n} | \theta) = \phi(\mathbf{x} | \mathbf{n}, \mu, s_0^2, \alpha_0) \mathbb{P}(\boldsymbol{\nu} = \mathbf{n} | \lambda) \quad (32)$$

From Bayes' theorem we have

$$\mathbb{P}(\mathbf{n} | \mathbf{x}, \tilde{\theta}) = \frac{\phi(\mathbf{x} | \mathbf{n}, \tilde{\mu}, \tilde{s}_0^2, \alpha_0) \mathbb{P}(\boldsymbol{\nu} = \mathbf{n} | \tilde{\lambda})}{\mathbb{P}(\mathbf{x} | \tilde{\theta})}. \quad (10)$$

Thus, according to our Monte Carlo scheme and up
33 to the factor $1/\mathbb{P}(\mathbf{x} | \tilde{\theta})$, the infinite sum in (9) can be
34 approximated by
35

$$Q(\theta) \propto \sum_{k=1}^K \pi_k \log [\phi(\mathbf{x} | \mathbf{n}_k) \mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_k)] \quad (11)$$

where $\phi(\mathbf{x} | \mathbf{n}_k)$ and $\mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_k)$ are given by (2) and (3),
36 respectively.
37

M-step. In this step we seek the parameters $\tilde{\theta}$ which
maximize the sum in (11) and which will serve as “old”
parameters in the next E-step. We have

$$\mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_k) = e^{-\lambda\tau} \lambda^{|\mathbf{n}_k|} c(\mathbf{n}_k)$$

where $\tau = \sum \tau_i$ is the total length of the tree \mathcal{T} , $|\mathbf{n}_k|$
38 denotes the sum of the components of \mathbf{n}_k , and $c(\mathbf{n}_k)$ is
39 a factor that does not depend on any of the parameters
40 θ . From this it is easy to see that
41

$$\tilde{\lambda} = \frac{\sum \pi_k |\mathbf{n}_k|}{\tau \sum \pi_k}, \quad (12)$$

42 independently of the values of the other three
43 parameters. Since we assume the value of α to be fixed,
44 we can also give explicit expressions for the values of μ
45 and s_0^2 which maximize $Q(\theta | \alpha = \alpha_0)$. First, determine the
46 matrix

$$\mathbf{S} = \sum_{k=1}^K \pi_k \mathbf{T}^{-1}(\mathbf{n}_k, \alpha_0). \quad (13)$$

47 Standard calculus shows that

$$\tilde{\mu} = \frac{\mathbf{1}' \mathbf{S} \mathbf{x}}{\mathbf{1}' \mathbf{S} \mathbf{1}} \quad (14)$$

and

$$\begin{aligned} \tilde{s}_0^2 &= \frac{1}{L \sum \pi_k} (\mathbf{x} - \tilde{\mu} \mathbf{1})' \mathbf{S} (\mathbf{x} - \tilde{\mu} \mathbf{1}) \\ &= \frac{1}{L \sum \pi_k} \left(\mathbf{x}' \mathbf{S} \mathbf{x} - \frac{(\mathbf{1}' \mathbf{S} \mathbf{x})^2}{\mathbf{1}' \mathbf{S} \mathbf{1}} \right). \end{aligned} \quad (15)$$

49 *Simulating \mathbf{n} with MCMC* In this section we describe
50 how to sample the states \mathbf{n} from the probability
51 distribution $\mathbb{P}(\mathbf{n} | \mathbf{x}, \theta)$ using the Metropolis scheme.
52 (To unburden the notation in the description of the
53 MCMC algorithm, we drop the tilde overscript on the
54 parameters.) At each state we will need the inverse
55 matrix \mathbf{T}^{-1} of $\mathbf{T}(\mathbf{n}, \alpha_0)$ given by (7). Start the chain
56 e.g. at $\mathbf{n} = (0, \dots, 0)$ and with \mathbf{T}_0^{-1} .

57 1. Let \mathbf{n} denote the current state of the Markov
58 chain and \mathbf{T}^{-1} the inverse matrix of $\mathbf{T}(\mathbf{n}, \alpha_0)$.

1 Choose an index $b=1,\dots,B$ with equal probability
 2 (or with a probability proportional to τ_b) and an
 3 increment $\Delta n_b = +1$ or $= -1$ with probability $1/2$.
 4 The candidate state \mathbf{n}' is given by in- or decreasing
 5 the b -th index \mathbf{n} by Δn_b : $n'_b = n_b + \Delta n_b$.

6 2. Using (10) and the iteration formula (8) it is not
 7 hard to check that the Hastings ratio (proposal
 8 probability) can be calculated by

$$h = \min \left[1, r^{-1/2} \left(\frac{\lambda \tau_b}{n_b^+} \right)^{\Delta n_b} \dots \right. \\ \left. \cdot \exp \left(\frac{\alpha \Delta n_b}{2r s_0^2} \left| (\mathbf{x} - \mu \mathbf{1})' \mathbf{T}^{-1} \mathbf{u}^b \right|^2 \right) \right]$$

where $n_b^+ = n_b + \max(0, \Delta n_b)$ and

$$r = 1 + \alpha \Delta n_b \cdot (\mathbf{u}^b)' \mathbf{T}^{-1} \mathbf{u}^b.$$

9 If the candidate state contains a negative
 10 component (i.e. if $n_b = 0$ and $\Delta n_b = -1$) then
 11 set $h = 0$. This ensures that the chain is indeed
 12 symmetric.

13 3. With probability h jump to the candidate state \mathbf{n}' ,
 14 otherwise stay at \mathbf{n} . In the first case, update

$$\mathbf{n} \leftarrow \mathbf{n}' \\ \mathbf{T}^{-1} \leftarrow \mathbf{T}^{-1} - \frac{\alpha_0 \Delta n_b}{r} \cdot (\mathbf{T}^{-1} \mathbf{u}^b) (\mathbf{T}^{-1} \mathbf{u}^b)'$$

15 and go to step 1.

16 No matrix inverse must ever be calculated in this scheme
 17 thanks to the update in step 3. (To counterbalance the
 18 accumulation of numerical errors it might however be
 19 wise to occasionally calculate $\mathbf{T}^{-1} = \mathbf{T}^{-1}(\mathbf{n}, \alpha_0)$ from
 20 scratch.)

21 After the burn-in phase, a fraction $\mathbf{n}_1, \dots, \mathbf{n}_M$ of the
 22 simulated states will be retained (“thinning out”). These
 23 will be used to replace the matrix (13) in the M-step of
 24 the EM algorithm by

$$\mathbf{S} = \frac{1}{M} \sum_{m=1}^M \mathbf{T}^{-1}(\mathbf{n}_m, \alpha_0). \quad (16)$$

25 *Estimating factor α* The Monte Carlo EM algorithm
 26 proposed above, while computationally highly efficient,
 27 does not allow for the estimation of the factor α . We
 28 thus use a numerical approach to iteratively approach
 29 the ML estimate of α . Specifically, we start at a value
 30 α_0 and then iteratively increase that value such that
 31 $\log_{10} \alpha_t = \log_{10} \alpha_{t-1} + \Delta_\alpha$ until the likelihood decreases.
 32 The algorithm then turns back by setting $\Delta_\alpha \leftarrow -\Delta_\alpha/e$
 33 and proceeds again until the likelihood decreases. With
 34 every switch, the step size gets smaller and the estimate
 35 closer to the true MLE value. In each step we use
 36 the Monte Carlo EM algorithm described above to
 37 calculate the likelihood at the MLE estimates of all
 38 other parameters conditioned on that α value. In all

39 application we set $\alpha_0 = 0.1$ and the initial $\Delta_\alpha = 0.1$ and
 40 found estimates to be accurate within five switches.

41 *Identifying jump locations* To infer the location of
 42 jumps on a phylogenetic tree we implement an empirical
 43 Bayes approach. As is commonly done in such a setting,
 44 we assume the ML estimates $\hat{\mu}, \hat{s}_0^2, \hat{\lambda}$ and $\hat{\alpha}$ obtained
 45 using our Monte Carlo EM scheme are accurate and
 46 thus known constants when inferring jump locations.
 47 Under this assumption, the MCMC approach introduced
 48 above can also be used to sample configurations of jumps
 49 \mathbf{n} from the probability distribution $\mathbb{P}(\mathbf{n} | \mathbf{x}, \hat{\mu}, \hat{s}_0^2, \hat{\lambda}, \hat{\alpha})$.
 50 This allows us to numerically infer for each branch k
 51 the posterior probabilities of $\mathbb{P}(n_k = 0 | \mathbf{x}, \hat{\mu}, \hat{s}_0^2, \hat{\lambda}, \hat{\alpha})$ and
 52 $\mathbb{P}(n_k > 0 | \mathbf{x}, \hat{\mu}, \hat{s}_0^2, \hat{\lambda}, \hat{\alpha})$, and thus to identify branches for
 53 which there is convincing evidence for an evolutionary
 54 jump.

55 *Implementation* We implemented the algorithm
 56 introduced here in C++ and optimized the
 57 code for speed. A user-friendly program to
 58 apply it to data is available at our lab website
 59 (<http://www.unifr.ch/biology/research/wegmann/>).

SIMULATIONS

Convergence

60 *Convergence of the MCMC* We assessed the
 61 convergence of MCMC chains by comparing parameter
 62 estimates between two independent and parallel chain
 63 runs until 10,000 jump vectors \mathbf{n} were sampled. We run
 64 a total of 100 such chain pairs for each of two starting
 65 locations with values differing ten fold and discarded the
 66 first 100 such vectors as burn-in. We also compared two
 67 different values to thin the chains: either we sampled
 68 every 10th or every 5000th step.

69 Regardless of the starting values, convergence was
 70 reached rather fast but with some variation across
 71 parameters (Fig. S1). The parameter to converge fastest
 72 was μ , for which the difference in estimates was below
 73 0.01 within 2,000 sampled jump vectors for 90% of all
 74 chain pairs. Similarly small differences for s_0^2 and λ were
 75 only reached after sampling about 4,000 jump vectors
 76 (Fig. S1). Interestingly, a larger thinning did not improve
 77 convergence, suggesting that the variance in estimates is
 78 dominated by variation in the jump vectors sampled, but
 79 not by autocorrelation along the chain. For subsequent
 80 analyses, we used a thinning of 10 and sample a total of
 81 5,000 jump vectors.

82 We next assessed the convergence of the MCMC
 83 for the inference of jumps on trees by assessing the
 84 difference in posterior probabilities between independent
 85 chains (Figure S2). We again run 100 chain pairs, fixed
 86 the thinning to 10 and discarded the first 100 jump
 87 vectors as burn-in. While we found convergence to be
 88 reached within less than 2,000 iterations for branches
 89 with very low (< 0.05) and very high (> 0.95) posterior

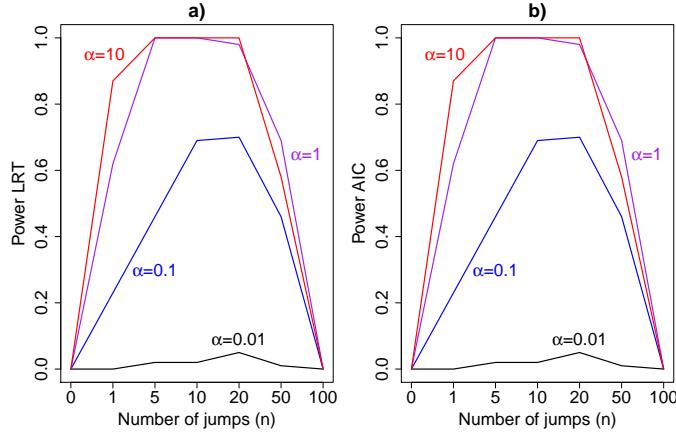


FIGURE 1. Power to reject the null model (Brownian motion) using a likelihood ratio test (LRT) (a), or the Akaike information criterion (AIC) (b) as a function of the number of simulated jumps n and the jump strengths α .

probabilities, more iterations were required for branches with intermediate posterior probabilities. We found that sampling 5,000 jump vectors gave very consistent results also for inferring the location of jumps.

Convergence of the EM for parameter inference To test if the stochastic EM algorithm converges with the MCMC settings found above (5,000 jump vectors, a burn-in of 100 such vectors and a thinning of 10), we run the EM for a wide range of parameter values for up to 100 iterations. Since the EM algorithm is stochastic, it does not converge onto a single value unless an infinitely large sample of n vectors are used. We thus first inspected obtained patterns visually and found that parameter estimates stabilized after only a few iterations, usually between 10 and 20 (Figure S3).

We then implemented two different measurements to assess convergence more formally: the first is a test statistics assessing the presence of a trend in the parameter estimates, and the second is quantifying the number of slope changes in the individual parameter updates (see Appendix).

Power to reject Brownian motion

To assess the power of our approach to identify Lévy processes and to estimate associated parameters, we run our EM algorithm on data simulated with jumps on trees of 100 leaves, each simulated using a birth-death model (Stadler, 2011) and scaled to a total length of 1. We generated 100 such simulations for many combinations of number of jumps and α values but fixed $\mu=0$ and $s_0^2=1$ since changing these parameters does not affect the inference. We then inferred the MLE estimates for all parameters under both the null model (Brownian motion) and under the alternative Lévy model.

Using both a likelihood ratio test (LRT) or the Akaike information criterion resulted in generally substantial power to reject the null model over a large range of jumps simulated and for many different values of α (Fig.

1). Unsurprisingly, power was much lower if simulated jumps were on the order of the change of the Brownian background process or lower. Here we simulated trees of length 1, and thus the average length of each of the ~ 200 branches is roughly 0.005. Hence with $\alpha=0.01$, the strength of half of the evolutionary jumps are expected to be smaller or equal to the effect of the background process on an average branch. However, with $\alpha=0.1$, the power to reject the null model was $>80\%$ if multiple jumps were present on the tree.

Interestingly, we also found our approach to regularly fail to reject the null model if the number of jumps was very large, i.e. on the order of the number of branches (50 jumps correspond to a jump on every 4th branch). In such situations, the large variance in traits observed under the Lévy model is also perfectly explained by a pure BM model with larger variance s_0^2 (see below).

In summary, these results show that our method has considerable power to detect Lévy process as long as jumps are meaningfully strong and there are not too many jumps, in which case the Lévy and BM models become indistinguishable from each other.

Accuracy in inferring Lévy parameters

For the cases in which the Lévy model was preferred we next evaluated the power of our approach to infer the associated parameters, starting with the jump strength α . We found that our approach infers α quite accurately over the whole range, but we observed a slight overestimation for lower α values. This is a direct result of the low power to reject a model of Brownian rate at these lower jump strengths such that for simulations that resulted in larger jumps the Brownian model was more easily rejected. But the inferred values for $\alpha \leq 1$ were rarely further from the true value than a factor of 2 if multiple jumps were present (Fig. 2a), while it was unsurprisingly much harder to accurately infer the jump strength in case of a single jump.

1 We next evaluated the accuracy of our approach
2 in inferring the jump rate λ , again limited to the
3 simulations in which a Lévy model was preferred. As
4 shown in Fig. 2b, our method inferred this parameters
5 very accurately over a large range of jumps simulated
6 and for all values of α , with generally higher accuracy
7 with higher α values.

8 We then finally evaluated the accuracy in inferring the
9 Brownian background rate s_0^2 (Fig. 2b) and found it to be
10 very accurately inferred whenever the Brownian model
11 was rejected. Interestingly, however, s_0^2 was overestimated
12 whenever the Brownian model could not be rejected
13 but jumps were simulated. This illustrates that under
14 certain conditions a Lévy model is indistinguishable from
15 a model of pure Brownian motion with an elevated rate.
16 This is particularly true in the case of weak jumps (small
17 α) or if jumps are very common on the tree.

Jump location

19 We finally tested the power of our method to infer
20 the location of jumps on the tree. For this we simulated
21 trees with 100 leaves and trait data affected by 20 jumps
22 randomly placed on each tree for different jump strengths
23 α while fixing $s_0^2 = 1$. In each case we then assumed the
24 Lévy parameters to be known and used our MCMC
25 approach to calculate the posterior probability on there
26 being at least one jump for each branch.

27 We found our method to have a very low false positive
28 rate in identifying jumps in that a posterior probability

29 for jumps > 0.5 was never obtained for branches on which
30 we did not simulate any jumps (Fig. 3a), and 90% of
31 all such branches resulted in a posterior probability for
32 jumps below 0.2 even for the weakest jump strengths
33 simulated ($\alpha=0.1$).

34 The power to infer true jumps (true positives) was
35 also considerably high, especially for jumps of meaningful
36 strength. For data simulated with $\alpha=10$, for instance,
37 90% of all branches on which jumps were simulated
38 resulted in a posterior probability $> 50\%$, and 75%
39 even even in a posterior probability $> 95\%$. The few
40 branches with jumps for which we did not obtain decisive
41 posterior probabilities in favor of jumps all contained
42 jumps that were considerably weak (Fig. 3b). Such jumps
43 are expected even for large α values since individual jump
44 strengths are assumed to be normally distributed around
45 zero.

46 A similar pattern was observed when simulating data
47 with smaller α , but even in the case of $\alpha=0.1$ we obtain
48 posterior probabilities in favor of jumps > 0.5 for more
49 than one third of the branches on which jumps were
50 simulated (Fig. 3). At such small α values for a tree
51 of length 1, about 40% of all jumps are expected to
52 have a strength smaller than 10 times the effect of the
53 Brownian process on the same branch. But we note that
54 the difficulty in placing weak jumps did not affect the
55 power to infer the jump rate λ , which was inferred quite
56 accurately even at such low α values (Fig. 2).

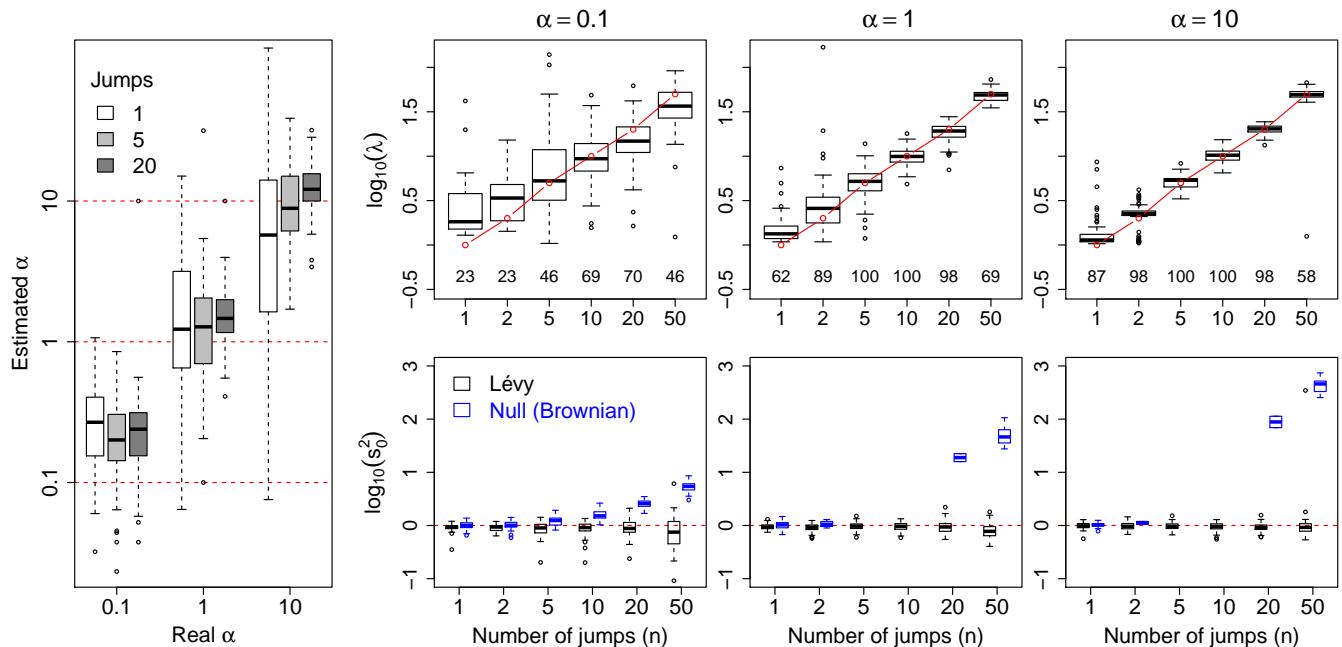


FIGURE 2. Accuracy in inferring Lévy parameters. Each boxplot represents the distribution of inferred values across 100 replicates simulated as described in the text for different combinations of jump strengths α and number of simulated jumps n . a) Accuracy in inferring factor α . The true α values used in the simulations are indicated with red solid lines. b) Top row: distributions of inferred jump rate λ . Connected red open circles represent the true values. The numbers printed below the boxplots indicate the percentage of simulations for which the Brownian model was rejected and are hence included here. Bottom row: distributions of inferred Brownian background rates s_0^2 for simulations in which the Brownian null model was rejected (black) or not rejected (blue).

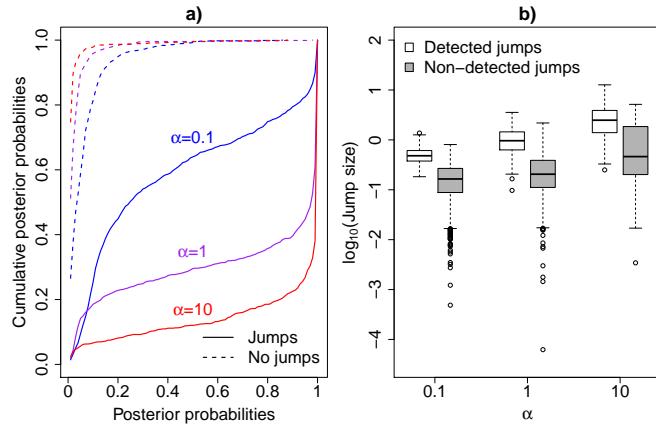


FIGURE 3. Power to detect individual jumps. **a)** Cumulative distribution of jump posterior probabilities on all branches with (solid lines) and without (dashed lines) simulated jumps. Notice that branches with jumps have posterior probabilities that accumulate at 1, whereas branches without jumps accumulate at 0. **b)** Distribution of the absolute strengths of individual jumps that were either detected (white) or not detected (gray).

APPLICATIONS

Quantum evolution in anoles

There have been a few direct tests of Simpsonian jumps between adaptive zones using empirical data (Uyeda et al., 2011). Here, we analyze “evolution by jumps” in the adaptive radiation of anoles, lizards that have adaptively radiated in the Caribbean and South America (Losos, 2009). Following previous work, we focused on anoles on the four islands of the Greater Antilles, as they provide a unique opportunity for testing Simpson’s theory of adaptive zones for two reasons. First, there have been repeated dispersal events among islands in the Greater Antilles (Losos et al., 1998; Mahler et al., 2010). These dispersal events represent geographic opportunities, where anole lineages reach a new island and are no longer sympatric with the former set of competitors (Mahler et al., 2010). Second, most anole species can be classified into ecomorphs, habitat specialists that have evolved repeatedly on the four islands of the Greater Antilles (Losos et al., 1998). Transitions between ecomorph categories represent the evolution of key characters in anole lineages that allow them to invade novel habitats (see Losos (2009) for a review).

Anoles have thus repeatedly experienced two conditions under which Simpson expected evolutionary jumps to be observed: dispersal into new geographic areas and the appearance of evolutionary novelties. Importantly, both ecomorph origins and transitions among islands are replicated in the phylogeny of anoles, but are still rare enough that we can estimate the position of transitions on the phylogenetic tree with some confidence (Huelsenbeck et al., 2003; Schlüter, 1995).

With this background in mind we tested if a model with evolutionary jumps fits the evolution of body size in anoles better than pure Brownian motion, and if jumps correspond with either of the two factors postulated by

Simpson: evolution of key characters and/or geographic dispersal. To address this question, we made use of a recent time-calibrated phylogeny of 170 *Anolis* lizards (Thomas et al., 2009) and analyzed snout-to-vent length (SVL), a standard phenotypic measurement of body size in lizards. This trait is broadly correlated with habitat partitioning in Greater Antillean anoles and represent the primary axes of ecologically driven evolutionary divergence in lizards (Beutell and Losos, 1999; Losos, 2009; Schoener, 1970). We made use of the sex-specific data of SVL from Thomas et al. (2009) and inferred evolutionary parameters independently for females and males, but excluded five species that lacked information on SVL for one or both sexes (*Anolis darwini*, *A. guamuhaya*, *A. loveridgei*, *A. oporinus*, and *A. polyrhachis*).

We found that the Lévy jump model is preferred over a strict BM model in females, but not in males (Table 1). Evolutionary jumps indicating rapid body size evolution (Figure 4) were found precisely at the basis of the clade comprising the ecomorph “crown giants” Thomas et al. (2009), in which females exhibit particularly large body sizes. The large sexual size dimorphism of this group (Harmon et al., 2005) is also likely explaining why the BM model fits the evolution of male body sizes well. In addition to the clades of crown giants, we also identify evolutionary jumps at the basis of the clade consisting of the species *A. barbatus*, *A. porcus*, and *A. chamaeleonides*. These species, which are known as “false chameleons” and are part of the former genus *Chameleolis* have been called the “most bizarre West Indian lizards” (Leal and Losos, 2000).

Our analyses support two main conclusions. First, evolutionary change in female anoles is not well described by a uniform random walk. A better description of anole evolution combines a uniform component of change that is punctuated by rapid jumps in trait values. Second, these jumps in body size very well correspond to ecological transitions to novel ecomorphs. The evolution

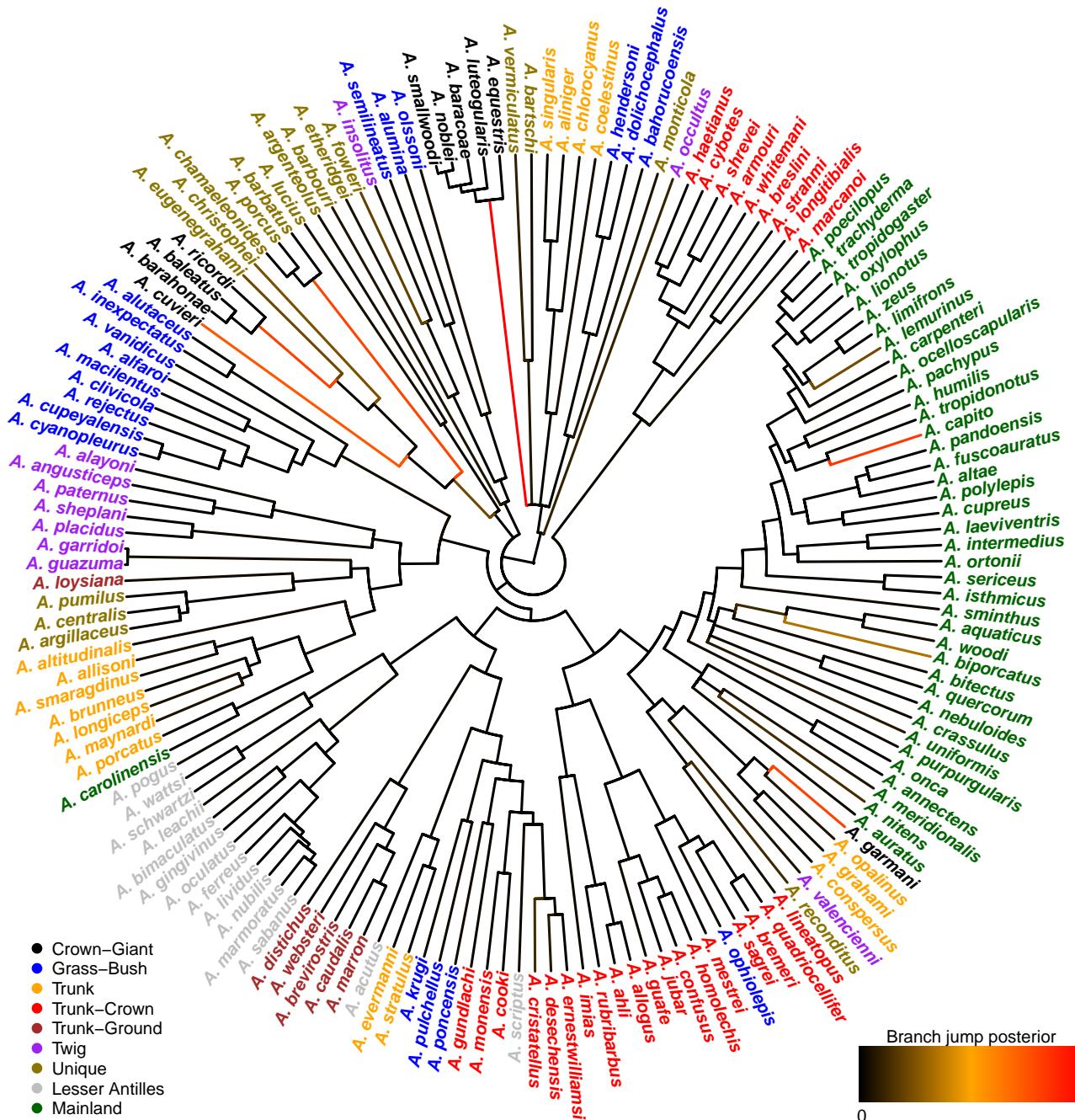


FIGURE 4. Inferred jumps for female body-size evolution on the anoles' tree. The trait measured was the snout-to-vent length (SVL). Branches are colored according to their inferred jump posterior probability (black to red scale going from posterior probability 0 to 1, respectively). Tips are colored according to ecomorphs as defined by [Thomas et al. \(2009\)](#).

1 of this trait is thus consistent with Simpson's description
2 of evolutionary jumps associated with the entry into
3 new adaptive zones. The fact that we did not find such
4 jumps at the basis of clades of other ecomorphs suggests
5 that body size was not a trait strongly contributing to
6 the ecological transition of those. However, evolutionary
7 jumps might well be found at the basis of those clades
8 when focusing on more relevant traits.

Nectarivory evolution in Loriinae

The Australasian lorries belong to the tribe Loriini (Joseph et al., 2012) and are extremely species rich (Schweizer et al., 2011). Their digestive tract is highly adapted to a nectarivorous diet (Güntert, 2012) and Schweizer et al. (2014) has shown quantitatively that a switch in diet to nectarivory might be considered an evolutionary novelty that created an ecological opportunity for species proliferation through

TABLE 1. Inferred Lévy parameters for *Anolis* and Loriinae, along with the log-likelihood (ℓ) obtained under the Lévy and BM models and the p-value of a likelihood ratio test (LRT) contrasting these.

	<i>Anolis</i>		<i>Loriini</i>			
	logSVLf	logSVLm	log Wgt	PC1	PC2	PC3
μ	3.93	4.18	5.33	-0.062	0.051	0.19
s_0^2	5.06	10.34	44.40	7.68	7.35	5.80
α	0.11	-	-	0.16	0.093	-
λ	11.27	-	-	11.95	7.38	-
ℓ_{BM}	5.03	-15.19	-85.54	-65.00	-60.63	-6.22
$\ell_{\text{Lévy}}$	26.61	-13.89	-85.51	-31.99	-24.72	-4.97
LRT p	$4.3 \cdot 10^{-10}$	0.28	0.97	$4.7 \cdot 10^{-15}$	$2.3 \cdot 10^{-16}$	0.29
Preferred model	Lévy	BM	BM	Lévy	Lévy	BM

1 allopatric partitioning of the same new niche. Using
2 the methodology developed above we now tested if the
3 evolution of the morphology of the digestive tract in
4 parrots as a whole is better characterized by a model
5 of evolutionary jumps or Brownian motion. For this we
6 made use of data from Schweizer et al. (2014), to generate
7 a time-calibrated phylogeny of 78 parrot species using
8 BEAST (Drummond and Rambaut, 2007) implementing
9 a secondary calibration point from Schweizer et al.
10 (2011) for the initial split within parrots. The following
11 13 measurements of gut morphology were used: the
12 length of intestine, length of esophagus, extension of
13 esophagus glands, length of intermediate zone, length
14 of proventriculus, gizzard height, gizzard width, gizzard
15 depth, maximum gizzard height at main muscles, gizzard
16 thickness at main muscles, gizzard lumen width including
17 koilin layer, gizzard width at the caudoventral thin
18 muscle, maximum gizzard height at the thin muscle, and
19 the maximum gizzard lumen at the thin muscle. Since
20 many of the gut morphology characters considered are
21 both highly correlated with body size as well as among
22 themselves, we first regressed out body mass (Wgt)
23 from each gut morphology trait and then summarized
24 the residuals of all traits using the first three principal
25 components (PCA; see also (Revell, 2009)).

26 We found that the evolution of both body weight
27 (Wgt) and the first PC axis of gut morphology were
28 much better explained by a model of evolutionary jumps
29 ($p < 10^{-16}$ in both cases) with relatively high rates of
30 jumps (Table 1). Overall, the jumps for PC1 identified
31 with strongest support are both on branches basal to
32 clades of nectarivorous species, particularly at the base
33 of highly specialized nectar feeding Loriini, but also at
34 the base of the genus *Loriculus* (Figure 5). As postulated
35 by Simpson the niche shift to nectarivory especially in
36 Loriini involved a period of rapid evolution reflecting
37 adaptations to feed effectively on nectar (and pollen)
38 (Schweizer et al., 2014). While the jumps within the
39 Neotropical parrots are difficult to interpret in biological
40 terms, the shift along the branch leading to *Psittacula*
41 *fulgidus* might be explained by its gizzard morphology
42 similar to that of the Loriini probably reflecting an
43 adaptation to its reportedly mainly frugivorous diet
44 (Schweizer et al., 2014). Some special structures in the

digestive tract of the genus *Nestor* have been described
45 in Güntert (2012).

DISCUSSION

46 While many traits appear to evolve at relatively
47 constant rates over long time periods and across many
48 taxa, some traits seem to undergo periods of rather
49 rapid evolution (see Arnold, 2014). Simpson (1944)
50 postulated that such evolutionary jumps are triggered by
51 a change in selection pressure after lineages transitioned
52 into different adaptive zones, for instance by dispersing
53 into new geographic areas, after the appearance of
54 evolutionary novelties, key innovations, or after rapid
55 climatic or ecological changes of the environment. The
56 appearance of well calibrated phylogenies along with
57 recent statistical developments now allow to test such
58 models on a wide variety of data.

59 Bokma (2008), for instance, proposed to model
60 evolutionary jumps as a compound process of a
61 continuous background process and a discrete jump
62 process. Recently, Landis et al. (2013) introduced a
63 general framework to infer parameters of such Lévy
64 processes under a Bayesian framework by means of
65 Markov Chain Monte Carlo (MCMC). Unfortunately
66 this approach, while elegant, requires the calculation of
67 the inverse of the variance-covariance matrix describing
68 the correlations between traits as a function of the
69 phylogenetic tree and the jump process, which is
70 computationally prohibitive for large trees.

71 Here we introduce a computationally highly efficient
72 variant of this approach that naturally scales to
73 large trees. The basis of our approach is an MCMC
74 algorithm in which we can update the inverse of the
75 above mentioned variance-covariance matrix directly
76 without inversion when sampling jump configurations
77 with fixed hierarchical parameters (root state, Brownian
78 rate, jump strength and jump rate). To make use of
79 this development for inference we propose a two-step
80 approach in which the MCMC algorithm is embedded
81 into an Expectation-Maximization (EM) approach to
82 obtain maximum likelihood (ML) estimates of the
83 hierarchical parameters while integrating over jump
84

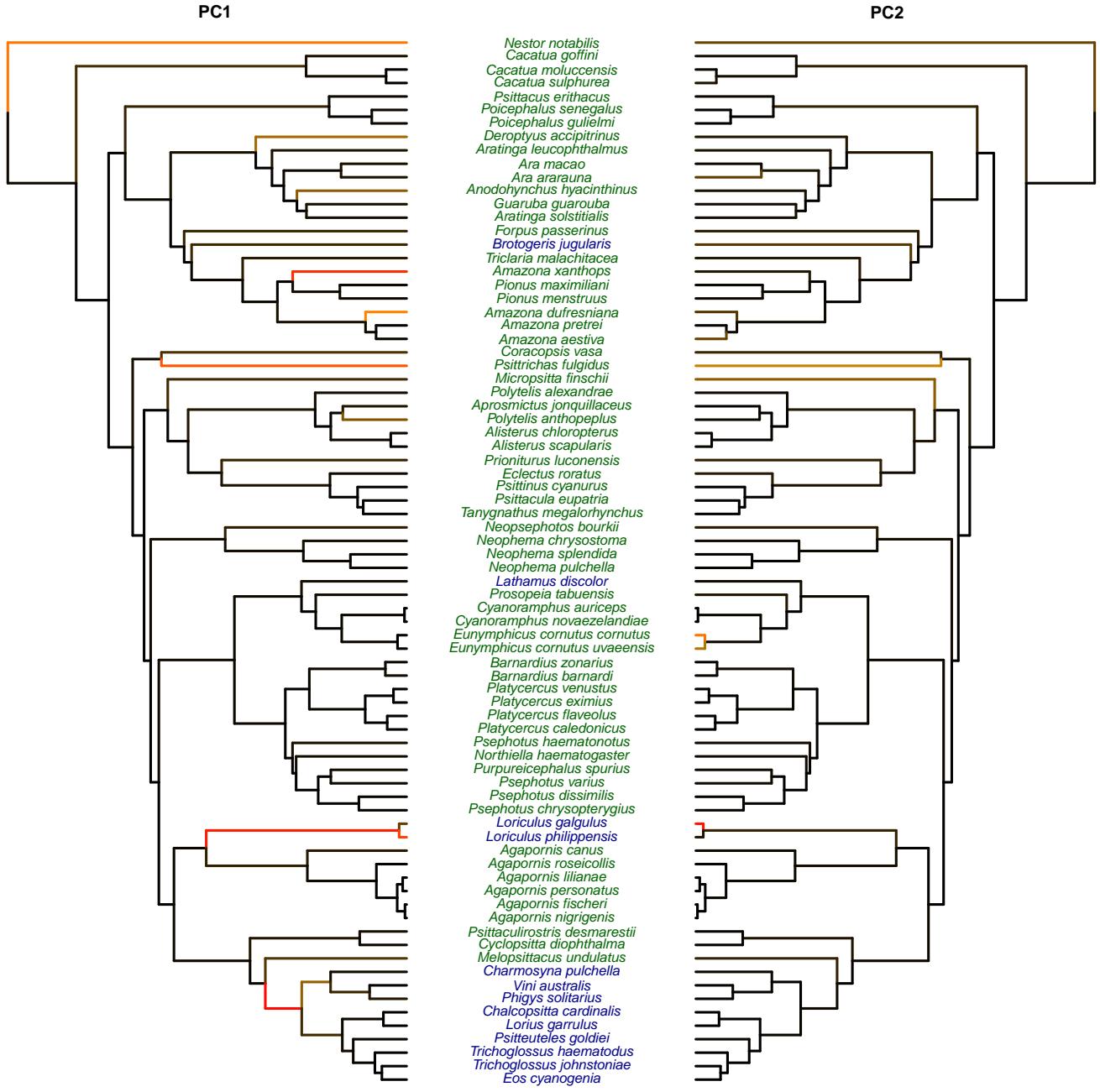


FIGURE 5. Inferred jumps for nectarivory evolution on the Loriinae tree. Results for PC1 are shown on the left phylogeny, and results for PC2 on the right phylogeny. Branches are colored according to their inferred jump posterior probability (black to red scale going from posterior probability 0 to 1, respectively). Species names are colored according to their diet: nectarivorous (blue) and non-nectarivorous (green).

1 configurations. In a second step, the location of jumps
2 can then be inferred under an empirical Bayes framework
3 in which the hierarchical parameters are fixed to their
4 ML estimate and the developed MCMC algorithm is used
5 to obtain for each branch the posterior probability that
6 a jump occurred at this location.

7 There are also other methods that deal with the
8 burden of calculating inverses and determinants of

9 variance-covariance matrices. For instance, Freckleton
10 (2012) applied the results of Felsenstein (1973) and
11 Felsenstein (1985) to calculate the likelihood in linear
12 time of a BM model. FitzJohn (2012) also proposed
13 a fast algorithm to calculate BM and OU likelihoods
14 using Gaussian elimination, but this is not applicable
15 to non-gaussian traits. Ho and Ané (2014) proposed a
16 new method, which efficiently calculates likelihoods by

1 avoiding the calculation of the inverse and determinant
 2 of the variance-covariance matrix. Their method requires
 3 that this matrix belongs to a class of generalized 3-
 4 point structured matrices. Our method, which applies an
 5 iterative scheme, differs from the others in the sense that
 6 the inverse and determinant of the variance-covariance
 7 matrix has to be calculated only once when obtaining the
 8 likelihoods, thus obtaining rather fast calculation times.

9 We demonstrated the applicability of our approach by
 10 identifying evolutionary jumps for body size evolution in
 11 *Anolis* lizards and the evolution of gut morphology¹ in
 12 Australasian lorries of the subfamily *Loriinae*. We found
 13 strong support for evolutionary jumps in both systems
 14 that provide direct support for Simpson's quantum
 15 evolutionary hypothesis of adaptive zones. Among the
 16 anoles, for instance, we identified evolutionary jumps on
 17 the basal lineage leading to crown giants, a group of
 18 lizards that transitioned into a novel niche for hunting:
 19 the crowns of large tropical trees. Similarly, we identified
 20 jumps at the basis of clades of lorries that transitioned
 21 to nectarivory, an evolutionary novelty that triggered
 22 rapid changes in morphology of the digestive system
 23 and promoted significant lineage diversification, which
 24 was probably mainly non-adaptive after the basal diet
 25 shift through allopatric partitioning of the same niche
 26 (Schweizer et al., 2014, cf.).

27 These results also show that the distinction between
 28 "gradual" and "punctuated" models of evolution is
 29 a false dichotomy; instead, evolution has a gradual
 30 component that may be frequently punctuated by
 31 periods of rapid change (Levinton, 2001). We further
 32 note that in both cases studied here a single jump at the
 33 basis of clades is sufficient to explain their trait data,
 34 suggesting that the period of rapid evolution was limited
 35 to a single branch and that the background rate remained
 36 constant. We suggest that future work should follow
 37 Simpson's lead and focus on the factors that promote
 38 these pulses of evolutionary change.

39 Although we model evolutionary jumps as
 40 instantaneous, we want to be clear that we are
 41 not invoking actual instantaneous evolutionary
 42 change (e.g. "hopeful monsters") (Charlesworth et al.,
 43 1982; Goldschmidt, 1940). Typical microevolutionary
 44 processes of selection and drift can cause change that
 45 would appear to be instantaneous when viewed over
 46 the timescale of macroevolution. Our model is also
 47 distinct from punctuated equilibrium, which requires
 48 evolutionary jumps to occur only at speciation events
 49 (Eldredge and Gould, 1972). The punctuated changes in
 50 our model occur along branches in the tree and are not
 51 necessarily associated with speciation events. In fact, for
 52 the case of anoles, two lines of evidence argue against
 53 punctuated equilibrium: first, most speciation events in
 54 the tree are not associated with jumps; and second, we
 55 know from detailed microevolutionary studies that anole
 56 body size can evolve rapidly in response to selection
 57 even in the absence of speciation (e.g. Losos et al.
 58 (2006)).

FUNDING

This study was supported by Swiss National Foundation grant 31003A_149920 to DW. The work of S. M. Szilágyi was supported by the János Bolyai Fellowship Program of the Hungarian Academy of Sciences.

ACKNOWLEDGMENTS

REFERENCES

Anderson, T. 2003. Multivariate statistical analysis. John Wiley .
 Arnold, S. J. 2014. Phenotypic evolution: the ongoing synthesis .
 The American Naturalist 183:729–746.

Bedford, T. and D. L. Hartl. 2009. Optimization of gene expression by natural selection. Proceedings of the National Academy of Sciences 106:1133–1138.

Beutell, K. and J. B. Losos. 1999. Ecological morphology of caribbean anoles. Herpetological Monographs Pages 1–28.

Bokma, F. 2008. Detection of punctuated equilibrium by bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny. Evolution 62:2718–2726.

Brawand, D., M. Soumillon, A. Necsulea, P. Julien, G. Csárdi, P. Harrigan, M. Weier, A. Liechti, A. Aximu-Petri, M. Kircher, et al. 2011. The evolution of gene expression levels in mammalian organs. Nature 478:343–348.

Butler, M. A. and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist 164:683–695.

Cavalli-Sforza, L. L. and A. W. Edwards. 1967. Phylogenetic analysis. models and estimation procedures. American journal of human genetics 19:233.

Charlesworth, B., R. Lande, and M. Slatkin. 1982. A neo-darwinian commentary on macroevolution. Evolution 36:474–498.

Davidson, R. and J. G. MacKinnon. 2004. Econometric theory and methods vol. 5. Oxford University Press New York.

Drummond, A. J. and A. Rambaut. 2007. Beast: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology 7:214.

Eastman, J. M., M. E. Alfaro, P. Joyce, A. L. Hipp, and L. J. Harmon. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65:3578–3589.

Edwards, A., L. Cavalli-Sforza, and V. Heywood. 1964. Phenetic and phylogenetic classification. Systematics As-soc. Publ Page 67.

Eldredge, N. and S. J. Gould. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Models in paleobiology 82.

Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American journal of human genetics 25:471.

Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist Pages 1–15.

FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in r. Methods in Ecology and Evolution 3:1084–1092.

Freckleton, R. P. 2012. Fast likelihood calculations for comparative analyses. Methods in Ecology and Evolution 3:940–947.

Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist 160:712–726.

Goldschmidt, R. 1940. The material basis of evolution vol. 28. Yale University Press.

Güntert, M. 2012. Morphologische Untersuchungen zur adaptiven Radiation des Verdauungstraktes bei Papageien (Psittaci). Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 106:471–526.

Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution Pages 1341–1351.

1 Harmon, L. J., J. J. Kolbe, J. M. Cheverud, and J. B. Losos. 2005. 73
 2 Convergence and the multidimensional niche. *Evolution* 59:409– 74
 3 421. 75

4 Ho, T. and C. Ané. 2014. A linear-time algorithm for gaussian and 76
 5 non-gaussian trait evolution models. *Systematic biology* 63:397– 77
 6 408. 78

7 Huelsenbeck, J. P., R. Nielsen, and J. P. Bollback. 2003. 79
 8 Stochastic mapping of morphological characters. *Systematic 80
 9 Biology* 52:131–158. 81

10 Ingram, T. and D. L. Mahler. 2013. SURFACE: detecting 82
 11 convergent evolution from comparative data by fitting Ornstein– 83
 Uhlenbeck models with stepwise Akaike Information Criterion. 84
 12 *Methods in Ecology and Evolution* 4:416–425. 85

13 Izenman, A. 2008. Modern multivariate statistical techniques 86
 14 vol. 1. Springer. 87

15 Joseph, L., A. Toon, E. E. Schirtzinger, T. F. Wright, and 73
 16 R. Schodde. 2012. A revised nomenclature and classification for 74
 17 family-group taxa of parrots (Psittaciformes). *Zootaxa* 3205. 75

18 Landis, M. J., J. G. Schraiber, and M. Liang. 2013. Phylogenetic 76
 19 analysis using lévy processes: finding jumps in the evolution of 77
 20 continuous traits. *Systematic biology* 62:193–204. 78

21 Leal, M. and J. B. Losos. 2000. Behavior and ecology of the Cuban 79
 22 “chipojos bobos” *Chamaeleolis barbatus* and *C. porcus*. *Journal 80
 23 of Herpetology* 34:318–322. 81

24 Levinton, J. S. 2001. Genetics, paleontology, and macroevolution. 82
 25 Cambridge University Press. 83

26 Losos, J. B. 2009. Lizards in an evolutionary tree: ecology and 84
 27 adaptive radiation of anoles vol. 10. Univ of California Press. 85

28 Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and 86
 29 evolutionary determinism. *The American Naturalist* 175:623– 87
 639.

30 Losos, J. B., R. E. Glor, J. J. Kolbe, and K. Nicholson. 2006. 73
 31 Adaptation, speciation, and convergence: A hierarchical analysis 74
 32 of adaptive radiation in caribbean *Anolis* lizards 1. *Annals of 75
 33 the Missouri Botanical Garden* 93:24–33. 76

34 Losos, J. B., T. R. Jackman, A. Larson, K. de Queiroz, and 77
 35 L. Rodriguez-Schettino. 1998. Contingency and determinism 78
 36 in replicated adaptive radiations of island lizards. *Science* 79:2115–2118. 79

37 Mahler, D. L., L. J. Revell, R. E. Glor, and J. B. Losos. 2010. 80
 38 Ecological opportunity and the rate of morphological evolution 81
 39 in the diversification of greater antillean anoles. *Evolution* 82:2731–2745. 82

40 O’Meara, B. C., C. Ané, M. J. Sanderson, and P. C. Wainwright. 83
 41 2006. Testing for different rates of continuous trait evolution 84
 42 using likelihood. *Evolution* 60:922–933. 85

43 Revell, L. J. 2009. Size-correction and principal components for 86
 44 interspecific comparative studies. *Evolution* 63:3258–3268. 87

45 Rohlf, R. V., P. Harrigan, and R. Nielsen. 2013. Modeling 73
 46 gene expression evolution with an extended ornstein-uhlenbeck 74
 47 process accounting for within-species variation. *Molecular 75
 48 biology and evolution* Page mst190. 76

49 Schlüter, D. 1995. Uncertainty in ancient phylogenies. *Nature* 77:108–110. 77

50 Schoener, T. W. 1970. Size patterns in west indian anolis lizards. 78
 51 ii. correlations with the sizes of particular sympatric species– 79
 52 displacement and convergence. *American Naturalist* Pages 155– 80
 174. 81

53 Schweizer, M., M. Güntert, O. Seehausen, C. Leuenberger, and 82
 54 S. T. Hertwig. 2014. Parallel adaptations to nectarivory in 83
 55 parrots, key innovations and the diversification of the loriinae. 84
 56 *Ecology and evolution* 4:2867–2883. 85

57 Schweizer, M., O. Seehausen, and S. T. Hertwig. 2011. 86
 58 Macroevolutionary patterns in the diversification of parrots: 87
 59 effects of climate change, geological events and key innovations. 88
 60 *Journal of Biogeography* 38:2176–2194. 89

61 Simpson, G. 1944. *Tempo and Mode in Evolution*. A Wartime book. 90
 62 Columbia University Press. 91

63 Slater, G. J., L. J. Harmon, D. Wegmann, P. Joyce, L. J. 92
 64 Revell, and M. E. Alfaro. 2012. Fitting models of continuous 93
 65 trait evolution to incompletely sampled comparative data using 94
 66 approximate bayesian computation. *Evolution* 66:752–762. 95

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

APPENDIX

Conditional likelihood

The EM algorithm can be implemented without the MC part if we impose a condition $|\boldsymbol{\nu}| \leq R$ on the likelihood, i.e. if we suppose a priori that there have been only R or less Poisson events on the tree \mathcal{T} . In that case, the sum in (9) is over all \mathbf{n}_k such that $|\mathbf{n}_k| \leq R$. Observe that we have to use the conditional probabilities

$$\mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_i | \boldsymbol{\nu} \leq N) = \mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_i) / \sum_{k=1}^K \mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_k).$$

3 The new Q -function is

$$Q(\theta) = \sum_{k=1}^K \pi_k \log[\phi(\mathbf{x} | \mathbf{n}_k) \mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_k | \boldsymbol{\nu} \leq R)] \quad (17)$$

where we can use

$$\pi_k = \phi(\mathbf{x} | \mathbf{n}_k, \tilde{\mu}, \tilde{s}_0^2, \tilde{\alpha}) \mathbb{P}(\boldsymbol{\nu} = \mathbf{n}_k | \tilde{\lambda}).$$

In the conditional case, there no longer seems to exists a closed formula like (12) for the optimal $\tilde{\lambda}$. Setting the derivative of (17) w.r.t. λ equal to 0, one can show that $\tilde{\lambda}$ is the root of the following R -th order polynomial:

$$P(\lambda) = \sum_{r=0}^R \frac{\tau^r}{r!} \left(\sum \pi_k |\mathbf{n}_k| - r \sum \pi_k \right) \lambda^r,$$

4 i.e. $P(\tilde{\lambda}) = 0$. The estimation of $\tilde{\mu}$ and \tilde{s}_0 , on the other hand, remains exactly as explained in section 1.4.

Assessing convergence of the EM

5 We introduce two measures to assess convergence of the Monte Carlo EM algorithm.

Regression criterion We consider a time series y_1, \dots, y_n and construct a test statistic which allows to reject the null hypothesis that the time series exhibits no trend. For this we estimate the slope $\hat{\beta}$ of the regression line passing through the data points

$$(1, y_1), (2, y_2), \dots, (n, y_n)$$

6 and test for the null hypothesis $\beta = 0$ (no trend). Determine the following quantities:

$$\begin{aligned} \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i, & S_{xx} &= \frac{n(n^2 - 1)}{12}, & S_{xy} &= -\frac{1}{2} \sum_{i=1}^n (n+1-2i)y_i, \\ \hat{\beta} &= \frac{S_{xy}}{S_{xx}}, & \hat{\sigma}^2 &= \frac{1}{n-2} \left(\left(\sum_{i=1}^n y_i^2 \right) - n\bar{y}^2 - \hat{\beta}S_{xy} \right), & se(\hat{\beta}) &= \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}. \end{aligned}$$

The test statistic

$$T = \frac{\hat{\beta}}{se(\hat{\beta})}$$

8 has the Student t-distribution with $n-2$ degrees of freedom. We reject the null hypothesis on the level γ if $|T| \geq 9 t_{\gamma/2, n-2}$. A good rule of thumb (for γ roughly 5% and $n > 15$) is $|T| \geq 2$.

10 *Proportion of slope sign changes* We propose a second way of assessing convergence by taking the last n values of 11 the EM algorithm and counting the number of times c there is a change in the sign of the slope between consecutive 12 values. If convergence is reached, we expect the number of slopes with a positive sign to be similar to the number 13 of slopes with a negative sign. We report the test statistic N

$$N = \frac{c}{n-2}$$

14 where $n-2$ represents the total number of possible sign changes among the last n values.