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Abstract 

Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled 

a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from 

across the mammalian brain using rigorously curated published data from pooled cell type microarray and 

single cell RNA-sequencing studies. We used these data to identify cell type-specific marker genes, 

discovering a substantial number of novel markers, many of which we validated using computational and 

experimental approaches. We further demonstrate that summarized expression of marker gene sets in bulk 

tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this 

expanding resource, we provide a user-friendly web interface at Neuroexpresso.org. 

Significance Statement  

Cell type markers are powerful tools in the study of the nervous system that help reveal properties of cell 

types and acquire additional information from large scale expression experiments. Despite their usefulness 

in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a 

database of brain cell type specific gene expression profiles, and demonstrate the use of marker genes for 

acquiring cell type specific information from whole tissue expression. The database will prove itself as a 

useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory 

and computational scientists to unravel the cell type specific components of brain disorders. 

Introduction 

Brain cells can be classified based on features such as their primary type (e.g. neurons vs. glia), location 

(e.g. cortex, hippocampus, cerebellum), electrophysiological properties (e.g. fast spiking vs. regular spiking), 

morphology (e.g. pyramidal cells, granule cells) or the neurotransmitter/neuromodulator they release (e.g. 

dopaminergic cells, serotonergic cells, GABAergic cells). Marker genes, genes that are expressed in a 

specific subset of cells, are often used in combination with other cellular features to define different types of 

cells (Hu et al., 2014; Margolis et al., 2006) and facilitate their characterization by tagging the cells of interest 

for further studies (Handley et al., 2015; Lobo et al., 2006; Tomomura et al., 2001). Marker genes have also 

found use in the analysis of whole tissue “bulk” gene expression profiling data, which can be challenging to 

interpret due to the difficulty to determine the source of the observed expressional change. For example, a 

decrease in a transcript level can indicate a regulatory event affecting the expression level of the gene, a 

decrease in the number of cells expressing the gene, or both. To address this issue, computational methods 
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have been proposed to estimate cell type specific proportion changes based on expression patterns of 

known marker genes (Chikina et al., 2015; Newman et al., 2015; Westra et al., 2015; Xu et al., 2013). Finally, 

marker genes are obvious candidates for having cell type specific functional roles. 

An ideal cell type marker has a strongly enriched expression in a single cell type in the brain. However, this 

criterion can rarely be met, and for many purposes, cell type markers can be defined within the context of a 

certain brain region; namely, a useful marker may be specific for the cell type in one region but not 

necessarily in another region or brain-wide. For example, the calcium binding protein parvalbumin is a useful 

marker of both fast spiking interneurons in the cortex and Purkinje cells in the cerebellum (Celio and 

Heizmann, 1981; Kawaguchi et al., 1987). Whether the markers are defined brain-wide or in a region-specific 

context, the confidence in their specificity is established by testing their expression in as many different cell 

types as possible. This is important because a marker identified by comparing just two cell types might turn 

out to be expressed in a third, untested cell type, reducing its utility.  

During the last decade, targeted purification of cell types of interest followed by gene expression profiling has 

been applied to many cell types in the brain. Such studies, targeted towards well-characterized cell types, 

have greatly promoted our understanding of the functional and molecular diversity of these cells (Cahoy et 

al., 2008; Chung et al., 2005; Doyle et al., 2008). However, individual studies of this kind are limited in their 

ability to discover specific markers as they often analyse only a small subset of cell types (Shrestha et al., 

2015; Okaty et al., 2009; Sugino et al., 2006) or have limited resolution as they group subtypes of cells 

together (Cahoy et al., 2008). Recently, advances in technology have enabled the use of single cell 

transcriptomics as a powerful tool to dissect neuronal diversity and derive novel molecular classifications of 

cells (Poulin et al., 2016). However, with single cell analysis the classification of cells to different types is 

generally done post-hoc, based on the clustering similarity in their gene expression patterns. These 

molecularly defined cell types are often uncharacterized otherwise (e.g. electrophysiologically, 

morphologically), challenging their identification outside of the original study and understanding their role in 

normal and pathological brain function. A notable exception is the single cell RNA-seq study of Tasic et al. 

(2016) analysing single labelled cells from transgenic mouse lines to facilitate matching of the molecularly 

defined cell types they discover to previously identified cell types. We hypothesized that aggregating cell type 

specific studies that analyse expression profiles of cell types previously defined in literature, a more 

comprehensive data set more suitable for marker genes could be derived.  

Here we report the analysis of an aggregated cross-laboratory dataset of cell type specific expression 

profiling experiments from mouse brain, composed both of pooled cell microarray data and single cell RNA-
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seq data. We used these data to identify sets of brain cell marker genes more comprehensive than any 

previously reported, and validated the markers genes in external mouse and human single cell datasets. We 

further show that the identified markers are applicable for the analysis of human brain and demonstrate the 

usage of marker genes in the analysis of bulk tissue data via the summarization of their expression into 

“marker gene profiles” (MGPs), which can be cautiously interpreted as correlates of cell type proportion. 

Finally, we made both the cell type expression profiles and marker sets available to the research community 

at neuroexpresso.org. 

Materials and methods 

Figure 1A depicts the workflow and the major steps of this study. All the analyses were performed in R 

version 3.3.2; the R code and data files can be accessed through neuroexpresso.org (RRID: SRC_015724) 

or directly from https://github.com/oganm/neuroexpressoAnalysis. 

Pooled cell type specific microarray data sets 

We began with a collection of seven studies of isolated cell types from the brain, compiled by Okaty et al. 

(2011). We expanded this by querying PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Gene Expression 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) (RRID: SCR_007303) (Barrett et al., 2013; Edgar et al., 

2002) for cell type-specific expression datasets from the mouse brain that used Mouse Expression 430A 

Array (GPL339) or Mouse Genome 430 2.0 Array (GPL1261) platforms. These platforms were our focus as 

together, they are the most popular platforms for analysis of mouse samples and are relatively 

comprehensive in gene coverage, and using a reduced range of platforms reduced technical issues in 

combining studies. Query terms included names of specific cell types (e.g. astrocytes, pyramidal cells) along 

with blanket terms such as “brain cell expression” and “purified brain cells”. Only samples derived from 

postnatal (> 14 days), wild type, untreated animals were included. Datasets obtained from cell cultures or cell 

lines were excluded due to the reported expression differences between cultured cells and primary cells 

(Cahoy et al., 2008; Halliwell, 2003; Januszyk et al., 2015). We also considered RNA-seq data from pooled 

cells (2016; Zhang et al., 2014) but because such data sets are not available for many cell types, including it 

in the merged resource was not technically feasible without introducing biases (though we were able to 

incorporate a single-cell RNA-seq data set, described in the next section). While we plan to incorporate more 

pooled cell RNA-seq data in the future, for this study we limited their use to validation of marker selection. 

As a first step in the quality control of the data, we manually validated that each sample expressed the gene 

that was used as a marker for purification of the corresponding cell type in the original publication 
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(expression greater than median expression among all gene signals in the dataset), along with other well 

established marker genes for the relevant cell type (e.g. Pcp2 for Purkinje cells, Gad1 for GABAergic 

interneurons). We next excluded contaminated samples, namely, samples expressing established marker 

genes of non-related cell types in levels comparable to the cell type marker itself (for example neuronal 

samples expressing high levels of glial marker genes), which lead to the removal of 21 samples. In total, we 

have 30 major cell types compiled from 24 studies represented by microarray data (summarized in Table 1); 

a complete list of all samples including those removed is available from the authors). 

Single cell RNA-seq data 

The study of cortical single cells by Tasic et al. (2016) includes a supplementary file (Supplementary Table 7 

in Tasic et al. (2016)) linking a portion of the molecularly defined cell clusters to known cell types previously 

described in the literature. Using this file, we matched the cell clusters from Tasic et al. with pooled cortical 

cell types represented by microarray data (Table 2). For most cell types represented by microarray (e.g. glial 

cells, Martinotti cells), the matching was based on the correspondence information provided by Tasic et al. 

(2016). However, for some of the cell clusters from Tasic et al. (2016), the cell types were matched manually, 

based on the description of the cell type in the original publication (e.g., cortical layer, high expression of a 

specific gene). For example, Glt25d2+ pyramidal cells from Schmidt et al. (2012), described by the authors 

as “layer 5b pyramidal cells with high Glt25d2 and Fam84b expression” were matched with two cell clusters 

from Tasic et al. - “L5b Tph2” and “L5b Cdh13”, 2 of the 3 clusters described as Layer 5b glutamatergic cells 

by Tasic et al., since both of these clusters represented pyramidal cells from cortical layer 5b and exhibited 

high level of the indicated genes. Cell clusters identified in Tasic et al. that did not match to any of the pooled 

cell types were integrated into to the combined data if they fulfilled the following criteria: 1) They represented 

well-characterized cell types and 2) we could determine with high confidence that they did not correspond to 

more than one cell type represented by microarray data. Table 2 contains information regarding the matching 

between pooled cell types from microarray data and cell clusters from single cell RNA-seq data from Tasic et 

al. 

In total, the combined database contains expression profiles for 36 major cell types, 10 of which are 

represented by both pooled cell microarray and single cell RNA-seq data, and five which are represented by 

single cell RNA-seq only (summarized in Table 2). Due to the substantial differences between microarray and 

RNA-seq technologies, we analysed these data separately (see next sections). For visualization only, in 

neuroexpesso.org we rescaled the RNA-seq data to allow them to be plotted on the same axes. Details are 
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provided on the web site.  

Grouping and re-assignment of cell type samples 

When possible, samples were assigned to specific cell types based on the descriptions provided in their 

associated publications. When expression profiles of closely related cell types were too similar to each other 

and we could not find sufficient number of differentiating marker genes meeting our criteria, they were 

grouped together into a single cell type. For example, A10 and A9 dopaminergic cells had no distinguishing 

markers (provided the other cell types presented in the midbrain region) and were grouped as “dopaminergic 

neurons”. In the case of pyramidal cells, while we were able to detect marker genes for pyramidal cell 

subtypes, they were often few in numbers and most of them were not represented on the human microarray 

chip (Affymetrix Human Exon 1.0 ST Array) used in the downstream analysis. As a result, calculation of 

marker gene profiles in human bulk tissue would not feasible for majority of these cell types. To combat this, 

we created two gene lists, one created by considering pyramidal subtypes as separate cell types, and 

another where pyramidal subtypes are pooled into a pan-pyramidal cell type. Due to the scarcity of markers 

for pyramidal subtypes, we only consider the pan-pyramidal cell type in our downstream analysis. However, 

we still kept the pyramidal subtypes separate during marker gene selection (described below) for the non-

pyramidal cell types to help ensure marker specificity.  

Since our focus was identifying markers specific to cell types within a given brain region, samples were 

grouped based on the brain region from which they were isolated, guided by the anatomical hierarchy of 

brain regions (Figure 1B). Brain sub-regions (e.g. locus coeruleus) were added to the hierarchy if there were 

multiple cell types represented in the sub-region. An exception to the region assignment process are glial 

samples. Since these samples were only available from either cortex or cerebellum regions or extracted from 

whole brain, the following assignments were made: Cerebral cortex-derived astrocyte and oligodendrocyte 

samples were included in the analysis of other cerebral regions as well as thalamus, brainstem and spinal 

cord. Bergmann glia and cerebellum-derived oligodendrocytes were used in the analysis of cerebellum. The 

only microglia samples available were isolated from whole brain homogenates and were included in the 

analysis of all brain regions. 

Selection of cell type markers 

Marker gene sets (MGSs) were selected for each cell type in each brain region, based on fold change and 

clustering quality (see below). For cell types that are represented by both microarray and single cell data 

(cortical cells), two sets of MGSs were created and later merged as described below. Since there is no 
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generally accepted definition of “marker gene”, our goal was to identify markers that were sufficiently specific 

and highly expressed to be useful in computational settings, but also likely to be of interest for potential 

laboratory applications. Thus, our threshold selections were guided in part by the expression patterns of 

previously well-established markers as well as our intended applications. 

Marker genes were selected for each brain region based on the following steps: 

1. For RNA-seq data, each of the relevant clusters identified in Tasic et al. was considered as a single 

sample, where the expression of each gene was calculated by taking the mean RPKM values of the 

individual cells representing the cluster. Table 2 shows which clusters represent which cell types. 

2. Expression level of a gene in a cell type was calculated by taking the mean expression of all replicate 

samples originating from the same study and averaging the resulting values across different studies per 

cell type. 

3. The quality of clustering was determined by “mean silhouette coefficient” and “minimal silhouette 

coefficient” values (where silhouette coefficient is a measure of group dissimilarity ranged between -1 

and 1 (Rousseeuw, 1987)). Mean silhouette coefficient was calculated by assigning the samples 

representing the cell type of interest to one cluster and samples from the remaining cell types to another, 

and then calculating the mean silhouette coefficient of all samples. The minimal silhouette coefficient is 

the minimal value of mean silhouette coefficient when it is calculated for samples representing the cell 

type of interest in comparison to samples from each of the remaining cell types separately. The two 

measures where used to ensure that the marker gene robustly differentiates the cell type of interest from 

other cell types. Silhouette coefficients were calculated with the “silhouette” function from the “cluster” R 

package version 1.15.3 (Maechler et al., 2016), using the expression difference of the gene between 

samples as the distance metric. 

4. A background expression value was defined as expression below which the signal cannot be discerned 

from noise. Different background values are selected for microarray (6 – all values are log2 transformed) 

and RNA-seq (0.1) due to the differences in their distribution. 

Based on these metrics, the following criteria were used: 

1. A threshold expression level was selected to help ensure that the gene’s transcripts will be 

detectable in bulk tissue. Genes with median expression level below this threshold were excluded 

from further analyses. For microarrays, this threshold was chosen to be 8. Theoretically, if a gene 

has an expression level of 8 in a cell type, and the gene is specific to the cell type, an expression 

level of 6 would be observed if 1/8th of a bulk tissue is composed of the cell type. As many of the cell 
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types in the database are likely to be as rare as or rarer than 1/8th, and 6 is generally close to 

background for these data, we picked 8 as a lower level of marker gene expression. For RNA-seq 

data, we selected a threshold of 2.5 RPKM, which in terms of quantiles corresponds to the 

microarray level of 8.  

2. If the expression level in the cell type of interest is higher than 10 times the background threshold, 

there must be at least a 10-fold difference from the median expression level of the remaining cell 

types in the region. If the expression level in the cell type is less than 10 times the background, the 

expression level must be higher than the expression level of every other cell type in that region. This 

criterion was added because below this expression level, for a 10-fold expression change to occur, 

the expression median of other cell types needs be lower than the background. Values below the 

background signal that do not convey meaningful information but can prevent potentially useful 

marker genes from being selected. 

3. The mean silhouette coefficient for the gene must be higher than 0.5 and minimum silhouette 

coefficient must the greater than zero for the associated cell type. 

4. The conditions above must be satisfied only by a single cell type in the region. 

To ensure robustness against outlier samples, we used the following randomization procedure, repeated 500 

times: One third (rounded) of all samples were removed. For microarray data, to prevent large studies from 

dominating the silhouette coefficient, when studies representing the same cell types did not have an equal 

number of samples, N samples were picked randomly from each of the studies, where N is the smallest 

number of samples coming from a single study. A gene was selected if it qualified our criteria in more than 

95% of all permutations. 

Our next step was combining the MGSs created from the two expression data types. For cell types and 

genes represented by both microarray and RNA-seq data, we first looked at the intersection between the 

MGSs. For most of the cell types, the overlap between the two MGSs was about 50%. We reasoned that this 

could be partially due to numerous “near misses” in both data sources. Namely, since our method for marker 

gene selection relies on multiple steps with hard thresholds, it is very likely that some genes were not 

selected simply because they were just below one of the required thresholds. We thus adopted a soft 

intersection: A gene was considered as a marker if it fulfilled the marker gene criteria in one data source 

(pooled cell microarray or single cell RNA-seq), and its expression in the corresponding cell type from the 

other data source was higher than in any other cell type in that region. For example, Ank1 was originally 

selected as a marker of FS Basket cells based on microarray data, but did not fulfil our selection criteria 
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based on RNA-seq data. However, the expression level of Ank1 in the RNA-seq data is higher in FS Basket 

cells than in any other cell type from this data source, and thus, based on the soft intersection criterion, Ank1 

is considered as a marker of FS Basket cells in our final marker gene set. For genes and cell types that were 

only represent by one data source, the selection was based on this data source only. 

It can be noted that some previously described markers (such as Prox1 for dentate granule cells) are absent 

from our marker gene lists. In some cases, this is due to the absence the genes from the microarray 

platforms used, while in other cases the genes failed to meet our stringent selection criteria. Final marker 

gene lists are available at http://www.chibi.ubc.ca/supplement-to-mancarci-et-al-neuroexpresso/.  

Human homologues of mouse genes were defined by NCBI HomoloGene 

(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68/homologene.data). 

Microglia enriched genes 

 Microglia expression profiles differ significantly between activated and inactivated states and to our 

knowledge, the samples in our database represent only the inactive state (Holtman et al., 2015). In order to 

acquire marker genes with stable expression levels regardless of microglia activation state, we removed the 

genes differentially expressed in activated microglia based on Holtman et al. (2015). This step resulted in 

removal of 408 out of the original 720 microglial genes in cortex (microarray and RNA-seq lists combined) 

and 253 of the 493 genes in the context of other brain regions (without genes from single cell data). 

Microglial marker genes which were differentially expressed in activated microglia are referred to as 

Microglia_activation and Microglia_deactivation (up or down-regulated, respectively) in the marker gene lists 

provided. 

S100a10+ pyramidal cell enriched genes 

The paper (Schmidt et al., 2012) describing the cortical S100a10+ pyramidal cells emphasizes the existence 

of non-neuronal cells expressing S100a10+. Schmidt et al. therefore limited their analysis to 7,853 genes 

specifically expressed in neurons and advised third-party users of the data to do so as well. Since a 

contamination caveat was only concerning microarray samples from Schmidt et al. (the only source of 

S100a10+ pyramidal cells in microarray data), we removed marker genes selected for S100a10+ pyramidal 

cells based on the microarray data if they were not among the 7,853 genes indicated in Schmidt et al. We 

also removed S100a10 itself since based on the author’s description it was not specific to this cell type. In 

total, 36 of the 47 S100a10 pyramidal genes originally selected based on microarray data were removed in 

this step. Of note, none of the removed genes were selected as a marker of S100a10 cell based on RNA-
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seq data. 

Dentate granule cell enriched genes 

We used data from (Cembrowski et al., 2016) (Hipposeq – RRID: SCR_015730) for validation and 

refinement of dentate granule markers (as noted above these data are not currently included in 

Neuroexpresso for technical reasons). FPKM values were downloaded (GEO accession GSE74985) and 

log2 transformed. Based on these values, dentate granule marker genes were removed if their expression in 

Hipposeq data (mean of dorsal and ventral granule cells) was lower than other cell types represented in this 

dataset. In total, 15 of the 39 originally selected genes that were removed in this step.  

In situ hybridization 

Male C57BL/6J (RRID: IMSR_JAX:0000664) mice aged 13-15 weeks at time of sacrifice were used (n=5). 

Mice were euthanized by cervical dislocation and then the brain was quickly removed, frozen on dry ice, and 

stored at -80°C until sectioned via cryostat. Brain sections containing the sensorimotor cortex were cut along 

the rostral-caudal axis using a block advance of 14 μm, immediately mounted on glass slides and dried at 

room temperature (RT) for 10 minutes, and then stored at -80°C until processed using multi-label fluorescent 

in situ hybridization procedures. 

Fluorescent in situ hybridization probes were designed by Advanced Cell Diagnostics, Inc. (Hayward, CA, 

USA) to detect mRNA encoding Cox6a2, Slc32a1, and Pvalb. Two sections per animal were processed using 

the RNAscope® 2.5 Assay as previously described (Wang et al., 2012). Briefly, tissue sections were 

incubated in a protease treatment for 30 minutes at RT and then the probes were hybridized to their target 

mRNAs for 2 hours at 40°C. The sections were exposed to a series of incubations at 40°C that amplifies the 

target probes, and then counterstained with NeuroTrace blue-fluorescent Nissl stain (1:50; Molecular 

Probes) for 20 minutes at RT. Cox6a2, Pvalb, and Slc32a1 were detected with Alexa Fluor® 488, Atto 550 

and Atto 647, respectively.  

Data were collected on an Olympus IX83 inverted microscope equipped with a Hamamatsu Orca-Flash4.0 

V2 digital CMOS camera using a 60x 1.40 NA SC oil immersion objective. The equipment was controlled by 

cellSens (Olympus). 3D image stacks (2D images successively captured at intervals separated by 0.25 μm 

in the z-dimension) that are 1434 x 1434 pixels (155.35 μm x 155.35 μm) were acquired over the entire 

thickness of the tissue section. The stacks were collected using optimal exposure settings (i.e., those that 

yielded the greatest dynamic range with no saturated pixels), with differences in exposures normalized 

before analyses. 
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Laminar boundaries of the sensorimotor cortex were determined by cytoarchitectonic criteria using 

NeuroTrace labeling. Fifteen image stacks across the gray matter area spanning from layer 2 to 6 were 

systematic randomly sampled using a sampling grid of 220 x 220 μm2, which yielded a total of 30 image 

stacks per animal. Every NeuroTrace labeled neuron within a 700 x 700 pixels counting frame was included 

for analyses; the counting frame was placed in the center of each image to ensure that the entire 

NeuroTrace labeled neuron was in the field of view. The percentage (± standard deviation) of NeuroTrace 

labeled cells containing Cox6a2 mRNA (Cox6a2+) and that did not contain Slc32a1 mRNA (Slc32a1-), that 

contained Slc32a1 but not Pvalb mRNA (Slc32a1+/Pvalb-), and that contained both Slc32a1 and Pvalb 

mRNAs (Slc32a1+/Pvalb+) were manually assessed. 

Allen Brain Atlas in situ hybridization (ISH) data 

We downloaded in situ hybridization (ISH) images using the Allen Brain Atlas API (http://help.brain-

map.org/display/mousebrain/API). Assessment of expression patterns was done by visual inspection. If a 

probe used in an ISH experiment did not show expression in the region, an alternative probe targeting the 

same gene was sought. If none of the probes showed expression in the region, the gene was considered to 

be not expressed. 

Validation of marker genes using external single cell data 

Mouse cortex single cell RNA sequencing (RNA-seq) data were acquired from Zeisel et al. (2015) (available 

from http://linnarssonlab.org/cortex/, GEO accession: GSE60361,1691 cells) Human single cell RNA 

sequencing data were acquired from Darmanis et al. (2015) (GEO accession: GSE67835, 466 cells). For 

both datasets, pre-processed expression data were encoded in a binary matrix with 1 representing any 

nonzero value. For all marker gene sets, Spearman’s ρ was used to quantify internal correlation. A null 

distribution was estimated by calculating the internal correlation of 1000 randomly-selected prevalence-

matched gene groups. Gene prevalence was defined as the total number of cells with a non-zero expression 

value for the gene. Prevalence matching was done by choosing a random gene with a prevalence of +/-2.5% 

of the prevalence of the marker gene. P-values were calculated by comparing the internal correlation of 

marker gene set to the internal correlations of random gene groups using Wilcoxon rank-sum test. 

Pre-processing of microarray data 

For comparison of marker gene profiles in white matter and frontal cortex, we acquired expression data from 

pathologically healthy brain samples from Trabzuni et al. (2013) (GEO accession: GSE60862). For 
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estimation of dopaminergic marker gene profiles in Parkinson’s disease patients and controls, we acquired 

substantia nigra expression data from Lesnick et al. (2007) (GSE7621), Moran et al.(2006) (GSE8397) and 

Zhang et al.(2005) (GSE20295) studies. Expression data for the Stanley Medical Research Institute (SMRI), 

which included post-mortem prefrontal cortex samples from bipolar disorder, major depression and 

schizophrenia patients along with healthy donors, were acquired through https://www.stanleygenomics.org/, 

study identifier 2. 

 All microarray data used in the study were pre-processed and normalized with the “rma” function of the 

“oligo” (RRID: SCR_015729) (Affymetrix gene arrays) or “affy” (RRID: SCR_012835) (Affymetrix 3’IVT 

arrays) (Carvalho and Irizarry, 2010) R packages. Probeset to gene annotations were obtained from Gemma 

(Zoubarev et al., 2012) (http://gemma.chibi.ubc.ca/). Probesets with maximal expression level lower than the 

median among all probeset signals were removed. Of the remaining probesets, whenever several probesets 

were mapped to the same gene, the one with the highest variance among the samples was selected for 

further analysis. 

Outliers and mislabelled samples were removed when applicable, if they were identified as an outlier in 

provided metadata, if expression of sex-specific genes did not match the sex provided in metadata (Toker et 

al., 2016), or if they clustered with data from another tissue type in the same dataset based on genes found 

to be most differentially expressed between the tissue types. This resulted in the removal of 18/194 samples 

from Trabzuni et al. (2013), 3/44 samples from expression data from Stanley Medical Research Institute and 

3/93 samples from Zhang et al. (2005) dataset. 

Samples from pooled cell types that make up the NeuroExpresso database were processed by an in-house 

modified version of the “rma” function that enabled collective processing of data from Mouse Expression 

430A Array (GPL339) and Mouse Genome 430 2.0 Array (GPL1261) which share 22690 of their probesets. 

As part of the rma function, the samples are quantile normalized at the probe level. However, possibly due to 

differences in the purification steps used by different studies (Okaty et al., 2011), we still observed biases in 

signal distribution among samples originating from different studies. Thus, to increase the comparability 

across studies, we performed a second quantile normalization of the samples at a probeset level before 

selection of probes with the highest variance. After all processing the final data set included 11564 genes. 

Estimation of marker gene profiles (MGPs) 

For each cell type, relevant to the brain region analysed, we used the first principal component of the 

corresponding marker gene set expression as a surrogate for cell type proportions. This method of marker 
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gene profile estimation is similar to the methodology of multiple previous works that aim to estimate relative 

abundance of cell types in a whole tissue sample (Chikina et al., 2015; Westra et al., 2015; Xu et al., 2013). 

Principal component analysis was performed using the “prcomp” function from the “stats” R package, using 

the “scale = TRUE” option. It is plausible that some marker genes will be transcriptionally differentially 

regulated under some conditions (e.g. disease state), reducing the correspondence between their 

expression level with the relative cell proportion. A gene that is thus regulated is expected to have reduced 

correlation to the other marker genes with expression levels primarily dictated by cell type proportions, which 

will reduce their loading in the first principal component. To reduce the impact of regulated genes on the 

estimation process, we removed marker genes from a given analysis if their loadings had the opposite sign 

to the majority of markers when calculated based on all samples in the dataset and recalculate loadings and 

components using the remaining genes. This was repeated until all remaining genes had loadings with the 

same signs. Since the sign of the loadings of the rotation matrix (as produced by prcomp function) is 

arbitrary, to ease interpretation between the scores and the direction of summarized change in the 

expression of the relevant genes, we multiplied the scores by -1 whenever the sign of the loadings was 

negative. For visualization purposes, the scores were normalized to the range 0-1. Two sided Wilcoxon rank-

sum test (“wilcox.test” function from the “stats” package in R, default options) was used to compare between 

the different experimental conditions. 

For estimations of cell type MGPs in samples from frontal cortex and white matter from the Trabzuni study 

(Trabzuni et al., 2013), results were subjected to multiple testing correction by the Benjamini & Hochberg 

method (Benjamini and Hochberg, 1995). For the Parkinson’s disease datasets from Moran et al. (2006) and 

Lesnick et al. (2007), we estimated MGPs for dopaminergic neuron markers in control and PD subjects. 

Moran et al. data included samples from two sub-regions of substantia nigra. Since some of the subjects 

were sampled in only one of the sub-regions while others in both, the two sub-regions were analysed 

separately.  

For the SMRI collection of psychiatric patients we estimated oligodendrocytes MGPs based on expression 

data available through the SMRI website (as indicated above) and compared our results to experimental cell 

counts from the same cohort of subjects previously reported by Uranova et al. (2004). Figure 7B 

representing the oligodendrocyte cell counts in each disease group was adapted from Uranova et al. (2004). 

The data presented in the figure was extracted from Figure 1A in Uranova et al. (2004)  using 

WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/app/).  
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Code Accessibility 

All code is available as extended data. They are also maintained in the GitHub repositories lister below. 

Marker gene selection and marker gene profile estimation was performed with custom R functions provided 

within “markerGeneProfile” R package available on GitHub (https://github.com/oganm/markerGeneProfile). 

Human homologues of mouse genes were identified using “homologene” R package available on GitHub 

(https://github.com/oganm/homologene). 

Code for data processing and analysis can be found at “neuroExpressoAnalysis” repository available on 

GitHub (https://github.com/oganm/neuroExpressoAnalysis). 

Source code of the neuroexpresso.org we app can be found at “neuroexpresso” repository available on 

GitHub (https://github.com/oganm/neuroexpresso) 

Results 

Compilation of a brain cell type expression database 

A key input to our search for marker genes is expression data from purified pooled brain cell types and single 

cells. Expanding on work from Okaty et al. (2011), we assembled and curated a database of cell type-

specific expression profiles from published data (see Methods, Figure 1A). The database represents 36 

major cell types from 12 brain regions (Figure 1B) from a total of 263 samples and 30 single cell clusters. 

Frontal cortex is represented by both microarray and RNA-seq data, with 5 of the 15 cortical cell types 

represented exclusively by RNA-seq data. We used rigorous quality control steps to identify contaminated 

samples and outliers (see Methods). In the microarray dataset, all cell types except for ependymal cells are 

represented by at least 3 replicates and in the entire database, 14/36 cell types are represented by multiple 

independent studies (Table 1). The database is in constant growth as more cell type data becomes available. 

To facilitate access to the data and allow basic analysis we provide a simple search and visualization 

interface on the web, www.neuroexpresso.org (Figure 2). The app provides means of visualising gene 

expression in different brain regions based on the cell type, study or methodology, as well as differential 

expression analysis between groups of selected samples. 

Identification of cell type enriched marker gene sets  

We used the NeuroExpresso data to identify marker gene sets (MGSs) for each of the 36 cell types. An 

individual MGS is composed of genes highly enriched in a cell type in the context of a brain region (Figure 

3A). Marker genes were selected based on a) fold of change relative to other cell types in the brain region 
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and b) a lack of overlap of expression levels in other cell types (see Methods for details). This approach 

captured previously known marker genes (e.g. Th for dopaminergic cells (Pickel et al., 1976), Tmem119 for 

microglia (Bennett et al., 2016) (of note, Tmem119 was classified as downregulated in activated microglia in 

our analysis, corroborating previous reports of Satoh et al. (2016) and Erny et al. (2015)). We also identified 

numerous new candidate markers such as Cox6a2 for fast spiking parvalbumin (PV)+ interneurons. Some 

marker genes previously reported by individual studies whose data were included in our database, were not 

selected by our analysis. For example, Fam114a1 (9130005N14Rik), identified as a marker of fast spiking 

basket cells by Sugino et al. (2006), is highly expressed in oligodendrocytes and oligodendrocyte precursor 

cells (Figure 3B). These cell types were not considered in the Sugino et al. (2006) study, and thus the lack of 

specificity of Fam114a1 could not be observed by the authors. In total, we identified 2671 marker genes (3-

186 markers per cell type, (Table 1)). The next sections focus on verification and validation of our proposed 

markers, using multiple methodologies. 

Verification of markers by in situ hybridization 

Two cell types in our database (Purkinje cells of the cerebellum and hippocampal dentate gyrus granule 

cells) are organized in well-defined anatomical structures that can be readily identified in tissue sections. We 

exploited this fact to use in situ hybridization (ISH) data from the Allen Brain Atlas (ABA) (http://mouse.brain-

map.org) (Sunkin et al., 2013) to verify co-localization of known and novel markers for these two cell types. 

There was a high degree of co-localization of the markers to the corresponding brain structures, and by 

implication, cell types (Figure 4A-B). For dentate granule (DG) cell markers, all 16 genes were represented in 

ABA. Of these, 14 specifically co-localized with known markers (that is, had the predicted expression pattern 

confirming our marker selection), one marker exhibited non-specific expression and one marker showed no 

signal. For Purkinje cell markers, 41/43 genes were represented in ABA. Of these, 37 specifically co-

localized with known markers, one marker exhibited non-specific expression and three markers showed no 

signal in the relevant brain structure (Figure 4B). Figure 4A shows representative examples for the two cell 

types (details of our ABA analysis, including images for all the genes examined and validation status of the 

genes, are provided in extended data).  

The four markers for which no signal was detected (one marker of dentate gyrus granule cells and three 

markers of Purkinje cells) underwent additional scrutiny. For one of the markers of Purkinje cells (Eps8l2), 

the staining of cerebellar sections was inconsistent, with some sections showing no staining, some sections 

showing nonspecific staining and several sections showing the predicted localization. The three remaining 
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genes had no signal in ABA ISH data brain-wide. We considered such absence or inconsistency of ISH 

signal inconclusive. Further analysis of these cases (one DG marker, three Purkinje) suggests that the ABA 

data is the outlier. As part of our marker selection procedure, Pter, the DG cell marker in question, was found 

to have high expression in granule cells both within NeuroExpresso and Hipposeq – a data set that is not 

used for primary selection of markers (see methods). In addition, Hipposeq indicates specificity to DG cells 

relative to the other neuron types in Hipposeq. For the Purkinje markers, specific expression for one gene 

(Sycp1) was supported by the work of Rong et al. (2004), who used degeneration of Purkinje cells to identify 

potential markers of these cells (20/43 Purkinje markers identified in our study were also among the list of 

potential markers reported by Rong et al.). We could not find data to further establish expression for the two 

remaining markers of Purkinje cells (Eps8l2 and Smpx). However, we stress that the transcriptomic data for 

Purkinje cells in our database are from five independent studies using different methodologies for cell 

purification, all of which support the specific expression of Eps8l2 and Smpx in Purkinje cells. Overall, 

through a combination of examination of ABA and other data sources, we were able to find confirmatory 

evidence of cell-type-specificity for 53/57 genes, with two false positives, and inconclusive findings for two 

genes.  

We independently verified Cox6a2 as a marker of cortical fast spiking PV+ interneurons using triple label in 

situ hybridization of mouse cortical sections for Cox6a2, Pvalb and Slc32a1 (a pan-GABAergic neuronal 

marker) transcripts. As expected, we found that approximately 25% of all identified neurons were GABAergic 

(that is, Slc32a1 positive), while 46% of all GABAergic neurons were also Pvalb positive. 80% of all Cox6a2+ 

neurons were both Pvalb and Slc32a1 positive whereas Cox6a2 expression outside GABAergic cells was 

very low (1.65% of Cox6a2 positive cells), suggesting high specificity of Cox6a2 to PV+ GABAergic cells 

(Figure 5). 

Verification of marker gene sets in single-cell RNA-seq data 

As a further validation of our marker gene signatures, we analysed their properties in recently published 

single cell RNA-seq datasets derived from mouse cortex (Zeisel et al., 2015) and human cortex (Darmanis et 

al., 2015). We could not directly compare our MGSs to markers of cell type clusters identified in the studies 

producing these datasets since their correspondence to the cell types in NeuroExpresso was not clear. 

However, since both datasets represent a large number of individual cells, they are likely to include individual 

cells corresponding to the cortical cell types in our database. Thus, if our MGSs are cell type specific, and 

the corresponding cells are present in the single cell datasets, MGS should have a higher than random 
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chance of being co-detected in the same cells, relative to non-marker genes. A weakness of this approach is 

that a failure to observe a correlation might be due to absence of the cell type in the data set rather than a 

true shortcoming of the markers. Overall, all MGSs for all cell types with the exception of oligodendrocyte 

precursor cells were successfully validated (p<0.001, Wilcoxon rank sum test) in both single cell datasets 

(Table 3).  

NeuroExpresso as a tool for understanding the biological diversity and similarity of brain cells 

One of the applications of NeuroExpresso is as an exploratory tool for exposing functional and biological 

properties of cell types. In this section, we highlight three examples we encountered: We observed high 

expression of genes involved in GABA synthesis and release (Gad1, Gad2 and Slc32a1) in forebrain 

cholinergic neurons, suggesting the capability of these cells to release GABA in addition to their cognate 

neurotransmitter acetylcholine (Figure 6A). Indeed, co-release of GABA and acetylcholine from forebrain 

cholinergic cells was recently demonstrated by Saunders et al. (2015). Similarly, the expression of the 

glutamate transporter Slc17a6, observed in thalamic (habenular) cholinergic cells suggests co-release of 

glutamate and acetylcholine from these cells, recently supported experimentally  (Ren et al., 2011)) (Figure 

6A). Surprisingly, we observed consistently high expression of Ddc (Dopa Decarboxylase), responsible for 

the second step in the monoamine synthesis pathway in oligodendrocyte cells (Figure 6B).  This result is 

suggestive of a previously unknown ability of oligodendrocytes to produce monoamine neurotransmitters 

upon exposure to appropriate precursor, as previously reported for several populations of cells in the brain 

(Ren et al., 2016; Ugrumov, 2013). Alternatively, this finding might indicate a previously unknown function of 

Ddc. Lastly, we found overlap between the markers of spinal cord and brainstem cholinergic cells, and 

midbrain noradrenergic cells, suggesting previously unknown functional similarity between cholinergic and 

noradrenergic cell types. The common markers included Chodl, Calca, Cda and Hspb8, which were recently 

confirmed to be expressed in brainstem cholinergic cells (Enjin et al., 2010), and Phox2b, a known marker of 

noradrenergic cells (Pattyn et al., 1997).  

Marker Gene Profiles can be used to infer changes in cellular proportions in the brain 

Marker genes are by definition cell type specific, and thus changes in their expression observed in bulk 

tissue data can represent either changes in the number of cells or cell type specific transcriptional changes 

(or a combination). Marker genes of four major classes of brain cell types (namely neurons, astrocytes, 

oligodendrocytes and microglia) were previously used to gain cell type specific information from brain bulk 

tissue data (Hagenauer et al., 2016; Kuhn et al., 2011; Ramaker et al., 2017; Sibille et al., 2008; Skene and 
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Grant, 2016; P. P. C. Tan et al., 2013), and infer changes in cellular abundance. Following the practice of 

others, we applied similar approach to our marker genes, summarizing their expression profiles as the first 

principal component of their expression (see Methods) (Chikina et al., 2015; Westra et al., 2015; Xu et al., 

2013). We refer to these summaries as Marker Gene Profiles (MGPs).  

In order to validate the use of MGPs as surrogates for relative cell type proportions, we used bulk tissue 

expression data from conditions with known changes in cellular proportions. Firstly, we calculated MGPs for 

human white matter and frontal cortex using data collected by (Trabzuni et al., 2013). Comparing the MGPs 

in white vs. grey matter, we observed the expected increase in oligodendrocyte MGP, as well as increase in 

oligodendrocyte progenitor cell, endothelial cell, astrocyte and microglia MGPs, corroborating previously 

reported higher number of these cell types in white vs. grey matter (Gudi et al., 2009; Ogura et al., 1994; 

Williams et al., 2013). We also observed decrease in MGPs of all neurons, corroborating the low neuronal 

cell body density in white vs. grey matter (Figure 7A, Table 4). 

A more specific form of validation was obtained from a pair of studies done on the same cohort of subjects, 

with one study providing expression profiles (study 2 from SMRI microarray database, see Methods) and 

another providing stereological counts of oligodendrocytes (Uranova et al., 2004), for similar brain regions. 

We calculated oligodendrocyte MGPs based on the expression data and compared the results to 

experimental cell counts from Uranova et al. (2004). The MGPs were consistent with the reduction of 

oligodendrocytes observed by Uranova et al. in schizophrenia, bipolar disorder and depression patients. 

(Figure 7B, Table 4; direct comparison between MGP and experimental cell count at a subject level was not 

possible, as Uranova et al. did not provide subject identifiers corresponding to each of the cell count values). 

To further assess and demonstrate the ability of MGPs to correctly represent cell type specific changes in 

neurological conditions, we calculated dopaminergic profiles of substantia nigra samples in three expression 

data sets of Parkinson’s disease (PD) patients and controls from Moran et al. (2006) (GSE8397), Lesnick et 

al. (2007) (GSE7621) and Zhang et al. (2005) (GSE20295). We tested whether the well-known loss of 

dopaminergic cells in PD could be detected using our MGP approach. MGP analysis correctly identified 

reduction in dopaminergic cells in substantia nigra of Parkinson’s disease patients (Figure 7C, Table 4).  

Discussion 

Cell type specific expression database as a resource for neuroscience 

We present NeuroExpresso, a rigorously curated database of brain cell type specific gene expression data 

(www.neuroexpresso.org), and demonstrate its utility in identifying cell-type markers and in the interpretation 
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of bulk tissue expression profiles. To our knowledge, NeuroExpresso is the most comprehensive database of 

expression data for identified brain cell types. The database will be expanded as more data become 

available. 

NeuroExpresso allows simultaneous examination of gene expression associated with numerous cell types 

across different brain regions. This approach promotes discovery of cellular properties that might have 

otherwise been unnoticed or overlooked when using gene-by-gene approaches or pathway enrichment 

analysis. For example, a simple examination of expression of genes involved in biosynthesis and secretion 

of GABA and glutamate, suggested the co-release of these neurotransmitters from forebrain and habenular 

cholinergic cells, respectively.  

Studies that aim to identify novel properties of cell types can benefit from our database as an inexpensive 

and convenient way to seek novel patterns of gene expression. For instance, our database shows significant 

bimodality of gene expression in dopaminergic cell types from the midbrain (Figure 6C). The observed 

bimodality might indicate heterogeneity in the dopaminergic cell population, which could prove a fruitful 

avenue for future investigation. Another interesting finding from NeuroExpresso is the previously unknown 

overlap of several markers of motor cholinergic and noradrenergic cells. While the overlapping markers were 

previously shown to be expressed in spinal cholinergic cells, to our knowledge their expression in 

noradrenergic (as well as brain stem cholinergic) cells was previously unknown.  

NeuroExpresso can be also used to facilitate interpretation of genomics and transcriptomics studies. 

Recently (Pantazatos et al., 2016) used an early release of the databases to interpret expression patterns in 

the cortex of suicide victims, suggesting involvement of microglia. Moreover, this database has further 

applications beyond the use of marker genes, such as  understanding the molecular basis of cellular 

diversity (Tripathy et al., 2017).  

Importantly, NeuroExpresso is a cross-laboratory database. A consistent result observed across several 

studies raises the certainty that it represents a true biological finding rather than merely an artefact or 

contamination with other cell types. This is specifically important for unexpected findings such as the 

expression of Ddc in oligodendrocytes (Figure 6B).  

Validation of cell type markers 

To assess the quality of the marker genes, a subset of our cell type markers was validated by in situ 

hybridization (Cox6a2 as a marker of fast spiking basket cells, and multiple Purkinje and DG cell markers). 

Further validation was performed with computational methods in independent single cell datasets from 
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mouse and human. This analysis validated all cortical gene sets except Oligodendrocyte precursors (OP). In 

their paper, Zeisel et al. (2015) stated that none of the oligodendrocyte sub-clusters they identified were 

associated with oligodendrocyte precursor cells, which likely explains why we were not able to validate the 

OP MGP in their dataset. The Darmanis dataset however, is reported to include oligodendrocyte precursors 

(18/466 cells) (Darmanis et al., 2015), but again our OPC MGP did not show good validation. In this case the 

reason for negative results could be changes in the expression of the mouse marker gene orthologs in 

human, possibly reflecting functional differences between the human and mouse cell types (Shay et al., 

2013; Zhang et al., 2016). Further work will be needed to identify a robust human OPC signature. However, 

since most MGSs did validate between mouse and human data, it suggests that most marker genes 

preserve their specificity despite cross-species gene expression differences.  

Improving interpretation of bulk tissue expression profiles 

Marker genes can assist with the interpretation of bulk tissue data in the form of marker gene profiles 

(MGPs). A parsimonious interpretation of a change in an MGP is a change in the relative abundance of the 

corresponding cell type. Similar summarizations of cell type specific genes were previously used to analyse 

gene expression (Chikina et al., 2015; Newman et al., 2015; Westra et al., 2015; Xu et al., 2013) and 

methylation data (Jones et al., 2017; Shannon et al., 2017). Since our approach focuses on the overall trend 

of a MGS expression level, it should be relatively insensitive to expression changes in a subset of these 

genes. Still, we prefer to refer the term “marker gene profile” rather than “cell type proportions”, to emphasize 

the indirect nature of the approach. 

Our results show that MGPs based on NeuroExpresso marker gene sets (MGSs) can reliably recapitulate 

relative changes in cell type abundance across different conditions. Direct validation of cell count estimation 

based on MGSs in human brain was not feasible due to the unavailability of cell counts coupled with 

expression data. Instead, we compared oligodendrocyte MGPs based on a gene expression dataset 

available through the SMRI database to experimental cell counts taken from a separate study (Uranova et 

al., 2004) of the same cohort of subjects and were able to recapitulate the reported reduction of 

oligodendrocyte proportions in patients with schizophrenia, bipolar disorder and depression. Based on 

analysis of dopaminergic MGPs we were also able to capture the well-known reduction in dopaminergic cell 

types in PD patients. 

Limitations and caveats 

While we took great care in the assembly of NeuroExpresso, there remain a number of limitations and room 
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for improvement. First, the NeuroExpresso database was assembled from multiple datasets, based on 

different mouse strains and cell type extraction methodologies, which may lead to undesirable heterogeneity. 

We attempted to reduce inter-study variability by combined pre-processing of the raw data and 

normalization. However, due to insufficient overlap between cell types represented by different studies, many 

of the potential confounding factors such as age, sex and methodology could not be explicitly corrected for. 

Thus, it is likely that some of the expression values in NeuroExpresso may be affected by confounding 

factors. While our confidence in the data is increased when expression signals are robust across multiple 

studies, many of the cell types in NeuroExpresso are represented by a single study. Hence, we advise that 

small differences in expression between cell types as well as previously unknown expression patterns based 

on a single data source should be treated with caution. In our analyses, we address these issues by 

enforcing a stringent set of criteria for the marker selection process, reducing the impact of outlier samples, 

ignoring small changes in gene expression and validating the results in external data. However, it must be 

noted that it was not possible validate our markers for all cell types and brain regions. 

An additional limitation of our study is that the representation for many of the brain cell types is still lacking in 

the NeuroExpresso database. Therefore, despite our considerable efforts to ensure cell type-specificity of the 

marker genes, we cannot rule out the possibility that some of them are also expressed in one or more of the 

non-represented cell types. This problem is partially alleviated in cortex due to the inclusion of single cell 

data. As more such datasets become available, it will be easier to create a more comprehensive database. 

A related problem to the coverage of cell types in NeuroExpresso lies in the definition of the term “cell type”. 

Most cell types represented in NeuroExpresso are heterogeneous populations. For instance, fast-spiking 

basket cells as defined by microarray data matches 5 distinct clusters identified by Tasic et al. (2016) based 

on single cell RNA sequencing data. By considering them as a single cell type, we lose the ability to detect 

unique properties of the individual clusters. Heterogeneity also may reduce the confidence we have in our 

marker genes. If a selected marker is expressed in a subtype of another cell type, this will not be noticed in 

pooled expression data as the signal will be suppressed by other subtypes that do not express the gene. We 

hope to remedy this problem with increased availability of single cell data in the future. Where inter-cell type 

variability ends and new cell type begins is an ongoing discussion in the field. For the purposes of this study, 

we tried to ensure that cell types we define are accepted and studied by a portion of the community, and that 

the expression profiles of the cell types were distinct enough to allow marker gene identification. The data we 

make available to other researchers may be portioned into finer cell types or grouped together into more 

broad cell type groups depending on the aims of the researchers. 
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Finally, it must be noted that while we aim to infer changes in cell type abundance with MGPs, we do not 

attempt to estimate the cell type proportions themselves even though many established deconvolution 

methods do accomplish this using databases of expression profiles (Chikina et al., 2015; Grange et al., 

2014; Newman et al., 2015). These approaches operate on the assumption that the absolute expression 

levels of genes will be conserved across the cell types in the reference database and cell types that make up 

the whole tissue sample. In our work, we avoid these approaches because our database (mouse cell types) 

and the whole tissue samples we analyse (human brain tissue) come from different species which may 

cause changes in gene expression, while marker genes are more likely to be conserved. 

In summary, we believe that NeuroExpresso is a valuable resource for neuroscientists. We identified 

numerous novel markers for 36 major cell types and used them to estimate cell type profiles in bulk tissue 

data, demonstrating high correlation between our estimates and experiment-based cell counts. This 

approach can be used to reveal cell type specific changes in whole tissue samples and to re-evaluate 

previous analyses on brain whole tissues that might be biased by cell type-specific changes. Information 

about cell type-specific changes is likely to be very valuable since conditions like neuron death, 

inflammation, and astrogliosis are common hallmarks of in neurological diseases.  
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Figures 

 

Figure 1: Mouse brain cell type specific expression database compiled from publicly available datasets. (A) 

Workflow of the study. Cell type specific expression profiles are collected from publicly available datasets and personal 

communications. Acquired samples are grouped based on cell type and brain region. Marker genes are selected per 

brain region for all cell types. Marker genes are biologically and computationally validated and used in estimation of cell 

type proportions. (B) Brain region hierarchy used in the study. Samples included in a brain region based on the region 

they were extracted from. For instance, dopaminergic cells isolated from the midbrain were included when selecting 

marker genes in the context of brainstem and whole brain. Microglia extracted from whole brain isolates were added to 

all brain regions.  
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Figure 2: The NeuroExpresso.org web application. The application allows easy visualization of gene expression 

across cell types in brain regions. Depicted is the expression of cell types from frontal cortex region. Alternatively, cell 

types can be grouped based on their primary neurotransmitter or the purification type. The application can be reached at 

www.neuroexpresso.org. 

 

Figure 3: Marker genes are selected for mouse brain cell types and used to estimate cell type profiles. (A) 

Expression of top marker genes selected for cell cortical cell types in cell types represented by RNA-seq (left) and 

microarray (right) data in NeuroExpresso. Expression levels were normalized per gene to be between 0-1 for each 

dataset. (B) Expression of Fam114a1 in frontal cortex in microarray (left) and RNA-seq (right) datasets. Fam114a1 is a 

proposed fast spiking basket cell marker. It was not selected as a marker in this study due to its high expression in 

oligodendrocytes and S100a10 expressing pyramidal cells that were both absent from the original study.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 10, 2017. ; https://doi.org/10.1101/089219doi: bioRxiv preprint 

http://www.neuroexpresso.org/
https://doi.org/10.1101/089219
http://creativecommons.org/licenses/by-nc/4.0/


29 

 

 

Figure 4: Validation of candidate markers using the Allen brain atlas (A) In situ hybridization images from the Allen 

Brain Atlas. Rightmost panels show the location of the image in the brain according to the Allen Brain mouse reference 

atlas. Panels on the left show the ISH image and normalized expression level of known and novel dentate granule (upper 

panels) and Purkinje cell (lower panels) markers. (B) Validation status of marker genes detected for Purkinje and dentate 

granule cells. Figures used for validation and validation statuses of individual marker genes can be found in extended 

data (Figure 4-1,2,3,4). 

 

Figure 5: Single-plane image of mouse sensorimotor cortex labeled for Pvalb, Slc32a1, and Cox6a2 mRNAs and 

counterstained with NeuroTrace. Arrows indicate Cox6a2+ neurons. Bar = 10 µm. 
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Figure 6: NeuroExpresso reveals gene expression patterns. (A) Expression of cholinergic, GABAergic and 

glutamatergic markers in cholinergic cells from forebrain and thalamus. Forebrain cholinergic neurons express 

GABAergic markers while thalamus (hubenular) cholinergic neurons express glutamatergic markers. (B) (Left) 

Expression of Ddc in oligodendrocyte samples from Cahoy et al., Doyle et al. and Fomchenko et al. datasets and in 

comparison to dopaminergic cells and other (non-oligodendrocyte) cell types from the frontal cortex in the microarray 

dataset. In all three datasets expression of Ddc in oligodendrocytes is comparable to expression in dopaminergic cells 

and is higher than in any of the other cortical cells. Oligodendrocyte samples show higher than background levels of 

expression across datasets. (Right) Ddc expression in oligodendrocytes, oligodendrocyte precursors, and other cell 

types from Tasic et al. single cell dataset. (C) Bimodal gene expression in two dopaminergic cell isolates by different 

labs. Genes shown are labeled as marker genes in the context of midbrain if the two cell isolates are labeled as different 

cell types. 
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Figure 7: Marker gene profiles reveal cell type specific changes in whole tissue data. (A) Estimation of cell type 

profiles for cortical cells in frontal cortex and white matter. Values are normalized to be between 0 and 1. (***p<0.001). 

(B) Left: Oligodendrocyte MGPs in Stanley C cohort. Right: Morphology based oligodendrocyte counts of Stanley C 

cohort. Figure adapted from Uranova et al. (2004). (C) Estimations of dopaminergic cell MGPs in substantia nigra of 

controls and Parkinson’s disease patients. Values are relative and are normalized to be between 0 and 1 and are not 

reflective of absolute proportions (**p <0.01, ***p<0.001). 

Tables 

Table 1 Cell types in NeuroExpresso database 

Cell Type Sample count Marker gene count GEO accession and reference 

Whole Brain 

Astrocyte 9 / 1* 94** GSE9566 (Cahoy et al., 2008), GSE35338 (Zamanian 
et al., 2012), GSE71585 (Tasic et al., 2016) 

Oligodendrocyte 25 / 1* 22** GSE48369, (Bellesi et al., 2013), GSE9566 (Cahoy et 
al., 2008), GSE13379 (Doyle et al., 2008), GSE30016 
(Fomchenko et al., 2011), GSE71585 (Tasic et al., 
2016) 

Microglia 3 / 1* 131** GSE29949 (Anandasabapathy et al., 2011), GSE71585 
(Tasic et al., 2016) 

Cortex 

FS Basket (G42) 13 / 5* 18 GSE17806 (Okaty et al., 2009), GSE8720 (Sugino et 
al., 2014), GSE2882 (Sugino et al., 2006), GSE71585 
(Tasic et al., 2016) 
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Martinotti (GIN) 3 / 1* 15 GSE2882 (Sugino et al., 2006), GSE71585 (Tasic et al., 
2016)  

VIPReln (G30) 6 / 1* 33 GSE2882 (Sugino et al., 2006), GSE71585 (Tasic et al., 
2016) 

Pan-Pyramidal*** 9 / 17 * 35 See below 

Pyramidal  
cortico-thalamic 

3 / 2* 2 GSE2882 (Schmidt et al., 2012), GSE71585 (Tasic et 
al., 2016) 

Pyramidal 
Glt25d2 

3 / 2* 3 GSE35758 (Schmidt et al., 2012), GSE71585 (Tasic et 
al., 2016) 

Pyramidal 
S100a10 

3 / 4* 2 GSE35751 (Schmidt et al., 2012), GSE71585 (Tasic et 
al., 2016) 

Layer 2 3 Pyra 2* 3 GSE71585 (Tasic et al., 2016) 

Layer 4 Pyra 3* 5 GSE71585 (Tasic et al., 2016) 

Layer 6a Pyra 2* 6 GSE71585 (Tasic et al., 2016) 

Layer 6b Pyra 2* 9 GSE71585 (Tasic et al., 2016) 

Oligodendrocyte 
precursors 

1* 184 GSE71585 (Tasic et al., 2016) 

Endothelial 2* 178 GSE71585 (Tasic et al., 2016) 

BasalForebrain 

Forebrain 
cholinergic 

3 90 GSE13379 (Doyle et al., 2008) 

Striatum 

Forebrain  
cholinergic 

3 45 GSE13379 (Doyle et al., 2008) 

Medium spiny 
neurons  

39 74 GSE13379 (Doyle et al., 2008), GSE55096 (Heiman et 
al., 2014), GSE54656 (Maze et al., 2014), GSE48813 
(C. L. Tan et al., 2013) 

Amygdala 

Glutamatergic 3 10 GSE2882 (Sugino et al., 2006) 

Pyramidal Thy1 
Amyg 

12 21 GSE2882 (Sugino et al., 2006)  

Hippocampus 

DentateGranule 3 17 GSE11147 (Perrone-Bizzozero et al., 2011) 

GabaSSTReln 3 54 GSE2882 (Sugino et al., 2006) 

Pyramidal Thy1 
Hipp 

12 17 GSE2882 (Sugino et al., 2006) 

Subependymal 

Ependymal 2 50 GSE18765 (Beckervordersandforth et al., 2010) 

Thalamus 

GabaReln 3 53 GSE2882 (Sugino et al., 2006) 

Hypocretinergic 4 35 GSE38668 (Dalal et al., 2013) 

Thalamus  
cholinergic 

3 40 GSE43164 (Görlich et al., 2013) 

Midbrain 

Midbrain  
cholinergic 

3 34 GSE13379 (Doyle et al., 2008) 

Serotonergic 3 18 GSE36068 (Dougherty et al., 2013) 

Substantia nigra 

Dopaminergic 30 58** No accession **** (Chung et al., 2005), GSE17542 
(Phani et al., 2010) 

LocusCoeruleus       

Noradrenergic 9 133 GSE8720 (Sugino et al., 2014), No accession**** 
(Sugino et al. Unpublished) 

Cerebellum 
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Basket 16 6 GSE13379 (Doyle et al., 2008), GSE37055 (Paul et al., 
2012) 

Bergmann 3 52 GSE13379 (Doyle et al., 2008) 

Cerebral granule 
cells 

3 11 GSE13379 (Doyle et al., 2008) 

Golgi 3 26 GSE13379 (Doyle et al., 2008) 

Purkinje 44 43 GSE13379 (Doyle et al., 2008), GSE57034 (Galloway 
et al., 2014), GSE37055 (Paul et al., 2012), No acces-
sion**** (Rossner et al., 2006), GSE8720 (Sugino et al., 
2014),  No accession**** Sugino et al. unpublished 

SpinalCord 

Spinal cord 
cholinergic 

3 124 GSE13379 (Doyle et al., 2008) 

Sample count - number of samples that representing the cell type; Gene count - number of marker genes detected for 

cell type. *The number of clusters from RNA-seq data. **Marker genes for these cell types are identified in multiple 

regions displayed yet only the number of the genes that are found in the region specified on the table is shown for the 

sake of conservation of space. Astrocytes, microglia and oligodendrocyte markers are identified in the context of all other 

brain regions (except cerebellum for astrocytes) and dopaminergic markers are also identified for midbrain. ***Pan-

pyramidal is a merged cell type composed of all pyramidal samples. ****Data obtained directly from authors. 
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Table 2: Matching single cell RNA sequencing data from Tasic to well defined cell types. 

Microarray cell type Tasic et al. cell cluster Matching method NeuroExpresso 
cell type name 

Astrocyte Astro Gja1 Direct match Astrocyte 

Microglia Micro Ctss Direct match Microglia 

Oligodendrocyte Oligo Opalin Direct match Oligodendrocyte 

FS Basket (G42) Pvalb Gpx3, Pvalb Rspo2, Pvalb 
Wt1, Pvalb Obox3, Pvalb Cpne5 

Definition: fast spiking 
pval positive interneurons  

FS Basket 
(G42) 

Martinotti (GIN) Sst Cbln4 Direct match Martinotti (GIN) 

VIPReln (G30) Vip Sncg Unique Vip and Sncg ex-
pression, high Sncg ex-
pression in microarray cell 
type 

VIPReln (G30) 

Pyramidal Glt25d2 L5b Tph2, L5b Cdh13 Definition: Glt25d2 posi-
tive Fam84b positive 

Pyramidal 
Glt25d2 

Pyramidal S100a10 L5a Hsd11b1, L5a Batf3, L5a 
Tcerg1l, L5a Pde1c 

Definition: S100a10 ex-
pressing cells from layer 
5a 

Pyramidal 
S100a10 

Pyramidal CrtThalamic L6a Car12, L6a Syt17 Direct match Pyramidal Crt-
Thalamic 

--- Endo Myl9, Endo Tbc1d4 New cell type Endothelial 

--- OPC Pdgfra New cell type Oligodendrocyte 
precursors 

--- L4 Ctxn3, L4 Scnn1a, L4 Arf5 New cell type Layer 4 Pyra 

--- L2 Ngb, L2/3 Ptgs2 New cell type Layer 2 3 Pyra 

--- L6a Mgp, L6a Sla New cell type Layer 6a Pyra 

--- L6b Serpinb11, L6b Rgs12 New cell type Layer 6b Pyra 

List of molecular cell types identified by Tasic et al. and their corresponding cell types in NeuroExpresso. Matching 

method column defines how the matching was performed. Direct matches are one to one matching between the 

definition provided by Tasic et al. for the molecular cell types and definition provided by microarray samples. For 

“Definition” matches, description of the cell type in the original source is used to find molecular cell types that fit the 

definition. VIPReln – Vip Sncg matching was done based on unique Sncg expression in VIPReln cells in the microarray 

data. New cell types are well defined cell types that have no counterpart in microarray data. 

Table 3: Coexpression of cortical MGSs in single cell RNA-seq data. 

 Zeisel et al. (mouse) Darmanis et al. (human) 

Cell Types p-value Gene Count p-value Gene Count 

Endothelial p<0.001 180 p<0.001 157 

Astrocyte p<0.001 282 p<0.001 239 

Microglia p<0.001 248 p<0.001 201 

Oligodendrocyte p<0.001 156 p<0.001 201 

Oligodendrocyte 
precursors 

0.831 193 0.999 203 

FS Basket (G42) p<0.001 26 p<0.001 26 

Martinotti (GIN) p<0.001 21 p<0.001 20 

VIPReln (G30) p<0.001 43 p<0.001 36 

Pyramidal p<0.001 34 p<0.001 27 

Statistics are calculated by Wilcoxon rank sum test.  
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Table 4: Summaries of statistical analyses.  

Figure 7A 
        

 
Frontal Cortex 
(n= 91) 

White Matter (n= 88) Group comparison 
  

 
Mean SD Mean SD W p value 

  

Endothelial 0.265 0.117 0.64 0.112 42 p<0.001 
  

Astrocyte 0.401 0.135 0.757 0.101 136 p<0.001 
  

Microglia 0.179 0.092 0.708 0.135 4 p<0.001 
  

Oligodendrocyte 0.226 0.107 0.815 0.087 2 p<0.001 
  

Olig. precursors 0.215 0.123 0.817 0.078 0 p<0.001 
  

FS Basket (G42) 0.865 0.081 0.27 0.115 7744 p<0.001 
  

VIPReln (G30) 0.792 0.102 0.288 0.142 7718 p<0.001 
  

Pyramidal 0.877 0.062 0.212 0.112 7744 p<0.001 
  

Figure 7B (left) 
  

 
Mean SD W (vs 

control) 
p value (vs 
control) 

 
   

Schizophrenia 
(n=10) 

0.598 0.129 75 0.013 
    

Bipolar (n=11) 0.334 0.242 102 p<0.001 
    

Depression (n=9) 0.386 0.13 89 p<0.001 
    

Control (n=11) 0.78 0.146 NA NA 
    

Figure 7B (right) 
  

See Uranova et al., 2004 
  

Figure 7C 
  

 
Parkinson's disease Control Group 

comparison  
Mean SD n Mean SD n W p value 

Lesnick 0.26 0.179 16 0.578 0.263 9 119 0.007 

Moran Lateral 0.174 0.135 9 0.665 0.246 7 60 0.001 

Moran Medial 0.305 0.191 15 0.799 0.191 8 115 p<0.001 

Zhang 0.201 0.101 10 0.489 0.287 18 148 0.004 

All statistics are calculated by Wilcoxon rank sum test 

Extended Data 

Figure 4B 

Figure 4-1: Expression of dentate granule cell markers discovered in the study in Allen Brain Atlas mouse brain in situ 

hybridization database. The first gene is Prox1, a known marker of dentate granule cells. The intensity is color-coded to 

range from blue (low expression intensity), through green (medium intensity) to red (high intensity). All images except 

Ogn is taken from the sagittal view. Ogn is taken from the coronal view. 

Figure 4-2: Expression of Purkinje markers discovered in the study in Allen Brain Atlas mouse brain in situ hybridization 

database. The first gene is Pcp2, a known marker of Purkinje cells. The intensity is color-coded to range from blue (low 

expression intensity), through green (medium intensity) to red (high intensity).} All images are taken from the sagittal 

view. 
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Figure 4-3: Validation status of dentate granule cell markers. 

Figure 4-4: Validation status of Purkinje cell markers. 

neuroExpressoAnalysis-master.zip 

Code for data acquisition, analysis and generation of all figures. 

markerGeneProfile-master.zip 

R package to perform marker gene profile estimations on whole tissue expression data and to select marker 

genes from cell type specific expression data. 

homologene-master.zip 

R package to find gene homologues across species. 
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