

1 Engineered reciprocal chromosome translocations drive high threshold, 2 reversible population replacement in *Drosophila*

4 Anna B. Buchman*[#], Tobin Ivy*, John M. Marshall^{\$}, Omar S. Akbari*^{#&}, and
5 Bruce A. Hay*[&]

6

*Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA. ^{\$}School of Public Health, University of California Berkeley, Berkeley CA. [#]Department of Entomology, University of California, Riverside, Riverside, CA.

11

12

13 haybruce@caltech.edu

14 emr.ekberi@uer.edu

卷之三

18

10

17 **Abstract:**

18 Replacement of wild insect populations with transgene-bearing individuals
19 unable to transmit disease or survive under specific environmental conditions
20 provides self-perpetuating methods of disease prevention and population
21 suppression, respectively. Gene drive mechanisms that require the gene drive
22 element and linked cargo exceed a high threshold frequency to spread are
23 attractive because they offer several points of control: they bring about local, but
24 not global population replacement; and transgenes can be eliminated by
25 reintroducing wildtypes into the population so as to drive the frequency of
26 transgenes below the threshold required for drive. It has long been recognized
27 that reciprocal chromosome translocations could, in principle, be used to bring
28 about high threshold gene drive through a form of underdominance. However,
29 translocations able to drive population replacement have not been reported,
30 leaving it unclear if translocation-bearing strains fit enough to mediate gene drive
31 can easily be generated. Here we use modeling to identify a range of conditions
32 under which translocations should spread, and the equilibrium frequencies
33 achieved, given specific introduction frequencies, fitness costs and migration
34 rates. We also report the creation of engineered translocation-bearing strains of
35 *Drosophila melanogaster*, generated through targeted chromosomal breakage
36 and homologous recombination. By several measures translocation-bearing
37 strains are fit, and drive high threshold, reversible population replacement in
38 laboratory populations. These observations, together with the generality of the
39 tools used to generate translocations, suggest that engineered translocations
40 may be useful for controlled population replacement in many species.

41

42

43 Insects act as vectors for a number of important diseases of humans, animals,
44 and plants (1). Traditional vector control is often challenging, with the degree of
45 protection provided being proportional to the effort put into control. In addition,
46 depending on the environment, specific methods of vector control, such as
47 environment modification or use of insecticides, may be impractical or have
48 undesirable side effects. A complementary strategy for disease prevention, first
49 articulated many decades ago (2), involves using gene drive to bring about
50 replacement of wild, disease transmitting insect populations with individuals
51 engineered to be refractory to disease transmission, but still subject to traditional
52 vector control (reviewed in (3-6)). In a variant of this idea, population replacement
53 has also been proposed as a method for bringing about disease prevention
54 and/or a reduction in insect mediated damage through periodic population
55 suppression (7, 8). This can occur when replacement results in all individuals
56 carrying genes that cause death or failure to diapause in response to application
57 of an otherwise benign chemical, or a seasonal change in an environmental
58 variable such as temperature or humidity. An important appeal of these
59 strategies is that they are species-specific and potentially self-perpetuating.

60

61 Because transgenes that mediate disease resistance or conditional lethality are
62 unlikely to confer a fitness benefit to carriers an essential component of most
63 population replacement strategies (see (9-12) for several non-drive based
64 replacement strategies) is linkage with a gene drive mechanism that carries
65 transgenes to high frequency following release. These drive mechanisms must
66 be strong enough to spread genes to high frequency in wild populations on
67 human timescales, while also functioning within regulatory frameworks (13-17).
68 Central to the latter are issues of confinement and reversibility: can the spread of
69 transgenes to high frequency be limited to locations in which their presence is
70 sought, and can the population be restored to the pre-transgenic state?

71

72 An important characteristic of any gene drive mechanism that relates to the
73 above questions is its level of invasiveness: its ability to increase in frequency

74 both at the release site and in surrounding areas linked to the release site by
75 various levels of migration, when introduced at various population frequencies.
76 Low threshold gene drive mechanisms require that only a small fraction of
77 individuals in the population carry the drive element in order for spread to occur
78 locally (18, 19). Examples include engineered *Medea* chromosomal elements
79 (20-22), several other possible single locus chromosomal elements (23), site-
80 specific nucleases that home into their target site (24-29), and site-specific
81 nucleases that result in sex ratio distortion (30). These mechanisms are
82 predicted to be invasive because low levels of migration of drive element-bearing
83 individuals into areas outside the release area may, depending on the threshold
84 and the migration rate (18, 19, 31), result in these areas being seeded with
85 enough transgene-bearing individuals for drive to occur. Low threshold, invasive
86 gene drive mechanisms are attractive when the goal is to spread transgenes
87 over a large area, and migration rates between the release site and surrounding
88 areas of interest are low. However, for these same reasons, it is likely to be
89 challenging to restore the population to the pre-transgenic state if desired. Given
90 the intense scrutiny with which releases of insects engineered to suppress
91 population numbers while ultimately disappearing from the population have been
92 greeted (15-17), gene drive mechanisms that have a limited capacity to spread,
93 and that can easily be eliminated from the population, thereby restoring the
94 population to a pre-transgenic state, may be useful in some contexts.

95 High (or higher) threshold gene drive mechanisms require, as their name implies,
96 that transgenes make up a much larger fraction of the total insect population
97 (important examples range from 15-70%) before gene drive occurs. Below this
98 frequency transgenes are instead actively eliminated from the population. In
99 short, these drive mechanisms behave as a frequency-dependent bistable
100 switch. High transgene frequencies are needed to initiate drive at the release
101 site, limiting the possibility that unintended release of a few individuals could
102 initiate replacement. Once replacement has occurred at the release site, spread
103 to high frequency in areas connected to the release site by low levels of
104 migration is prevented because the transgene never reaches the threshold

105 frequency needed for drive. Finally, transgenes can be eliminated from the
106 population if the release of wildtypes results in the frequency of transgenics being
107 driven below the threshold required for drive.

108 A number of gene drive mechanisms that could in principle bring about local and
109 reversible population replacement have been proposed. Examples include a
110 number of single locus gene drive mechanisms (23, 32, 33), reciprocal
111 chromosome translocations, inversions and compound chromosomes (34), and
112 several forms of engineered underdominance (23, 35-39) (40). One of these,
113 UD^{MEL} (double *Medea*), has recently been shown to drive reversible population
114 replacement into populations of wildtype *Drosophila* (38). A second system has
115 been shown to drive high threshold population replacement in *Drosophila* in a
116 split configuration (40). In each of these systems gene drive occurs when
117 transgene-bearing chromosomes experience frequency-dependent changes in
118 fitness with respect to non-transgene-bearing counterparts, with the former
119 having high fitness at high frequency and lower fitness at low frequency. These
120 systems all rely, in one way or another, on the phenomena of underdominance,
121 in which transgene-bearing heterozygotes (or some fraction of them or their
122 progeny) have a lower fitness than either homozygous wildtypes or homozygous
123 transgenics (or transgene-bearing trans-heterozygote in some three allele
124 cases). If the frequency of one allele or pair of alleles or chromosome type is
125 above a critical threshold it spreads to genotype, and in some cases allele
126 fixation. Conversely, if it falls below the critical threshold it is lost in favor of the
127 other allele or chromosome type, usually wildtype. In broad outline, this behavior
128 occurs because when transgene-bearing individuals are common they mate
129 mostly with each other, producing transgene-bearing offspring of high fitness
130 (high survival and/or fecundity), while wildtypes mate mostly with transgene-
131 bearing individuals, producing a preponderance of heterozygous offspring of low
132 fitness (inviable and/or with reduced fecundity). However, when the frequency of
133 wildtypes is high the tables are turned, with transgene-bearing individuals
134 producing high frequencies of unfit heterozygous progeny, and wildtypes
135 producing a high frequency of fit homozygous progeny.

136 Here we focus on the use of engineered reciprocal chromosome translocations
137 as a high threshold gene drive mechanism. Reciprocal chromosome
138 translocations were the first gene drive mechanism proposed (2). Their structure
139 and genetic behavior are illustrated in Figure 1A. A reciprocal chromosome
140 translocation results in the mutual exchange of DNA between two non-
141 homologous chromosomes (41). Provided that the translocation breakpoints do
142 not alter the expression and/or function of nearby genes, translocation
143 heterozygotes and homozygotes can in principle be phenotypically normal. Thus,
144 phenotypically normal, naturally occurring translocation-bearing individuals are
145 found in populations of many species (42), including humans (43, 44). However,
146 translocation heterozygotes are usually semisterile, producing a high frequency
147 of inviable offspring. This occurs because meiosis in a translocation heterozygote
148 can generate a variety of different products. Three patterns of segregation are
149 possible: alternate, adjacent-1 and adjacent-2 (Figure 1A). While alternate
150 segregation leads to the production of gametes with a full genome complement,
151 adjacent-1 and adjacent-2 segregation lead to the production of aneuploid
152 gametes, resulting in the death of progeny that inherit an unbalanced
153 chromosome set. In many species alternate and adjacent-1 segregation occur
154 roughly equally, with adjacent-2 segregation being rare (45, 46). In such species
155 progeny genotypes and survival phenotypes resulting from crosses between
156 translocation-bearing individuals and wildtypes are as illustrated in the Punnett
157 square in Figure 1B. Progeny with unbalanced genotypes die, while balanced
158 translocation heterozygotes, translocation homozygotes, and homozygous
159 wildtypes survive.

160 In 1940 Serebrovski proposed that the release of homozygous translocation-
161 bearing males could be used to drive population suppression because many
162 progeny would be semisterile, thereby driving down population fitness over
163 multiple generations (47). He, Dobzhansky (48), and later Curtis (2), also noted
164 that the frequency of translocations lacks a stable internal equilibrium, with either
165 wildtype or translocation-bearing chromosomes spreading to fixation in an
166 isolated population through natural selection (differential survival of the relevant

167 chromosome type) if their frequency rose above 50%, for a translocation with no
168 fitness cost to carriers. Curtis proposed that if a gene beneficial to humans could
169 be linked to the translocation breakpoint, this behavior of translocations could be
170 used to spread the gene into the wild population. Whitten subsequently noted
171 that the same approach could be used to spread a trait conferring conditional
172 lethality, which could be used to bring about population suppression (7). More
173 recent modeling work has highlighted the potential of translocations for bringing
174 about local, but not global population replacement, and the ease of reversal (19).

175 Though it is clear from evolutionary studies that translocations can become fixed
176 in populations (42), efforts to directly bring about population replacement using
177 translocations created in the lab have not been successful (34, 49-51). There
178 may be several reasons for this. First, translocation-bearing individuals
179 (particularly homozygotes) generated in the past typically had very low fitness,
180 probably at least in part because they were generated using X-rays, which can
181 result in a high frequency of background mutations. Second, more recently it has
182 become clear that chromosome positioning and structure in the nucleus can play
183 a role in determining large-scale patterns of gene expression, and that
184 chromosome translocation can result in changes in the patterns of gene
185 expression (52, 53). These latter observations leave it fundamentally unclear
186 whether translocation-bearing individuals of high fitness can be easily generated,
187 even if the breakpoints involved are located in gene deserts. For example, it
188 could be that phenotypically normal translocation-bearing individuals observed in
189 nature simply represent the relatively rare cases in which chromosome
190 rearrangement does not result in fitness being compromised. To explore these
191 issues, and to determine if translocation-based gene drive can be used to bring
192 about population replacement, we first use modeling to explore the relationship
193 between variables such as introduction frequency, fitness cost, and reciprocal
194 migration with non-target populations containing wildtypes, for the ability of a
195 translocation to spread, and the equilibrium frequencies achieved in replaced and
196 surrounding populations. We then describe a general approach to generation and
197 identification of site-specific reciprocal chromosomal translocations. Finally, we

198 provide the first demonstration that engineered translocations are capable of
199 bringing about threshold-dependent population replacement, in *Drosophila*
200 *melanogaster*.

201

202 **Some predicted characteristics of translocation-based gene drive.**

203 Early modeling work by Serebrovskii and Curtis showed that if a translocation
204 results in no fitness cost to carriers, and is present in a population experiencing
205 no incoming migration of wildtypes, it will spread to allele fixation when present at
206 population frequencies greater than 50%, and will be eliminated when present at
207 lower frequencies (2). Curtis also noted briefly that translocations that resulted in
208 a fitness cost to carriers could still spread to allele fixation, but the threshold
209 introduction frequency would be increased (2). Given the past failures to bring
210 about translocation-mediated population replacement noted above, and the
211 likelihood that chromosome translocation itself and/or the GOI placed at the
212 breakpoints will result in some fitness cost to carriers, we sought to understand
213 more generally how fitness cost affects translocation spread. The time to allele
214 fixation is particularly relevant for contexts in which the goal is to ultimately bring
215 about population suppression in response to a seasonal variable such as
216 temperature or humidity.

217

218 In figure 2A we illustrate the relationship between fitness cost, introduction
219 frequency and time to translocation allele fixation (approximated as the point at
220 which >99% of individuals carry at least one translocation copy), for a single
221 introduction into an isolated population. The plot illustrates several important
222 points. First, whenever translocations spread, they spread to fixation relatively
223 quickly, with the time needed being inversely related to the introduction
224 frequency. Second, translocations that confer large fitness costs to carriers can
225 also spread rapidly, so long as the introduction frequency is increased. The plot
226 in Figure 2B illustrates a related case in which the translocation is introduced
227 over three generations at the specified frequency. It shows that with modest extra
228 effort rapid drive can be achieved, even for very high fitness costs. While these

229 introduction frequencies represent a large percentage of the wild population, they
230 are still much lower than those used in self-limiting genetic population
231 suppression strategies such as SIT and RIDL (54), and unlike SIT and RIDL,
232 result in sustained changes to the population.

233

234 In real world scenarios other than initial field-testing - in which population
235 isolation will be essential - there is likely to be some level of reciprocal migration
236 between the target area (source population 1) and surrounding areas (population
237 2) containing wildtypes. Marshall and Hay showed that for realistic population
238 sizes (>1000 individuals), there are no reciprocal migration rates that support
239 population replacement in a second, wildtype-containing population (population
240 2) linked to a source population (population 1) in which replacement is initiated.
241 Due to the high frequency of death among the progeny of translocation-bearing
242 individuals that mate with wildtype, the frequency of translocation-bearing
243 individuals in population 2 never rises to a level that supports drive (see also
244 Figure 3A, C). Instead, when migration rates are high (~6.8%, or lower when the
245 translocation is associated with a fitness cost), translocations are eliminated from
246 both populations (19). Here we consider a related question: what effect does
247 reciprocal migration have on the characteristics of population replacement in the
248 target population, and the genotypic composition of neighboring populations
249 linked by migration, in which drive does not occur?

250

251 We consider a specific scenario in which three populations are linked in series:
252 the target population (population 1) is linked to a second population consisting
253 initially of wildtypes (population 2) through migration; population 2 is also linked
254 through migration to a third population consisting initially of wildtypes (population
255 3), which is not linked directly with population 1. We ask what the equilibrium
256 frequencies are in each population for different levels of migration? In the case of
257 a low threshold gene drive mechanism such as *Medea* or homing by a HEG, the
258 equilibrium frequency in population 1 will approach fixation since these drive
259 elements spread invasively into surrounding populations connected to the target

260 population by low levels of migration. In contrast, the situation for high threshold
261 gene drive mechanisms is fundamentally different since wildtypes will, by
262 definition, always be present in surrounding non-target populations in which
263 transgene levels sufficient for drive are not achieved. Previous modeling studies
264 of underdominant systems have noted that the presence of reciprocal migration
265 can result in internal equilibria containing both wildtype and underdominant alleles
266 (36, 37) (55). Here we consider the case of reciprocal translocations specifically.
267

268 Figure 3A illustrates a specific scenario, in which a translocation with no fitness
269 cost is introduced into population 1 at a frequency of 70%, and is connected to a
270 similarly sized population 2 by a migration rate of 1%. Population 2 is connected
271 to a similarly sized population 3 by the same migration rate. The translocation
272 spreads to high frequency (99%) in population 1, but not to allele or genotype
273 fixation, since wildtypes are introduced into population 1 each generation.
274 Translocation-bearing genotypes are also present at modest levels (<5%
275 (4.954%) in population 2, and <1% (0.08116%) in population 3. Figure 3A also
276 illustrates an identical scenario in which the migration rate is now 5%. In this
277 case the translocation equilibrium frequency is <95% (94.55%) in population 1,
278 <23% (22.58%) in population 2, and ~2% (2.031%) for population 3. The general
279 relationship between fitness cost, migration rate and equilibrium frequency in
280 population 1 is illustrated in Figure 3B. The highest level of incoming wildtype
281 migration that can be tolerated for a translocation with no fitness cost (~6.8% /
282 generation) results in an equilibrium translocation genotype frequency of ~90% in
283 population 1. Decreased levels of migration result in correspondingly higher
284 equilibrium frequencies, which approach fixation as the migration rate falls to
285 zero (as in Figure 2). Populations 2 (Figure 3C) and 3 (Figure 3D) show the
286 opposite behavior. As migration rate increases, the fraction of translocation-
287 bearing individuals increases in population 2, reaching a maximum of ~25% for a
288 translocation with no fitness cost and migration rate of 6.8%. However, for similar
289 migration rates the fraction of translocation-bearing individuals in population 3 is

290 dramatically reduced. Increased fitness costs result in a minimal decrease in
291 equilibrium translocation frequency in all three populations (Figure 3B-D).

292

293 These observations illustrate a fundamental set of tradeoffs associated with high
294 threshold gene drive. While drive can be spatially limited to a single population,
295 this comes with a cost: the continuous introduction of wildtypes from neighboring
296 populations, which keeps the equilibrium frequency of transgene-bearing
297 individuals below 100%. Depending on the disease system being considered, the
298 presence of some level of non-transgene-bearing individuals within the target
299 area may have important epidemiological consequences, as a residual
300 population of wildtype mosquitoes may be capable of sustaining transmission,
301 although this remains to be investigated. Population suppression following
302 activation of condition-dependent lethality may also be challenging in the face of
303 significant levels of wildtype migration. Finally, the presence of some level of
304 translocation-bearing individuals outside the target area may have regulatory
305 implications even if these levels are insufficient for drive. That said, any such
306 issues are likely to be local since the decrease in frequency of drive element-
307 bearing individuals in underdominant systems drops off rapidly in a series of
308 linked populations (Figure 3B-D). Together, these observations suggest that high
309 threshold gene drive is likely to be most epidemiologically effective and able to
310 satisfy regulatory requirements relating to the presence and movement of
311 transgene-bearing organisms within target areas circumscribed by significant
312 barriers to migration.

313

314 **Engineering Reciprocal Translocations in *Drosophila***

315 Cells or organisms carrying translocations with defined breakpoints have recently
316 been generated using several strategies. One set of approaches begins with two
317 non-homologous chromosomes that each have a different transgene-bearing
318 cassette inserted at a specific position. Recombination between the two
319 chromosomes to generate a translocation is then driven by FLP/FRT
320 recombination (56), Cre/loxP recombination (57, 58), or homologous

321 recombination following double-stranded break creation within the transgene
322 cassettes using a site-specific nuclease (58-60). Translocations have also been
323 generated in completely wildtype backgrounds, following Crispr/Cas9-mediated
324 cleavage of two otherwise wildtype chromosomes followed by non-homologous
325 end joining (61-63). In this latter case, PCR-based methods were used to
326 identify pools of cells or individuals carrying translocations.

327

328 We sought to create translocations using a variant of the approach described by
329 Egli et al. in which homologous recombination between two chromosomes
330 follows double-stranded break creation using the rare-cutting site-specific
331 nuclease I-SceI (58). However, rather than use their approach for identification of
332 potential translocation bearing individuals, which involves scoring for the loss of
333 the marker *y*⁺ in an otherwise a *y*⁻ background, we created a system in which
334 recombination results in the creation of a dominant marker. This approach can be
335 used in otherwise wildtype genetic backgrounds, in diverse species.

336

337 Two constructs (A and B) were generated (Figure 4B). Each construct includes
338 several components. These include (from left to right) a transformation marker
339 (the *white* gene); a location that could be used as an insertion point of a gene of
340 interest (GOI); a promoter that drives the expression of a dominant fluorescent
341 marker, either ubiquitously (the Opie2 viral promoter, (64) or in oenocytes (65); a
342 splice donor site, and two stretches of DNA used as substrates for homologous
343 recombination, annotated as UVW and XYZ, each roughly 670bp in length.
344 These DNA fragments were derived from the mouse IgG locus, and thus lack
345 homology with the *Drosophila* genome. Two target sites for the rare cutting
346 homing endonuclease I-SceI were inserted between UVW and XYZ. To the right
347 of these elements were positioned a splice acceptor, a promoterless reporter
348 gene (GFP or dsRed), and a phiC31 recombination attB site.

349

350 These constructs were introduced into flies at three separate attP locations:
351 construct A at 51C on chromosome 2, and construct B at 68E or 70A2 on

352 chromosome 3 (Figure 4A). The attP insertion sites at 51C and 68E lie some
353 distance from annotated genes, while the 70A2 site lies within a cluster of tRNA
354 loci. Both constructs were oriented in the same direction with respect to their
355 centromeres (Figure 4A). The constructs were designed so that flies bearing
356 construct A, located on the second chromosome, would express the svp-driven
357 eGFP marker, while construct B, located on the third chromosome, would
358 express the opiap2-driven dsRED marker (Figure 4B). Transgenics for construct
359 B behaved as expected, and were dsRED positive throughout their body.
360 However, transgenics for construct A had no detectable GFP expression. The
361 basis for this is unclear, but could be due to inappropriate splicing of the XYZ-
362 UVW sequence in this construct. Regardless, as illustrated below, one marker is
363 sufficient to identify translocation-bearing individuals.

364

365 To generate translocation-bearing individuals we created stocks doubly
366 homozygous for constructs A and B (51C; 71A2 or 51C; 68E). These were then
367 mated with flies that express I-SceI under the control of the Hsp70 heat shock
368 promoter (66). Progeny carrying all three transgenes were subjected to multiple
369 rounds of heat shock during larval stages and as adults. Adults were outcrossed
370 to wildtype, and progeny examined under a fluorescent dissecting scope. In a
371 number of individuals strong ubiquitous GFP expression was observed. This is
372 the predicted outcome if I-SceI expression results in cleavage of both transgene-
373 bearing chromosomes (Fig. 4C), followed by homologous recombination between
374 XYZ- and UVW-bearing ends of the two different chromosomes (Fig. 4D,E).
375 Putative translocation heterozygotes ($T_1/+; T_2/+$) were individually mated to wild
376 type individuals ($+/+; +/+$) to generate males and female translocation
377 heterozygotes (identified as GFP-expressing). These were mated with each other
378 to generate putative translocation homozygotes ($T_1/ T_1; T_2/ T_2$). PCR and
379 sequencing of products from genomic DNA of these individuals was used to
380 demonstrate that these individuals were homozygous for both translocation
381 products (Methods and Figure 4F).

382

383 To explore the genetic behavior of translocation-bearing chromosomes and the
384 fitness of carriers we carried out a number of crosses and quantified progeny
385 genotype (Table 1). Stocks consisting of translocation homozygotes appeared
386 generally healthy as adults, and survival from egg to adult was 96% of that
387 observed for the Canton S (CS) wildtype stock. In contrast, crosses between
388 males or females heterozygous for the translocation and wildtype resulted in
389 semisterility, with only about 50% of progeny surviving to adulthood, and 50% of
390 the survivors being translocation heterozygotes. These are the expected results if
391 alternate and adjacent-1 segregation occur with equal frequency in translocation-
392 bearing individuals during meiosis, resulting in the production of 50% aneuploid
393 gametes (Figure 1B). Finally, for each translocation type we also carried out
394 crosses between male and female translocation heterozygotes. Only 37.5% of
395 progeny are predicted to survive, due to the large fraction of zygotes carrying
396 unbalanced chromosome complements. However, many of the survivors (83%)
397 are predicted to carry one or two copies of the translocation (Figure 1B). The
398 levels of embryo survival and percentage of adults carrying the translocation
399 were in good agreement with these predictions (Table 1). Together, these
400 observations suggest that the translocation-bearing strains are fit
401 (notwithstanding the expected semisterility), at least to a first approximation.
402 These points notwithstanding, fitness measurements such as these are not
403 sufficient to know that frequency-dependent drive will occur. This is well
404 illustrated by the results of Curtis and Robinson, who found that a 2;3
405 translocation strain generated with X-rays, which had homozygous viability and
406 fertility equivalent to wildtype in crosses such as those described above, was
407 unable to drive population replacement, even when introduced at a 9:1
408 translocation: wildtype ratio (49).

409
410 For population replacement experiments we first introgressed our translocation-
411 bearing systems, 51C; 70A2 and 51C; 68E flies, with Canton S (CS) for 8
412 generations, so as to minimize background genetic differences between
413 translocation-bearing and wildtype strains. Translocation-bearing individuals

414 were then backcrossed to each other to create homozygous stocks. We initiated
415 population cage experiments by introducing translocation-bearing males and
416 virgin females into cages along with Canton S males and virgin females of similar
417 age. A number of different introduction frequencies were tested, in triplicate.
418 These included frequencies predicted to be super-threshold (80%, 70%, 60%),
419 and sub-threshold (20%, 30%, 40%). Populations were then followed for 14
420 generations, with the frequency of translocation-bearing individuals noted each
421 generation.

422

423 Results of these experiments are summarized in Figure 5A,B (solid lines). For
424 both translocation-bearing strains, all nine releases at frequencies lower than
425 50% resulted in elimination of the translocation from the population. Conversely,
426 introductions at frequencies greater than 50% resulted in translocation-bearing
427 genotypes spreading to high frequency. These results are generally consistent
428 with the modeling predictions. However, the dynamics of drive are clearly distinct
429 from those predicted for translocations that lack a fitness cost (dotted lines in
430 Figure 5A,B). When translocations were introduced at predicted super-threshold
431 frequencies spread was slower than expected for a translocation with no fitness
432 cost. Sub-threshold releases also resulted in lower initial translocation
433 frequencies than expected, and this was generally followed in later generations
434 by a modestly decreased time to elimination as compared with a translocation
435 with no fitness cost (except at the 20% introduction frequency).

436

437 To understand these dynamics, we fitted the experimental data with our
438 previously described deterministic model framework (19) using a range of
439 different fitness cost models (Methods). By comparing the Akaike Information
440 Criterion (AIC) values for each of these fitness cost models we found the best
441 fitting model for the observed population dynamics to be one in which the relative
442 fitness of homozygotes having the translocation is time-dependent, with the
443 relative fitness of these individuals rapidly increasing over time, at first rapidly
444 and converging upon some higher value as described by an exponential function.

445 Calculations of fitness parameters for translocation system 1 suggest an initial
446 relative fitness of transgenic homozygotes of 0.0004 (95% Crl: 0-0.0019) relative
447 to wild-types in generation 1 (the first progeny generation post adult introduction),
448 rising to a relative fitness of 1.51 (95% Crl: 1.48-1.53) in subsequent generations.
449 Calculations suggest an initial relative fitness of transgenic heterozygotes of 1.23
450 (95% Crl: 1.14-1.31) relative to wild-types, falling slightly to a relative fitness of
451 1.05 (95% Crl: 1.02-1.08). Calculations for translocation system 2 suggest an
452 initial relative fitness of transgenic homozygotes of 0.0003 (95% Crl: 0-0.0016)
453 relative to wild-types, rising to a relative fitness of 1.52 (95% Crl: 1.50-1.55) in
454 subsequent generations, and an initial relative fitness transgenic heterozygotes
455 that remains fairly constant: 1.12 (95% Crl: 1.05-1.18) at the beginning of the
456 experiment and 1.11 (95% Crl: 1.08-1.14) at the end of the experiment.

457

458 While speculative, the initial very low fitness of homozygotes in generation 1
459 could reflect the fact that these individuals must derive from homozygous
460 translocation parents. Our analysis of fitness presented in table 1 only examines
461 viability, not ability to compete against other genotypes. Decreased fitness of
462 homozygotes in competition with heterozygotes and wildtypes at some life stage
463 (such as larval competition) could reflect incomplete removal of deleterious
464 mutations during introgression into the CS background prior to carrying out drive
465 experiments since recombination on translocation-bearing chromosomes in
466 *Drosophila* is reduced throughout the involved arms (67, 68). Alternatively, it
467 could also reflect the acquisition of genetic modifiers during the post-
468 introgression crosses of the translocation stocks required to generate large
469 numbers of homozygotes for population cage experiments. Such modifiers
470 would, in this model, increase the fitness of homozygous carriers in competition
471 with non-carrier homozygotes, but would result in a cost to carriers when in
472 competition with heterozygotes and wildtypes. In either of these models it is
473 unclear why fitness of translocations becomes greater than that of wildtype in
474 later generations. Understanding the basis for these dynamics, and whether they

475 are specific to these translocations, will require further study in other genetic
476 backgrounds, and with other engineered translocations.

477

478

479 **Discussion**

480 Here we report the creation of engineered reciprocal translocations able to drive
481 high threshold population replacement in *Drosophila*. The tools we used to create
482 translocations in *Drosophila* - transgene cassettes located on two different
483 chromosomes, a dominant marker created through the act of translocation, a
484 site-specific nuclease able to bring about breakage within each cassette, and
485 unique sequences that can mediate recombination between the two
486 chromosomes - should be portable to other species. This, coupled with the
487 common genetic behavior of reciprocal translocations in diverse species
488 (semisterility in heterozygotes), suggests that translocation-based, high threshold
489 and reversible drive may be possible in many species.

490

491 An important unknown from previous work is whether engineered translocations
492 with high fitness are rare or common. Our observations demonstrating population
493 replacement at high but not low introduction frequencies, while limited to two
494 translocations sharing one breakpoint in common, suggest that engineered
495 translocations with high fitness may at least not be rare. That said, while the
496 translocations we generated are competitive in laboratory populations, it remains
497 to be shown that these or any other engineered translocations are fit in
498 competition with the diversity of genotypes that will be encountered in complex
499 natural environments.

500

501 Our modeling results suggest that given high enough introduction frequencies,
502 even translocations with high fitness costs, and facing significant levels of
503 incoming migration of wildtypes, can spread to high frequency within a target
504 area. However, modeling also identifies a set of tradeoffs associated with high
505 threshold gene drive. Population replacement is local, but gene flow due to
506 migration has significant effects on the equilibrium frequencies of transgenes
507 within and outside the target area. Consideration of these effects will be
508 important in identifying contexts in which population replacement is likely to have

509 an epidemiological impact, and is able to satisfy regulatory requirements relating
510 to the presence and movement of transgene-bearing organisms. These points on
511 gene flow within a target species notwithstanding, translocation-based drive
512 should be very species specific. This is because drive involves the behavior of
513 entire recombinant chromosomes. It seems unlikely that such a novel entity
514 would thrive when transferred to a different species through mating or horizontal
515 gene transfer.

516

517 A key feature of any population replacement mechanism is its degree of
518 evolutionary stability. A translocation drives because its presence in a single
519 copy in heterozygotes creates a toxic condition (genomic imbalance in some
520 gametes) that can be prevented by a second copy of the translocation, which
521 results in the creation of a fit translocation homozygote (genomic balance in all
522 gametes). One can think of this as a toxin-antidote system in which the toxin (the
523 translocation) is dominant (one copy results in genomic imbalance and some
524 death) and the antidote is recessive (two copies of the translocation results in
525 genomic balance and progeny viability). However, in contrast to other toxin-
526 antidote gene drive systems (23, 32, 33, 35-40), the toxin and antidote functions
527 of a translocation are inextricably linked: the toxin is the translocation (in one
528 copy), and the antidote is also the translocation (in two copies). It is presumably
529 very unlikely that the translocation will revert back to the wildtype chromosome
530 configuration. However, even if this happened, necessarily in a single rare
531 individual, this chromosome would be eliminated along with other wildtype
532 chromosomes in a population (of this or any other species (see above)) in which
533 the translocation was present at high frequency. In short, translocation-
534 dependent gene drive cannot break down through mutation of toxin function to
535 inactivity, as with many other chromosomally based drive mechanisms. It is also
536 insensitive to chromosomal sequence variation, mutation and non-homologous
537 end joining, which can prevent the spread of homing-based gene drive
538 mechanisms that rely on cleavage of a specific target sequence (69, 70). Finally,
539 the genes of interest will be placed at the translocation breakpoints. Meiotic

540 recombination is inhibited in these regions (67, 68). In addition, the transgenes
541 are not located in regions that undergo pairing during meiosis. Since they are
542 insertions of novel sequences, they are adjacent to regions that undergo pairing.
543 Thus, transgenes are unlikely to become unlinked from the translocation
544 breakpoint.

545

546 Finally, with any population replacement strategy one must plan for the eventual
547 failure of the cargo, whether it encodes one or more genes that mediate disease
548 resistance, or conditional lethality. Failure can occur through evolution of the
549 pathogen. It can also occur through mutational inactivation of the cargo genes. In
550 this latter case, if loss of cargo gene function also results in loss of an associated
551 fitness cost, chromosomes carrying the mutant allele will spread at the expense
552 of those carrying the functional allele. While mutation to inactivity cannot be
553 prevented, chromosome-based drive mechanisms such as translocations have
554 the attractive feature that it should be possible to incorporate multiple transgenes
555 near the breakpoints, bringing about redundancy in effector function and thereby
556 increased functional lifetime in the wild. Cycles of population replacement to
557 bring new genes into the population can also be imagined. In one approach, the
558 translocation can first be removed from the population by driving its frequency
559 below the threshold needed for drive, through dilution with wildtypes. This can
560 then be followed by a second release of a new translocation-bearing strain that
561 has the same breakpoints, and a new cargo. Alternatively, if high fitness
562 translocations with distinct breakpoints can be generated routinely, it may be
563 possible to drive a first generation translocation and any remaining wildtypes out
564 of the population in favor of a second, distinct translocation (a point also made by
565 Serebrovskii (47) in the context of use of translocations for population
566 suppression) carrying a new cargo, as with proposals for cycles of replacement
567 of *Medea*-based gene drive systems (5, 21).

568

569 The above positive points notwithstanding, several unknowns remain to the
570 implementation of translocation-based population replacement in other insects.

571 First, generating translocations with the approaches described herein will be
572 more challenging in other species in which a high quality annotated genome
573 sequence is not available. Such a resource allows one to identify gene deserts,
574 good candidates for sites in which to locate breakpoints associated with a
575 minimal fitness cost to carriers. It also allows one to determine the orientation
576 with respect to the centromere of sequences that mediate homologous
577 recombination at breakpoints, so as to promote the formation of translocations
578 rather than dicentric and acentric chromosomes. As an example, while the level
579 of annotation of the *Aedes aegypti* genome sequence and transcriptome is
580 otherwise quite high, much of the genome is annotated as a series of contigs of
581 unknown orientation, due to the large amount of repetitive sequences in the
582 genome. Finally, a sequenced genome makes it possible to identify or create,
583 using HEGs, Zinc fingers, TALENs or Crispr/Cas9, site-specific nucleases that
584 promote recombination by cleaving within the transgenes but not elsewhere in
585 the genome.

586
587 In addition, the models we have used to characterize translocation behavior do
588 not take into account important real world variables such as non-random mating
589 and local spatial heterogeneity, which can affect the dynamics of translocation
590 spread (55, 71). In order to understand how these and other environmental
591 variables effect translocation-based replacement, and high threshold
592 replacement more generally, it will be important to model drive element behavior
593 using spatially explicit models based on analysis of real populations in complex
594 environments (72, 73). Finally, mosquito populations in the wild consist of
595 multiple chromosomal forms, and may also display some level of reproductive
596 isolation (74-76). How engineered translocations will fare in the face of these
597 variants remains to be determined, but can be explored in competition with
598 genetically diverse laboratory strains (77, 78). While an understanding of the
599 above issues is critical for the success of any population-replacement strategy,
600 the problems are not intractable, as evidenced by successes in controlling pest

601 populations using non-transgenic (79) and transgenic inundative population
602 suppression strategies (80, 81).

603 **Methods**

604 **Construct Assembly**

605 The Gibson enzymatic assembly (EA) cloning method was used for all cloning
606 (82). For both constructs (A and B), translocation allele components were cloned
607 into the multiple cloning site (MCS) of a plasmid (83) containing the *white* gene
608 as a marker and an attB-docking site. For construct A (Figure 1B), the oenocyte-
609 specific *svp* enhancer (65) and Hsp70 basal promoter fragments were amplified
610 from *Drosophila melanogaster* genomic DNA using primers P16 and P17 (*svp*)
611 and P18 and P19 (Hsp70). The GFP fragment was amplified from template
612 pAAV-GFP (addgene plasmid #32395) using primers P26 and P27. A Kozak
613 sequence (CAACAAA) directly 5' of the GFP start codon was added with primer
614 P26. The SV40 3'UTR fragment was amplified from template pMos-3xP3-DsRed-
615 attp (addgene plasmid #52904) using primers P28 and P10. The 5' and 3' CTCF
616 insulator fragments (84) were amplified from *Drosophila melanogaster* genomic
617 DNA using primers P11 and P15 (for the 5' CTCF fragment) and P13 and P14
618 (for the 3' CTCF fragment). The 667 XYZ and 668 UVW homology fragments
619 were amplified as above with primers P22 and P23 (XYZ) and P20 and P21
620 (UVW), from plasmid pFUSE-mIgG1-Fc Invivogen, San Diego). The 5' and 3'
621 splice sites utilized were from a 67bp intron located in the *Drosophila*
622 *melanogaster* Myosin Heavy Chain (Mhc) gene ID CG17927. They were added
623 to UVW and XYZ sequences using PCR; the 5' splice site was added to the 5'
624 end of the UVW fragment via PCR with primer P24, and the 3' splice site was
625 added to the 3' end of fragment XYZ via PCR with primer P25. Two I-SceI
626 recognition sequences Two 18bp I-SceI recognition sequences
627 (ATTACCCTGTTATCCCTA-CTAG-TAGGGATAACAGGGTAAT) were added to
628 the 3' end of the UVW fragment with primer P21 and the 5' end of the XYZ
629 fragment with primer P22. The construct was assembled in two steps, as above,
630 with the first (5') CTCF, the *svp* and *hsp70* fragments, the UVW fragment, and
631 the XYZ fragment cloned in via a first EA cloning step, and the GFP fragment,
632 the SV40 3'UTR fragment, and the second (3') CTCF cloned in via a second EA
633 cloning step. For construct B (Figure 1B), the *opie2* promoter fragment was

634 amplified from plasmid pIZ/V5-His/CAT (Invitrogen) using primers P1 and P2.
635 The XYZ and UVW homology fragments were amplified from plasmid pFUSEss-
636 CHIg-mG1 using primers P3 and P4 (XYZ) and P5 and P6 (UVW). Two 18bp I-
637 SceI recognition sequences (ATTACCCTGTTATCCCTA-CTAG-
638 TAGGGATAACAGGGTAAT) were added to the 3' end of the XYZ fragment and
639 the 5' end of the UVW fragment in inverse orientation to each other separated by
640 a 4bp linker sequence (CTAG) using primers P4 (for XYZ) and P5 (for UVW).
641 The 5' and 3' splice sites utilized were from a 67bp intron located in the
642 *Drosophila melanogaster* Myosin Heavy Chain (Mhc) gene ID CG17927; the 5'
643 splice site was added to the 5' end of the XYZ fragment via PCR with primer P7,
644 and the 3' splice site was added to the 3' end of fragment UVW via PCR with
645 primer P8. The dsRed fragment, together with the SV40 3'UTR, were amplified
646 from template pMos-3xP3-DsRed-attp (addgene plasmid #52904) using primers
647 P9 and P10, with a Kozak sequence (CAACAAA) directly 5' of the DsRed start
648 codon added with primer P9. The 5' and 3' CTCF insulator fragments (84) were
649 amplified from *Drosophila melanogaster* genomic DNA using primers P11 and
650 P12 (for the 5' CTCF fragment) and P13 and P14 (for the 3' CTCF fragment).
651 The construct was assembled in two steps. First, the *Drosophila melanogaster*
652 attB stock plasmid (83) was digested with Ascl and XbaI, and the first (5') CTCF,
653 the opie-2 promoter, the XYZ fragment, and the UVW fragments were cloned via
654 EA cloning. Then, the resulting plasmid was digested with Xhol, and the dsRed-
655 SV40 3'UTR fragment and the second (3') CTCF were cloned in via EA cloning.
656 All sequences were analyzed with NNSPlice 0.9 (available at
657 http://www.fruitfly.org/seq_tools/splice.html) to confirm strength of splice signals
658 and to check for cryptic splice sites. A list of primer sequences used in the above
659 construct assembly can be found in Supplementary Table 1.
660

661 **Fly Culture and Strains**

662 Fly husbandry and crosses were performed under standard conditions at 25°C.
663 Rainbow Transgenics (Camarillo, CA) carried out all of the fly injections.
664 Bloomington Stock Center (BSC) fly strains utilized to generate translocations

665 were attP lines 68E (BSC #24485: y^1 M{vas-int.Dm}ZH-2A w^* ; M{3xP3-
666 RFP.attP'}ZH-68E), 51C (BSC #24482; $y[1]$ M{vas-int.Dm}ZH-2A w^*); M{3xP3-
667 RFP.attP'}ZH-51C), and 70A2 (BSC #9741: $y[1]$ $w[1118]$; PBac{y[+]-attP-
668 9A}VK00023). Fly Stock BSC#6935 ($y[1]$ w^* ; P{ry[+t7.2]=70FLP}23
669 P{v[+t1.8]=70I-SceI}4A/TM) was used as the source of heat shock induced I-
670 SceI. For balancing chromosomes, fly stocks BSC#39631 (w^* ; wg[Sp-1]/CyO;
671 P{ry[+t7.2]=neoFRT}82B lsn[SS6]/TM6C, Sb[1]) BSC#2555 (CyO/sna[Sco]) were
672 used. For introgression into a wild type background we used the Canton-S stock
673 BSC#1. Translocation construct A was inserted at site 51C, and construct B was
674 inserted at 68E and 70A2 using phiC31 mediated attP/attB integration. These
675 site combinations allowed for the generation of two distinct translocation types,
676 51C;68E and 51C;70A2. Stocks homozygous for both constructs were then
677 mated with flies that express I-SceI under the control of the Hsp70 heat shock
678 promoter(66). Progeny carrying all three transgenes were subjected to 5 rounds
679 of heat shock during larval stages and as adults. Heat shocks were conducted by
680 submerging fly vials in a water bath set to 38°C for one hour. Adults were
681 outcrossed to w^- , and progeny examined under a fluorescent dissecting scope
682 for ubiquitous GFP expression, indicative of translocation generation.

683
684 Homozygous translocation-bearing stocks were generated for both 51C;68E and
685 51C;70A2 site combinations by crossing translocation heterozygotes and
686 identifying homozygous progeny by eye color (light orange eyes for homozygotes
687 versus yellow for heterozygotes for the 51C;68E site combination; light red eyes
688 for homozygotes versus orange for heterozygotes for the 51C;70A2 site
689 combination. After confirming homozygous viability, translocations were
690 introgressed into a Canton-S genetic background. First, CS females were
691 crossed to translocation-bearing males so as to bring the CS mitochondrial
692 genotype into the translocation background. Subsequently, translocation
693 heterozygote females were outcrossed to CS males for 8 generations.
694 Heterozygous translocation-bearing males and virgin females were then crossed
695 to each other to generate homozygous stocks in the CS background for each site

696 combination. Homozygosity was confirmed by outcrossing. Drive experiments for
697 these stocks were set up against CS as the wildtype stock.

698

699 **Embryo and Adult viability determination**

700 For embryo viability counts (Table 1), 2-4 day old adult virgin females were
701 mated with males of the relevant genotypes for 2-3 days in egg collection
702 chambers, supplemented with yeast paste. On the following day, a 3hr egg
703 collection was carried out, after first having cleared old eggs from the females
704 through a pre-collection period on a separate plate for 3hrs. Embryos were
705 isolated into groups and kept on an agar surface at 25°C for 48-72 hrs. The %
706 survival was then determined by counting the number of unhatched embryos.
707 One group of 100-200 embryos per cross was scored in each experiment, and
708 each experiment was carried out in biological triplicate. The results presented are
709 averages from these three experiments. Embryo survival was normalized with
710 respect to the % survival observed in parallel experiments carried out with the
711 Canton-S wild-type strain, which was 93.00% \pm 1.82%. For adult fly counts
712 (Table 1), individual flies for each genotype cross were singly mated. For each
713 genotype cross, we set up 10-15 individual fly crosses, and the results presented
714 are averages from all these experiments.

715

716 **Population cage experiments**

717 All population cage experiments were carried out at 25°C, 12 hour-12 hour day
718 night cycle, with ambient humidity in 250 ml bottles containing Lewis
719 medium supplemented with live, dry yeast. Starting populations for drive
720 experiments included equal numbers of virgins and males of similar ages, for
721 each genotype. Translocation-bearing homozygotes were introduced at
722 population frequencies of 60%, 70%, and 80% (T_1/T_1 ; T_2/T_2) for above threshold
723 drive experiments, and 20%, 30%, and 40% (T_1/T_1 ; T_2/T_2) for below threshold
724 drive experiments. CS virgin females and males (+/++; +/+) of similar age as the
725 translocation-bearing individuals made up the remainder of the population. The
726 total number of flies for each starting population was 100. All experiments were

727 conducted in triplicate. After being placed together, adult flies were removed after
728 seven days. After another seven days, progeny were collected and divided
729 arbitrarily into two equally sized groups. For one group the fraction of
730 translocation-bearing individuals (T_1/T_1 ; T_2/T_2 or $T_1/+$; $T_2/+$) was determined,
731 while the other group was placed into a new bottle to initiate the next generation.
732

733 **Theoretical Framework**

734 We apply the model of Curtis and Robinson (1971) to describe the spread of
735 reciprocal translocations through a population. This is a discrete-generation,
736 deterministic population frequency model assuming random mating and an
737 infinite population size. We denote the first chromosome with a translocated
738 segment by “ T ” and the wild-type version of this chromosome by “ t .” Similarly, we
739 denote the second chromosome with a translocated segment by “ R ” and the wild-
740 type version of this chromosome by “ r .” As a two-locus system, there are nine
741 possible genotypes; however, only individuals carrying the full chromosome
742 complement are viable, which corresponds to the genotypes $TTRR$, $TtRr$ and $ttrr$,
743 the proportion of the k th generation of which are denoted by p_k^{TTRR} , p_k^{TtRr} and p_k^{ttrr} .
744 The four haplotypes that determine the genotype frequencies in the next
745 generation – TR , tR , Tr and tr – are described by the following frequencies:

746
$$f_k^{TR} = p_k^{TTRR}(1-s) + 0.25 p_k^{TtRr}(1-hs)$$

747
$$f_k^{tR} = f_k^{Tr} = 0.25 p_k^{TtRr}(1-hs)$$

748
$$f_k^{tr} = p_k^{ttrr} + 0.25 p_k^{TtRr}(1-hs)$$

749 Here, s denotes the reduced fecundity of $TTRR$ individuals and hs denotes the
750 reduced fecundity of $TtRr$ individuals relative to wild-type individuals, where
751 $h \in [0,1]$. By considering all possible mating pairs, the genotype frequencies in the
752 next generation are:

753
$$p_{k+1}^{TTRR} = (f_k^{TR})^2 / \sigma_k$$

754
$$p_{k+1}^{TtRr} = 2(f_k^{TR} f_k^{tr} + f_k^{tR} f_k^{Tr}) / \sigma_k$$

755
$$p_{k+1}^{trr} = (f_k^{tr})^2 / \sigma_k$$

756 where σ_k is a normalizing term given by,

757
$$\sigma_k = (f_k^{TR})^2 + 2(f_k^{TR} f_k^{tr} + f_k^{tR} f_k^{Tr}) + (f_k^{tr})^2$$

758 For our three-population models, there are three sets of the above equations to
759 represent each population. We let m represent the migration rate per generation.
760 After genotype frequencies for all three populations are calculated for a given
761 generation, a proportion m is removed from each genotype from populations 1
762 and 3 and added to population 2, and a proportion $2m$ is removed from each
763 genotype from population 2, half of which is added to population 1 and the other
764 half of which is added to population 3.

765 We investigated a number of different fitness cost models and chose the one that
766 provided the best fit to the data. In all cases, the parents in the first generation
767 were not subject to a fitness cost. The simplest model is one in which the fitness
768 of each genotype stays constant over time. Another model considers fitness
769 costs that depend on the population frequency of the genotype. For linear
770 frequency-dependence, this is given by,

771
$$s = (s_0 - s_1)p_k^{trr} + s_1$$

772 Here, s_0 represents the fitness cost of a translocation homozygote in an almost
773 fully wild-type population, and s_1 represents the fitness cost in an almost fully
774 transgenic population. An alternative model is that fitness is time-dependent, as
775 could be explained by introgression of introduced genotypes. For linear time-
776 dependence, this is given by,

777
$$s = \left(\frac{s_1 - s_0}{t_f} \right) t + s_0$$

778 Here, s_0 represents the fitness cost in the second generation and s_1 represents
779 the fitness cost in the final generation, denoted by t_f . For sigmoidal time-

780 dependence, it is given by,

781
$$s = (s_0 - s_1) \left(1 - \frac{1}{1 + e^{-\alpha(1-\tau)}} \right) + s_1$$

782 Here, s_0 and s_1 are as before, τ denotes the time of intermediate fitness cost,
783 and α denotes the speed of transition between the two fitness costs.

784 And for exponential time-dependence, it is given by,

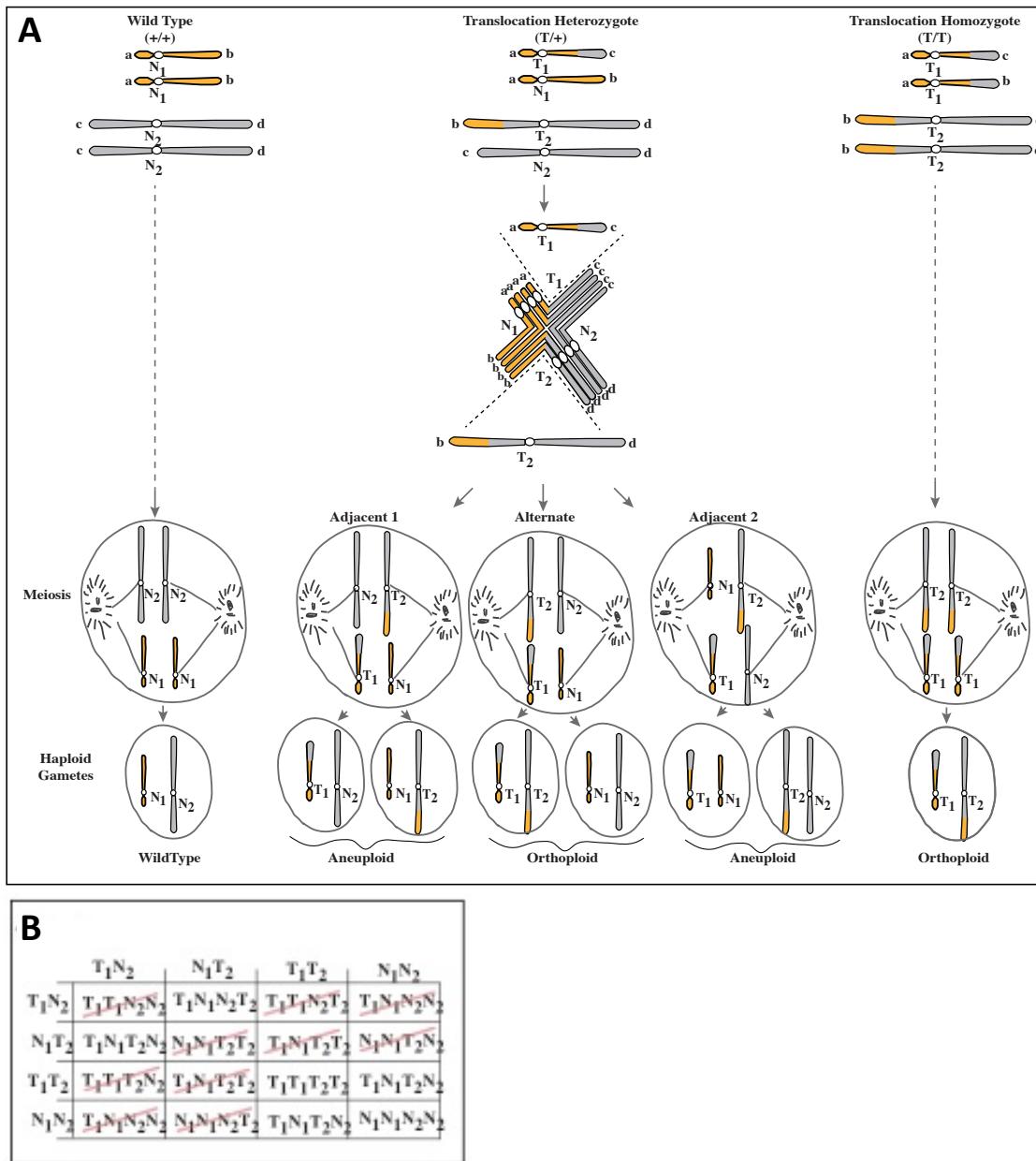
785
$$s = a2^{-t/t_{1/2}} + (s_0 - a)$$

786 Here, s_0 represents the fitness cost in the second generation, s_1 represents the
787 fitness cost after many generations, $t_{1/2}$ denotes the time at which the fitness cost
788 is halfway between the two, and a is given by,

789
$$a = \frac{s_0 - s_1}{1 - 2^{-t_f/t_{1/2}}}$$

790 We estimated fitness parameters for each model and compared models
791 according to their Akaike Information Criterion (AIC) values. Model fitting was
792 performed using population count data for the 18 drive experiments conducted
793 for each translocation system (three for each of the 80%, 70%, 60%, 40%, 30%
794 and 20% release frequencies). AIC was calculated as $2k - 2\log L$, where k
795 denotes the number of model parameters, and the preferred model is the one
796 with the smallest AIC value. The likelihood of the data was calculated, given
797 fitness costs s and hs , assuming a binomial distribution of the two phenotypes
798 (individuals homozygous or heterozygous for the translocation were considered
799 as the same phenotype to match the experimental counts). Model predictions
800 were used to generate expected genotype proportions over time for each fitness
801 cost, and the log likelihood had the form,

802
$$\log L(h, s) = \sum_{i=1}^{18} \sum_{k=1}^{14} \log \left(\frac{TTRR_{i,k} + TtRr_{i,k} + ttrr_{i,k}}{TTRR_{i,k} + TtRr_{i,k}} \right) + ttrr_{i,k} \log(p_{i,k}^{ttrr}(h, s)) + (TTRR_{i,k} + TtRr_{i,k}) \log(1 - p_{i,k}^{ttrr}(h, s))$$


803 Here, $TTRR_{i,k}$, $TtRr_{i,k}$ and $ttrr_{i,k}$ represent the number of $TTRR$, $TtRr$ and $ttrr$
804 individuals at generation k in experiment i , and the corresponding expected
805 genotype frequencies are fitness cost-dependent. The best estimate of the
806 fitness cost is that having the highest log-likelihood. A 95% credible interval was
807 estimated using a Markov Chain Monte Carlo sampling procedure. Matlab and R
808 code implementing these equations is available upon request. The AIC values for
809 each of the fitness cost models are shown in the table below:

Fitness cost model:	AIC (Translocation system 1):	AIC (Translocation system 2):
Constant fitness costs	6577.6	7448.0
Linear, frequency-dependent fitness costs	5051.3	5572.7
Linear, time-dependent fitness costs	3888.2	3752.1
Sigmoidal, time-dependent fitness costs	3344.2	3321.1
Exponential, time-dependent fitness costs	3336.2	3319.1

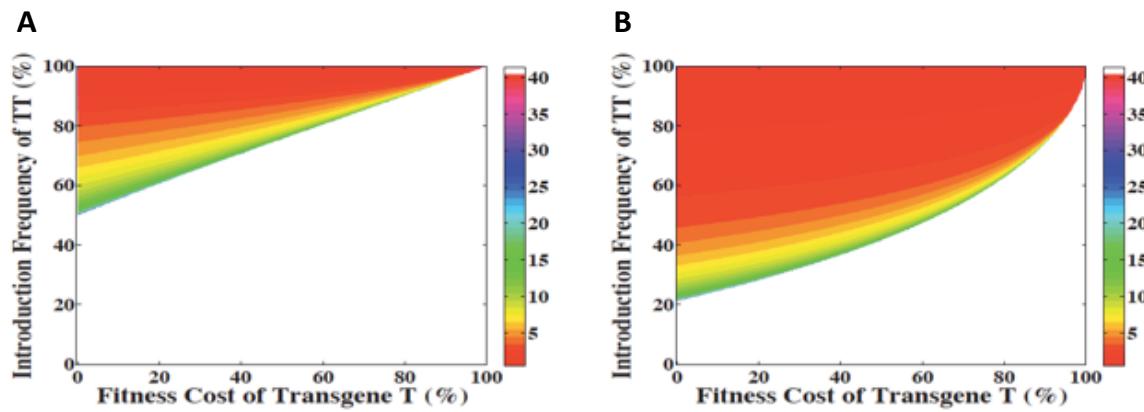
810

811 In summary, the best fitting model for the observed population dynamics is one in
812 which the relative fitness of homozygotes having the translocation is time-
813 dependent, with the relative fitness of these individuals increasing over time, at
814 first rapidly and then converging upon some higher value as described by an
815 exponential function (Figure 5).

816

817

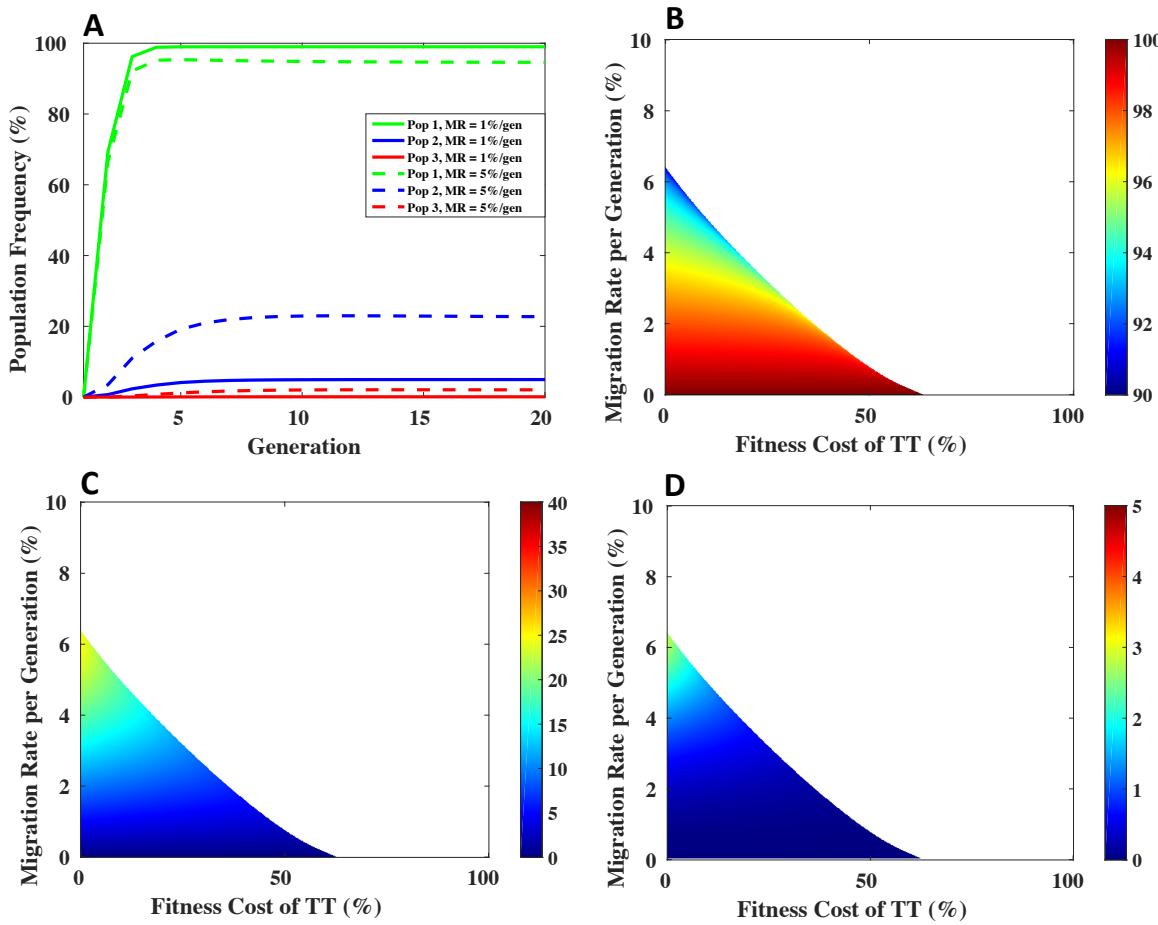
818 **Figure 1.** Gamete and zygote genotypes associated with the presence of a
 819 reciprocal translocation. Wildtype chromosomes N_1 and N_2 , and translocation
 820 chromosomes T_1 and T_2 , are indicated. (A) One chromosome type (a) is
 821 indicated in yellow. A second chromosome type (b) is in gray. Gamete types
 822 generated by wildtype (+/), translocation heterozygotes (T/), and translocation
 823 homozygotes (T/T) are indicated. (B) Gamete and zygote genotypes possible in


824 crosses involving a translocation are indicated. Inviable genotypes are indicated
825 by a red line.

826

827

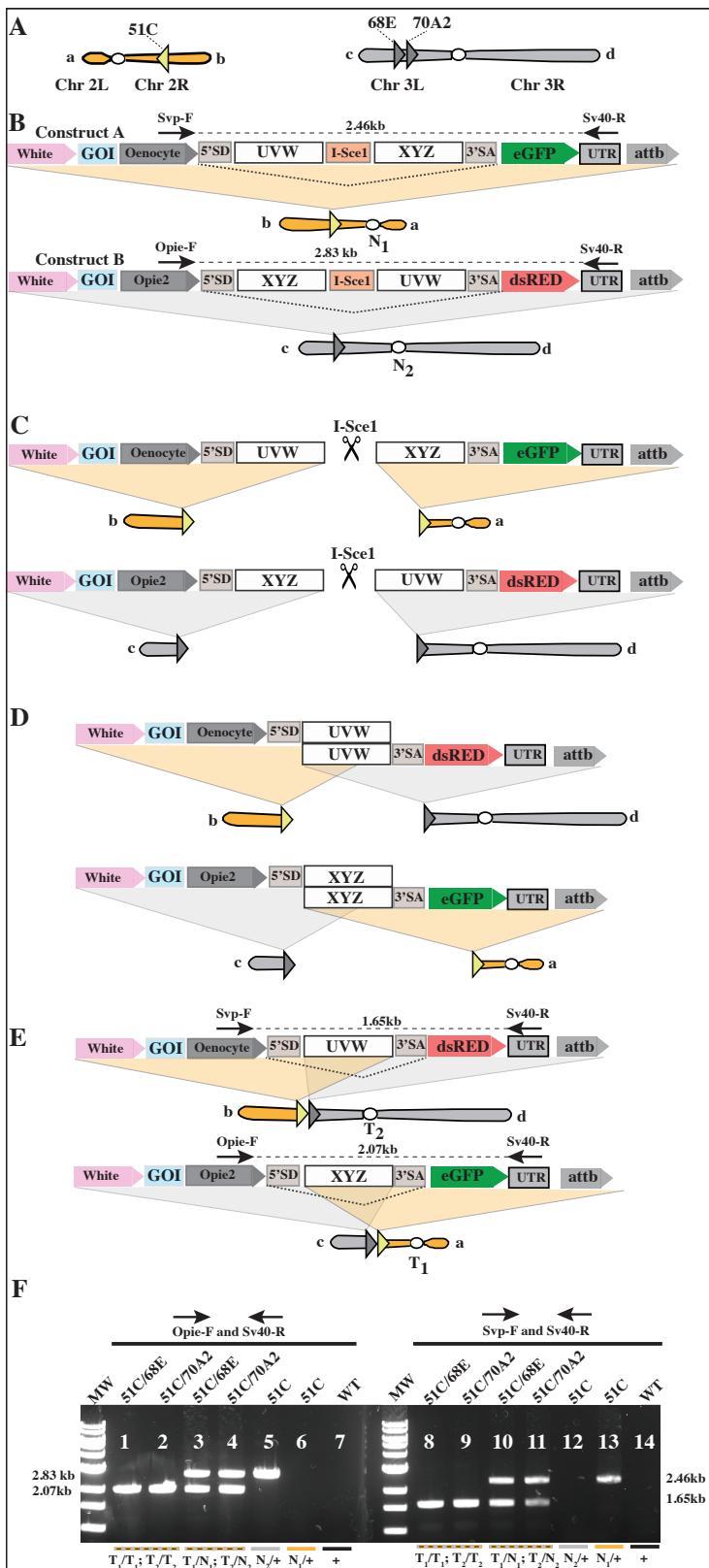
828


829
830
831
832

833
834

835 **Figure 2.** Engineered reciprocal translocations are predicted to show threshold-
836 dependent gene drive and bring about local population replacement. A discrete
837 generation, deterministic population frequency model of translocation spread
838 through a single population for varying introduction frequencies and fitness costs
839 for one (A) or three (B) introductions at the specified frequency. The heatmap
840 indicates the number of generations required for the translocation to reach
841 fixation (i.e., >99% of the total population) for all combinations of fitness cost and
842 introduction frequency.

843

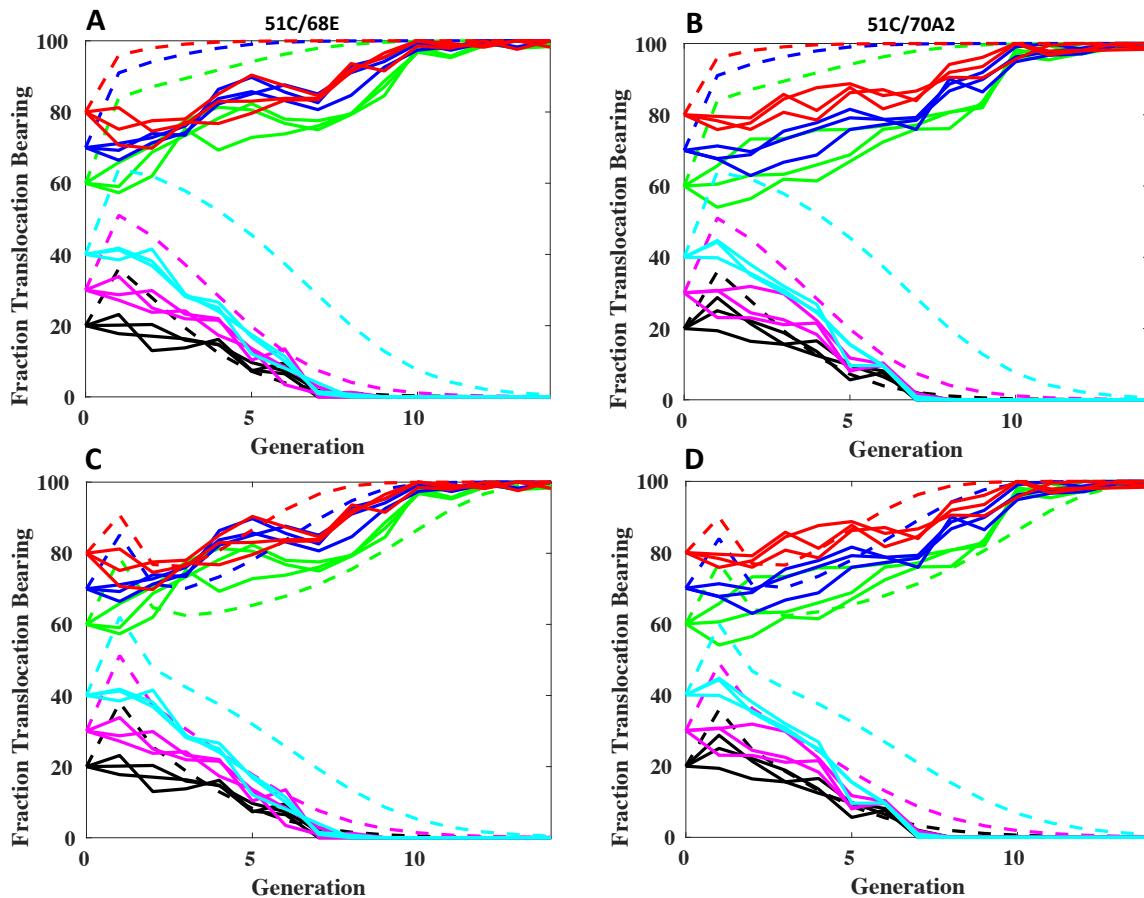


844

845

846 **Figure 3. Translocation dynamics in a linear, three population migration**
847 **model.** (A) Population frequency of a translocation with no fitness cost,
848 introduced into population 1 using three consecutive releases of translocation-
849 bearing homozygotes. Populations 1-3 are linked through a linear chain of
850 migration of 1% (solid lines) or 5% (dashed lines). (B-D) Equilibrium frequency of
851 translocation bearing individuals over a range of fitness costs and migration rates
852 for each of the three linked populations 1 (B), 2 (C), and 3 (D), respectively. For
853 all three populations increasing fitness cost has little effect on the equilibrium
854 frequency at low migration rate and increased effects at higher migration rates. In
855 contrast, migration rate has a much stronger effect on equilibrium frequency
856 independent of fitness cost as seen by the color gradient shifts. Note that the
857 equilibrium frequency varies between 90-100%, 0-25%, and 0-3% in the target
858 population (population 1), population 2, and population 3, respectively.

859 **Figure 4**



860

861 **Figure 4.** Generation of reciprocal translocations in *Drosophila*. (A) Approximate
862 location of the attP sites used for transgene insertion; orientation with respect to

863 the centromere are indicated by triangles. (B) Components of each starting
864 transgene cassette. Construct A is inserted on the second chromosome and
865 construct B on the third chromosome. Components are as indicated in the text.
866 (C) I-Sce-dependent cleavage results in a double-stranded break in each
867 transgene-bearing chromosome. (D) Alignment of broken chromosome ends
868 occurs using homologous sequences UVW and XYZ. (E) Recombinant
869 chromosomes are generated by homologous recombination using sequences
870 UVW and XYZ. (F) Agarose gel image is shown of PCR amplification products
871 generated from different genotypes: translocation homozygotes (T1/T1; T2T2);
872 translocation heterozygotes (T1N1; T2N); individuals carrying only the 51C
873 starting chromosome insertion (N1/+); or the 68E and 70A2 starting chromosome
874 insertion (N2/+). Primers used, and expected amplification product sizes, are
875 indicated in B and E.

876

877

878

879 **Figure 5.** Dynamics of translocation-based population replacement, and
880 predictions from zero fitness cost, and best fit models. (A, B) Population
881 frequency of the adult population having the indicated translocation is plotted
882 versus generation number for a number of homozygous translocation release
883 ratios: 80%, 70%, 60%, 40%, 30% and 20%. Solid lines indicate observed
884 population frequencies, and dashed lines indicate predicted translocation-bearing
885 genotype frequencies for an element with no fitness cost. (C, D). The same data
886 as in (A, B) but plotted along with dynamics predicted based on a best fit model
887 described in the methods and text.

888

889

parental genotypes		progeny genotype (%)	embryo survival %		transgene bearing adults %	
male	female		predicted	observed*	predicted	observed*
T ₁ /T ₁ ; T ₂ /T ₂	T ₁ /T ₁ ; T ₂ /T ₂	T ₁ /T ₁ ; T ₂ /T ₂ (100%)	100	96.9 ± 1.8 96.9 ± 0.3	100	100 ± 0.0 100 ± 0.0
T ₁ /T ₁ ; T ₂ /T ₂	+/+ ; +/+	T ₁ /+ ; T ₂ /+ (100%)	100	94.6 ± 2.2 98.2 ± 2.6	100	100 ± 0.0 100 ± 0.0
+/-	T ₁ /T ₁ ; T ₂ /T ₂	T ₁ /+ ; T ₂ /+ (100%)	100	90.1 ± 1.6 92.5 ± 4.8	100	100 ± 0.0 100 ± 0.0
T ₁ /+ ; T ₂ /+	+/- ; +/+	T ₁ /+ ; T ₂ /+ (25%) T ₁ /+ ; +/+(25%)** +/- ; T ₂ /+ (25%)** +/- ; +/- (25%)	50	51.2 ± 1.6 50.4 ± 1.3	50	49.3 ± 3.4 49.5 ± 2.4
+/- ; +/+	T ₁ /+ ; T ₂ /+	T ₁ /+ ; T ₂ /+ (25%) T ₁ /+ ; +/+(25%)** +/- ; T ₂ /+ (25%)** +/- ; +/- (25%)	50	48.3 ± 2.8 48.3 ± 3.9	50	49.4 ± 2.2 48.5 ± 3.4
T ₁ /+ ; T ₂ /+	T ₁ /+ ; T ₂ /+	T ₁ /T ₁ ; T ₂ /T ₂ (6.25%) T ₁ /T ₁ ; T ₂ /+ (12.5%)** T ₁ /T ₁ ; +/- (6.25%)** T ₁ /+ ; T ₂ /T ₂ (12.5%)** T ₁ /+ ; T ₂ /+ (25%) T ₁ /+ ; +/- (12.5%)** +/- ; T ₂ /T ₂ (6.25%)** +/- ; T ₂ /+ (12.5%)** +/- ; +/- (6.25%)	37.5	36.2 ± 1.8 32.4 ± 4.0	~83%	80.4 ± 6.5 80.8 ± 5.8

* Translocation 51C/68E (top) and 51C/9741 (bottom)

** These genotypes are not viable.

890

891 **Table 1.** Behavior of translocations in crosses to various genotypes. Crosses
 892 between parents of specific genotypes - wild-type (+/+; +/-), translocation
 893 heterozygotes (T₁/+; T₂/+), and translocation homozygotes (T₁/T₁; T₂/T₂), were
 894 carried out. Embryo survival (fifth column from right) and percentage of
 895 translocation-bearing adults (rightmost column) were independently quantified.
 896 The top number in each column shows results for the 51C/68E translocation; the
 897 bottom number shows the results for the 51C/70A2 translocation. ** Indicates
 898 unviable genotypes. Embryo survival was normalized with respect to percent
 899 survival (± SD) observed in the *w¹¹¹⁸* stock used for transgenesis (methods).

900

901

902

903 **Supplementary Table 1.** List of primer sequences used in this study.

Primer name	Primer sequence, 5' to 3'	Source
P1	CCTAACAACTCACACCTTGCAGGCCACCTG	pIZ/V5-

P2	GCCCTAGAGATCCACCAACTTTTTGCACTG C ATTCCCTAACATCAGTGGTTAACCTACCTTG TTGGCGTGACCAAGAGACAGGTTGCGCG	His/CAT (Invitrogen)
P3	AGGTTCAACCACTGATGCTTAGGAATAGGCC ATGTGAAGCTGAAGGAATC	pFUSEss- CHIg-mG1 (Invivogen)
P4	TATTACCCTGTTATCCCTACTAGTAGGGATAA CAGGGTAATACTAGAATCCCTGGGCACAATT T	
P5	CTAGTATTACCCTGTTATCCCTACTAGTAGGG ATAACAGGGTAATAGTGGTTGTAAGCCTTGC A	pFUSEss- CHIg-mG1 (Invivogen)
P6	AAAGGATAAGAATTAGGGTTAGTCGTTCGG TGTGCCTAGTTACCAGGAGAGTGGGAGA	
P7	CGCCCACGCCATCCAACCGCCGCCGCAACC TGTCTCTGGTCACGCCAACAAAGGTAGGTTTC	P3/P4 XYZ PCR
P8	ATGACGTTCTGGAGGAGCGCACCATTTGT TGCTAAAGGAAAGGATAAGAATTAGGGTT	P5/P6 UVW PCR
P9	AAACGACTAACCTAATTCTTATCCTTCCTTT AGCAACAAAATGGTGCCTCCTCCAAG	pMos-3xP3- DsRed-attp (addgene plasmid #52904)
P10	AATGGAACTCTCGCGGCCAGGTGGCGCTG CAAGGCTCGAGGGTCGACTGATCATAATCA	
P11	GGATCCGGGAATTGGGAATTGGGCAATATT AAATGGCGGCCCTGCAGCGCCACCTGGCC	Drosophila genomic DNA
P12	AGCGTGTTCGGCAGTGCAAAAAAGTTGGT	

P15	GGATCTCTAGGGCCAGGTGGCGCTGCAA CCAACGCATTTCCAAGCTTGTAAACGTGG ATCTCTAGGGCCAGGTGGCGCTGCAAGG	
P13	TACAAATGTGGTATGGCTGATTATGATCAGTC GACCCTCGAGCCTTGCAGCGCCACCTGG	Drosophila genomic DNA
P14	GAGACCGTGACCTACATCGTCGACACTAGTG GATCTCTAGGGCCAGGTGGCGCTGCAAGG	
P16	CCTTGCAGCGCCACCTGGCCCTAGAGATCCA CGTTAAACAAGCTTGGAAAATGCGTTGG	Drosophila genomic DNA
P17	CGAAGCGCCTCTATTATACTCCGGCGCTCG TTTAAACAAAGTGGCAGGGCCCATGTGTT	
P18	GAGTGGAGCACAAACACATGGGCCCTGCCA CTTGTTAAACGAGCGCCGGAGTATAAT	Drosophila genomic DNA
P19	AAGCATCAGTGGTTAACCTACCTTGTGGC GTGTCTGATGCAGATTGTTAGCTTGTTC	
P20	GCCAACAAGGTAGGTTAACCACTGATGCTT AGGAATAGGCGTGGTTGTAAGCCTTGCAT	pFUSEss- CHIg-mG1 (Invivogen)
P21	CCCTGTTATCCCTACTAGTAGGGATAACAGG GTAATACTAGTTACCAGGAGAGTGGGAG	
P22	TATTACCCTGTTATCCCTACTAGTAGGGATAA CAGGGTAATACATGTGAAGCTGAAGGAA	pFUSEss- CHIg-mG1 (Invivogen)
P23	AAAGGATAAGAATTAGGGTTAGTCGTTCGG TGTGCCTAGAATCCCTGGGCACAATTTTC	
P24	CAAGCGCAGCTGAACAAAGCTAAACAAATCTGC ATCAGACACGCCAACAGGTAGGTTCAAC	P20/P21 UVW PCR

P25	ACCTACATCGTCGACACTAGTGGATCTCTAG CTCGAGCTAAAGGAAAGGATAAGAATTAGGG	P22/P23 XYZ PCR
P26	CCCTAATTCTTATCCTTCCTTAGGAATTCC AACAAAATGGTGAGCAAGGGCGAGGAGC	pAAV-GFP (addgene plasmid #32395)
P27	TTCACTGCATTCTAGTTGTGGTTGTCCAAAC TCATCAATGTTACTTGTACAGCTCGTC	
P28	GCCGCCGGGATCACTCTCGGCATGGACGAG CTGTACAAGTAAACATTGATGAGTTGGAC	pMos-3xP3- DsRed-attp (addgene plasmid #52904)

904

905

906

907

908

909

910 **Acknowledgements**

911 Work in BAH's lab (BAH, OSA, ABB, and TI) was supported by the U. S. Army
912 Research Laboratory and the U. S. Army Research Office under contract
913 W911NF-11-2-0055 to the California Institute of Technology, and the USDA and
914 CRDF. Work at UCR (OSA and AB) was supported by an NIH-K22 Career
915 Transition award (5K22AI113060-02) and UCR lab startup funds to OSA. JMM
916 was supported by funding from The Parker Foundation through a gift to the
917 University of California, San Francisco, Global Health Group Malaria Elimination
918 Initiative. TI was supported by NIH training grant 1432.

919

920

921

922 1. Nicholson GM (2007) Fighting the global pest problem: preface to the special
923 Toxicon issue on insecticidal toxins and their potential for insect pest control.
924 *Toxicon* 49(4):413-422.

925 2. Curtis CF (1968) Possible use of translocations to fix desirable genes in insect
926 pest populations. *Nature* 218(5139):368-369.

927 3. Braig HR & Yan G (2001) The spread of genetic constructs in natural insect
928 populations. *Genetically Engineered Organisms: Assessing Environmental and*
929 *Human Health Effects*, eds Letourneau DK & Burrows BE (CRC Press), pp 251-
930 314.

931 4. Sinkins SP & Gould F (2006) Gene drive systems for insect disease vectors.
932 *Nat Rev Genet* 7(6):427-435.

933 5. Hay BA, *et al.* (2010) Engineering the genomes of wild insect populations:
934 challenges, and opportunities provided by synthetic Medea selfish genetic
935 elements. *J Insect Physiol* 56(10):1402-1413.

936 6. Burt A (2014) Heritable strategies for controlling insect vectors of disease.
937 *Philos Trans R Soc Lond B Biol Sci* 369(1645):20130432.

938 7. Whitten MJ (1971) Insect control by genetic manipulation of natural
939 populations. *Science* 171(3972):682-684.

940 8. Akbari OS, *et al.* (2014) Novel synthetic Medea selfish genetic elements drive
941 population replacement in *Drosophila*; a theoretical exploration of Medea-
942 dependent population suppression. *ACS Synth Biol* 3(12):915-928.

943 9. Okamoto KW, Robert MA, Lloyd AL, & Gould F (2013) A reduce and replace
944 strategy for suppressing vector-borne diseases: insights from a stochastic,
945 spatial model. *PLoS One* 8(12):e81860.

946 10. Robert MA, Okamoto K, Lloyd AL, & Gould F (2013) A reduce and replace
947 strategy for suppressing vector-borne diseases: insights from a deterministic
948 model. *PLoS One* 8(9):e73233.

949 11. Okamoto KW, Robert MA, Gould F, & Lloyd AL (2014) Feasible introgression
950 of an anti-pathogen transgene into an urban mosquito population without
951 using gene-drive. *PLoS Negl Trop Dis* 8(7):e2827.

952 12. Robert MA, Okamoto KW, Gould F, & Lloyd AL (2014) Antipathogen genes
953 and the replacement of disease-vectoring mosquito populations: a model-
954 based evaluation. *Evolutionary applications* 7(10):1238-1251.

955 13. Knols BG, Bossin HC, Mukabana WR, & Robinson AS (2007) Transgenic
956 mosquitoes and the fight against malaria: managing technology push in a
957 turbulent GMO world. *Am J Trop Med Hyg* 77(6 Suppl):232-242.

958 14. Marshall JM (2010) The Cartagena Protocol and genetically modified
959 mosquitoes. *Nat Biotechnol* 28(9):896-897.

960 15. Mumford JD (2012) Science, regulation, and precedent for genetically
961 modified insects. *PLoS Negl Trop Dis* 6(1):e1504.

962 16. Alphey L & Beech C (2012) Appropriate regulation of GM insects. *PLoS Negl*
963 *Trop Dis* 6(1):e1496.

964 17. Reeves RG, Denton JA, Santucci F, Bryk J, & Reed FA (2012) Scientific
965 standards and the regulation of genetically modified insects. *PLoS Negl Trop*
966 *Dis* 6(1):e1502.

967 18. Marshall JM (2009) The effect of gene drive on containment of transgenic
968 mosquitoes. *J Theor Biol* 258(2):250-265.

969 19. Marshall JM & Hay BA (2012) Confinement of gene drive systems to local
970 populations: a comparative analysis. *Journal of Theoretical Biology* 294:153-
971 171.

972 20. Wade MJ & Beeman RW (1994) The population dynamics of maternal-effect
973 selfish genes. *Genetics* 138(4):1309-1314.

974 21. Chen CH, *et al.* (2007) A synthetic maternal-effect selfish genetic element
975 drives population replacement in *Drosophila*. *Science* 316(5824):597-600.

976 22. Ward CM, *et al.* (2011) Medea selfish genetic elements as tools for altering
977 traits of wild populations: a theoretical analysis. *Evolution* 65(4):1149-1162.

978 23. Marshall JM & Hay BA (2012) General principles of single construct
979 chromosomal gene drive. *Evolution* 66(7):2150-2166.

980 24. Burt A (2003) Site-specific selfish genes as tools for the control and genetic
981 engineering of natural populations. *Proc Biol Sci* 270(1518):921-928.

982 25. Windbichler N, *et al.* (2011) A synthetic homing endonuclease-based gene
983 drive system in the human malaria mosquito. *Nature* 473(7346):212-215.

984 26. Gantz VM & Bier E (2015) Genome editing. The mutagenic chain reaction: a
985 method for converting heterozygous to homozygous mutations. *Science*
986 348(6233):442-444.

987 27. Gantz VM, *et al.* (2015) Highly efficient Cas9-mediated gene drive for
988 population modification of the malaria vector mosquito *Anopheles stephensi*.
989 *Proc Natl Acad Sci U S A* 112(49):E6736-6743.

990 28. Hammond A, *et al.* (2016) A CRISPR-Cas9 gene drive system targeting female
991 reproduction in the malaria mosquito vector *Anopheles gambiae*. *Nat
992 Biotechnol* 34(1):78-83.

993 29. Simoni A, *et al.* (2014) Development of synthetic selfish elements based on
994 modular nucleases in *Drosophila melanogaster*. *Nucleic Acids Res*
995 42(11):7461-7472.

996 30. Galizi R, *et al.* (2014) A synthetic sex ratio distortion system for the control of
997 the human malaria mosquito. *Nature communications* 5:3977.

998 31. Beaghton A, Beaghton PJ, & Burt A (2016) Gene drive through a landscape:
999 Reaction-diffusion models of population suppression and elimination by a
1000 sex ratio distorter. *Theoretical population biology* 108:51-69.

1001 32. Marshall JM & Hay BA (2011) Inverse Medea as a novel gene drive system for
1002 local population replacement: a theoretical analysis. *J Hered* 102(3):336-341.

1003 33. Marshall JM, Pittman GW, Buchman AB, & Hay BA (2011) Semele: a killer-
1004 male, rescue-female system for suppression and replacement of insect
1005 disease vector populations. *Genetics* 187(2):535-551.

1006 34. Gould F & Schliekelman P (2004) Population genetics of autocidal control
1007 and strain replacement. *Annu Rev Entomol* 49:193-217.

1008 35. Davis S, Bax N, & Grewe P (2001) Engineered underdominance allows
1009 efficient and economical introgression of traits into pest populations. *J Theor
1010 Biol* 212(1):83-98.

1011 36. Altrock PM, Traulsen A, Reeves RG, & Reed FA (2010) Using underdominance
1012 to bi-stably transform local populations. *J Theor Biol* 267(1):62-75.

1013 37. Altrock PM, Traulsen A, & Reed FA (2011) Stability properties of
1014 underdominance in finite subdivided populations. *PLoS computational*
1015 *biology* 7(11):e1002260.

1016 38. Akbari OS, *et al.* (2013) A synthetic gene drive system for local, reversible
1017 modification and suppression of insect populations. *Current Biol.* 23:671-
1018 677.

1019 39. Gokhale CS, Reeves RG, & Reed FA (2014) Dynamics of a combined Medea-
1020 underdominant population transformation system. *BMC Evol Biol* 14:98.

1021 40. Reeves RG, Bryk J, Altrock PM, Denton JA, & Reed FA (2014) First steps
1022 towards underdominant genetic transformation of insect populations. *PLoS*
1023 *One* 9(5):e97557.

1024 41. Roukos V & Misteli T (2014) The biogenesis of chromosome translocations.
1025 *Nat Cell Biol* 16(4):293-300.

1026 42. Coyne JA & Orr HA (2004) *Speciation* (Sinauer Associates, Sunderland,
1027 Connecticut).

1028 43. Warburton D (1991) De novo balanced chromosome rearrangements and
1029 extra marker chromosomes identified at prenatal diagnosis: clinical
1030 significance and distribution of breakpoints. *Am J Hum Genet* 49(5):995-
1031 1013.

1032 44. Ogilvie CM, Braude P, & Scriven PN (2001) Successful pregnancy outcomes
1033 after preimplantation genetic diagnosis (PGD) for carriers of chromosome
1034 translocations. *Human fertility* 4(3):168-171.

1035 45. Robinson AS (1976) Progress in the use of chromosomal translocations for
1036 the control of insect pests. *Biol Rev Camb Philos Soc* 51(1):1-24.

1037 46. Rickards GK (1983) Orientation behavior of chromosome multiples of
1038 interchange (reciprocal translocation) heterozygotes. *Annual review of*
1039 *genetics* 17:443-498.

1040 47. Serebrovskii AS (1940) On the possibility of a new method for the control of
1041 insect pests. *Zool. Zh.* 19:618-690.

1042 48. Dobzhansky T (1937) *Genetics and the origin of species* (Columbia University
1043 Press, NY).

1044 49. Robinson AS & Curtis CF (1973) Controlled crosses and cage experiments
1045 with a translocation in *Drosophila*. *Genetica* 44:591-601.

1046 50. Robinson AS (1976) Progress in the use of chromosomal translocations for
1047 the control of insect pests. *Biol. Rev.* 51:1-24.

1048 51. Asman SM, McDonald PT, & Prout T (1981) Field studies of genetic control
1049 systems for mosquitoes. *Annu Rev Entomol* 26:289-318.

1050 52. Harewood L & Fraser P (2014) The impact of chromosomal rearrangements
1051 on regulation of gene expression. *Hum Mol Genet* 23(R1):R76-82.

1052 53. Harewood L, *et al.* (2010) The effect of translocation-induced nuclear
1053 reorganization on gene expression. *Genome Res* 20(5):554-564.

1054 54. Black WCt, Alphey L, & James AA (2011) Why RIDL is not SIT. *Trends*
1055 *Parasitol* 27(8):362-370.

1056 55. Laruson AJ & Reed FA (2016) Stability of underdominant genetic
1057 polymorphisms in population networks. *J Theor Biol* 390:156-163.

1058 56. Beumer KJ, Pimpinelli S, & Golic KG (1998) Induced chromosomal exchange
1059 directs the segregation of recombinant chromatids in mitosis of *Drosophila*.
1060 *Genetics* 150(1):173-188.

1061 57. Yu Y & Bradley A (2001) Engineering chromosomal rearrangements in mice.
1062 *Nat Rev Genet* 2(10):780-790.

1063 58. Egli D, Hafen E, & Schaffner W (2004) An efficient method to generate
1064 chromosomal rearrangements by targeted DNA double-strand breaks in
1065 *Drosophila melanogaster*. *Genome Res* 14(7):1382-1393.

1066 59. Forster A, *et al.* (2005) Chromosomal translocation engineering to
1067 recapitulate primary events of human cancer. *Cold Spring Harbor symposia on*
1068 *quantitative biology* 70:275-282.

1069 60. Pacher M, Schmidt-Puchta W, & Puchta H (2007) Two unlinked double-
1070 strand breaks can induce reciprocal exchanges in plant genomes via
1071 homologous recombination and nonhomologous end joining. *Genetics*
1072 175(1):21-29.

1073 61. Torres R, *et al.* (2014) Engineering human tumour-associated chromosomal
1074 translocations with the RNA-guided CRISPR-Cas9 system. *Nature*
1075 *communications* 5:3964.

1076 62. Jiang J, *et al.* (2016) Induction of site-specific chromosomal translocations in
1077 embryonic stem cells by CRISPR/Cas9. *Scientific reports* 6:21918.

1078 63. Chen X, Li M, Feng X, & Guang S (2015) Targeted Chromosomal
1079 Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology
1080 in *Caenorhabditis elegans*. *Genetics* 201(4):1295-1306.

1081 64. Theilmann DA & Stewart S (1992) Molecular analysis of the trans-activating
1082 IE-2 gene of *Orgyia pseudotsugata* multicapsid nuclear polyhedrosis virus.
1083 *Virology* 187(1):84-96.

1084 65. Gutierrez E, Wiggins D, Fielding B, & Gould AP (2007) Specialized
1085 hepatocyte-like cells regulate *Drosophila* lipid metabolism. *Nature*
1086 445(7125):275-280.

1087 66. Rong YS & Golic KG (2003) The homologous chromosome is an effective
1088 template for the repair of mitotic DNA double-strand breaks in *Drosophila*.
1089 *Genetics* 165(4):1831-1842.

1090 67. Roberts PA (1976) The genetics of chromosome aberration. *The Genetics and*
1091 *Biology of Drosophila*, eds Ashburner M & Novitski E (Academic Press, New
1092 York), pp 68-184.

1093 68. Sherizen D, Jang JK, Bhagat R, Kato N, & McKim KS (2005) Meiotic
1094 recombination in *Drosophila* females depends on chromosome continuity
1095 between genetically defined boundaries. *Genetics* 169(2):767-781.

1096 69. Deredec A, Burt A, & Godfray HC (2008) The population genetics of using
1097 homing endonuclease genes in vector and pest management. *Genetics*
1098 179(4):2013-2026.

1099 70. Unckless RL, Messer PW, Connallon T, & Clark AG (2015) Modeling the
1100 Manipulation of Natural Populations by the Mutagenic Chain Reaction.
1101 *Genetics* 201(2):425-431.

1102 71. Barton NH & Turelli M (2011) Spatial waves of advance with bistable
1103 dynamics: cytoplasmic and genetic analogues of Allee effects. *Am Nat*
1104 178(3):E48-75.

1105 72. Magori K, *et al.* (2009) Skeeter Buster: a stochastic, spatially explicit
1106 modeling tool for studying *Aedes aegypti* population replacement and
1107 population suppression strategies. *PLoS Negl Trop Dis* 3(9):e508.

1108 73. Xu C, Legros M, Gould F, & Lloyd AL (2010) Understanding uncertainties in
1109 model-based predictions of *Aedes aegypti* population dynamics. *PLoS Negl*
1110 *Trop Dis* 4(9):e830.

1111 74. Lee Y, *et al.* (2013) Spatiotemporal dynamics of gene flow and hybrid fitness
1112 between the M and S forms of the malaria mosquito, *Anopheles gambiae*.
1113 *Proc Natl Acad Sci U S A* 110(49):19854-19859.

1114 75. Fontaine MC, *et al.* (2015) Mosquito genomics. Extensive introgression in a
1115 malaria vector species complex revealed by phylogenomics. *Science*
1116 347(6217):1258524.

1117 76. Dickson LB, *et al.* (2016) Reproductive Incompatibility Involving Senegalese
1118 *Aedes aegypti* (L) Is Associated with Chromosome Rearrangements. *PLoS*
1119 *Negl Trop Dis* 10(4):e0004626.

1120 77. Wise de Valdez MR, *et al.* (2011) Genetic elimination of dengue vector
1121 mosquitoes. *Proc Natl Acad Sci U S A* 108(12):4772-4775.

1122 78. Deus KM, Saavedra-Rodriguez K, Butters MP, Black WCt, & Foy BD (2012)
1123 The effect of ivermectin in seven strains of *Aedes aegypti* (Diptera: Culicidae)
1124 including a genetically diverse laboratory strain and three permethrin
1125 resistant strains. *J Med Entomol* 49(2):356-363.

1126 79. Dyck VA, Hendrichs J, & Robinson AS eds (2005) *Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management* (Springer, Dordrecht, The Netherlands).

1127 80. Harris AF, *et al.* (2012) Successful suppression of a field mosquito population
1128 by sustained release of engineered male mosquitoes. *Nat Biotechnol*
1129 30(9):828-830.

1130 81. Carvalho DO, *et al.* (2015) Suppression of a Field Population of *Aedes aegypti*
1131 in Brazil by Sustained Release of Transgenic Male Mosquitoes. *PLoS Negl*
1132 *Trop Dis* 9(7):e0003864.

1133 82. Gibson DG, *et al.* (2009) Enzymatic assembly of DNA molecules up to several
1134 hundred kilobases. *Nature methods* 6(5):343-345.

1135 83. Bischof J, Maeda RK, Hediger M, Karch F, & Basler K (2007) An optimized
1136 transgenesis system for *Drosophila* using germ-line-specific phiC31
1137 integrases. *Proc Natl Acad Sci U S A* 104(9):3312-3317.

1138 84. Kyrchanova O, Toshchakov S, Podstreshnaya Y, Parshikov A, & Georgiev P
1139 (2008) Functional interaction between the Fab-7 and Fab-8 boundaries and
1140 the upstream promoter region in the *Drosophila Abd-B* gene. *Mol Cell Biol*
1141 28(12):4188-4195.

1142

1143

1144