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Abstract 1	

 2	

To understand the population genetics of structural variants (SVs), and their 3	

effects on phenotypes, we developed an approach to mapping SVs, 4	

particularly transpositions, segregating in a sequenced population, and which 5	

avoids calling SVs directly. The evidence for a potential SV at a locus is 6	

indicated by variation in the counts of short-reads that map anomalously to the 7	

locus. These SV traits are treated as quantitative traits and mapped 8	

genetically, analogously to a gene expression study. Association between an 9	

SV trait at one locus and genotypes at a distant locus indicate the origin and 10	

target of a transposition.  Using ultra-low-coverage (0.3x) population 11	

sequence data from 488 recombinant inbred Arabidopsis genomes, we 12	

identified 6,502 segregating SVs. Remarkably, 25% of these were 13	

transpositions. Whilst many SVs cannot be delineated precisely, PCR 14	

validated 83% of 44 predicted transposition breakpoints.  We show that 15	

specific SVs may be causative for quantitative trait loci for germination, fungal 16	

disease resistance and other phenotypes. Further we show that the 17	

phenotypic heritability attributable to sequence anomalies differs from, and in 18	

the case of time to germination and bolting, exceeds that due to standard 19	

genetic variation. Gene expression within SVs is also more likely to be 20	

silenced or dysregulated. This approach is generally applicable to large 21	

populations sequenced at low-coverage, and complements the prevalent 22	

strategy of SV discovery in fewer individuals sequenced at high coverage.  23	

 24	
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Introduction 1	

 2	

Whilst genome resequencing has become cheap and ubiquitous, and can 3	

readily determine variations such as SNPs and very small indels, the problem 4	

of identifying structural variants (SVs) and rearrangements remains a 5	

challenge, despite continual improvement in algorithms for calling SVs. The 6	

current gold standard for determining SVs between individuals is by de-novo 7	

assembly1. This requires very high-coverage paired-end sequence over a 8	

range of insert sizes, together with long-range information for scaffolding. 9	

Advances in long-read technologies2,3 are beginning to aid this process, but 10	

the relatively high cost and low throughput of this strategy limits its 11	

applicability to smaller numbers of genomes, and leaves open two important 12	

questions. First, whether an SV identified in an individual is unique, or is 13	

frequent enough to contribute appreciably to phenotypic heritability in a 14	

population. Second, whether an SV represents a local rearrangement, such 15	

as a deletion, inversion or tandem copy-number variant (CNV), or is long-16	

range, such as a transposition4,5.  17	

 18	

SVs are often revealed by the anomalous alignment of short-reads to the 19	

reference genome. Specific anomaly signatures characterize different types of 20	

SVs (Table 1). Thus, same-strand pairs indicate inversion, high read coverage 21	

duplications, abnormal insert sizes and unpaired reads are classified as 22	

indels. 23	
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These signatures include excess read coverage (e.g., duplications, Copy 1	

Number Variants (CNV)), discordant distances between read pairs (e.g., 2	

indels) and inconsistent read orientation (e.g. inversions). These anomalies 3	

arise, often in combination, because the reads have been aligned to the 4	

wrong genome – the anomalies should disappear if instead the reads were 5	

aligned to the true genome. This idea is used by algorithms such as GATK6 6	

and Platypus7 that identify small indels by local realignment, and in whole-7	

genome reassembly by iterative realignment 8.   8	

 9	

Many SV-calling algorithms utilize these read-anomaly signatures to identify 10	

SVs segregating in individuals sequenced at high coverage 9–16. These 11	

methods focus on short-range SVs because of the difficulties in distinguishing 12	

long-range rearrangements from read mapping errors. They are also designed 13	

to work best when calling SVs in individuals sequenced at intermediate to high 14	

coverage; for example, two of the most recent SV-callers, LUMPY15 and 15	

WHAM16 are most sensitive when sequence coverage is at least 10x. In other 16	

applications, e.g cancer resequencing, typical coverage is even higher, at 30x 17	

or above. 18	

 19	

The problem of calling SVs from population sequence data presents additional 20	

challenges. Population studies are generally conducted for the purpose of 21	

genetic association, and consequently require large sample sizes. Population 22	

sequencing provides an alternative to genotyping by SNP arrays, 23	

simultaneously providing both haplotype reference panels for imputation17 and 24	
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cohorts for disease mapping18,19. As the sample size increases, it becomes 1	

possible to reduce the coverage of each individual dramatically, yet still 2	

impute single nucleotide polymorphism (SNPs) accurately 20. Consequently 3	

one would want to be able to call SVs as well as SNPs and to test them for 4	

association. Although the information present in each sample is sparse, and 5	

therefore it would be difficult to call SVs (and SNPs) on an individual basis, by 6	

pooling information across samples it might be possible to determine common 7	

SVs analogously to the way SNPs are imputed. 8	

 9	

A further challenge, which is not confined to low-coverage sequencing, is that 10	

presented by complex SVs. Unlike simple indels, inversions and 11	

transpositions, where a segment with well-defined breakpoints is affected, 12	

many SVs are composites of multiple events21, often driven by transposons 13	

and other repetitive mobile elements. Complex SVs resist simple 14	

classification, and it may be impossible to determine the precise sequence of 15	

mutations that occurred in the lineages separating the reference genome from 16	

that of the sequenced individual. Whilst current algorithms for calling SVs in 17	

simulated high-coverage human data can identify simple SVs with sensitivities 18	

of about 90% depending on the type of SV 16, they are less accurate when 19	

applied to real data, and their performance on complex SVs is unreported.  20	

 21	

Nonetheless, even though it may be difficult to delineate complex SVs, there 22	

can still be strong evidence from read-mapping anomalies that an SV of some 23	

sort exists at a locus. If the intensity of its anomaly signature can be used as a 24	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2016. ; https://doi.org/10.1101/087387doi: bioRxiv preprint 

https://doi.org/10.1101/087387
http://creativecommons.org/licenses/by-nc-nd/4.0/


proxy for the purpose of testing genetic association, then one need not 1	

delineate the SV precisely. It then follows that the genomewide information 2	

captured by these anomalies could be used to compute relationships between 3	

individuals based on their structural similarities alone, and hence to estimate 4	

the heritability attributable to this source of variation. 5	

 6	

Here, we ask whether low-coverage population sequencing provides new 7	

ways for mapping SVs and estimating heritability, complementing the 8	

sequencing of fewer individuals at high coverage. As an illustration, we 9	

investigate the architecture and phenotypic impact of structural variation in 10	

Arabidopsis thaliana. Among natural accessions of Arabidopsis, structural 11	

variation is plentiful 22. The extent of rDNA repeats 23 and mobile transposable 12	

elements 24 vary between accessions, and variation in the overall amounts of 13	

both classes of repetitive sequence elements are complex traits, partially 14	

under genetic control. In this study we investigate all types of structural 15	

variation in Arabidopsis, including those not mediated by mobile elements.  16	

We show that long-range transpositions are common, and that structural 17	

variation has a significant impact on particular quantitative trait loci (QTLs) 18	

and on trait heritability, distinct from that explained by other types of sequence 19	

variation.  20	

 21	

 22	

Results 23	

 24	
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Structural Variants as Quantitative Traits 1	

 2	

We combined established ideas from signature-based SV identification with 3	

quantitative genetics to analyse structural variation in population sequence 4	

data. The following scenario motivates our reasoning: suppose an SV arose in 5	

a certain population ancestor, α, transposing a genomic segment s originating 6	

at a “source” locus L and targeting to a “sink” locus M. Source and sink can be 7	

coincident or unlinked, but for the moment, suppose they are unlinked. If the 8	

event is transposon-mediated, then the segment s is duplicated to s’ at M, and 9	

possibly altered, leaving the original s at L. Once random chromosomal 10	

assortment and recombination has occurred, in the present-day population 11	

there will be a mix of individuals carrying the segment at neither, one or both 12	

loci. 13	

 14	

In the descendent population, one individual is sequenced and becomes the 15	

reference genome. Depending on the choice of reference individual and the 16	

mechanism of transposition, the reference might carry zero or one copies of s 17	

at the source and of s’ at the sink.  18	

 19	

Assume the reference has one copy of s and zero copies of s’. A population 20	

sample will contain individuals with mix of all possible configurations at source 21	

and sink. But only individuals that inherited the haplotype descended from α 22	

at the sink carry the transposed segment, regardless of their haplotype at the 23	

source. The individuals are sequenced with short-reads, and the reads are 24	
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mapped to the reference genome. Individuals carrying the transposition s’ at 1	

the sink will have reads spanning the breakpoint that split between source and 2	

sink.  Hence read mapping anomalies apparently originating at the source will 3	

be enriched in those individuals carrying the sink haplotype α: genotypes that 4	

tag α at the sink will be associated with anomalies at the source.  5	

 6	

If on the other hand the reference contains both s at the source and s’ at the 7	

sink then those individuals that did not inherit the haplotype α at the sink will 8	

appear to carry a deletion there. Reads with anomalously large insert sizes 9	

will map to the sink and will be associated with genotypes tagging the 10	

haplotype α at the sink – the generative role played by the source will be 11	

invisible. 12	

 13	

Similarly, by considering situations where the source and sink are coincident – 14	

for example tandem duplications – in a population we would expect to 15	

encounter a mix of short-range cis and long-range trans associations between 16	

different classes of read-mapping anomalies and genotypes, depending on 17	

the diverse histories of each structural variants.  18	

19	
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 1	
Figure 1 Effects of a transposition on short-read mapping. Chromosomes are 2	
horizontal bars and read pairs are pairs of horizontal lines linked by curves. 3	
Upper shows a population ancestor corresponding to the reference genome 4	
(left) undergoing a transposition (right), in which a segment 𝑠 at source locus 5	
𝐿 with haplotype context 𝛼 is copied to 𝑠’ at recipient sink locus 𝑀 with 6	
haplotype context 𝛽. Lower shows all four possible combinations (a-d) of 7	
source 𝐿 and sink 𝑀 haplotype in descendants. On left are shown the 8	
alignment of reads to the true haplotypes, where there are no read-mapping 9	
anomalies. On right are shown the various read-mapping anomalies that 10	
arise, depending on the true haplotype backgrounds at source and sink, upon 11	
alignment to the reference genome. 12	

source	L	 sink	M	
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A5er	Transposi8on	

L(α)	 M(β)	
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To apply these ideas in practice, we count the numbers of anomalous reads 1	

mapping to each source L in a population sample, treat it as a quantitative 2	

trait, and proceed to identify genetic loci containing variation that correlate 3	

with variation in the trait. This procedure defines a SV quantitative trait locus 4	

(SV-QTL) linking 𝑇!", the number of anomalous reads mapping to locus 𝐿 in 5	

individual 𝑖 and the haplotype 𝐻!"  at sink locus 𝑀 in individual 𝑖 (Figure 1, 6	

Methods). cis SV-QTLs where the source and sink overlap indicate local 7	

structural variants such as CNVs, deletions and inversions; trans SV-QTLs 8	

indicate transpositions (insertional translocations) or larger scale 9	

rearrangements. In this way we can determine whether an SV is in trans, its 10	

originating haplotype, which individuals now carry it (Figure S1), and its 11	

frequency (Figure S2).   12	

 13	

We interpret the matrix of SV-traits across all loci as a Euclidean 14	

representation of haplotype space, in the sense that, if two individuals are 15	

genetically similar then their SV-trait vectors should be close together. 16	

Consequently we define a genome-wide similarity between individuals based 17	

on the similarity of their anomalies, as a weighted average of their locus-18	

specific similarities. Taken across all individuals, these generate a structural 19	

variation similarity matrix, analogous to a SNP-based genetic relationship 20	

matrix. This matrix was used to estimate the heritability of a phenotype with 21	

respect to structural variation, and compared to the heritability associated with 22	

SNP variation.  23	

 24	
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Structural Variation in Arabidopsis 1	

 2	

We used our strategy to map cis and trans SVs in the 120Mb genome of the 3	

plant Arabidopsis thaliana. We sequenced 488 of the Arabidopsis Multiparent 4	

Advanced Generation Inter-Cross (MAGIC) recombinant inbred lines25 at 5	

~0.3x coverage using 51bp paired-end Illumina reads. The MAGIC lines 6	

descend from 19 ancestral founder accessions that have been sequenced at 7	

high coverage8 (Table S1) such that each ~120Mb genome is a mosaic of the 8	

19 founder haplotypes.  Consequently we expect most SVs segregating in 9	

MAGIC to also segregate in the founders, thereby providing a means to verify 10	

any SVs we detect. The choice of MAGIC lines rather than natural accessions 11	

means that the confounding effects of population structure and of selection 12	

are largely absent from the population. Very rare alleles with frequency below 13	

1/19=4.5% are uncommon, increasing the power to detect QTLs. However, 14	

MAGIC QTL mapping resolution is also poorer, at ~200kb, compared to ~10kb 15	

in natural accessions. 16	

 17	

We mapped the reads to the TAIR10 reference using Stampy 26,27 and 18	

inferred the mosaic of each line using a hidden Markov model (HMM) 19	

implemented in the software ‘reconstruction’ available on request from the 20	

authors. The algorithm uses as input SNP calls for each MAGIC genome, and 21	

the set of of 1.2M biallelic variants in the 19 founders (excluding loci tagged as 22	

within transposons, and those sites called as heterozygous or multi-allelic in 23	

the founders)17, and finds the most likely sequence of haplotype assignments 24	
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for each chromosome. Because the lines were called at low coverage, most 1	

SNP sites were not covered by reads in an given; consequently we called on 2	

average 301k SNPs per line (using GATK6) (ie a randomly sampled of ~25% 3	

of the 1.2M sites). However, this amount of data is sufficient for the HMM to 4	

determine the founder mosaic accurately; we estimated by simulation that the 5	

algorithm can delineate the mosaic breakpoints (which correspond to 6	

recombination events) to within ~2kb (data not shown).  7	

 8	

Using this procedure, we reconstructed each MAGIC genome into ~34 9	

haplotype blocks on average with mean size 3.48Mb, representing 10	

contributions from about 11 founder haplotypes (Table S2), and imputed the 11	

full variant catalogue into each lines. Comparison of imputed SNPs with 782 12	

GoldenGate SNP genotypes measured in 370 of the MAGIC lines 25 showed 13	

98% concordance.  14	

 15	

To map SVs, we divided the reference genome into 11,915 abutting source 16	

loci, each 10kb wide, and computed six measures of anomalous read 17	

mapping in each locus (6*11,915 = 71,490 SV trait vectors) (Methods, Table 18	

1a, Table S3). Four of these measures address different types of anomalous 19	

read mapping that provide evidence of specific anomalies, namely high read 20	

coverage for duplications, strandedness of reads for inversions, anomalously 21	

large insert size for translocations and unpaired reads for deletions. The 22	

remaining two measures are linear combinations of other measures that could 23	

co-exist.  24	
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(a) 

    trait type SV-QTLs Unique cis trans 

IP 1997 833 1617 380 

ER 184 165 112 72 

LIS 2051 585 1677 374 

SS 1950 1887 1358 592 

U 2060 1998 1530 530 

U+LIS  2033 431 1661 372 

Total 10275 5899 7955 2320 

     (b) 

    SV type SV-QTLs 

 

cis trans 

duplication 175 

 

109 66 

indel 3035 

 

3035 0 

inversion 1976 

 

1373 603 

other 1316 

 

381 935 

Total 6502 

 

4898 1604 

Table 1 (a) MAGIC SV-QTLs classified by read pair anomaly type. SV-QTLs: 1	
total number of QTLs detected using each anomaly type (if the same QTL was 2	
detected by multiple anomalies then it is counted multiple times in this 3	
column), Unique: number of QTLs detected only by a single anomaly 4	
category, cis: number of cis SV-QTLs, trans: number of trans SV-QTLs. (b) 5	
MAGIC SV-QTLs classified by QTL type, after removing duplicates. SV-QTLs: 6	
number of structural variants of each type, cis: number of cis SV-QTLs 7	
(source and sink within 2Mb from each other), trans: number of trans SV-8	
QTLS [Note that the total number of SV-QTLS is 10,275, of which 6,502 are 9	
distinct after removing overlapping events, and 5,899 unique to a single 10	
anomaly type.] 11	
  12	
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Genetic association between each of the SV-trait vectors and the local 1	

haplotype space was determined using a one-way ANOVA. We chose to 2	

determine association at the level of haplotypes rather than SNPs for two 3	

reasons. First, the founder haplotype space in the MAGIC lines is well-4	

defined, and measuring association with haplotypes can capture relationships 5	

invisible at the level of SNPs. Second, the set of haplotype tests - defined by 6	

the union of all the breakpoints, comprising 16,700 haplotype blocks, such 7	

that the ancestral haplotype of all lines is unchanged within each block – 8	

means about 75 times fewer tests are performed, thereby speeding up the 9	

procedure (Methods). To determine genome-wide significance thresholds for 10	

SV-QTLs we performed 100 phenotype permutations for each trait and then 11	

fitted extreme value distributions (evd) to the genome-wide maxima of the 12	

permutations (Methods). We merged together probable duplicate overlapping 13	

SV-QTLs identified by multiple anomaly types.  14	

 15	

After removing duplicates we identified 6,502 SV-QTLs at 1% study-wide false 16	

discovery rate (evd P<0.001) (Table S3). Of these, 1,604 (25%) were trans, 17	

defined as mapping over 2Mb from the source. Overall, 4,073/11,915 (34.2%) 18	

source loci harboured structural variants. Whilst we have greater power to 19	

detect larger SVs, 2,379 overlapped annotated indels shorter than 2kb8.   20	
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 1	

Figure 2 Genome-wide distribution of the variance for the trait “improperly-2	
paired reads” (the number of reads mapping to a locus with mapping 3	
anomalies), computed in 10-kb windows. The x-axis shows genomic position 4	
and the y-axis the variance of each trait vector scaled by its mean. Each 5	
vertical line corresponds to a window. Those with SV-QTLs are blue (cis) and 6	
red (trans). Centromeres are marked by pink bars. 7	

 8	

The likelihood that a structural trait vector has an SV-QTL increases with its 9	

variance (Figure 2). SV-QTLs are enriched around centromeres, as expected. 10	

Away from the centromeres, Figure 2 also shows that bins with variable SV 11	

traits are isolated, rather than in clusters.  Figure 3a shows the genome-wide 12	
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distribution of SVs segregating in one MAGIC founder, Ler-0. Figure 3 and 1	

Table S3 show trans SV-QTLs link all five chromosomes.  2	

 3	

In 319 SVs we were able to pinpoint both breakpoints, using contigs from de-4	

novo assemblies of the 19 founder genomes8 (see validation section below). 5	

Mean SV size was 53kb in these SVs, and the largest was 189kb. Thus the 6	

many of the SVs we discovered are too large to be due to insertions of small 7	

transposable elements. This probably reflects our lack of power to detect very 8	

small events, but also emphasizes that not all SVs are driven by mobile 9	

elements.  10	

 11	

Validation 12	

 13	

Genome-wide confirmation of SVs using short-read sequence is challenging 14	

because SV breakpoints often associate with transposons and repeats that 15	

hinder read-mapping and reassembly.  However, among our SV-QTLs are 16	

several known rearrangements. These include trans SV-QTLs linking a cluster 17	

of rDNA repeats at ~14.2Mb on chromosome three to clusters at the ends of 18	

chromosome two. Polymorphisms in these clusters are implicated in massive 19	

genome size variations among Arabidopsis accessions28. We also identified 20	

the known knob inversion on chromosome 4 as reciprocal transpositions 21	

linking 1.61Mb and 2.65Mb29, and a 93kb inverted transposition identified 22	

previously in a cross between Ler-0 and Col-030, and found it was present in 23	

12 MAGIC founders. 24	
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 1	

 2	

Figure 3 Structural variants segregating in the accession Ler-0. The grey 3	
directed lines show SV-QTLs with the arrows pointing towards the sink locus. 4	
Red and blue links indicate 37 trans and 30 cis SV-QTLs confirmed by de 5	
novo contigs. The black links show 16 SVs confirmed by PCR (7 cis, 9 trans). 6	
Double arrows in links indicate inversions. The dots in the red and blue tracks 7	
mark the sources (trans and cis, respectively) of all SVs associated with the 8	
Ler-0 haplotype.  9	

To validate further SVs we compared our SV calls for the founder accession 10	

Ler-0 against two Ler-0 contigs (chr3:16.65-17.02Mb, chr5:25.06-25.23Mb) 11	

that were independently re-sequenced and manually reassembled31, thereby 12	

constituting a gold standard for comparison. The chromosome 3 contig 13	
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(Figure 4) is enriched in SVs (83 indels, 31 larger than 100bp), consistent 1	

with our analysis: 42 SV-QTL sources (36 cis and 6 trans) are in this region 2	

and 4 trans SV-QTLs map into it. As would be expected, the sources of these 3	

SV-QTLs are within gaps in the contig. Furthermore, alignment revealed two 4	

long-range SVs within the contig (a transposition and a duplication which align 5	

to chromosomes four and two, respectively), which coincide with the source 6	

and sink of two trans SV-QTLs mapped within the contig. Similarly, in the 7	

chromosome 5 contig, 6 cis SV-QTLs correspond to deletions (Figure S3).  8	

 9	

 10	

Figure 4 Alignment of a manually assembled contig from Ler-0, chr3:16.65-11	
17.02Mb to the reference annotated with SV-QTLs. Thick black lines show 12	
alignments to reference genome. Blue arrows show the sources of cis SV-13	
QTLs; stacked arrows mean multiple read anomaly traits had SV-QTLs. Red 14	
arrows display trans QTLs with arrows starting from the source and pointing 15	
towards the sink. Gaps in the contig alignment indicate loci where Ler-0 did 16	
not align to the reference, with the exception of two transposed segments that 17	
mapped to chromosomes 2 and 4 at positions concordant with the sources of 18	
two trans SV-QTLs (circled). 19	

 20	

We also used an independent de-novo assembly of Ler-0 built from long PAC-21	

BIO reads, Genbank accession GCA_000835945.1 32 to validate our trans SV 22	

predictions. This assembly was constructed algorithmically without manual 23	

revisions, and so is not guaranteed to be correct. Further, the Ler-0 individual 24	
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sequenced in the PAC-BIO assembly was different from the individual that 1	

founded the MAGIC population and therefore might carry private structural 2	

variations. Nonetheless, we expect it to be more accurate and contiguous 3	

than a Ler-0 assembly built from short Illumina reads alone. We took those 4	

3080 Illumina paired-end reads for Ler-0 from 8 that carried large insert size 5	

mapping anomalies when mapped to TAIR10 and that mapped to the sources 6	

of our predicted Ler-0 trans SV-QTLS, and then mapped them to the PAC-BIO 7	

assembly using bwa26. These Illumina reads are from an individual grown 8	

from the same batch of seeds used to found the MAGIC population in ~2007, 9	

and should therefore share the same structural variants. Read anomalies that 10	

gave rise to correct SV predictions should map contiguously to the PAC-BIO 11	

assembly, under the assumption that the latter assembly is a more accurate 12	

representation of the Ler-0 genome. We found 2460 (80%) of these formerly 13	

split Illumina read pairs now mapped contiguously, defined as both members 14	

of a read-pair mapping to the PAC-BIO assembly with an insert size below 15	

600 bp.   16	

 17	

With the exception of these manually assembled Ler-0 contigs and the 18	

provisional Ler-0 PAC-BIO assembly, the MAGIC founders are not 19	

contiguously reassembled into a genome-wide gold standard reference panel. 20	

Nevertheless, they provide some information to test our SV predictions. To do 21	

this, at each SV-QTL we predicted which founder haplotypes carried SVs at 22	

the origination of the population. Using the low coverage data for the 488 23	

MAGIC lines, at each SV-QTL we predicted which group of founders carried 24	
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the SV allele vs the reference allele based on correspondence between their 1	

SV-trait value and predicted founder allele, using the fact that SV haplotypes 2	

will have elevated anomalous reads at the source. We were able to do this 3	

confidently at 2,391 SVs where the founders divided into two groups, the 4	

remainder having complex multi-allelic SV predictions (Methods). We then 5	

examined the independently-collected high-coverage reads in each the 19 6	

MAGIC founders 8 for read-mapping signatures that supported the predicted 7	

grouping of founders at each SV.  We counted the read pairs linking source 8	

and sink at each of the 2,391 SVs in the 19 high coverage founders. At 9	

1,585/2,391 (66.3%, FDR 7.5%) SVs we observed significant differences in 10	

anomalies between the predicted groupings of founders (Figure S4, which 11	

also shows that the majority of SVs were mapped within 50kb). In the 12	

founders, the mean SV allele frequency was 6/19=31%. Only 387 (12%) were 13	

private to a single founder (Figure S2), in contrast to the fraction of SNPs 14	

(45%) that are private to a single founder8. 15	

 16	

A related analysis using low-coverage reads from the 488 MAGIC genomes, 17	

but independent of founder predictions, (Methods) supported 1228/2391 18	

(51.3%, most also supported by the founder genomes) and 1631/4111 19	

(39.7%) of those remaining SVs without founder predictions.  In total 20	

2,965/6,502 (45.6%) SVs were supported by either method.  21	

Breakpoint Prediction and Confirmation 22	

 23	
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In order to estimate SV sizes and identify SV breakpoints that could be tested 1	

experimentally by PCR, we next assembled the high-coverage sequence data 2	

for the MAGIC founders into de-novo contigs. No scaffolding was attempted in 3	

order to produce conservative high-quality short contigs, each up to a few 4	

kilobases long. We aligned these contigs to the reference to find alignments 5	

split between sources and sinks. We mapped breakpoints for 420 SV-QTLs 6	

(Methods, Table S4): in 319 SV-QTLs both breakpoints were identified. We 7	

designed PCR primers around 77 breakpoints from 45 SVs (both breakpoints 8	

in 7 SVs, and one in each of the remaining 38). We validated 37 SVs (83%), 9	

comprising 61 (79%) breakpoints, in 14 cis (6 inversions, 7 transpositions, 1 10	

indel) and 23 trans (23 transpositions, 13 with inversions) SV-QTLs (Table 11	

S5).  12	

 13	

Consistent with our difficulties in predicting biallelic founder alleles, in 11 SVs 14	

the breakpoints were polymorphic among the founders carrying the SV, and in 15	

5 transpositions the orientation of the SV differed between founders. These 16	

results emphasise the difficulties frequently reported when delineating SVs. 17	

  18	
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1	
Figure 5 Association of haplotypes and SVs (a) Genome scans over 2	
chromosome 3 (x-axis: genomic position, y-axis: logP of association). Orange: 3	
association of local haplotype with germination time (days), peaking at 4	
15.93Mb. Green: association of local haplotype with the SV trait unpaired 5	
reads at the source locus 15.94-15.95Mb (indicated by the vertical red line), 6	
explaining 8.13% of the variance in germination time, with an SV-QTL 7	
mapped at the same position as the germination QTL. Purple: residuals of 8	
germination time after regressing out the SV trait, ablating the QTL. (b) 9	
Chromosome-wide Pearson correlations between germination time and the 10	
numbers of unpaired reads measured at each 10kb source locus (x-axis: 11	
genomic position, y-axis: -log10 P-value of test that the correlation is zero). 12	
Three source loci correlate strongly with germination (logP>4), all with cis SV-13	
QTLs (blue diamonds). (c) Structural variation in the MAGIC founders. Shown 14	
is the read coverage in 18 accessions (labelled on y-axis), over ~30kb 15	
surrounding around 15.94Mb (x-axis). Dark shades indicate high coverage, 16	
light shades low coverage. The 10kb intervals used to define source loci are 17	
delineated by vertical blue lines. The source locus giving rise to the SV-QTL in 18	
(a), (b) is marked with a pink double-arrow. Those founder accessions 19	
predicted to carry the reference allele (No-0, Ct-1, Mt-0, Wil-2, Ler-0, Tsu-0, 20	
Rsch-4, Kn-0, Zu-0, Hi-0, Ws-0) are in green, those predicted to carry the SV 21	
are in grey. Genes are annotated in orange.   22	
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1	
Figure 6 Effects of SVs on resistance to Albugo laibachii infection, (a) 2	
Genome scans on chromosome 4. Orange: Association with resistance. The 3	
peak of association for is at 9.50Mb. Green: Association with SV-trait 4	
improperly paired reads at source 9.50-9.51. Purple: Resistance after two SV 5	
traits have been regressed out measuring improperly paired reads (sources 6	
chr4, 9.50-9.51Mb (green line) and chr4, 10.44-10.45Mb (not shown), both 7	
marked with blue diamonds in fig (b)) that together explain 24.7% of the 8	
phenotypic variance. (b) logP of association between SV traits for improperly-9	
paired reads and the resistance trait. There is a cluster of associated traits 10	
near 9.50Mb, in addition to the more weakly associated trait at 10.44-11	
10.45Mb. (c) Structural variation in high-coverage sequence in the MAGIC 12	
founders around 9.50Mb. Shown is the number of improperly-paired reads 13	
(dark: high values, light: low values) in 18 accessions (labeled on y-axis), 14	
between 9.37-9.63Mb (x-axis). The 10kb intervals used to define source loci 15	
are delineated by vertical blue lines.  There is a region of complex structural 16	
variation spanning 9.48-9.55Mb approximately, with considerable variation 17	
between the founder accessions.  Genes are marked by orange arrows, and 18	
selected genes, some implicated in disease resistance at this locus, are 19	
labelled. 20	
 21	
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Effects of SVs on phenotypic QTLs and gene expression 1	

We next investigated associations between SVs and 9 physiological 2	

phenotypes, either previously published 25,33 or new to this study (Table S6). 3	

We found 16 distinct SV-QTLs (8 in trans, Table S7) that overlap 4	

physiological QTLs. In some cases, regressing the SV-trait from the 5	

physiological trait ablated the physiological QTL, consistent with, albeit not 6	

proof, that the SV is causal. This is illustrated by a QTL for germination time25 7	

on chromosome 3, which is ablated by a cis SV-QTL for unpaired reads at 8	

around 15,936,650-15,951,640bp (Figure 5a,b). Our analysis predicted that 7 9	

founders would carry a deletion at this locus, which was confirmed by the 10	

independent founder sequences (Figure 5c), revealing a 15kb deletion of 11	

three genes, AT3G44240 (Polynucleotidyl transferase, ribonuclease H-like 12	

superfamily protein), AT3G44245 (pseudogene of cytochrome P450, family 13	

71, subfamily B, polypeptide 21), and CYP71B38 (AT3G44250, cytochrome 14	

P450, family 71, subfamily B, polypeptide 38). Other SVs segregate nearby, 15	

but with allelic patterns inconsistent with the trait and therefore unlikely to be 16	

causal. It is therefore probable that the causal variant(s) lies within the deleted 17	

region.  The three genes are not known to affect germination, although a 18	

mutant of another Polynucleotidyl transferase, AHG2 (AT1G55870) does 34. 19	

 20	

We found similar effects on the chromosome 4 QTL for resistance to the 21	

fungal pathogen Albugo laibachii, isolate Nc1435 (Figure 6, Table S7). 22	

Variation in the number of unpaired reads at 9.50-9.51Mb explains 18.3% of 23	

the variance in resistance, and is adjacent to a cluster of Leucine-rich repeat 24	
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genes, and the genes RPP436, BAL37 and RPP5.  This locus is rearranged in 1	

some Arabidopsis accessions and known to be involved in disease 2	

resistance37; Figure 6 confirms the founder genomes have complex, 3	

polymorphic SVs in this region. Since the resistance QTL is not completely 4	

ablated by the SV traits associated with it, additional non-structural variants 5	

likely contribute to it. 6	

 7	

Importantly, Figures 5b,6b show that correlations between SV traits and 8	

phenotypes are tightly localized, generally to width of a single SV trait window, 9	

in contrast with wider linkage disequilibrium decay seen in QTL genetic 10	

mapping (Figure 5a).  Consequently correlations between SV traits and 11	

physiological traits can sometimes pinpoint causal variants within 12	

physiological QTLs which are otherwise too broad to localize (mapping 13	

resolution in the MAGIC population is about 200kb25). 14	

 15	

We also corroborated studies21,24 showing SVs associate with gene 16	

dysregulation, even when the gene sequence is undisturbed. Within those 17	

SVs with mapped breakpoints, 119 genes spanned the breakpoints, 6,909 lay 18	

inside the SVs (Table S8) and 21,747 outside. Using RNA-seq from 200 19	

MAGIC aerial seedlings, scaled expression variance increased among genes 20	

spanning breakpoints (t-test: 𝑃 < 9×10!! ) and within SVs (𝑃 < 1×10!!" ) 21	

(Figure 7a). Similarly larger fractions of lines had silenced transcripts for 22	

genes spanning breakpoints (t-test 𝑃 < 1.2×10!! ) and within SVs ( 𝑃 <23	
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2×10!!") (Figure 7b). Expression within SVs was more correlated with local 1	

SV traits than outside SVs (F-test 𝑃 < 2.1×10!!) (Figure 7c).  2	

 3	

Figure 7 Variation of expression in 200 MAGIC leaf transcriptomes, in genes 4	
spanning SV breakpoints, within SVs or outside SVs. (a) Boxplots of transcript 5	
variance (scaled by the mean). (b) Boxplots of the fractions of silenced genes 6	
(c) Distributions of the Pearson correlations between gene expression and 7	
number of abnormal insert size reads in the locus containing the gene (red: 8	
spanning breakpoints, green: within SVs, blue: outside SVs). 9	
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Phenotype 
𝒉𝑯𝟐  𝒉𝑺𝑵𝑷𝟐  𝒉𝑺𝑽𝟐  

IP LIS SS U U+LIS 

Resistance 0.000 0.258 0.490 0.511 0.000 0.673 0.503 

(resistance to Albugo laibachii ) (0.139) (0.085) (0.335) (0.307) (NA) (0.504) (0.314) 

RosetteLeafNumber.LongDay 0.228 0.322 0.463 0.456 1.000 1.000 0.447 
(number of leaves in a rosette for 
plants grown under long daylight (0.081) (0.076) (0.148) (0.146) (NA) (0.377) (0.146) 

RosetteLeafNumber.ShortDay 0.038 0.047 0.000 0.000 0.000 0.000 0.000 
(number of leaves in a rosette for 
plants grown under short daylight) (0.060) (0.062) (NA) (NA) (NA) (NA) (NA) 

bolting.Bath 0.426 0.476 0.783 0.783 0.952 0.989 0.785 

(bolting time in a greenhouse) (0.064) (0.048) (0.093) (0.093) (0.047) (0.025) (0.092) 

days.to.germ.x 0.220 0.149 0.385 0.357 0.598 0.835 0.365 

(germination time) (0.068) (0.063) (0.116) (0.113) (0.165) (0.146) (0.114) 

fieldFT.pl 0.000 0.095 0.000 0.000 0.000 0.000 0.000 

(flowering time in the field) (0.068) (0.076) (0.179) (0.130) (0.913) (NA) (0.145) 

fieldRD.pl 0.000 0.000 0.000 0.000 0.000 0.166 0.000 

(rosette diameter plasticity) (NA) (0.063) (0.085) (0.084) (0.239) (0.220) (0.085) 

leaves.day.28.given.days.to.germ 0.193 0.299 0.391 0.362 0.836 0.675 0.366 
(residuals for number of leaves at 
day28 regressed on germination) (0.081) (0.066) (0.146) (0.140) (0.189) (0.272) (0.142) 

ttl_branch.BATH 0.106 0.196 0.276 0.275 0.419 0.616 0.279 

(total number of branches of plants) (0.048) (0.054) (0.104) (0.100) (0.193) (0.214) (0.102) 
 1	

Table 2 Estimates of heritability. 𝒉𝑯𝟐  is haplotype-based heritability. 𝒉𝑺𝑵𝑷𝟐  is 2	
SNP-based heritability. 𝒉𝑺𝑽𝟐 is the heritability estimated from structural variant 3	
anomaly traits. Numbers in brackets are the standard errors of the heritability 4	
estimates above. ER: Excess Reads, IP: Improperly-paired, LIS: Large Insert 5	
Size, SS: Same Strand, U: Unpaired, U+LIS: Unpaired or Large Insert Size. 6	
Heritabilities for excess reads are not reported because the fraction of bins in 7	
any individual containing non-zero entries was too small. 8	
 9	

Effects of SV-traits on Heritability 10	

 11	

Finally, we treated the SV traits as if they were quantitative noisy genotypes to 12	

define pair-wise correlations between MAGIC lines, as weighted correlations 13	

of their SV traits (Methods). We constructed SV genetic relationship matrices 14	

(GRMs) 𝐾!", which we used to compute the SV-heritability ℎ!"!  of each of the 15	

physiological traits mapped above by analogy with the mixed models used for 16	
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estimating SNP-based heritability38. This idea is similar to the use of gene 1	

expression data to model intersample relationships39. We also compared 2	

these SV-heritabilities with those obtained from “classical” haplotype 𝐾!  or 3	

SNP-based 𝐾!"#  GRMs (Table 2). 𝐾!  was computed from the identity 4	

between haplotype mosaics (and so measures identity by descent),  𝐾!"# and 5	

𝐾!" were computed from the correlations of 1.2M imputed SNPs or 12k SV-6	

traits respectively (Methods). We also computed SV heritability when only the 7	

most variable 50% or 25% of SV-traits were included, to investigate if 8	

heritability was concentrated at the most structurally variable loci. 9	

  10	

As expected, SNP-based heritability ℎ!"#!  is generally similar to haplotype-11	

based heritability ℎ!!  for all phenotypes tested. However, the heritability ℎ!"!  12	

captured by the six measures of SV anomaly is more variable, sometimes 13	

being close to zero, but sometimes exceeding classical heritability by a 14	

considerable margin (Table 2). The standard error of ℎ!"!  was typically about 15	

twice that of ℎ!"#!  or ℎ!! , (approximately 0.1 compared to 0.05), presumably 16	

reflecting greater uncertainty in SV-traits than in SNPs or haplotypes. 17	

Therefore the larger heritability estimates should be treated with caution. 18	

Nonetheless, for phenotypes such as times for germination or bolting, the 19	

standard errors of all estimates are comparable at ~0.05 and is possible to 20	

make meaningful comparisons. Figure 8A,B illustrates likelihood curves the 21	

times to germination (A) bolting (B), for SNP, haplotype and large insert-size 22	

anomalies. Visualising the entire curves gives a better sense of the 23	

uncertainty of the maximum likelihood estimates at the curves’ minima (the 24	
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standard errors in Table 2 are asymptotic estimates based on the curvature at 1	

these minima). The Figure 8B shows that for bolting time the heritability 2	

attributable to all largeisize SV-traits, ℎ!"#$%&'&(%! , is close to 80%, compared to 3	

40-50% for haplotype or SNP-based estimates. As the fraction of SV traits is 4	

reduced by progressively removing those traits with lower variance, ℎ!"#$%&'&(%!  5	

reduces to that of SNPs or haplotypes. This suggests that there is genome-6	

wide structural variation that is not tagged by standard genetic variation, and 7	

which has important effects on specific phenotypes. These effects are not 8	

universal, as Figure 8A shows for germination time, where heritability is 9	

similar for all estimates. 10	

 11	

The relative independence of the heritability estimates borne out by low  12	

correlations between the corresponding elements of SNP and SV-based 13	

GRMs, which range around 0.3 depending on the anomaly type (Figure 8D 14	

shows the relationship between GRMs computed from SNPs vs large 15	

insertsize anomalies), compared to the correlation of 0.93 between SNP and 16	

haplotype based GRMs (Figure 8C).  17	
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 1	

Figure 8 (a,b) log-likelihood curves for two phenotypes bolting.BATH (large 2	
insert size read anomalies) and RosetteLeafNumber.ShortDay (unmapped 3	
read anomalies), illustrating contrasting behavior of heritability estimates 4	
based on structural variants, SNPs and haplotypes. Log-likelihood curves as 5	
functions of heritability are plotted for the GRMs estimated from SNPs, 6	
haplotypes and various fractions of anomalies. The maximum likelihood 7	
estimates of each heritability measure correspond to the minima of the 8	
corresponding curves, and are marked with dots. (c,d) Scatter plots 9	
comparing the off-diagonal elements of genetic relationship matrices. (c) 𝐾!"# 10	
vs 𝐾!; (d) 𝐾!"# vs 𝐾!"#$%&'&(%.  11	
  12	
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Discussion 1	

 2	

Our aim has been to understand better the architecture and impact of 3	

structural variation in populations sequenced at low coverage. We used a 4	

strategy that combines analysis of read-mapping signatures commonly used 5	

to detect SVs in individuals sequenced at high coverage, with association 6	

mapping in populations40. A somewhat related concept was used for mapping 7	

un-localised contigs into reference assemblies based on linkage 8	

disequilibrium41.  9	

 10	

In doing so, we have generated a partial catalog of SVs in Arabidopsis, 11	

although our purpose is not to call SVs systematically, a task that remains 12	

challenging with short reads. Rather, we have shown how SVs’ impact can be 13	

assayed without necessarily calling them or mapping their breakpoints. In this 14	

way, we can distinguish transpositions from local SVs, and determine the 15	

approximate locations of transpositions. The privileged role of the reference 16	

genome in the analysis means that some transpositions appear as deletions, 17	

so we probably have underestimated their true frequency. Despite this, a 18	

quarter of the SVs we detected are transpositions. Given the large numbers of 19	

transposable elements in Arabidopsis - over 11,000 from over 300 families 20	

are annotated in the reference 24 – this is unsurprising. However, many of the 21	

SVs we mapped are too large, covering tens of kilobases, to be single 22	

transposon-mediated events.  23	

 24	
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In the minority of cases where we delineated breakpoints exactly, we often 1	

found SVs are complex combinations of different SV types. But often 2	

breakpoints were not simple cut-and-paste transformations of the reference 3	

genome, as illustrated in Figure 6c. Indeed, it is impossible to determine 4	

precisely the changes that led to many observed structural variants.  5	

 6	

Because we used ultra-low-coverage 0.3x sequence data, we divided the 7	

Arabidopsis genome into 10kb bins when counting read-mapping anomalies. 8	

With higher coverage and a larger sample size it would be possible to use a 9	

larger number of narrower bins, thereby improving resolution. The public 10	

release of over 3000 rice genomes sequenced at ~14x 42 and over 1000 11	

Arabidopsis accessions sequenced at over ~20x 43 means that there are now 12	

large collections of inbred plant genomes available for analysis. Both of these 13	

sets are worldwide surveys of germplasm, in which we expect SVs to 14	

contribute significantly to, and be confounded with, their extensive population 15	

structure, in contrast to the MAGIC population used here. Disentangling these 16	

effects will be a challenging but important task. 17	

 18	

Mapping SVs in a population brings new insights to the problem of QTL 19	

analysis. First, an SV trait inside a QTL may entirely explain the genetic effect 20	

at the QTL, and hence provide support for being the causal variant (e.g. 21	

Figure 6). Second, SV traits are much more tightly localized than are QTLs: 22	

there is little or no correlation between neighbouring SV traits so there are no 23	

effects of linkage disequilibrium. Our analysis also shows that expression of 24	
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genes is often dysregulated or even silenced within large SVs, raising the 1	

possibility that an SV causes multiple regulatory and phenotypic effects. 2	

 3	

Finally we have shown that even in a population like Arabidopsis MAGIC 4	

where the local haplotype space is known, structural variation has an impact 5	

on heritability that cannot be explained by standard genetic variation. This is 6	

unexpected given the breeding history and genetic architecture of the MAGIC 7	

lines. For if an SV segregated among the founders of the MAGIC lines, then it 8	

should be tagged by the local haplotype context, and therefore contribute to 9	

both ℎ!!  and ℎ!"! . 10	

 11	

One possible explanation is that structural variation at loci rich in mobile 12	

elements accumulates within each lineage, leading to SVs that are private to 13	

each MAGIC line but tend to occur at the same loci, thereby creating similar 14	

phenotypic effects. Supporting this, in our analysis the SV-relationship matrix 15	

is calculated empirically, without regard to the ancestry of the MAGIC lines, 16	

being solely a function of the counts of read-mapping anomalies. Therefore, 17	

recalling that the history of each MAGIC line includes a private lineage of at 18	

least five generations of selfing, should SVs accumulate recurrently but 19	

independently in different lineages, then these could generate phenotypic 20	

associations invisible to SNP or haplotype variation. In Arabidopsis, it is 21	

known that some mobile elements are methylated, often in response to 22	

environmental cues, and that such methylation plays a role in the epigenetic 23	

control of certain phenotypes44. Testing this hypothesis in Arabidopsis MAGIC 24	
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lines would require complete and precise reassembly of each genome using 1	

long reads, annotation of mobile elements and determination of their 2	

methylation status.  3	

 4	

The general role that recurrent, but independent, genomic rearrangements 5	

might play in Arabidopsis and in other species remains to be seen, but there 6	

is no a priori reason why it should not be a driver of phenotypic variation. The 7	

approach used here may therefore have wider application to other 8	

populations, both to characterize the extent of transpositions and the impact of 9	

cryptic structural variation on phenotypes.  10	

 11	

  12	
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Methods 1	

 2	

DNA extraction and sequencing MAGIC lines were grown at Bath (lab of P. 3	

Kover) or Oxford (lab of N.P. Harberd) in greenhouses or growth chambers 4	

respectively. Leaves were harvested for DNA extraction. DNA isolation was 5	

performed at the John Innes Centre, in 96 well plates using the DNeasy 96 6	

Plant Kit and DNeasy 96 Protocol (www.quiagen.com). Sequencing was 7	

performed by the Oxford Genomics Centre. 8	

   9	

Genomic DNA library construction and multiplexing Samples were 10	

quantified using the Quant-iT™ PicoGreen ® dsDNA Kits (Invitrogen) and a 11	

Genios plate scanner (Tecan) according to manufacturer specifications. 12	

Sample integrity was assessed using 1% agarose gel. Approximately 300ng 13	

of DNA were fragmented using a Covaris S2 system with the following 14	

settings: Intensity: 5, Duty Cycle: 20, Cycles per Burst: 200, Time: 60 sec. 15	

Distribution of fragments after shearing was determined using a Tapestation 16	

D1200 system (Agilent/Lab901). DNA Libraries were constructed using the 17	

NEBNext DNA Sample Prep Master Mix Set 1 Kit (NEB) with minor 18	

modifications and a custom automated protocol on a Biomek FX (Beckman). 19	

Ligation of adapters was performed using Illumina Adapters (Multiplexing 20	

Sample Preparation Oliogonucleotide Kit). Ligated libraries were size selected 21	

using Ampure magnetic beads (Agencourt). Each library was PCR enriched 22	

with 25 µM each of the following custom primers:  23	

Multiplex PCR primer 1.0  24	
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5’- 1	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT2	

TCCGATCT-3’ 3	

Index primer 4	

5’-5	

CAAGCAGAAGACGGCATACGAGAT[INDEX]CAGTGACTGGAGTTCAGACG6	

TGTGCTCTTCCGATCT-3’  7	

Indexes used were 8bp long (manuscript in preparation). Enrichment and 8	

adapter extension of each preparation was obtained using 5µl of size selected 9	

library in a 50 µl PCR reaction. After 10 cycles of amplification (cycling 10	

conditions as per Illumina recommendations) the reactions were purified with 11	

Ampure beads (Agencourt/Beckman). The final size distribution was 12	

determined using a Tapestation 1DK system (Agilent/Lab901). The 13	

concentrations used to generate the multiplex pool were determined by 14	

Picogreen. The library resulting from the pooling was quantified using the 15	

Agilent qPCR Library Quantification Kit and a MX3005P instrument (Agilent) 16	

before sequencing on an Illumina GAIIx as 50bp or 100bp paired end reads. 17	

All steps for library construction, including the setup of the PCR reaction were 18	

performed on a Biomek FX (Beckman). Post PCR cleanup was carried out on 19	

a Biomek NXp (Beckman) whereas a Biomek 3000 (Beckman) was used to 20	

generate the pools of 96 indexed libraries.  21	

 22	

Processing Sequence Reads and SNP Calling The Illumina reads were 23	

mapped to the A thaliana reference genome (TAIR10) using Stampy version 24	
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v1.0.20 25.  Alignments were stored in a separate BAM file for each MAGIC 1	

line. Previous sequencing for the 18 MAGIC line progenitors had produced a 2	

catalogue of 3,316,270 segregating SNPs17. We ran GATK v2.626 on the 3	

segregating SNPs to call variants for the 19 founders, setting the following 4	

read filters: Allele Balance, BaseQualityRankSumTest, Clipping 5	

RankSumTest, Coverage, DepthPerAlleleBySample, FisherStrand, 6	

GCContent, HaplotypeScore, LowMQ, MappingQualityRankSumTest, 7	

MappingQualityZero, MappingQualityZeroBySample, RMSMappingQuality, 8	

ReadPosRankSumTest. We filtered out SNPs that were triallelic, within 9	

transposons, or heterozygous for any founders. 10	

 11	

 12	

Definition of Structural Variant Traits We divided the TAIR10 (Col-0) 13	

reference genome into 11,915 abutting 10 kb segments. Within each segment 14	

we computed six measures of anomalously mapped reads that are signatures 15	

of SVs. Let 𝑅 be the set of all reads mapped to a genome of length 𝐿;𝜌 is the 16	

number of reads in 𝑅, and 𝜌! the number of reads mapped to a segment 𝑙 of 17	

length 10kb . The read anomaly measures computed in each segment are: 18	

1. High read coverage: 𝝆𝒉𝒄 = 𝝆𝒍 − 𝟏.𝟓𝑬 𝝆𝒍 , where 𝑬 𝝆𝒍 =
𝝆×𝒍
𝑳

 is the 19	

expected read coverage of the segment 20	

2. Unpaired reads: 𝝆𝒖 number of reads mapping to the segment whose 21	

pair is not mapped 22	

3. Pairs on the same strand: 𝝆𝒔 number of reads with pair on the same 23	

strand 24	
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4. Reads with large insert size: 𝝆𝒊𝒔 number of read pairs with insert size 1	

outside the range 𝑚! ± 𝐼𝑄𝑅!  or mapped to different chromosomes, 2	

𝑚!, 𝐼𝑄𝑅! being the median and interquartile range of insert sizes of all the 3	

reads in the sample.  4	

5. Unpaired reads or with large insert size: 𝝆𝒖𝒊 = 𝝆𝒖 + 𝝆𝒊 5	

6. Improperly paired reads: 𝝆𝒖𝒊𝒔 = 𝝆𝒖 + 𝝆𝒊 + 𝝆𝒔 6	

The last two traits are combination of others – certain SV types can cause 7	

multiple anomaly signatures, so merging them may increase power. Each type 8	

of read pair anomaly was measured in each of the 11,915 10kb segments, 9	

determining 71,490 traits in total. 10	

Genome scan We treated the SV traits like a gene expression eQTL study, 11	

performing a genome scan for each one. Association was tested by fitting trait 12	

vectors to the imputed ancestral haplotype at each locus in the 488 genome 13	

mosaics. In combination, the mosaics partitioned the genome into 16,700 14	

haplotype blocks, with the ancestral haplotype of all lines unchanged in each 15	

one. Let 𝑦!" be the number of anomalous reads of a certain type at source 16	

segment 𝐴 in line 𝑖. At every haplotype block 𝑝 we fit the linear model: 17	

𝑦!" = 𝜇! + 𝑋!" 𝑠 𝛽!" 𝑠
!∈!

+ 𝑒! 

𝜇! is the average trait value at 𝐴, 𝑋!" 𝑠  is a binary indicator of whether line 𝑖 18	

carries haplotype 𝑠 at 𝑝, 𝛽!" 𝑠  is the effect of founder haplotype 𝑠 and 𝑒! the 19	

(Normally distributed) error. The founder effects 𝛽!" 𝑠  were estimated by an 20	

one-way ANOVA with null hypothesis: 21	
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𝐻! 𝑝 :𝛽!" 𝑠 = 0∀𝑠 

Genome-wide significance We denote the location of a sink locus 1	

associated with an SV trait an SV-QTL. Each genome scan of a given SV trait 2	

returns a p-value 𝜋!" for each of the 16,700 scanned blocks 𝑝. We selected 3	

as candidate SV-QTLs for each mapped trai the locus with maximum 4	

genome-wide negative logarithm of 𝜋!", i.e. 5	

𝜆! = max (−𝑙𝑜𝑔!"(𝜋!")) 

To control for the number of test in each scan (16,700) and correct for 6	

associations driven by outliers we performed 100 permutations 𝑇! of the trait 7	

vector 𝑦!"  and repeated the mapping for each one. We then fitted a 8	

generalized extreme value distribution (GEV), using R evd package on the 9	

𝜆! 𝑡 , 𝑡 ∈ 𝑇!  values obtained by permutation, from which we obtained a 10	

genomewide corrected p-value: 11	

𝛾! = −log (1− exp 1+ 𝑠!
𝜆! − 𝛼!
𝑏!

! !
!!

) 

𝑎!, 𝑏!, 𝑠!  are the MLEs of 𝑎!, 𝑏!, 𝑠! . Study-wide SV-QTLs are selected at 12	

𝐹𝐷𝑅 < 10!! (𝛾! < 10!!). At this FDR we mapped 10,275 SV-QTLs in total. 13	

Table S3 shows mapped QTLs per read anomaly category. 3,773 SV-QTLs 14	

had coincident sources and sinks, probably corresponding to the same SV, 15	

and so were counted only once. SVs are tabulated in Table S4.  16	

Cis and trans SV-QTLs In total we mapped 6,502 distinct SV-QTLs, each 17	
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corresponding to a unique SV. SV-QTLs with sources and sinks within 2Mb 1	

from each other were classified as cis, and the rest as trans.  2	

Prediction of SV allele frequency We predicted the founder haplotypes 3	

carrying SVs at the origination of the population, using the fact that SV 4	

haplotypes will have elevated anomalous reads at the source. For each SV-5	

QTL the founders’ contributions were arranged as a 19×19 table 𝑇 whose 6	

cells (𝑖, 𝑗) carry the sum of read anomalies (of a certain type) at the source for 7	

all lines carrying haplotype 𝑖 at the sink and haplotype 𝑗 at the source. A 8	

founder is classified as carrying the SV if its corresponding row has generally 9	

higher values than the rest of the table (we note that in cis QTLs the matrix is 10	

almost diagonal).  11	

For each cell of 𝑇, let 𝑡!" be the sum of trait values for all genomes carrying 12	

haplotypes 𝑖, 𝑗  at the sink and source, respectively. The contributions of 13	

founder 𝑖 are estimated as the ‘’row’’ effect: 𝑟! = 𝑡!"! , which are reorder such 14	

that 𝑟! > ⋯ > 𝑟!", with 𝑟! ≈ ⋯ ≈ 𝑟!" under null. We rejected the null hypothesis 15	

if there is a set 𝑟!,… 𝑟!  such that 𝑟! > ⋯ > 𝑟! > 𝑟!!! > ⋯ > 𝑟!". There are 18 16	

such possible sets. The z-score of each set 𝑘 is: 17	

𝑧! =
𝑟!!

!!! − 𝐸[𝑟!]
𝜎(𝑟!)

 

𝐸[𝑟!] and 𝜎(𝑟!) are estimated by 1000 permutations of 𝑇, denoted as 𝑅!!. We 18	

choose 𝑘 such that 𝑧! is maximised. 𝑘 is significant, hence the corresponding 19	

founders carry the SV if the permutation p-value 𝜋!! =
!!!∈!!! :!!!!!!

!
≤ 10!!. 20	
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Examples of cis and trans SV-QTL tables with detectable founders are shown 1	

in Figure S1. The test predicts founder haplotype groups at 2,391 SV-QTLs.  2	

Heritability 3	

For a given phenotype (such as germination time) measured in the MAGIC 4	

lines, the phenotypic variance matrix is represented by the mixed model 5	

𝑉 = 𝐾𝜎!! + 𝐼𝜎!! where 𝐾 is the genetic relationship matrix (GRM) and 𝐼 the 6	

identity matrix. The phenotypic heritability is  7	

 8	

ℎ! = 𝜎!! (𝜎!! + 𝜎!!) 

 9	

 10	

We computed genetic relationship matrices 𝐾 between the inbred MAGIC 11	

lines in three ways: 12	

 13	

Identity By Descent (haplotype-based) 𝑲𝑯 We used the representations of 14	

chromosomes as homozygous mosaics of the 19 founders to determine 15	

identity by descent (IBD). Across all 𝑁 MAGIC lines, we identified the union of 16	

the mosaic breakpoints, and then segmented the genome of each MAGIC line 17	

according to these breakpoints. Thus by construction, the founder haplotype 18	

for each line is constant within each segment. The founder haplotype in 19	

segment 𝐿 in line 𝑖 is represented by an indicator matrix 𝐻!"# which is 1 if the 20	

founder is 𝑓 and 0 otherwise. If 𝑤!is the fraction of the genome covered by 𝐿, 21	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2016. ; https://doi.org/10.1101/087387doi: bioRxiv preprint 

https://doi.org/10.1101/087387
http://creativecommons.org/licenses/by-nc-nd/4.0/


and 𝑓!"# = 𝐻!"# 𝐻!"# ! is the indicator of whether lines 𝑖, 𝑗 are IBD at 𝐿, then 1	

the fraction of the genome that is IBD for lines 𝑖, 𝑗 is  2	

 3	

𝑑!" = 𝑤!
!

𝑓!"# 

 4	

This matrix is then standardised to take the form of a genetic relationship 5	

matrix. Let 𝑃!be the probability that, given the observed population-wide 6	

founder haplotype fractions at 𝐿, two randomly-sampled lines are IBD, i.e.  7	

 8	

𝑃! =
2 𝑓!"#!!!

𝑁(𝑁 − 1) 

 9	

 10	

Define 11	

 12	

𝐸!" = 𝑤!
!

(𝑓!"# − 𝑃!) 

𝜇! = 𝐸!"/𝑁
!

 

𝜎!! = (𝐸!"!
!

/𝑁)− 𝜇!! 

 13	

 14	

in order to compute the standardised IBD matrix 𝑲𝑯 15	

 16	
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𝐾!"# =
𝑤!! (𝑓!"# − 𝜇!)

𝜎!𝜎!
 

which has main diagonal 1 and off diagonal elements in the range [−1,1].  1	

 2	

Identity by State (SNP-based) 𝑲𝑺 SNPs were imputed in the MAGIC lines by 3	

using the haplotype mosaics and the catalog of variants in the 19 founders. 4	

We treated each MAGIC line as being homozygous. We investigated down-5	

sampling the number of SNPs (as the total is over 1 million). Subsamples of 6	

between 1% and 10% of the total SNPs were used to define the GRM in the 7	

usual way for a homozygous population. Thus if 𝑆!" ∈ {0,1} encodes the SNP 8	

genotype in individual 𝑖 and SNP 𝑝, and if 𝜋!is the allele frequency at 𝑝, then 9	

the normalized genotype is 10	

𝑇!" =
𝑆!" − 𝜋!
𝜋!(1− 𝜋!)

 

  11	

Since the MAGIC lines are almost fully inbred the normalization is different 12	

from that in an outbred population under Hardy-Weinberg equilibrium. The 13	

SNP-based GRM is the matrix 𝑲𝑺 with elements 14	

 15	

𝐾!"# = 𝑇!"𝑇!"
!

/𝑀 

 16	

That is,  17	

𝑲𝑺 = 𝑻𝑻!/𝑀 

 18	
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which is always positive semi-definite. 1	

 2	

Read Anomalies 𝑲𝑹We constructed read-anomaly GRMs by analogy to 3	

SNP-based GRMs. Let 𝑋!"be the read anomaly trait for individual 𝑖 at locus 𝐿. 4	

Let 𝛼! and 𝜏!! be the sample means and variances: 5	

𝛼! = 𝑋!"/𝑁
!

 

 6	

𝜏!! = 𝑋!"!/𝑁
!

− 𝛼!! 

 7	

Define the standardized trait matrix 𝑾 with elements 8	

 9	

𝑊!" =
(𝑋!" − 𝛼!)

𝜏!
 

 10	

The genetic relationship between individuals 𝑖, 𝑗 is 11	

 12	

𝐾!"# = 𝑊!"𝑊!"
𝑳

/𝑀 

 13	

where 𝑀 is the number of loci. Then the read anomaly GRM 𝑲𝑹 =𝑾𝑾!/𝑀.  14	

 15	

This formulation guarantees that the GRM is positive. The choice of loci that 16	

contribute to the GRM can be varied. Loci at which there is no variation in 17	

read anomaly are superfluous and so are ignored. Similarly, loci in which only 18	
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a small fraction of individuals are anomalous (say <3%) are likely to carry too 1	

much weight after normalization and so may optionally be dropped, 2	

analogously to the calculation of SNP-based GRMs using only high-frequency 3	

SNPs.  4	

 5	

In the MAGIC population, each of the 19 founders should be present at a 6	

given locus in about 1/19 = 5.5% of lines. Thus an SV that is private to a 7	

single founder should give rise to a trait which is null (ie its un-normalised trait 8	

value is zero) in 94.5% of lines on average. Loci with a much smaller fraction 9	

of non-null trait values might represent private structural mutations. 10	

 11	

We computed a separate kinship matrix for each of the six measures of read 12	

anomaly, and estimated heritability by maximum likelihood. 13	

 14	

Validation by paired-end data We used high and low coverage paired-end 15	

reads from the 19 founders8 and from the MAGIC lines to search for 16	

enrichment of read pairs linking the source and sink. For the high-coverage 17	

test we restricted attention to the 2,391 SV-QTLs in which founders carrying 18	

the SV are predicted, and compared the number of read pairs with one read 19	

mapped in the 10kb of the source and within a variably-sized window of 𝑊 kb 20	

from the sink (association peak) (𝑊 ∈ 5,20,30,40,50,100,150,200,400 ) in the 21	

founders carrying the SV to the remaining founders using two-sided Fisher’s 22	

exact tests (FET) at the 5% level of significance. Given the haplotype 23	

structure of the MAGIC lines, mapping resolution is variable between QTLs in 24	
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MAGIC - (200kb being the average in MAGIC25) and may depend on the 1	

significance of the association. In the low coverage data we performed the 2	

same test comparing the 100 lines with the highest read anomaly trait value to 3	

the rest of the population. 4	

Validation by denovo contigs We used BLAT 45 to align 5,524,143 short 5	

contigs (50-1000bp) from existing denovo  assembly contigs of the 18 non-6	

reference founder genomes to the reference (Col-0 TAIR10) to identify contigs 7	

split across the source and sink locus. After alignment we excluded genomic 8	

regions with annotated repeats or transposons and alignments that mapped to 9	

over 5 genomic loci. We found 2,619 contigs with alignments split into disjoint 10	

pieces over 420 QTLs’ sources and sinks, suggesting a cut-and-paste 11	

mechanism. We also found 460,656 (8.3%) shared contigs whose alignments 12	

overlapped between source and sink regions (duplications, transposons, 13	

Microhomology-Mediated Break-Induced Replication (MMBIR) sites and Non-14	

Allelic Homologous Recombination (NAHR) being possible explanations). We 15	

randomized the SV-QTLs by circular genome permutation46 to determine 16	

whether such split and shared contig alignments are overrepresented near 17	

SV-QTLs. In particular, for each SV-QTL 𝑖, if 𝑎 𝑖 , 𝑏(𝑖) are the original position 18	

of the source and sink respectively, then a permuted SV-QTL 𝑎! 𝑖 , 𝑏! 𝑖  is 19	

defined as: 20	

𝑎! = 𝑎 𝑖 + 𝜃!  𝑚𝑜𝑑 𝐿 

𝑏! = 𝑏 𝑖 + 𝜃!  𝑚𝑜𝑑 𝐿 

 𝜃!~𝑈𝑛𝑖𝑓(0, 𝐿) 
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with the requirement that 𝑎! 𝑖 , 𝑏! 𝑖  must be on the same chromosome for 1	

cis SV-QTLs. We then computed one-sided p-values 𝜋!"#$% ,𝜋!!!"#$. At the 1% 2	

level, trans SV-QTLs were enriched for both split and shared alignments and 3	

cis only for split.  4	

Validation by PCR We designed PCR primers for 77 breakpoints from 44 SV-5	

QTLs predicted from denovo contigs. We considered two types of 6	

experiments: type I experiments had primer oligos corresponding to remote or 7	

inverted reference loci so PCR should produce a product in SV genomes and 8	

not in the reference; type II experiment is a control experiment with the 9	

reverse outcome (product in the reference, but not in SV genomes). In total, 10	

we designed 96 type 1 experiments, one for each of the 77 breakpoints, and 11	

19 control (type 2) experiments, wherever possible. 12	

We designed 20-30bp primer oligos based on the reference (TAIR10), using 13	

Primer347, after masking out repeats, transposons and known polymorphisms. 14	

SVs tend to be near such sequence features, so we had to relax the default 15	

Primer3 criteria to detect oligos, and in particular we required: (i) Maximum 16	

allowed product 1.5kb (ii) Annealing temperature 10-90oC (iii) GC-content 10-17	

90% (iv) Self-complementarity 8bp. Primer specificity was tested by BLAT45. 18	

In 30 (66.6%) SV-QTLs (46 type 1 experiments) at least one breakpoint was 19	

confirmed, i.e. there was at least one type 1 experiment which amplified in a 20	

subset of founder genomes (those carrying the SV) while not producing a 21	

product in the reference, as expected. In a further 7 SV-QTLs (15.6%) (15 22	

type 1 experiments) the founders carrying an SV-QTL amplified successfully, 23	
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but the reference genome also amplified unexpectedly. This may be due to 1	

the presence of highly similar sequence nearby, causing unexpected binding 2	

of one of the primers – potentially in the presence of duplications. Indeed in 10 3	

of these experiments evidence of duplications (multiple bands produced by 4	

PCR) was detected in more than two founder genomes. However, in all 15 5	

experiments there were at least three founder genomes behaving differently 6	

than the reference, indicating that the region is probably structurally variant, 7	

although the type of variant may be different to the one predicted by the 8	

mapping. We conclude that these results, despite ambiguous, probably 9	

indicate SVs, albeit likely polymorphic or of different type than originally 10	

predicted. The remaining 16 type 1 experiments failed amplify in any founder. 11	

Of the 19 type 2 experiments, 16 succeeded (worked as expected), 2 were 12	

ambiguous and 1 failed.  13	

In total we confirm at least 30 (66.6%) SV-QTLs with at least one breakpoint, 14	

while for a further 7 (15.6%) we have evidence of structural variation – in total 15	

up to 82.2% of the tested SV-QTLs are confirmed.  16	

Association with physiological phenotypes. For each of the six read 17	

anomaly categories, we computed Pearson correlations and corresponding p-18	

values between 9 physiological phenotypes and the 11,915 traits measured 19	

genome-wide. We selected significant correlations with logP>4. After filtering 20	

out correlations driven by outliers (i.e. in which removal of the three most 21	

extreme samples reduced the correlation below the significance threshold) we 22	

found 549 traits associated with 40 phenotypes. Each physiological 23	
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phenotype had on average 1.56 associated SV traits of the same anomaly 1	

type.  2	

The effect of SVs on each phenotype was measured by a heritability-like 3	

measure, ℎ!"! , estimated by linear models. Let 𝑦 be the vector of phenotypic 4	

values for a physiological phenotype with 𝑘 correlated SV traits (of the same 5	

type): 𝑋!,… ,𝑋!, represented by the matrix 𝑋. The phenotype is modelled as: 6	

𝑦 = 𝑋𝑎 + 𝑒 

The 𝑘  parameters 𝑎  were estimated using the R function glm() and we 7	

computed the residual sum of squares RSS and the total sum of squares (i.e. 8	

variance of 𝑦) TSS. We also computed the individual effect sizes of all traits 9	

contributing to the heritability, by fitting simple linear regression models. 10	

Based on this analysis SV traits can explain up to 33% of the total phenotypic 11	

variance.  12	

 13	

We mapped QTLs for the phenotype residuals after regressing all/each 14	

associated SV traits of the same type and compared them to the phenotype 15	

QTLs. 16	

 17	

Published phenotypes We used flowering time and rosette diameter data 18	

from a field experiment33, as well as phenotypes described in previously25. 19	

 20	

Phenotyping resistance Three replicates of each MAGIC line were grown at 21	

the University of Bath in 2.5 inch plastic pots. Plants were monitored daily and 22	

germination and bolting day recorded. After plants senesced, the 23	
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inflorescence height and the total number of branches were measured. In a 1	

separate experiment, MAGIC lines were grown in growth chambers in P24 2	

plastic trays and sprayed with A. laibachii race Nc1435 when plants were 21 3	

days old.  Nc14 zoospores were suspended in water at a concentration of 4	

105 spores per ml and incubated on ice for 30 min. The spore suspension was 5	

then sprayed on plants using a spray gun, and plants were incubated in a cold 6	

room in the dark overnight. Infected plants were kept in a growth chamber 7	

under 10-h light and 14-h dark cycles with a 20°C day and 16°C night 8	

temperature48. Resistance was defined as absence of pustules on the leaves 9	

at 7 days after inoculation. To minimize errors in scoring, resistant plants were 10	

monitored up to 14 days after inoculation. The experiment was reproduced 11	

twice.   12	

 13	

Collection of RNA We obtained a subset of MAGIC lines from the 14	

Nottingham Arabidopsis Stock Centre (NASC). We grew 209 of the MAGIC 15	

lines at 20°C in Percival environmental chambers (Perry, IA, USA) and 16	

prepared total RNA as previously described for an earlier study with the 17	

MAGIC parental founders8; briefly, twenty aerial rosettes from seedlings at the 18	

fourth true leaf stage were pooled8. RNAseq library construction and 19	

sequencing was performed at the Oxford Genomics Centre (Oxford, UK) to 20	

produce 2 x 100bp reads using the Illumina non-strand specific method. Per 21	

Illumina HiSeq lane, samples were barcoded and run in 13-plexes to give 22	

approximately 14 million reads per sample. 23	

 24	
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Alignment of RNAseq reads and expression quantification All libraries 1	

were aligned to the TAIR10 reference genome using PALMapper v0.649, 2	

following a variation-aware alignment approach. Genome variants collected 3	

from the 19 founder strains as well as variants reported for a diverse natural 4	

population28 were integrated and provided to the aligner as set of known 5	

variants. Briefly, the mapper used this set of variants in alignments to prevent 6	

reference biases in RNAseq read mapping (see previous work8 for a 7	

rationale). To facilitate accurate alignments, we further provided splice 8	

junction information collected in an earlier study with the founder strains8 as 9	

well as junction information extracted from the TAIR10 genome annotation. 10	

The full alignment parameter set for PALMapper was: -M 3 -G 0 -E 3 -l 12 -L 11	

14 -K 12 -C 14 -I 5000 -NI 1 -SA 5 -UA 50 -CT 50 -JA 15 -JI 1 -z 10 -S -seed-12	

hit-truncate-threshold 100 -report-map-read -report-spliced-read -report-map-13	

region -report-splice-sites 0.9 -filter-max-mismatches 0 -filter-max-gaps 0 -14	

filter-splice-region 5 -min-spliced-segment-len 1 -qpalma-use-map-max-len 10 15	

-f bam -qpalma-prb-offset-fix -junction-remapping <junction_file> -score-16	

annotated-splice-sites <junction_file> -max-dp-deletions 2 -use-variants-17	

editop-filter -use-variants <variant_file> -filter-variants-minuse 1 -merge-18	

variant-source-ids -use-iupac-snp-variants -filter-variants-map-window 20 -19	

iupac-genome -filter-variants-maxlen 100 -index-precache 20	

 21	

Gene expression quantification. We used a custom python script that 22	

counted the number of reads overlapping with at least one exonic position of 23	

an annotated gene feature. For each read only the best alignment was 24	
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considered for counting. An alignment was excluded from being counted 1	

towards the expression of a gene if (i) at least one position in the alignment 2	

overlapped to an annotated intron, (ii) the alignment fell entirely into a region 3	

where two or more annotated genes overlap, and (iii) did not start at a position 4	

that is part of an exon in all annotated isoforms. For each gene feature the 5	

total number of reads passing these filters were used as the expression count. 6	

 7	

Effects of SVs on gene expression We considered SVs with accurate 8	

breakpoints (see Validation by denovo contigs). 119 TAIR10 genes 9	

spanned SV breakpoints (i.e. were disrupted by SVs) and 6,909 were inside 10	

them (transposed, inverted or duplicated). Genes were divided into three 11	

categories: disrupted by breakpoints, within SV-regions and outside SVs and 12	

compared with respect to mean and variance using t-tests. We also computed 13	

the correlation of these genes with their local read anomaly values (for the six 14	

read anomaly types), i.e. with the 10kb source region that contains the gene 15	

and compared the mean and variance (by a t-test and an F-test, respectively) 16	

of the Pearson correlation coefficients across categories.  17	
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Supplementary Figures legends 1	

Figure S1 Manhattan plots and founder contributions for high read coverage 2	

in a cis (a,c) and a trans (b,d) SV-QTL. In the manhattan plots the red line 3	

shows the source and the association peak the sink of the SV-QTL. In the 4	

founder contributions tables rows and columns correspond to founder 5	

haplotypes at the sink and source, respectively. The colour hue at each cell is 6	

the trait value for each combination of founder haplotypes, darker colour 7	

means higher value. In c trait values range from 0 to 1000. The figure shows a 8	

duplication (confirmed by denovo contigs) present in 3 founders, namely Bur-9	

0, Col-0 and Edi-0. In d trait values (high read coverage) range from 0 to 600 10	

and the figure is showing a trans QTL in chromosome 5, present in Bur-0, Oy-11	

0, Po-0, Rsch-4 and Wu-0.  12	

Figure S2 Distribution of SV allele frequencies, defined as the fraction of 13	

founders carrying the SV allele at SV-QTLs.  14	

Figure S3 Alignment of a 175 kb manually assembled contig from Ler-0, 15	

chr5:22.05 – 25.23Mb31 to the reference. See legend of Figure 3 for 16	

explanation. 17	

Figure S4 Validation of SV QTL predictions using paired-end data from high 18	

coverage sequence in the 19 founder genomes. The figure shows results for 19	

2,391 SV-QTLs for which predictions of founder haplotypes carrying SVs were 20	

reliable. Each bar corresponds to a subsample of the SV QTLs with maximum 21	

genome-wide logP exceeding a given threshold, with bar height showing the 22	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2016. ; https://doi.org/10.1101/087387doi: bioRxiv preprint 

https://doi.org/10.1101/087387
http://creativecommons.org/licenses/by-nc-nd/4.0/


fraction that were supported by reads at P<0.05. The right-most bar shows the 1	

results in the entire set of 2,391 QTLs. The test compares the number of 2	

reads linking the 10kb source region to a variably sized window around the 3	

sink (see Methods). The colours are coding the different window lengths used 4	

– where different window sizes gave significant results for the same SV QTL 5	

we report the smallest.  6	

  7	
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Supplementary Table legends 1	

Table S1 The 19 founder accessions of the MAGIC population of 2	

Recombinant Inbred Lines. Shown are the stock centre numbers, the 3	

accessions’ names and the place of origin. 4	

Table S2 The mosaic reconstructions of 488 MAGIC lines. Each row 5	

represents one segment of a MAGIC line. magic: name of the MAGIC line; 6	

chr:  the chromosome of the segment; acc: the founder accession present at 7	

this locus; from.bp, to.bp: the start and end bp coordinates of the segment 8	

(TAIR10); from.site, to.site: the start and end position in terms of sites; 9	

len.bp: the length of the segment in bp; sites: the length of the segment in 10	

sites; errors: the number of errors (sites whose genotype does not agree with 11	

the founder accession genotype); error.site: the number of errors divided by 12	

the number of sites; error.bp: the number of errors divided by the length of 13	

the segment  14	

 15	

Table S3: Catalogue of SV-QTLs detected by genetic mapping of read pair 16	

anomalies. Each row represents a distinct SV. SV-QTLs with coincident 17	

sources and sinks for different read pair anomalies are merged into a single 18	

row. src.chr, src.pos: genomic location of the source, defined as the start of 19	

the 10kb region in which read pair anomalies were measured; sink.chr, 20	

sink.pos: genomic location of the sink, defined as the peak of association; 21	

read.anomaly.traits: read anomaly traits with the sink SV-QTL; 22	

max.gw.logp: maximum genome-wide logP estimated by the genome scan 23	
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(𝜆!, see Methods), fitted.p – extreme value distribution fitted p-value (𝛾! - see 1	

Methods),  - qtl.distance: cis or trans; SV.type: prediction of the type of 2	

structural variant based on the read anomaly traits that had a SV-QTL ; 3	

sink.founders – founder haplotypes predicted to carry the SV, NA means 4	

unknown (Methods); known.indel.dist:  distance between the midpoints of 5	

the source loci to the nearest large (>100bp) SV from 17; 6	

read.support.founder: P-value of FET comparing read pairs connecting the 7	

source and the sink in founders carrying the SV allele from the high-coverage 8	

sequencing of the 19 founders (NA if founders are the sink were unknown) 17, 9	

read.support.founder.window: size of window (distance from association 10	

peak) containing the significant association in read.support.founder,  11	

read.support.line, read.support.line.window: same validation test using 12	

read pairs from the 488 MAGIC lines; denovo.contigs: Boolean variable 13	

showing confirmation by at least one denovo contig. 14	

 15	

Table S4. Breakpoints of 420 SVs detected using denovo contigs. founder: 16	

founder genome in which the breakpoint was detected; source.chr, 17	

source.pos: source position in which the read anomalies were measured; 18	

sink.chr, sink.pos: SV-QTL position; source.break.from, source.break.to: 19	

breakpoints detected by denovo contigs corresponding to the source area; 20	

sink.break.from, sink.break.to: breakpoints corresponding to sink; 21	

source.length, sink.length: length of the structurally variant region in the 22	

source and sink regions. 23	

 24	
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Table S5. PCR validation results (a) Results per SV-QTL. QTL_ID: id of the 1	

SV-QTL; QTL: coordinates of the tested SV-QTL, position of the source 2	

followed by the position of the sink; confirm: Y – yes, A- ambiguous, N – no; 3	

dist: Boolean indicator of whether the SV-QTL is cis or trans; read pred: type 4	

of the SV (e.g. transposition, indel etc) predicted by read anomalies, PCR 5	

pred: prediction of the type of SV based on the contigs and PCR results.  (b) 6	

Results per experiment. Each row corresponds to a single experiment (unique 7	

combination of primers) performed on all 19 founders. QTL_ID: ID of the SV-8	

QTL predicted; type: type of experiment 1 or 2 (see Methods); Forward, 9	

Reverse: unique identifier of the primers used, in the form 10	

chr_pos_orientation, (e.g. id 4_1853989F means the sequence starting from 11	

chr 4, 1853989bp and with forward orientation). The identifier INV means that 12	

the sequence has the opposite orientation than expected. The remaining 13	

columns correspond to each of the founder genomes, 1 meaning that the 14	

experiment amplified, 0 that it did not, and >1 that it produced multiple bands. 15	

(c) Primer sequences.  16	

 17	

Table S6 Nine physiological traits measured in MAGIC lines that were used in 18	

this study.  19	

Table S7. Effects of SVs on physiological phenotypes. Phenotype: 20	

physiological phenotype; SV trait type: type of read pair anomaly, SV-QTL: 21	

number of SV traits that have SV-QTLs, trans: number of trans SV-QTLs; 22	

max.source: position of the source of the maximum-contributing SV trait; 23	

max.sink: position of the sink QTL of the maximum-contributing SV, or NA if it 24	
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is not mapped, physio.QTL: position of the QTL of the physiological 1	

phenotype; overlap.source, overlap.sink: Boolean indicator of whether the 2	

source or sink of the SV trait overlaps (within 200kb) with the QTL of the 3	

physiological phenotype, NA if there is no QTL. 4	

Table S8. Association of SVs with gene expression. gene – gene id, chrom, 5	

start, end – gene coordinates, Same QTL: position of the gene relative to 6	

SVs (break: the gene is spanning an SV breakpoint, within: the gene is 7	

between SV breakpoints so it may be transposed, inverted or duplicated, 8	

outside: the gene lies outside SVs), mean: mean gene expression, var: 9	

variance of gene expression, zeroes: proportion of silenced (zero expression) 10	

transcripts, r_unmapped_largeisize, r_impop_paired_LT, r_same_strand, 11	

r_largeisize, r_excess_reads, r_unmapped: Pearson correlation 12	

coefficients between expression levels and values of the local read anomaly 13	

trait, for each of the six anomaly types. 14	

 15	

 16	
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