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Abstract: 17	

 Replacement of wild insect populations with transgene-bearing individuals 18	

unable to transmit disease or survive under specific environmental conditions 19	

provides self-perpetuating methods of disease prevention and population 20	

suppression, respectively. Gene drive mechanisms that require the gene drive 21	

element and linked cargo exceed a high threshold frequency to spread are 22	

attractive because they offer several points of control: they bring about local, but 23	

not global population replacement; and transgenes can be eliminated by 24	

reintroducing wildtypes into the population so as to drive the frequency of 25	

transgenes below the threshold required for drive. It has long been recognized 26	

that reciprocal chromosome translocations could, in principal, be used to bring 27	

about high threshold gene drive through a form of underdominance. However, 28	

translocations able to drive population replacement have not been reported, 29	

leaving it unclear if translocation-bearing strains fit enough to mediate gene drive 30	

can easily be generated. Here we use modeling to identify a range of conditions 31	

under which translocations should spread, and the equilibrium frequencies 32	

achieved, given specific introduction frequencies, fitness costs and migration 33	

rates. We also report the creation of engineered translocation-bearing strains of 34	

Drosophila melanogaster, generated through targeted chromosomal breakage 35	

and homologous recombination. By several measures translocation-bearing 36	

strains are fit, and drive high threshold, reversible population replacement in 37	

laboratory populations. These observations, together with the generality of the 38	

tools used to generate translocations, suggest that engineered translocations 39	

may be useful for controlled population replacement in many species.  40	

 41	

  42	
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Insects act as vectors for a number of important diseases of humans, animals, 43	

and plants (1). Traditional vector control is often challenging, with the degree of 44	

protection provided being proportional to the effort put into control.  In addition, 45	

depending on the environment, specific methods of vector control, such as 46	

environment modification or use of insecticides, may be impractical or have 47	

undesirable side effects.  A complementary strategy for disease prevention, first 48	

articulated many decades ago (2), involves using gene drive to bring about 49	

replacement of wild, disease transmitting insect populations with individuals 50	

engineered to be refractory to disease transmission, but still subject to traditional 51	

vector control (reviewed in (3-6). In a variant of this idea, population replacement 52	

has also been proposed as a method for bringing about disease prevention 53	

and/or a reduction in insect mediated damage through periodic population 54	

suppression (7, 8). This can occur when replacement results in all individuals 55	

carrying genes that cause death or failure to diapause in response to application 56	

of an otherwise benign chemical, or a seasonal change in an environmental 57	

variable such as temperature or humidity. An important appeal of these 58	

strategies is that they are species-specific and potentially self-perpetuating.  59	

 60	

Because transgenes that mediate disease resistance or conditional lethality are 61	

unlikely to confer a fitness benefit to carriers an essential component of most 62	

population replacement strategies (see (9-12) for several non-drive based 63	

replacement strategies) is linkage with a gene drive mechanism that carries 64	

transgenes to high frequency following release. These drive mechanisms must 65	

be strong enough to spread genes to high frequency in wild populations on 66	

human timescales, while also functioning within regulatory frameworks (13-17). 67	

Central to the latter are issues of confinement and reversibility: can the spread of 68	

transgenes to high frequency be limited to locations in which their presence is 69	

sought, and can the population be restored to the pre-transgenic state? 70	

 71	

An important characteristic of any gene drive mechanism that relates to the 72	

above questions is its level of invasiveness: its ability to increase in frequency 73	
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both at the release site and in surrounding areas linked to the release site by 74	

various levels of migration, when introduced at various population frequencies. 75	

Low threshold gene drive mechanisms require that only a small fraction of 76	

individuals in the population carry the drive element in order for spread to occur 77	

locally (18, 19). Examples include engineered Medea chromosomal elements 78	

(20-22), several other possible single locus chromosomal elements (23), site-79	

specific nucleases that home into their target site (24-29), and site-specific 80	

nucleases that result in sex ratio distortion (30). These mechanisms are 81	

predicted to be invasive because low levels of migration of drive element-bearing 82	

individuals into areas outside the release area may, depending on the threshold 83	

and the migration rate (18, 19, 31), result in these areas being seeded with 84	

enough transgene-bearing individuals for drive to occur. Low threshold, invasive 85	

gene drive mechanisms are attractive when the goal is to spread transgenes 86	

over a large area, and migration rates between the release site and surrounding 87	

areas of interest are low. However, for these same reasons, it is likely to be 88	

challenging to restore the population to the pre-transgenic state if desired. Given 89	

the intense scrutiny with which releases of insects engineered to suppress 90	

population numbers while ultimately disappearing from the population have been 91	

greeted (15-17), gene drive mechanisms that have a limited capacity to spread, 92	

and that can easily be eliminated from the population, thereby restoring the 93	

population to a pre-transgenic state, may be useful in some contexts.  94	

High (or higher) threshold gene drive mechanisms require, as their name implies, 95	

that transgenes make up a much larger fraction of the total insect population 96	

(important examples range from 15-70%) before gene drive occurs. Below this 97	

frequency transgenes are instead actively eliminated from the population. In 98	

short, these drive mechanisms behave as a frequency-dependent bistable 99	

switch. High transgene frequencies are needed to initiate drive at the release 100	

site, limiting the possibility that unintended release of a few individuals could 101	

initiate replacement. Once replacement has occurred at the release site, spread 102	

to high frequency in areas connected to the release site by low levels of 103	

migration is prevented because the transgene never reaches the threshold 104	
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frequency needed for drive. Finally, transgenes can be eliminated from the 105	

population if the release of wildtypes results in the frequency of transgenics being 106	

driven below the threshold required for drive.  107	

A number of gene drive mechanisms that could in principal bring about local and 108	

reversible population replacement have been proposed. Examples include a 109	

number of single locus gene drive mechanisms (23, 32, 33), reciprocal 110	

chromosome translocations, inversions and compound chromosomes (34), and 111	

several forms of engineered underdominance (23, 35-39) (40). One of these, 112	

UDMEL (double Medea), has recently been shown to drive reversible population 113	

replacement into populations of wildtype Drosophila (38). A second system has 114	

been shown to drive high threshold population replacement in Drosophila in a 115	

split configuration (40). In each of these systems gene drive occurs when 116	

transgene-bearing chromosomes experience frequency-dependent changes in 117	

fitness with respect to non-transgene-bearing counterparts, with the former 118	

having high fitness at high frequency and lower fitness at low frequency. These 119	

systems all rely, in one way or another, on the phenomena of underdominance, 120	

in which transgene-bearing heterozygotes (or some fraction of them or their 121	

progeny) have a lower fitness than either homozygous wildtypes or homozygous 122	

transgenics (or transgene-bearing trans-heterozygote in some three allele 123	

cases). If the frequency of one allele or pair of alleles or chromosome type is 124	

above a critical threshold it spreads to genotype, and in some cases allele 125	

fixation. Conversely, if it falls below the critical threshold it is lost in favor of the 126	

other allele or chromosome type, usually wildtype. In broad outline, this behavior 127	

occurs because when transgene-bearing individuals are common they mate 128	

mostly with each other, producing transgene-bearing offspring of high fitness 129	

(high survival and/or fecundity), while wildtypes mate mostly with transgene-130	

bearing individuals, producing a preponderance of heterozygous offspring of low 131	

fitness (inviable and/or with reduced fecundity). However, when the frequency of 132	

wildtypes is high the tables are turned, with transgene-bearing individuals 133	

producing high frequencies of unfit heterozygous progeny, and wildtypes 134	

producing a high frequency of fit homozygous progeny. 135	
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Here we focus on the use of engineered reciprocal chromosome translocations 136	

as a high threshold gene drive mechanism. Reciprocal chromosome 137	

translocations were the first gene drive mechanism proposed (2). Their structure 138	

and genetic behavior are illustrated in Figure 1A. A reciprocal chromosome 139	

translocation results in the mutual exchange of DNA between two non-140	

homologous chromosomes (41). Provided that the translocation breakpoints do 141	

not alter the expression and/or function of nearby genes, translocation 142	

heterozygotes and homozygotes can in principal be phenotypically normal. Thus, 143	

phenotypically normal, naturally occurring translocation-bearing individuals are 144	

found in populations of many species (42), including humans (43, 44). However, 145	

translocation heterozygotes are usually semisterile, producing a high frequency 146	

of inviable offspring. This occurs because meiosis in a translocation heterozygote 147	

can generate a variety of different products. Three patterns of segregation are 148	

possible: alternate, adjacent-1 and adjacent-2 (Figure 1A). While alternate 149	

segregation leads to the production of gametes with a full genome complement, 150	

adjacent-1 and adjacent-2 segregation lead to the production of aneuploid 151	

gametes, resulting in the death of progeny that inherit an unbalanced 152	

chromosome set. In many species alternate and adjacent-1 segregation occur 153	

roughly equally, with adjacent-2 segregation being rare (45, 46).  In such species 154	

progeny genotypes and survival phenotypes resulting from crosses between 155	

translocation-bearing individuals and wildtypes are as illustrated in the Punnett 156	

square in Figure 1B. Progeny with unbalanced genotypes die, while balanced 157	

translocation heterozygotes, translocation homozygotes, and homozygous 158	

wildtypes survive.  159	

In 1940 Serebrovski proposed that the release of homozygous translocation-160	

bearing males could be used to drive population suppression because many 161	

progeny would be semisterile, thereby driving down population fitness over 162	

multiple generations (47). He, Dobzhansky (48), and later Curtis (2), also noted 163	

that the frequency of translocations lacks a stable internal equilibrium, with either 164	

wildtype or translocation-bearing chromosomes spreading to fixation in an 165	

isolated population through natural selection (differential survival of the relevant 166	
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chromosome type) if their frequency rose above 50%, for a translocation with no 167	

fitness cost to carriers. Curtis proposed that if a gene beneficial to humans could 168	

be linked to the translocation breakpoint, this behavior of translocations could be 169	

used to spread the gene into the wild population. Whitten subsequently noted 170	

that the same approach could be used to spread a trait conferring conditional 171	

lethality, which could be used to bring about population suppression (7). More 172	

recent modeling work has highlighted the potential of translocations for bringing 173	

about local, but not global population replacement, and the ease of reversal (19).  174	

Though it is clear from evolutionary studies that translocations can become fixed 175	

in populations (42), efforts to directly bring about population replacement using 176	

translocations created in the lab have not been successful (34, 49-51). There 177	

may be several reasons for this. First, translocation-bearing individuals 178	

(particularly homozygotes) generated in the past typically had very low fitness, 179	

probably at least in part because they were generated using X-rays, which can 180	

result in a high frequency of background mutations. Second, more recently it has 181	

become clear that chromosome positioning and structure in the nucleus can play 182	

a role in determining large-scale patterns of gene expression, and that 183	

chromosome translocation can result in changes in the patterns of gene 184	

expression (52, 53). These latter observations leave it fundamentally unclear 185	

whether translocation-bearing individuals of high fitness can be easily generated, 186	

even if the breakpoints involved are located in gene deserts. For example, it 187	

could be that phenotypically normal translocation-bearing individuals observed in 188	

nature simply represent the relatively rare cases in which chromosome 189	

rearrangement does not result in fitness being compromised. To explore these 190	

issues, and to determine if translocation-based gene drive can be used to bring 191	

about population replacement, we first use modeling to explore the relationship 192	

between variables such as introduction frequency, fitness cost, and reciprocal 193	

migration with non-target populations containing widltypes, for the ability of a 194	

translocation to spread, and the equilibrium frequencies achieved in replaced and 195	

surrounding populations. We then describe a general approach to generation and 196	

identification of site-specific reciprocal chromosomal translocations. Finally, we 197	
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provide the first demonstration that engineered translocations are capable of 198	

bringing about threshold-dependent population replacement, in Drosophila 199	

melanogaster.  200	

 201	

Some predicted characteristics of translocation-based gene drive. 202	

Early modeling work by Serebrovskii and Curtis showed that if a translocation 203	

results in no fitness cost to carriers, and is present in a population experiencing 204	

no incoming migration of wildtypes, it will spread to allele fixation when present at 205	

population frequencies greater than 50%, and will be eliminated when present at 206	

lower frequencies (2). Curtis also noted briefly that translocations that resulted in 207	

a fitness cost to carriers could still spread to allele fixation, but the threshold 208	

introduction frequency would be increased (2). Given the past failures to bring 209	

about translocation-mediated population replacement noted above, and the 210	

likelihood that chromosome translocation itself and/or the GOI placed at the 211	

breakpoints will result in some fitness cost to carriers, we sought to understand 212	

more generally how fitness cost affects translocation spread. The time to allele 213	

fixation is particularly relevant for contexts in which the goal is to ultimately bring 214	

about population suppression in response to a seasonal variable such as 215	

temperature or humidity.  216	

 217	

In figure 2A we illustrate the relationship between fitness cost, introduction 218	

frequency and time to translocation allele fixation (approximated as the point at 219	

which >99% of individuals carry at least one translocation copy), for a single 220	

introduction into an isolated population. The plot illustrates several important 221	

points. First, whenever translocations spread, they spread to fixation relatively 222	

quickly, with the time needed being inversely related to the introduction 223	

frequency. Second, translocations that confer large fitness costs to carriers can 224	

also spread rapidly, so long as the introduction frequency is increased. The plot 225	

in Figure 2B illustrates a related case in which the translocation is introduced 226	

over three generations at the specified frequency. It shows that with modest extra 227	

effort rapid drive can be achieved, even for very high fitness costs. While these 228	
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introduction frequencies represent a large percentage of the wild population, they 229	

are still much lower than those used in self-limiting genetic population 230	

suppression strategies such as SIT and RIDL (54), and unlike SIT and RIDL, 231	

result in sustained changes to the population.  232	

 233	

In real world scenarios other than initial field-testing - in which population 234	

isolation will be essential - there is likely to be some level of reciprocal migration 235	

between the target area (source population 1) and surrounding areas (population 236	

2) containing wildtypes. Marshall and Hay showed that for realistic population 237	

sizes (>1000 individuals), there are no reciprocal migration rates that support 238	

population replacement in a second, wildtype-containing population (population 239	

2) linked to a source population (population 1) in which replacement is initiated. 240	

Due to the high frequency of death among the progeny of translocation-bearing 241	

individuals that mate with wildtype, the frequency of translocation-bearing 242	

individuals in population 2 never rises to a level that supports drive (see also 243	

Figure 3A, C). Instead, when migration rates are high (~6.8%, or lower when the 244	

translocation is associated with a fitness cost), translocations are eliminated from 245	

both populations (19). Here we consider a related question: what effect does 246	

reciprocal migration have on the characteristics of population replacement in the 247	

target population, and the genotypic composition of neighboring populations 248	

linked by migration, in which drive does not occur?  249	

 250	

We consider a specific scenario in which three populations are linked in series: 251	

the target population (population 1) is linked to a second population consisting 252	

initially of wildtypes (population 2) through migration; population 2 is also linked 253	

through migration to a third population consisting initially of wildtypes (population 254	

3), which is not linked directly with population 1. We ask what the equilibrium 255	

frequencies are in each population for different levels of migration? In the case of 256	

a low threshold gene drive mechanism such as Medea or homing by a HEG, the 257	

equilibrium frequency in population 1 will approach fixation since these drive 258	

elements spread invasively into surrounding populations connected to the target 259	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088393doi: bioRxiv preprint 

https://doi.org/10.1101/088393
http://creativecommons.org/licenses/by-nd/4.0/


	 10	

population by low levels of migration.  In contrast, the situation for high threshold 260	

gene drive mechanisms is fundamentally different since wildtypes will, by 261	

definition, always be present in surrounding non-target populations in which 262	

transgene levels sufficient for drive are not achieved. Previous modeling studies 263	

of underdominant systems have noted that the presence of reciprocal migration 264	

can result in internal equilibria containing both wldtype and underdominant alleles 265	

(36, 37) (55). Here we consider the case of reciprocal translocations specifically.  266	

 267	

Figure 3A illustrates a specific scenario, in which a translocation with no fitness 268	

cost is introduced into population 1 at a frequency of 70%, and is connected to a 269	

similarly sized population 2 by a migration rate of 1%. Population 2 is connected 270	

to a similarly sized population 3 by the same migration rate. The translocation 271	

spreads to high frequency (99%) in population 1, but not to allele or genotype 272	

fixation, since wildtypes are introduced into population 1 each generation. 273	

Translocation-bearing genotypes are also present at modest levels (<5% 274	

(4.954%) in population 2, and <1% (0.08116%) in population 3.  Figure 3A also 275	

illustrates an identical scenario in which the migration rate is now 5%. In this 276	

case the translocation equilibrium frequency is <95% (94.55%) in population 1, 277	

<23% (22.58%) in population 2, and ~2% (2.031%) for population 3. The general 278	

relationship between fitness cost, migration rate and equilibrium frequency in 279	

population 1 is illustrated in Figure 3B. The highest level of incoming wildtype 280	

migration that can be tolerated for a translocation with no fitness cost (~6.8% / 281	

generation) results in an equilibrium translocation genotype frequency of ~90% in 282	

population 1. Decreased levels of migration result in correspondingly higher 283	

equilibrium frequencies, which approach fixation as the migration rate falls to 284	

zero (as in Figure 2). Populations 2 (Figure 3C) and 3 (Figure 3D) show the 285	

opposite behavior. As migration rate increases, the fraction of translocation-286	

bearing individuals increases in population 2, reaching a maximum of ~25% for a 287	

translocation with no fitness cost and migration rate of 6.8%. However, for similar 288	

migration rates the fraction of translocation-bearing individuals in population 3 is 289	
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dramatically reduced. Increased fitness costs result in a minimal decrease in 290	

equilibrium translocation frequency in all three populations (Figure 3B-D).  291	

 292	

These observations illustrate a fundamental set of tradeoffs associated with high 293	

threshold gene drive. While drive can be spatially limited to a single population, 294	

this comes with a cost: the continuous introduction of wildtypes from neighboring 295	

populations, which keeps the equilibrium frequency of transgene-bearing 296	

individuals below 100%. Depending on the disease system being considered, the 297	

presence of some level of non-transgene-bearing individuals within the target 298	

area may have important epidemiological consequences, as a residual 299	

population of wildtype mosquitoes may be capable of sustaining transmission, 300	

although this remains to be investigated. Population suppression following 301	

activation of condition-dependent lethality may also be challenging in the face of 302	

significant levels of wildtype migration. Finally, the presence of some level of 303	

translocation-bearing individuals outside the target area may have regulatory 304	

implications even if these levels are insufficient for drive. That said, any such 305	

issues are likely to be local since the decrease in frequency of drive element-306	

bearing individuals in underdominant systems drops off rapidly in a series of 307	

linked populations (Figure 3B-D). Together, these observations suggest that high 308	

threshold gene drive is likely to be most epidemiologically effective and able to 309	

satisfy regulatory requirements relating to the presence and movement of 310	

transgene-bearing organisms within target areas circumscribed by significant 311	

barriers to migration.  312	

 313	

Engineering Reciprocal Translocations in Drosophila 314	

Cells or organisms carrying translocations with defined breakpoints have recently 315	

been generated using several strategies. One set of approaches begins with two 316	

non-homologous chromosomes that each have a different transgene-bearing 317	

cassette inserted at a specific position. Recombination between the two 318	

chromosomes to generate a translocation is then driven by FLP/FRT 319	

recombination (56), Cre/loxP recombination (57, 58), or homologous 320	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088393doi: bioRxiv preprint 

https://doi.org/10.1101/088393
http://creativecommons.org/licenses/by-nd/4.0/


	 12	

recombination following double-stranded break creation within the transgene 321	

cassettes using a site-specific nuclease (58-60). Translocations have also been 322	

generated in completely wildtype backgrounds, following Crispr/Cas9-mediated 323	

cleavage of two otherwise wildtype chromosomes followed by non-homologous 324	

end joining (61-63).  In this latter case, PCR-based methods were used to 325	

identify pools of cells or individuals carrying translocations. 326	

 327	

We sought to create translocations using a variant of the approach described by 328	

Egli et al. in which homologous recombination between two chromosomes 329	

follows double-stranded break creation using the rare-cutting site-specific 330	

nuclease I-SceI (58). However, rather than use their approach for identification of 331	

potential translocation bearing individuals, which involves scoring for the loss of 332	

the marker y+ in an otherwise a y- background, we created a system in which 333	

recombination results in the creation of a dominant marker. This approach can be 334	

used in otherwise wildtype genetic backgrounds, in diverse species.  335	

 336	

Two constructs (A and B) were generated (Figure 4B). Each construct includes 337	

several components. These include (from left to right) a transformation marker 338	

(the white gene); a location that could be used as an insertion point of a gene of 339	

interest (GOI); a promoter that drives the expression of a dominant florescent 340	

marker, either ubiquitously (the Opie2 viral promoter, (64) or in oenocytes (65); a 341	

splice donor site, and two stretches of DNA used as substrates for homologous 342	

recombination, annotated as UVW and XYZ, each roughly 670bp in length. 343	

These DNA fragments were derived from the mouse IgG locus, and thus lack 344	

homology with the Drosophila genome. Two target sites for the rare cutting 345	

homing endonuclease I-SceI were inserted between UVW and XYZ. To the right 346	

of these elements were positioned a splice acceptor, a promoterless reporter 347	

gene (GFP or dsRed), and a phiC31 recombination attB site.  348	

 349	

These constructs were introduced into flies at three separate attP locations: 350	

construct A at 51C on chromosome 2, and construct B at 68E or 70A2 on 351	
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chromosome 3 (Figure 4A).  The attP insertion sites at 51C and 68E lie some 352	

distance from annotated genes, while the 70A2 site lies within a cluster of tRNA 353	

loci. Both constructs were oriented in the same direction with respect to their 354	

centromeres (Figure 4A). The constructs were designed so that flies bearing 355	

construct A, located on the second chromosome, would express the svp-driven 356	

eGFP marker, while construct B, located on the third chromosome, would 357	

express the opiap2-driven dsRED marker (Figure 4B). Transgenics for construct 358	

B behaved as expected, and were dsRED positive throughout their body. 359	

However, transgenics for construct A had no detectable GFP expression. The 360	

basis for this is unclear, but could be due to inappropriate splicing of the XYZ-361	

UVW sequence in this construct. Regardless, as illustrated below, one marker is 362	

sufficient to identify translocation-bearing individuals.  363	

 364	

To generate translocation-bearing individuals we created stocks doubly 365	

homozygous for constructs A and B (51C; 71A2 or 51C; 68E). These were then 366	

mated with flies that express I-SceI under the control of the Hsp70 heat shock 367	

promoter (66). Progeny carrying all three transgenes were subjected to multiple 368	

rounds of heat shock during larval stages and as adults. Adults were outcrossed 369	

to wildtype, and progeny examined under a fluorescent dissecting scope. In a 370	

number of individuals strong ubiquitous GFP expression was observed. This is 371	

the predicted outcome if I-SceI expression results in cleavage of both transgene-372	

bearing chromosomes (Fig. 4C), followed by homologous recombination between 373	

XYZ- and UVW-bearing ends of the two different chromosomes (Fig. 4D,E). 374	

Putative translocation heterozygotes (T1/+; T2/+) were individually mated to wild 375	

type individuals (+/+; +/+) to generate males and female translocation 376	

heterozygotes (identified as GFP-expressing). These were mated with each other 377	

to generate putative translocation homozygotes (T1/ T1; T2/ T2). PCR and 378	

sequencing of products from genomic DNA of these individuals was used to 379	

demonstrate that these individuals were homozygous for both translocation 380	

products (Methods and Figure 4F).  381	

 382	
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To explore the genetic behavior of translocation-bearing chromosomes and the 383	

fitness of carriers we carried out a number of crosses and quantified progeny 384	

genotype (Table 1). Stocks consisting of translocation homozygotes appeared 385	

generally healthy as adults, and survival from egg to adult was 96% of that 386	

observed for the Canton S (CS) wildtype stock. In contrast, crosses between 387	

males or females heterozygous for the translocation and wildtype resulted in 388	

semisterility, with only about 50% of progeny surviving to adulthood, and 50% of 389	

the survivors being translocation heterozygotes. These are the expected results if 390	

alternate and adjacent-1 segregation occur with equal frequency in translocation-391	

bearing individuals during meiosis, resulting in the production of 50% aneuploid 392	

gametes (Figure 1B). Finally, for each translocation type we also carried out 393	

crosses between male and female translocation heterozygotes. Only 37.5% of 394	

progeny are predicted to survive, due to the large fraction of zygotes carrying 395	

unbalanced chromosome complements. However, many of the survivors (83%) 396	

are predicted to carry one or two copies of the translocation (Figure 1B).  The 397	

levels of embryo survival and percentage of adults carrying the translocation 398	

were in good agreement with these predictions (Table 1). Together, these 399	

observations suggest that the translocation-bearing strains are fit 400	

(notwithstanding the expected semisterility), at least to a first approximation. 401	

These points notwithstanding, fitness measurements such as these are not 402	

sufficient to know that frequency-dependent drive will occur. This is well 403	

illustrated by the results of Curtis and Robinson, who found that a 2;3 404	

translocation strain generated with X-rays, which had homozygous viability and 405	

fertility equivalent to wildtype in crosses such as those described above, was 406	

unable to drive population replacement, even when introduced at a 9:1 407	

translocation:wildtype ratio (49).   408	

 409	

For population replacement experiments we first introgressed our translocation-410	

bearing systems, 51C; 70A2 and 51C; 68E flies, with Canton S (CS) for 8 411	

generations, so as to minimize background genetic differences between 412	

translocation-bearing and wildtype strains. Translocation-bearing individuals 413	
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were then backcrossed to each other to create homozygous stocks. We initiated 414	

population cage experiments by introducing translocation-bearing males and 415	

virgin females into cages along with Canton S males and virgin females of similar 416	

age. A number of different introduction frequencies were tested, in triplicate. 417	

These included frequencies predicted to be super-threshold (80%, 70%, 60%), 418	

and sub-threshold (20%, 30%, 40%). Populations were then followed for 14 419	

generations, with the frequency of translocation-bearing individuals noted each 420	

generation.   421	

 422	

Results of these experiments are summarized in Figure 5A,B (solid lines). For 423	

both translocation-bearing strains, all nine releases at frequencies lower than 424	

50% resulted in elimination of the translocation from the population. Conversely, 425	

introductions at frequencies greater than 50% resulted in translocation-bearing 426	

genotypes spreading to high frequency. These results are generally consistent 427	

with the modeling predictions. However, the dynamics of drive are clearly distinct 428	

from those predicted for translocations that lack a fitness cost (dotted lines in 429	

Figure 5A,B). When translocations were introduced at predicted super-threshold 430	

frequencies spread was slower than expected for a translocation with no fitness 431	

cost. Sub-threshold releases also resulted in lower initial translocation 432	

frequencies than expected, and this was generally followed in later generations 433	

by a modestly decreased time to elimination as compared with a translocation 434	

with no fitness cost (except at the 20% introduction frequency).  435	

 436	

To understand these dynamics, we fitted the experimental data with our 437	

previously described deterministic model framework (19) using a range of 438	

different fitness cost models (Methods).  By comparing the Akaike Information 439	

Criterion (AIC) values for each of these fitness cost models we found the best 440	

fitting model for the observed population dynamics to be one in which the relative 441	

fitness of homozygotes having the translocation is time-dependent, with the 442	

relative fitness of these individuals rapidly increasing over time, at first rapidly 443	

and converging upon some higher value as described by an exponential function. 444	
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Calculations of fitness parameters for translocation system 1 suggest an initial 445	

relative fitness of transgenic homozygotes of 0.0004 (95% CrI: 0-0.0019) relative 446	

to wild-types in generation 1 (the first progeny generation post adult introduction), 447	

rising to a relative fitness of 1.51 (95% CrI: 1.48-1.53) in subsequent generations. 448	

Calculations suggest an initial relative fitness of transgenic heterozygotes of 1.23 449	

(95% CrI: 1.14-1.31) relative to wild-types, falling slightly to a relative fitness of 450	

1.05 (95% CrI: 1.02-1.08). Calculations for translocation system 2 suggest an 451	

initial relative fitness of transgenic homozygotes of 0.0003 (95% CrI: 0-0.0016) 452	

relative to wild-types, rising to a relative fitness of 1.52 (95% CrI: 1.50-1.55) in 453	

subsequent generations, and an initial relative fitness transgenic heterozygotes 454	

that remains fairly constant: 1.12 (95% CrI: 1.05-1.18) at the beginning of the 455	

experiment and 1.11 (95% CrI: 1.08-1.14) at the end of the experiment.  456	

 457	

While speculative, the initial very low fitness of homozygotes in generation 1 458	

could reflect the fact that these individuals must derive from homozygous 459	

translocation parents. Our analysis of fitness presented in table 1 only examines 460	

viability, not ability to compete against other genotypes. Decreased fitness of 461	

homozygotes in competition with heterozygotes and wildtypes at some life stage 462	

(such as larval competition) could reflect incomplete removal of deleterious 463	

mutations during introgression into the CS background prior to carrying out drive 464	

experiments since recombination on translocation-bearing chromosomes in 465	

Drosophila is reduced throughout the involved arms (67, 68). Alternatively, it 466	

could also reflect the acquisition of genetic modifiers during the post-467	

introgression crosses of the translocation stocks required to generate large 468	

numbers of homozygotes for population cage experiments. Such modifiers 469	

would, in this model, increase the fitness of homozygous carriers in competition 470	

with non-carrier homozygotes, but would result in a cost to carriers when in 471	

competition with heterozygotes and wildtypes. In either of these models it is 472	

unclear why fitness of translocations becomes greater than that of wildtype in 473	

later generations. Understanding the basis for these dynamics, and whether they 474	
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are specific to these translocations, will require further study in other genetic 475	

backgrounds, and with other engineered translocations.  476	

  477	
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 478	

Discussion 479	

Here we report the creation of engineered reciprocal translocations able to drive 480	

high threshold population replacement in Drosophila. The tools we used to create 481	

translocations in Drosophila - transgene cassettes located on two different 482	

chromosomes, a dominant marker created through the act of translocation, a 483	

site-specific nuclease able to bring about breakage within each cassette, and 484	

unique sequences that can mediate recombination between the two 485	

chromosomes - should be portable to other species. This, coupled with the 486	

common genetic behavior of reciprocal translocations in diverse species 487	

(semisterility in heterozygotes), suggests that translocation-based, high threshold 488	

and reversible drive may be possible in many species.  489	

 490	

An important unknown from previous work is whether engineered translocations 491	

with high fitness are rare or common. Our observations demonstrating population 492	

replacement at high but not low introduction frequencies, while limited to two 493	

translocations sharing one breakpoint in common, suggest that engineered 494	

translocations with high fitness may at least not be rare. That said, while the 495	

translocations we generated are competitive in laboratory populations, it remains 496	

to be shown that these or any other engineered translocations are fit in 497	

competition with the diversity of genotypes that will be encountered in complex 498	

natural environments.  499	

 500	

Our modeling results suggest that given high enough introduction frequencies, 501	

even translocations with high fitness costs, and facing significant levels of 502	

incoming migration of wildtypes, can spread to high frequency within a target 503	

area. However, modeling also identifies a set of tradeoffs associated with high 504	

threshold gene drive. Population replacement is local, but gene flow due to 505	

migration has significant effects on the equilibrium frequencies of transgenes 506	

within and outside the target area. Consideration of these effects will be 507	

important in identifying contexts in which population replacement is likely to have 508	
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an epidemiological impact, and is able to satisfy regulatory requirements relating 509	

to the presence and movement of transgene-bearing organisms. These points on 510	

gene flow within a target species notwithstanding, translocation-based drive 511	

should be very species specific. This is because drive involves the behavior of 512	

entire recombinant chromosomes. It seems unlikely that such a novel entity 513	

would thrive when transferred to a different species through mating or horizontal 514	

gene transfer. 515	

 516	

A key feature of any population replacement mechanism is its degree of 517	

evolutionary stability. A translocation drives because its presence in a single 518	

copy in heterozygotes creates a toxic condition (genomic imbalance in some 519	

gametes) that can be prevented by a second copy of the translocation, which 520	

results in the creation of a fit translocation homozygote (genomic balance in all 521	

gametes). One can think of this as a toxin-antidote system in which the toxin (the 522	

translocation) is dominant (one copy results in genomic imbalance and some 523	

death) and the antidote is recessive (two copies of the translocation results in 524	

genomic balance and progeny viability). However, in contrast to other toxin-525	

antidote gene drive systems (23, 32, 33, 35-40), the toxin and antidote functions 526	

of a translocation are inextricably linked: the toxin is the translocation (in one 527	

copy), and the antidote is also the translocation (in two copies). It is presumably 528	

very unlikely that the translocation will revert back to the wildtype chromosome 529	

configuration. However, even if this happened, necessarily in a single rare 530	

individual, this chromosome would be eliminated along with other wildtype 531	

chromosomes in a population (of this or any other species (see above)) in which 532	

the translocation was present at high frequency. In short, translocation-533	

dependent gene drive cannot break down through mutation of toxin function to 534	

inactivity, as with many other chromosomally based drive mechanisms. It is also 535	

insensitive to chromosomal sequence variation, mutation and non-homologous 536	

end joining, which can prevent the spread of homing-based gene drive 537	

mechanisms that rely on cleavage of a specific target sequence (69, 70). Finally, 538	

the genes of interest will be placed at the translocation breakpoints. Meiotic 539	
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recombination is inhibited in these regions (67, 68). In addition, the transgenes 540	

are not located in regions that undergo pairing during meiosis. Since they are 541	

insertions of novel sequences, they are adjacent to regions that undergo pairing. 542	

Thus, transgenes are unlikely to become unlinked from the translocation 543	

breakpoint.  544	

 545	

Finally, with any population replacement strategy one must plan for the eventual 546	

failure of the cargo, whether it encodes one or more genes that mediate disease 547	

resistance, or conditional lethality. Failure can occur through evolution of the 548	

pathogen. It can also occur through mutational inactivation of the cargo genes. In 549	

this latter case, if loss of cargo gene function also results in loss of an associated 550	

fitness cost, chromosomes carrying the mutant allele will spread at the expense 551	

of those carrying the functional allele. While mutation to inactivity cannot be 552	

prevented, chromosome-based drive mechanisms such as translocations have 553	

the attractive feature that it should be possible to incorporate multiple transgenes 554	

near the breakpoints, bringing about redundancy in effector function and thereby 555	

increased functional lifetime in the wild. Cycles of population replacement to 556	

bring new genes into the population can also be imagined. In one approach, the 557	

translocation can first be removed from the population by driving its frequency 558	

below the threshold needed for drive, through dilution with wildtypes. This can 559	

then be followed by a second release of a new translocation-bearing strain that 560	

has the same breakpoints, and a new cargo. Alternatively, if high fitness 561	

translocations with distinct breakpoints can be generated routinely, it may be 562	

possible to drive a first generation translocation and any remaining widltypes out 563	

of the population in favor of a second, distinct translocation (a point also made by 564	

Serebrovskii (47) in the context of use of translocations for population 565	

suppression) carrying a new cargo, as with proposals for cycles of replacement 566	

of Medea-based gene drive systems (5, 21).  567	

 568	

The above positive points notwithstanding, several unknowns remain to the 569	

implementation of translocation-based population replacement in other insects. 570	
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First, generating translocations with the approaches described herein will be 571	

more challenging in other species in which a high quality annotated genome 572	

sequence is not available. Such a resource allows one to identify gene deserts, 573	

good candidates for sites in which to locate breakpoints associated with a 574	

minimal fitness cost to carriers. It also allows one to determine the orientation 575	

with respect to the centromere of sequences that mediate homologous 576	

recombination at breakpoints, so as to promote the formation of translocations 577	

rather than dicentric and acentric chromosomes. As an example, while the level 578	

of annotation of the Aedes aegypti genome sequence and transcriptome is 579	

otherwise quite high, much of the genome is annotated as a series of contigs of 580	

unknown orientation, due to the large amount of repetitive sequences in the 581	

genome. Finally, a sequenced genome makes it possible to identify or create, 582	

using HEGs, Zinc fingers, TALENs or Crispr/Cas9, site-specific nucleases that 583	

promote recombination by cleaving within the transgenes but not elsewhere in 584	

the genome.  585	

 586	

In addition, the models we have used to characterize translocation behavior do 587	

not take into account important real world variables such as non-random mating 588	

and local spatial heterogeneity, which can affect the dynamics of translocation 589	

spread (55, 71). In order to understand how these and other environmental 590	

variables effect translocation-based replacement, and high threshold 591	

replacement more generally, it will be important to model drive element behavior 592	

using spatially explicit models based on analysis of real populations in complex 593	

environments (72, 73). Finally, mosquito populations in the wild consist of 594	

multiple chromosomal forms, and may also display some level of reproductive 595	

isolation (74-76). How engineered translocations will fare in the face of these 596	

variants remains to be determined, but can be explored in competition with 597	

genetically diverse laboratory strains (77, 78). While an understanding of the 598	

above issues is critical for the success of any population-replacement strategy, 599	

the problems are not intractable, as evidenced by successes in controlling pest 600	
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populations using non-transgenic (79) and transgenic inundative population 601	

suppression strategies (80, 81).  602	
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Methods 603	

Construct Assembly 604	

The Gibson enzymatic assembly (EA) cloning method was used for all cloning 605	

(82).  For both constructs (A and B), translocation allele components were cloned 606	

into the multiple cloning site (MCS) of a plasmid (83)	 containing the white gene 607	

as a marker and an attB-docking site. For construct A (Figure 1B), the oenocyte-608	

specific svp enhancer (65) and Hsp70 basal promoter fragments were amplified 609	

from Drosophila melanogaster genomic DNA using primers P16 and P17 (svp) 610	

and P18 and P19 (Hsp70). The GFP fragment was amplified from template 611	

pAAV-GFP (addgene plasmid #32395) using primers P26 and P27. A Kozak 612	

sequence (CAACAAA) directly 5’ of the GFP start codon was added with primer 613	

P26. The SV40 3’UTR fragment was amplified from template pMos-3xP3-DsRed-614	

attp (addgene plasmid #52904) using primers P28 and P10. The 5’ and 3’ CTCF 615	

insulator fragments (84) were amplified from Drosophila melanogaster genomic 616	

DNA using primers P11 and P15 (for the 5’ CTCF fragment) and P13 and P14 617	

(for the 3’ CTCF fragment). The 667 XYZ and 668 UVW homology fragments 618	

were amplified as above with primers P22 and P23 (XYZ) and P20 and P21 619	

(UVW), from plasmid pFUSE-mIgG1-Fc Invivogen, San Diego).  The 5’ and 3’ 620	

splice sites utilized were from a 67bp intron located in the Drosophila 621	

melanogaster Myosin Heavy Chain (Mhc) gene ID CG17927. They were added 622	

to UVW and XYZ sequences using PCR; the 5’ splice site was added to the 5’ 623	

end of the UVW fragment via PCR with primer P24, and the 3’ splice site was 624	

added to the 3’ end of fragment XYZ via PCR with primer P25. Two I-SceI 625	

recognition sequences Two 18bp I-SceI recognition sequences 626	

(ATTACCCTGTTATCCCTA-CTAG-TAGGGATAACAGGGTAAT) were added to 627	

the 3’ end of the UVW fragment with primer P21 and the 5’ end of the XYZ 628	

fragment with primer P22. The construct was assembled in two steps, as above, 629	

with the first (5’) CTCF, the svp and hsp70 fragments, the UVW fragment, and 630	

the XYZ fragment cloned in via a first EA cloning step, and the GFP fragment, 631	

the SV40 3’UTR fragment, and the second (3’) CTCF cloned in via a second EA 632	

cloning step. For construct B (Figure 1B), the opie2 promoter fragment was 633	
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amplified from plasmid pIZ/V5-His/CAT (Invitrogen) using primers P1 and P2. 634	

The XYZ and UVW homology fragments were amplified from plasmid pFUSEss-635	

CHIg-mG1 using primers P3 and P4 (XYZ) and P5 and P6 (UVW).  Two 18bp I-636	

SceI recognition sequences (ATTACCCTGTTATCCCTA-CTAG-637	

TAGGGATAACAGGGTAAT) were added to the 3’ end of the XYZ fragment and 638	

the 5’ end of the UVW fragment in inverse orientation to each other separated by 639	

a 4bp linker sequence (CTAG) using primers P4 (for XYZ) and P5 (for UVW). 640	

The 5’ and 3’ splice sites utilized were from a 67bp intron located in the 641	

Drosophila melanogaster Myosin Heavy Chain (Mhc) gene ID CG17927; the 5’ 642	

splice site was added to the 5’ end of the XYZ fragment via PCR with primer P7, 643	

and the 3’ splice site was added to the 3’ end of fragment UVW via PCR with 644	

primer P8. The dsRed fragment, together with the SV40 3’UTR, were amplified 645	

from template pMos-3xP3-DsRed-attp (addgene plasmid #52904) using primers 646	

P9 and P10, with a Kozak sequence (CAACAAA) directly 5’ of the DsRed start 647	

codon added with primer P9. The 5’ and 3’ CTCF insulator fragments (84) were 648	

amplified from Drosophila melanogaster genomic DNA using primers P11 and 649	

P12 (for the 5’ CTCF fragment) and P13 and P14 (for the 3’ CTCF fragment). 650	

The construct was assembled in two steps. First, the Drosophila melanogaster 651	

attB stock plasmid (83)	 was digested with AscI and XbaI, and the first (5’) CTCF, 652	

the opie-2 promoter, the XYZ fragment, and the UVW fragments were cloned via 653	

EA cloning. Then, the resulting plasmid was digested with XhoI, and the dsRed-654	

SV40 3’UTR fragment and the second (3’) CTCF were cloned in via EA cloning. 655	

All sequences were analyzed with NNSPLICE 0.9 (available at 656	

http://www.fruitfly.org/seq_tools/splice.html) to confirm strength of splice signals 657	

and to check for cryptic splice sites. A list of primer sequences used in the above 658	

construct assembly can be found in Supplementary Table 1. 659	

 660	

Fly Culture and Strains 661	

Fly husbandry and crosses were performed under standard conditions at 25°C. 662	

Rainbow Transgenics (Camarillo, CA) carried out all of the fly injections. 663	

Bloomington Stock Center (BSC) fly strains utilized to generate translocations 664	
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were attP lines 68E (BSC #24485: y1 M{vas-int.Dm}ZH-2A w*; M{3xP3-665	

RFP.attP'}ZH-68E), 51C (BSC #24482; y[1] M{vas-int.Dm}ZH-2A w[*]; M{3xP3-666	

RFP.attP'}ZH-51C), and 70A2 (BSC #9741: y[1] w[1118]; PBac{y[+]-attP-667	

9A}VK00023). Fly Stock BSC#6935 (y[1] w[*]; P{ry[+t7.2]=70FLP}23 668	

P{v[+t1.8]=70I-SceI}4A/TM) was used as the source of heat shock induced I-669	

SceI. For balancing chromosomes, fly stocks BSC#39631 (w[*]; wg[Sp-1]/CyO; 670	

P{ry[+t7.2]=neoFRT}82B lsn[SS6]/TM6C, Sb[1]) BSC#2555 (CyO/sna[Sco]) were 671	

used.  For introgression into a wild type background we used the Canton-S stock 672	

BSC#1. Translocation construct A was inserted at site 51C, and construct B was 673	

inserted at 68E and 70A2 using phiC31 mediated attP/attB integration. These 674	

site combinations allowed for the generation of two distinct translocation types, 675	

51C;68E and 51C;70A2. Stocks homozygous for both constructs were then 676	

mated with flies that express I-SceI under the control of the Hsp70 heat shock 677	

promoter(66). Progeny carrying all three transgenes were subjected to 5 rounds 678	

of heat shock during larval stages and as adults. Heat shocks were conducted by 679	

submerging fly vials in a water bath set to 38°C for one hour. Adults were 680	

outcrossed to w-, and progeny examined under a fluorescent dissecting scope 681	

for ubiquitous GFP expression, indicative of translocation generation. 682	

 683	

Homozygous translocation-bearing stocks were generated for both 51C;68E and 684	

51C;70A2 site combinations by crossing translocation heterozygotes and 685	

identifying homozygous progeny by eye color (light orange eyes for homozygotes 686	

versus yellow for heterozygotes for the 51C;68E site combination; light red eyes 687	

for homozygotes versus orange for heterozygotes for the 51C;70A2 site 688	

combination. After confirming homozygous viability, translocations were 689	

introgressed into a Canton-S genetic background. First, CS females were 690	

crossed to translocation-bearing males so as to bring the CS mitochondrial 691	

genotype into the translocation background. Subsequently, translocation 692	

heterozygote females were outcrossed to CS males for 8 generations. 693	

Heterozygous translocation-bearing males and virgin females were then crossed 694	

to each other to generate homozygous stocks in the CS background for each site 695	
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combination. Homozygosity was confirmed by outcrossing. Drive experiments for 696	

these stocks were set up against CS as the wildtype stock.  697	

 698	

Embryo and Adult viability determination 699	

For embryo viability counts (Table 1), 2-4 day old adult virgin females were 700	

mated with males of the relevant genotypes for 2-3 days in egg collection 701	

chambers, supplemented with yeast paste. On the following day, a 3hr egg 702	

collection was carried out, after first having cleared old eggs from the females 703	

through a pre-collection period on a separate plate for 3hrs. Embryos were 704	

isolated into groups and kept on an agar surface at 25oC for 48-72 hrs. The % 705	

survival was then determined by counting the number of unhatched embryos. 706	

One group of 100-200 embryos per cross was scored in each experiment, and 707	

each experiment was carried out in biological triplicate. The results presented are 708	

averages from these three experiments. Embryo survival was normalized with 709	

respect to the % survival observed in parallel experiments carried out with the 710	

Canton-S wild-type strain, which was 93.00% + 1.82%. For adult fly counts 711	

(Table 1), individual flies for each genotype cross were singly mated. For each 712	

genotype cross, we set up 10-15 individual fly crosses, and the results presented 713	

are averages from all these experiments.  714	

 715	

Population cage experiments 716	

All population cage experiments were carried out at 25oC, 12 hour-12 hour day 717	

night cycle, with ambient humidity in 250 ml bottles containing Lewis 718	

medium supplemented with live, dry yeast. Starting populations for drive 719	

experiments included equal numbers of virgins and males of similar ages, for 720	

each genotype. Translocation-bearing homozygotes were introduced at 721	

population frequencies of 60%, 70%, and 80% (T1/T1; T2/T2) for above threshold 722	

drive experiments, and 20%, 30%, and 40% (T1/T1; T2/T2) for below threshold 723	

drive experiments. CS virgin females and males (+/+; +/+) of similar age as the 724	

translocation-bearing individuals made up the remainder of the population. The 725	

total number of flies for each starting population was 100. All experiments were 726	
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conducted in triplicate. After being placed together, adult flies were removed after 727	

seven days. After another seven days, progeny were collected and divided 728	

arbitrarily into two equally sized groups. For one group the fraction of 729	

translocation-bearing individuals (T1/T1; T2/T2 or T1/+; T2/+) was determined, 730	

while the other group was placed into a new bottle to initiate the next generation.  731	

 732	

Theoretical Framework 733	

We apply the model of Curtis and Robinson (1971) to describe the spread of 734	

reciprocal translocations through a population. This is a discrete-generation, 735	

deterministic population frequency model assuming random mating and an 736	

infinite population size. We denote the first chromosome with a translocated 737	

segment by “T” and the wild-type version of this chromosome by “t.” Similarly, we 738	

denote the second chromosome with a translocated segment by “R” and the wild-739	

type version of this chromosome by “r.” As a two-locus system, there are nine 740	

possible genotypes; however, only individuals carrying the full chromosome 741	

complement are viable, which corresponds to the genotypes TTRR, TtRr and ttrr, 742	

the proportion of the kth generation of which are denoted by ,  and . 743	

The four haplotypes that determine the genotype frequencies in the next 744	

generation – TR, tR, Tr and tr – are described by the following frequencies: 745	

 746	

 747	

 748	

Here, s denotes the reduced fecundity of TTRR individuals and hs denotes the 749	

reduced fecundity of TtRr individuals relative to wild-type individuals, where 750	

. By considering all possible mating pairs, the genotype frequencies in the 751	

next generation are: 752	

 753	

 754	
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 755	

where  is a normalizing term given by, 756	

 757	

For our three-population models, there are three sets of the above equations to 758	

represent each population. We let m represent the migration rate per generation. 759	

After genotype frequencies for all three populations are calculated for a given 760	

generation, a proportion m is removed from each genotype from populations 1 761	

and 3 and added to population 2, and a proportion 2m is removed from each 762	

genotype from population 2, half of which is added to population 1 and the other 763	

half of which is added to population 3. 764	

We investigated a number of different fitness cost models and chose the one that 765	

provided the best fit to the data. In all cases, the parents in the first generation 766	

were not subject to a fitness cost. The simplest model is one in which the fitness 767	

of each genotype stays constant over time. Another model considers fitness 768	

costs that depend on the population frequency of the genotype. For linear 769	

frequency-dependence, this is given by, 770	

  771	

Here, s0 represents the fitness cost of a translocation homozygote in an almost 772	

fully wild-type population, and s1 represents the fitness cost in an almost fully 773	

transgenic population. An alternative model is that fitness is time-dependent, as 774	

could be explained by introgression of introduced genotypes. For linear time-775	

dependence, this is given by, 776	

 777	

Here, s0 represents the fitness cost in the second generation and s1 represents 778	

the fitness cost in the final generation, denoted by tf. For sigmoidal time-779	
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dependence, it is given by, 780	

  781	

Here, s0 and s1 are as before,  denotes the time of intermediate fitness cost, 782	

and  denotes the speed of transition between the two fitness costs.  783	

And for exponential time-dependence, it is given by, 784	

  785	

Here, s0 represents the fitness cost in the second generation, s1 represents the 786	

fitness cost after many generations, t1/2 denotes the time at which the fitness cost 787	

is halfway between the two, and a is given by, 788	

  789	

We estimated fitness parameters for each model and compared models 790	

according to their Akaike Information Criterion (AIC) values. Model fitting was 791	

performed using population count data for the 18 drive experiments conducted 792	

for each translocation system (three for each of the 80%, 70%, 60%, 40%, 30% 793	

and 20% release frequencies). AIC was calculated as 2k – 2logL, where k 794	

denotes the number of model parameters, and the preferred model is the one 795	

with the smallest AIC value. The likelihood of the data was calculated, given 796	

fitness costs s and hs, assuming a binomial distribution of the two phenotypes 797	

(individuals homozygous or heterozygous for the translocation were considered 798	

as the same phenotype to match the experimental counts). Model predictions 799	

were used to generate expected genotype proportions over time for each fitness 800	

cost, and the log likelihood had the form, 801	

  802	
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Here, TTRRi,k, TtRri,k and ttrri,k represent the number of TTRR, TtRr and ttrr 803	

individuals at generation k in experiment i, and the corresponding expected 804	

genotype frequencies are fitness cost-dependent. The best estimate of the 805	

fitness cost is that having the highest log-likelihood. A 95% credible interval was 806	

estimated using a Markov Chain Monte Carlo sampling procedure. Matlab and R 807	

code implementing these equations is available upon request. The AIC values for 808	

each of the fitness cost models are shown in the table below: 809	

Fitness cost model: AIC (Translocation 
system 1): 

AIC (Translocation 
system 2): 

Constant fitness costs 6577.6 7448.0 

Linear, frequency-

dependent fitness costs 

5051.3 5572.7 

Linear, time-dependent 

fitness costs 

3888.2 3752.1 

Sigmoidal, time-

dependent fitness costs 

3344.2 3321.1 

Exponential, time-

dependent fitness costs 

3336.2 3319.1 

 810	

In summary, the best fitting model for the observed population dynamics is one in 811	

which the relative fitness of homozygotes having the translocation is time-812	

dependent, with the relative fitness of these individuals increasing over time, at 813	

first rapidly and then converging upon some higher value as described by an 814	

exponential function (Figure 5).  815	

  816	
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 817	

Figure 1. Gamete and zygote genotypes associated with the presence of a 818	

reciprocal translocation.  Wildtype chromosomes N1 and N2, and translocation 819	

chromosomes T1 and T2, are indicated. (A) One chromosome type (a) is 820	

indicated in yellow. A second chromosome type (b) is in gray. Gamete types 821	

generated by wildtype (+/+), translocation heterozygotes (T/+), and translocation 822	

homozygotes (T/T) are indicated.  (B) Gamete and zygote genotypes possible in 823	
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crosses involving a translocation are indicated. Inviable genotypes are indicated 824	

by a red line. 825	

 826	

 827	

  828	
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 829	

 830	

 831	

 832	

 833	
 834	

Figure 2. Engineered reciprocal translocations are predicted to show threshold-835	

dependent gene drive and bring about local population replacement. A discrete 836	

generation, deterministic population frequency model of translocation spread 837	

through a single population for varying introduction frequencies and fitness costs 838	

for one (A) or three (B) introductions at the specified frequency. The heatmap 839	

indicates the number of generations required for the translocation to reach 840	

fixation (i.e., >99% of the total population) for all combinations of fitness cost and 841	

introduction frequency.  842	

  843	

Figure	2	

B	A	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/088393doi: bioRxiv preprint 

https://doi.org/10.1101/088393
http://creativecommons.org/licenses/by-nd/4.0/


	 34	

 844	
 845	

Figure 3. Translocation dynamics in a linear, three population migration 846	

model. (A) Population frequency of a translocation with no fitness cost, 847	

introduced into population 1 using three consecutive releases of translocation-848	

bearing homozygotes. Populations 1-3 are linked through a linear chain of 849	

migration of 1% (solid lines) or 5% (dashed lines). (B-D) Equilibrium frequency of 850	

translocation bearing individuals over a range of fitness costs and migration rates 851	

for each of the three linked populations 1 (B), 2 (C), and 3 (D), respectively. For 852	

all three populations increasing fitness cost has little effect on the equilibrium 853	

frequency at low migration rate and increased effects at higher migration rates. In 854	

contrast, migration rate has a much stronger effect on equilibrium frequency 855	

independent of fitness cost as seen by the color gradient shifts. Note that the 856	

equilibrium frequency varies between 90-100%, 0-25%, and 0-3% in the target 857	

population (population 1), population 2, and population 3, respectively. 858	
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Figure 4  859	
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 860	
Figure 4. Generation of reciprocal translocations in Drosophila. (A) Approximate 861	

location of the attP sites used for transgene insertion; orientation with respect to 862	
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the centromere are indicated by triangles. (B) Components of each starting 863	

transgene cassette. Construct A is inserted on the second chromosome and 864	

construct B on the third chromosome. Components are as indicated in the text. 865	

(C) I-Sce-dependent cleavage results in a double-stranded break in each 866	

transgene-bearing chromosome. (D) Alignment of broken chromosome ends 867	

occurs using homologous sequences UVW and XYZ. (E) Recombinant 868	

chromosomes are generated by homologous recombination using sequences 869	

UVW and XYZ. (F) Agarose gel image is shown of PCR amplification products 870	

generated from different genotypes: translocation homozygotes (T1/T1; T2T2); 871	

translocation heterozygotes (T1N1; T2N); individuals carrying only the 51C 872	

starting chromosome insertion (N1/+); or the 68E and 70A2 starting chromosome 873	

insertion (N2/+). Primers used, and expected amplification product sizes, are 874	

indicated in B and E.  875	

  876	
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 877	
 878	

Figure 5. Dynamics of translocation-based population replacement, and 879	

predictions from zero fitness cost, and best fit models. (A, B) Population 880	

frequency of the adult population having the indicated translocation is plotted 881	

versus generation number for a number of homozygous translocation release 882	

ratios: 80%, 70%, 60%, 40%, 30% and 20%. Solid lines indicate observed 883	

population frequencies, and dashed lines indicate predicted translocation-bearing 884	

genotype frequencies for an element with no fitness cost. (C, D). The same data 885	

as in (A, B) but plotted along with dynamics predicted based on a best fit model 886	

described in the methods and text. 887	

 888	

 889	
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 890	
Table 1. Behavior of translocations in crosses to various genotypes. Crosses 891	

between parents of specific genotypes - wild-type (+/+; +/+), translocation 892	

heterozygotes (T1/+; T2/+), and translocation homozygotes (T1/T1; T2/T2), were 893	

carried out. Embryo survival (fifth column from right) and percentage of 894	

translocation-bearing adults (rightmost column) were independently quantified. 895	

The top number in each column shows results for the 51C/68E translocation; the 896	

bottom number shows the results for the 51C/70A2 translocation. ** Indicates 897	

unviable genotypes. Embryo survival was normalized with respect to percent 898	

survival (± SD) observed in the w1118 stock used for transgenesis (methods). 899	

 900	

 901	

 902	

Supplementary Table 1. List of primer sequences used in this study.  903	

Primer 

name 

Primer sequence, 5’ to 3’ Source 

P1 CCTAACAACTCACACCTTGCAGCGCCACCTG pIZ/V5-

observed*

+/+ ; +/+

100

parental genotypes

predicted
 

100

* Translocation 51C/68E (top) and 51C/9741 (bottom)
** These genotypes are not viable.

100+/+

50

37.5

50+/+ ; +/+

+/+ ; +/+

T1/T1 ; T2/T2

male female

T1/T1 ; T2/T2 (100%)

progeny genotype (%)

T1/+ ; T2/+ (100%)

T1/+ ; T2/+ (25%)
T1/+ ; +/+ (25%)**
+/+ ; T2/+ (25%)**
+/+ ; +/+ (25%)
T1/+ ; T2/+ (25%)
T1/+ ; +/+ (25%)**
+/+ ; T2/+ (25%)**
+/+ ; +/+ (25%)

T1/T1 ; T2/T2 (6.25%)
T1/T1 ; T2/+ (12.5%)**
T1/T1; +/+ (6.25%)**

embryo survival % transgene bearing adults %

100

100

100

50

~83%

50

96.9 + 1.8
96.9 + 0.3

observed*predicted
 

T1/+ ; T2/T2 (12.5%)**
T1/+ ; T2/+ (25%)
T1/+ ; +/+ (12.5%)**
+/+ ; T2/T2 (6.25%)**
+/+ ; T2/+ (12.5%)**
+/+ ; +/+ (6.25%)

94.6 + 2.2
98.2 + 2.6

90.1 + 1.6
92.5 + 4.8

51.2 + 1.6
50.4 + 1.3

48.3 + 2.8
48.3 + 3.9

36.2 + 1.8
32.4 + 4.0

100 + 0.0
100 + 0.0

100 + 0.0
100 + 0.0

100 + 0.0
100 + 0.0

49.3 + 3.4
49.5 + 2.4

49.4 + 2.2
48.5 + 3.4

80.4 + 6.5
80.8 + 5.8

T1/T1 ; T2/T2

T1/T1 ; T2/T2

T1/T1 ; T2/T2

T1/+ ; T2/+

T1/+ ; T2/+

T1/+ ; T2/+T1/+ ; T2/+

T1/+ ; T2/+ (100%)
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P2 

GCCCTAGAGATCCACCAACTTTTTTGCACTG

C 

 

ATTCCTAAGCATCAGTGGTTGAACCTACCTTG

TTGGCGTGACCAGAGACAGGTTGCGGCG 

His/CAT 

(Invitrogen) 

P3 

 

 

P4 

AGGTTCAACCACTGATGCTTAGGAATAGGCC

ATGTGAAGCTGAAGGAATC 

 

TATTACCCTGTTATCCCTACTAGTAGGGATAA

CAGGGTAATACTAGAATCCCTGGGCACAATT

T 

pFUSEss-

CHIg-mG1 

(Invivogen) 

P5 

 

 

P6 

CTAGTATTACCCTGTTATCCCTACTAGTAGGG

ATAACAGGGTAATAGTGGTTGTAAGCCTTGC

A 

 

AAAGGATAAGAATTAGGGTTAGTCGTTTCGG

TGTGCCTAGTTTACCAGGAGAGTGGGAGA 

pFUSEss-

CHIg-mG1 

(Invivogen) 

P7 

 

CGCCCACGCCATCCAACCGCCGCCGCAACC

TGTCTCTGGTCACGCCAACAAGGTAGGTTC 

P3/P4 XYZ 

PCR 

 

P8 ATGACGTTCTTGGAGGAGCGCACCATTTTGT

TGCTAAAGGAAAGGATAAGAATTAGGGTT 

P5/P6 UVW 

PCR 

P9 

 

 

P10 

AAACGACTAACCCTAATTCTTATCCTTTCCTTT

AGCAACAAAATGGTGCGCTCCTCCAAG 

 

AATGGAACTCTTCGCGGCCAGGTGGCGCTG

CAAGGCTCGAGGGTCGACTGATCATAATCA 

pMos-3xP3-

DsRed-attp 

(addgene 

plasmid 

#52904) 

P11 

 

 

P12 

GGATCCGGGAATTGGGAATTGGGCAATATTT

AAATGGCGGCCTTGCAGCGCCACCTGGCC 

 

AGCGTGTTTTTTTGCAGTGCAAAAAAGTTGGT

Drosophila 

genomic DNA 
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P15 

GGATCTCTAGGGCCAGGTGGCGCTGCAA 

 

CCAACGCATTTTCCAAGCTTGTTTAAACGTGG

ATCTCTAGGGCCAGGTGGCGCTGCAAGG 

P13 

 

 

P14 

TACAAATGTGGTATGGCTGATTATGATCAGTC

GACCCTCGAGCCTTGCAGCGCCACCTGG 

 

GAGACCGTGACCTACATCGTCGACACTAGTG

GATCTCTAGGGCCAGGTGGCGCTGCAAGG 

Drosophila 

genomic DNA 

P16 

 

 

P17 

CCTTGCAGCGCCACCTGGCCCTAGAGATCCA

CGTTTAAACAAGCTTGGAAAATGCGTTGG 

 

CGAAGCGCCTCTATTTATACTCCGGCGCTCG

TTTAAACAAAGTGGCAGGGCCCATGTGTT 

Drosophila 

genomic DNA 

P18 

 

 

P19 

GAGTGGAGCACAAACACATGGGCCCTGCCA

CTTTGTTTAAACGAGCGCCGGAGTATAAAT 

 

AAGCATCAGTGGTTGAACCTACCTTGTTGGC

GTGTCTGATGCAGATTGTTTAGCTTGTTC 

Drosophila 

genomic DNA 

P20 

 

 

P21 

 

GCCAACAAGGTAGGTTCAACCACTGATGCTT

AGGAATAGGCGTGGTTGTAAGCCTTGCAT 

 

CCCTGTTATCCCTACTAGTAGGGATAACAGG

GTAATACTAGTTTACCAGGAGAGTGGGAG 

pFUSEss-

CHIg-mG1 

(Invivogen) 

P22 

 

 

P23 

TATTACCCTGTTATCCCTACTAGTAGGGATAA

CAGGGTAATACATGTGAAGCTGAAGGAA 

 

AAAGGATAAGAATTAGGGTTAGTCGTTTCGG

TGTGCCTAGAATCCCTGGGCACAATTTTC 

pFUSEss-

CHIg-mG1 

(Invivogen) 

P24 CAAGCGCAGCTGAACAAGCTAAACAATCTGC

ATCAGACACGCCAACAAGGTAGGTTCAAC 

P20/P21 UVW 

PCR 
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P25 ACCTACATCGTCGACACTAGTGGATCTCTAG

CTCGAGCTAAAGGAAAGGATAAGAATTAGGG 

P22/P23 XYZ 

PCR 

P26 

 

 

P27 

CCCTAATTCTTATCCTTTCCTTTAGGAATTCC

AACAAAATGGTGAGCAAGGGCGAGGAGC 

 

TTCACTGCATTCTAGTTGTGGTTTGTCCAAAC

TCATCAATGTTTACTTGTACAGCTCGTC 

pAAV-GFP 

(addgene 

plasmid 

#32395) 

P28 GCCGCCGGGATCACTCTCGGCATGGACGAG

CTGTACAAGTAAACATTGATGAGTTTGGAC 

pMos-3xP3-

DsRed-attp 

(addgene 

plasmid 

#52904) 

 904	
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