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Abstract

We used a transgenic HeLa cell line that reports cell cycle phases
through fluorescent, ubiquitination-based cell cycle indicators (Fucci), to
produce a reference dataset of more than 270 curated single cells. Micro-
scopic images were taken from each cell followed by RNA-sequencing, so
that single-cell expression data is associated to the fluorescence intensity
of the Fucci probes in the same cell. We developed an open data man-
agement and quality control workflow that enables users to replicate the
processing of the sequence and microscopic image data that we deposited
in public repositories. The workflow outputs a table with metadata, that
is the starting point for further studies on these data. Beyond its use for
cell cycle studies, We also expect that our workflow can be adapted to
other single-cell projects using a similar combination of sequencing data
and fluorescence measurements.

Background & Summary

Growing cells represent a heterogeneous population of cells alternating between
different cell cycle phases. Several methods to investigate cell cycle stages are
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available, for instance fluorescence labeling of cell cycle specific marker pro-
teins, staining with fluorescent DNA dyes or cell culture synchronization. How-
ever, these methods are often hard to combine with existing protocols for high-
throughput single-cell gene expression analysis. The Fucci probe system is a set
of fluorescent proteins fused with cell-cycle dependent degradation boxes [1]. In
their progression through the cell cycle, Fucci cells alternate between red, green
and no fluorescence. In short, only red fluorescence corresponds to G1, only
green fluorescence to G2, a mix of both to some transitional stages from G1 to
G2, and no fluorescence to some transitional stages from G2 to G1. We obtained
fluorescence measurements of hundreds of individual Fucci cells (see methods)
and generated unstranded paired-end RNA-sequencing libraries using the C1
microfluidics technology (Fluidigm). We intend to use the combined image and
transcriptome data to enable the discovery of novel cell cycle marker genes that
can be used together with known cell cycle related genes to infer cell cycle phases
with single-cell expression data. In addition to this core data, we also collected
metrics useful for quality control and curation: the cDNA yield after the first
cDNA amplification, the sequencing yield, and the number of reads matching
reference sequences such as spikes, ribosomal RNAs or known artefacts. The
whole data processing workflow is implemented in literate programming based
on R markdown files. We use three publicly accessible repositories to share all
sequence and image data, as well as commented source code for data processing
(Data Citation 1, 2, 3). A comprehensive overview of all experimental steps and
data management is shown in Fig. 1.

Methods

Cell culture and capture

Cells were cultured in DMEM medium (Wako cat num. 044-29765) supple-
mented with 10 % FBS (Nichirei Biosciences, cat num. 171012, lot DCE7025)
and penicillin / streptomycin (Wako cat num. 168-23191), and dissociated by
trypsin treatment (Gibco). The cell size (between 14.1 and 15.2 ym) and viabil-
ity (92 to 98 %) of the cell concentration was estimated using the Countess Au-
tomated Cell Counter (Invitrogen) before loading 3,000 cells in a C1 single-cell
Auto Prep arrays (Fluidigm, cat num. 100-6041) for mRNA-sequencing (10-17
pm) following the manufacturer’s instructions. RNA spikes (ArrayControl RNA
Spikes, Ambion, AM1780) were introduced in each chamber as described in the
manufacturer’s user protocol. For the last three runs two more spikes (number
3 and 6) were added at a 10 and 100 times lower concentration respectively.

Imaging

We used a Fucci variant, which contains mCherry, mVenus, and AmCyan, fused
to the same regulatory domains of human Cdtl and Geminin as used in the
original Fucci [1], but in distict combination. Pictures of each cell captured in
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the C1 capture arrays were taken with a Cellomics ArrayScan VTI High Content
Analysis Reader (Thermo Scientific). For each chamber, pictures were taken in
bright field, with a green filter (excitation bandwidth: 480-495 nm, emission
bandwidth: 510-545 nm), and with a red filter (excitation bandwidth: 565-580
nm, emission bandwidth: 610-670 nm) (Thermo Scientific). While these settings
do not let us take advantage of the blue transgene, the recovered information
is enough to order the cells on a pseudotime axis [2]. The full characterisation
of the Fucci variant is beyond the scope of this work and will be presented in
a separate manuscript that will be the primary reference for this new cell line.
The quantification of fluorescence intensity was semi-automated using the free
‘Fiji’ software [3] with a customized macro (‘fluorescence’ folder [Data Citation
3]). The scanning and image acquisition process for one C1 capture array took
about 15 min.

Library preparation and sequencing

Single-cell RNA-sequencing libraries were prepared following the manufacturer’s
manual (Fluidigm protocol PN 100-5950 Al). In brief, single-cell RNAs were
reverse-transcribed with the SMARTer Ultra Low RNA Kit for the Fluidigm
C1 System, (Clontech 634833/ TaKaRa Z4833N), the cDNAs were amplified
inside the capture arrays with Advantage 2 PCR enzyme (Clontech, PN 639206),
and transferred to a 96-well plate. They were then quantified by fluorimetry
using the PicoGreen [4] intercalating dye and then fragmented by tagmentation
with the Nextera XT DNA technology (Illumina FC-131-1096), followed by
multiplexing by combination of 50 (S501-S508) and 30 (N701-N712) indexes
(Illumina FC-131-1002) and sequencing (HiSeq 2500 Rapid Run mode, 150 nt,
paired-end).

Code availability

All scripts used for the processing of the sequence and image data are freely
accessible on figshare (Data Citation 3). Custom scripts are available as R
markdown files and are either written in R or as Linux shell scripts following
the ‘literate programming’ and ‘reproducible research’ paradigms.

Data Records

All data is deposited in three open repositories, for the source code and tables
with raw data measurements, the sequencing output and the single-cell image
files.

The RNA-sequencing paired-end fastq files can be accessed through the DNA
DataBank of Japan (DDBJ) (Data Citation 1). A script for the batch download
and renaming of fastq files according to unique cell identifiers instead of DDBJ
accession numbers can be found in the ‘DDBJ’ folder on figshare (Data Citation
3).
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Single-cell image files can be downloaded from or viewed directly using an in-
house developed database (Data Citation 2). Image files are available in bitmap
and Cellomics system-specific C01 format. The C01 format files have been
used for semi-automated quantification of fluorescence intensities. A detailed
description on the intensity quantification and quality checks based on images
can be found in the ‘fluorescence’ directory on figshare (Data Citation 3).

Apart from image and sequence data we also utilized raw data from fluo-
rimetric assays to measure the cDNA concentration after the cDNA synthesis
step in the C1 capture array, which can be found in the ‘cDNA _concentration’
folder on figshare (Data citation 3).

Assembly of the metadata table

The metadata for each of the 480 sample observations, that is the final output
of our workflow, is stored in a table called ‘combined.csv’ in the ‘combine all’
folder on figshare (Data Citation 3). This table is to be used for quality assess-
ment and downstream analysis of the dataset. It includes columns to identify
cells with a unique ‘cell id’, to indicate their coordinates in the 96-well plates
used for tagmentation, to provide the normalized fluorescence intensities in the
red and green filter channels and to indicate pass and fail results for quality
checks such as the visual curation of cell images and the analysis of library read
numbers. This table also identifies the standard positive and negative control
samples, which were multiplexed in place of samples from chambers where no
cell was captured. Lastly, this table includes columns with read counts matching
reference sequences for spikes, rRNAs; Nextera primers and the HPV18 genome.

Technical Validation

Cell detection and image curation.

All single-cell images were visually screened by two independent curators and
cells were flagged with an error type of 0 if a normal cell was detected, 1 if no
cell was present, 2 if debris was observed, 3 if the camera focus was off and 4 if
more than one cell was found. When in doubt about it’s status, a cell was not
flagged with type 0.

Initial inspection of the fluorescence values revealed some duplicates unlikely
to happen by chance, which were the symptom of a software bug related to the
case-insensitivity of the file system used to store the data. Cells affected by this
data loss are flagged for removal in the metadata table, and the imaging proce-
dure was corrected to avoid exhausting the alphabet letters when constructing
the two-character file names used by the Cellomics system (the chambers in the
C1 capture array are organized following a 48 x 2 geometry).
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Normalization of fluorescence intensities

For each fluorescence image we estimated the raw foreground spot intensity and
the background intensity of a fixed cell-free area and summarized the quantified
intensities by using the subtraction model [5]. Quality controls on the summa-
rized channel signals highlighted their characteristic multi-modal distribution
and the existence of run-specific, non-biological variation that had to be cor-
rected prior to further analysis. Among others, we assume that small differences
in exposure time settings for the first two runs (1772-062-248 and 1772-062-249)
are a source of the observed variation. Furthermore, an auto-focus option was
used for the first three runs, whereas fixed camera settings have been applied
to the last two runs (1772-067-038, 1772-067-039).

We fitted the run factors on the log-transformed background-adjusted sig-
nals of each channel and applied a linear one-way ANOVA model to remove the
effects from the data. This strategy had two drawbacks. First, the range and
the modes of the background-adjusted signal distributions differed substantially
across runs (potentially as a result of the image capture settings). Thus, ap-
plying one-way ANOVA simply shifted the data distributions to equalize their
means, but it did not adjust for run effects. Second, the model does not sat-
isfy the N(0, 0?) assumption for the residuals. The respective P-value of the
Kolmogorov-Smirnov test for normality was less than 1%.

To detect and remove the unwanted effects, we fitted the log-transformed sig-
nals of each channel to a latent class, Bayesian mixture of regression model [6, 7|
that estimated the optimal number of mixtures (modes of the signal distribu-
tion) for each run, and removed the run effect by a two-way factorial ANOVA
model. The factors of that model were the runs, the estimated mixtures (a
binary variable separating the sub-populations around each mode) and their
interaction. This model produced comparable signal densities across runs and
generated approximately N(0, 02) distributed residuals. The run corrected sig-
nals were consequently adjusted by the normexp model [8], that deconvolved the
signal into its exponentially distributed component (representing the estimated
spot intensity) and its normally distributed component (accounting for random
noise). By design, the estimated signals of the normexp model are bound to
be positive (it sets all negative background-adjusted, run-corrected signals into
small positive values changed by a constant k that minimizes the data variabil-
ity [8]). The possibility of having negative background-adjusted, run-corrected
signals in both channels was excluded by our quality filters. However, negative
values in a single channel are possible, biologically meaningful, and eventually
associated to a certain cell cycle phase. All scripts and plots for our fluorescence
data correction method can be found in the ‘Intensity correction’ directory on
figshare (Data Citation 3).

cDNA yields

Within the C1 system cells are lysed, polyadenylated RNAs are reverse-transcribed
and ¢cDNAs amplificated by PCR. These PCR products are then transferred to
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a 96-well plate (one well per cell) and their concentration is quantified by fluo-
rimetry. We observed a strong variation of the average yield among the five C1
capture array runs (Fig. 2a). Nevertheless, except for the 3rd run 1772-064-103,
where the concentration never exceeded 0.7 ng/ul, a bimodal distribution of
c¢DNA yields can be seen (‘cDNA _concentration’ directory [Data citation 3|).
Since every chamber contained RNA spikes no yield was exactly zero, but the
lowest yields correspond to chambers of the C1 capture array where no cell was
captured (Fig. 2b). This suggests that in situations where it is not possible or
desirable to take images of each chamber, the cDNA yields may be used to flag
chambers of the C1 capture array that had no cell.

Sequencing

After tagmentation and multiplexing with the Nextera kits, single-cell libraries
were pooled and sequenced in Rapid Run mode on HiSeq 2500 sequencers.
Individual runs were sequenced on separate flow cell lanes, yielding between
172,535,190 and 110,618,416 read pairs. The number of pairs per cell was there-
fore higher than 1 million on average. Given that the final steps of the library
preparation before multiplexing were done in 96-well plates, we inspected the
sequencing yields for possible bias correlating with rows or columns of the plates
(Fig. 3a, b) (‘HiSeq’ directory [Data Citation 3]). Although no plate position
bias was found, we detected a probable pipetting error, where libraries from
column 08 of the plate in run 1772-064-103 had almost twice as many reads as
the previous columns of the same plate. Additionally, libraries from its neighbor
column 09 did not yield a considerable read number (Fig. 3b). The single-cell
libraries corresponding to these two columns of run 1772-064-103 were conse-
quently flagged for removal.

RNA spikes and control sequences

Following Fluidigm’s protocol, a serial dilution (10z) of ArrayControl RNA
spikes (Ambion) was present in the cell loading buffer, and therefore at an equal
concentration in each chamber. Using the TagDust2 software [9], we counted the
number of reads matching the spike sequences (‘control-sequences’ folder [Data
Citation 3]). In absence of cells in the capture chamber, the proportion of spikes
in the libraries was strongly elevated (Fig. 3), which suggests another possible
way to detect the absence of cells when no microscopy images are available.
Using the same approach, we also counted the reads matching rRNA, Nextera
primers, and the HPV18 genome, of which a fragment is integrated in the HeLa
cells.

Usage Notes

The dataset can be used to identify known and novel transcript markers of the
cell cycle. One aim of the downstream analysis of this dataset is to create a
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model for cell cycle status inference on the single-cell level based on expression
data. Previously, a new method to identify transcriptional dynamics of oscil-
lating genes in single-cell RNA-seq data was tested using H1-Fucci cells among
others [10]. Other groups have used single-cell transcriptome data in mouse
embryonic stem cells to estimate the expression variance contributed by the cell
cycle [11], and in different human cell lines to estimate the amount that cell
cycle contributes to overall variability of gene expression in individual cells [12].
Nevertheless, no reliable cell cycle prediction model for single-cells has been es-
tablished yet. Moreover, there are other possible uses, such as the study of cell
cycle specific splice forms (taking advantage of the 150 nt read length) or the
inference of regulatory networks underlying cell cycle phase transition events, or
simply for benchmarking of other C1 RNA-sequencing datasets as well as anal-
ysis workflows. There are a few limitations with this dataset. We expect batch
normalization to be necessary because the data was produced over 4 months by
multiple operators on different sequencing instruments. Three out of five runs
have much reduced spike concentrations, therefore the spike data in this dataset
cannot be used for data normalization (‘control-sequences’ folder [Data Citation
3]). Also, our experimental design is not suited for the study of the GO phase.
In future works, this issue might be addressed by using primary cells from Fucci
mouse [13] or Fucci zebrafish [14].

The analysis workflow was written and documented in order to be reusable in
other studies. In particular, the default C1 RNA-sequencing workflow includes
a live/dead staining that also produces red and green fluorescence values, which
fits into our pipeline.

An integrated single-cell database platform is developed within RIKEN CLST
and can be used to quickly screen image files and metadata of the HeLa Fucci
dataset (Data Citation 2).
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Figures Legends

Fig. 1: Experimental workflow and data management. We captured single cells
via the C1 capture array and used an automated microscopy system to take im-
ages of all cell capture chambers. After imaging the cells were lysed, and cDNA
synthesis as well as cDNA amplification were done in the Fluidigm’s commercial
C1 Single-Cell Auto Prep System. Next, cDNA amplicons were transferred to a
96-well plate on which we utilized Nextera’s tagmentation technology to perform
fragmentation and adaptor ligation simultaneously. After an index PCR step,
single-cell samples were pooled and sequenced together on one lane of the Illu-
mina HiSeq 2500 device. Image data in bitmap and CO1 format were uploaded
to the Dryad digital repository, however the DOI for the Dryad repository will
only become publicly accessible upon publication in a peer reviewed journal.
In the meantime the image data can be obtained elsewhere (Data Citation 2).
Fastq sequence files were submitted to DDBJ. All scripts used to perform qual-
ity checks on raw data and to assemble a comprehensive metadata table for all
single-cells are open source on figshare to ensure a high level of reproducibility.

Fig. 2: Distribution of cDNA concentrations. Each Run represents 96 sam-
ple concentration measurements [ng/uL], including 2 controls per Run. 480 sam-
ples in total for all five Runs. Individual Runs are technical replicates, whereas
most samples within a Run are biological replicates. Distributions of sample
measurements are displayed as boxplots colored by Run (a, b). The top panel
(a) shows the cDNA concentration per Run and the bottom panel (b) shows
for each Run how sample concentrations are distributed among four different
error types. These error types are: 0 = cell present; 1 = cell absent; 2 = debris
present; 3 = wrong focus; 4 = more than 1 cell. ((a) ‘¢cDNA_ concentration’
and (b) ‘combine all’ directory on figshare [Data citation 3])

Fig. 3: Read count distributions. The distribution of sequencing reads of
cells grouped by their position in rows (a) and columns (b) on the 96-well plate
used for sequencing library preparations. The data points of column 08 and 09
in the third Run (b) are highlighted in red to mark them as outliers created by
a pipetting error. The right sight panel (c) shows Spike 1 counts per million of
total reads (CPM) grouped by error type. ((a) and (b) ‘combine all’ and (c)
‘HiSeq’ directory on figshare [Data citation 3])
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Figure 1: Experimental workflow and data management.
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Figure 2: Distribution of cDNA concentrations.
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Figure 3: Read count distributions.
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