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Abstract

In humans, as in other mammals, synonymous codon usage (SCU) varies widely among
genes. In particular, genes involved in cell differentiation or in proliferation display a distinct
codon usage, suggesting that SCU is adaptively constrained to optimize translation efficiency
in distinct cellular states. However, in mammals, SCU is known to correlate with large-scale
fluctuations of GC-content along chromosomes, caused by meiotic recombination, via the
non-adaptive process of GC-biased gene conversion (gBGC). To disentangle and to quantify
the different factors driving SCU in humans, we analyzed the relationships between
functional categories, base composition, recombination, and gene expression. We first
demonstrate that SCU is predominantly driven by large-scale variation in GC-content and is
not linked to constraints on tRNA abundance, which excludes an effect of translational
selection. In agreement with the gBGC model, we show that differences in SCU among
functional categories are explained by variation in intragenic recombination rate, which, in
turn, is strongly negatively correlated to gene expression levels during meiosis. Our results
indicate that variation in SCU among functional categories (including variation associated to
differentiation or proliferation) result from differences in levels of meiotic transcription,
which interferes with the formation of crossovers and thereby affects gBGC intensity within
genes. Overall, the gBGC model explains 70% of the variance in SCU among genes. We
argue that the strong heterogeneity of SCU induced by gBGC in mammalian genomes
precludes any optimization of the tRNA pool to the demand in codon usage.
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Introduction

Although synonymous codons encode the same amino acid, some are used more frequently
than others. This preferential usage of a subset of synonymous codons is known as “codon
usage bias”. In many species, including humans, this bias varies substantially among genes in
the genome. Both adaptive and non-adaptive processes, which are not mutually exclusive,
have been proposed to explain the existence of codon usage biases (Chamary, Parmley, &
Hurst, 2006; Duret, 2002; Plotkin & Kudla, 2011). According to the main adaptive model,
termed translational selection, synonymous codon usage (SCU) and abundance of tRNA are
co-adapted to optimize the efficiency of translation (Dos Reis & Wernisch, 2009; Drummond
& Wilke, 2008; Hershberg & Petrov, 2008; Ikemura, 1981; Kanaya, Yamada, Kinouchi,
Kudo, & Tkemura, 2001). Non-adaptive models propose instead that codon usage bias results
from biases in neutral substitution patterns, driven by mutation or by GC-biased gene
conversion — gBGC, (Chen, Lee, Hottes, Shapiro, & McAdams, 2004; Duret & Galtier, 2009;
Galtier, Piganeau, Mouchiroud, & Duret, 2001; Sémon, Lobry, & Duret, 2006). In humans,
these processes have been long studied, but the relative influence of adaptive and non-
adaptive processes on SCU is still a matter of debate (Chamary et al., 2006; Duret, 2002;
Plotkin & Kudla, 2011).

Recently, Gingold et al., (2014) compared synonymous codon usage among sets of human
genes associated to different functional categories (as defined in the Gene Ontology) and
observed a striking difference between sets of genes associated with cellular proliferation and
those associated with differentiation. They also observed that the relative abundance of tRNA
varies according to the proliferative or differentiative state of cells, which was logically
interpreted in term of translational selection: different cell types express specific sets of genes

whose coding sequence is co-adapted with specific pools of tRNAs (Gingold et al. 2014).

However, this interpretation stands in contradiction with two other studies. First, expression
levels of individual tRNA genes do indeed vary extensively between tissue types and
developmental stages in mice. But when tRNA genes are grouped by isoacceptor families
(which recognize the same codon) the resulting collective expression levels are stable
throughout development and specify a constant pool of anticodons (Schmitt et al. 2014).
Second, in continuation to this work, a recent study specifically contrasted cells undergoing
proliferation and those undergoing differentiation, and found no covariation of tRNA pool
and codon usage between these cells (Rudolph et al. 2016). Hence, neither result is consistent

with the initial claim interpreting differences in codon usage bias between functional classes
2
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as a consequence of translational selection. Then, why does synonymous codon usage vary

70  between genes associated to different functional categories?

It has long been known that in mammals, variation in synonymous codon usage between
genes is linked to large-scale fluctuation of GC-content along chromosomes, the so-called
isochores (Bernardi et al. 1985; Mouchiroud et al. 1988; Mouchiroud et al. 1991; Clay and
75 Bernardi 2011). There is strong evidence that isochores are the consequence of GC-biased
gene conversion (gBGC), a form of segregation distortion that occurs during meiotic
recombination and that favors the transmission of GC alleles over AT alleles (Duret & Galtier,
2009; Munch, Mailund, Dutheil, & Schierup, 2014; Williams et al., 2015). The gBGC process
leads to an increase in the GC-content in regions of high recombination rate, which affects
80 both coding and non-coding regions, including synonymous codon positions (Duret &
Galtier, 2009; Galtier & Duret, 2007; Glémin et al., 2015). Besides, it has been shown that the
rate of recombination within genes is negatively affected by their level of expression in the
germline (McVicker and Green 2010). This suggests that the impact of gBGC on the
synonymous codon usage of genes might depend on their pattern of expression.
85
To investigate the parameters responsible for variation in codon usage among functional
categories, we analyzed the relationships between synonymous codon usage, GC-content,
recombination rate and expression patterns of human genes. We first show that the variation
in codon usage among functional categories results from differences in GC content. Then we
90 propose a new test to show that it is not associated with translational selection. Instead,
synonymous codon usage correlates with large-scale variation in genomic GC-content and
with differences in intragenic recombination rate. In turn, the difference in intragenic
recombination rate between functional categories is explained by their expression level in
meiosis. Altogether, GC-content of non-coding regions and meiotic expression explain 70%
95 of the variation in synonymous codon usage of human genes.
At the end, our results are fully consistent with the hypothesis that synonymous codon usage
is driven by gBGC, and not by translational selection, and that the differences observed
among functional categories reflect variation in long-term intragenic recombination rates,
resulting from differences in meiotic expression levels.

100
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Results

Variation in codon usage among functional categories results from

differences in GC-content

105 To better understand what distinguishes codon usage between sets of genes involved in
cellular proliferation and differentiation, we started by investigating the main factors that
would discriminate codon usage between functional categories in general. For this purpose,
we grouped genes per functional category (687 biological processes, associated to more than
40 genes in the Gene Ontology database), and computed codon frequencies for each of these

110 gene sets. Variation in codon usage among these GO gene sets was analyzed by Principal
Component Analysis (PCA). In agreement with Gingold et al. (2014), the first principal
component of this analysis explains 41% of the total variance, and segregates “proliferation”
(7 categories) from “differentiation” (6 categories) GO categories (Fig S1A). To remove
potential confounding effects of wvariation in amino acid composition between these

115 categories, we also analyzed the relative synonymous codon usage (RSCU; see material and
methods) for each functional category. The first principal component of the PCA analysis is
even stronger, explaining 73% of the total variance of RSCU, and still separates categories
related to proliferation (red dots) and differentiation (blue dots, Fig 1A). Thus, synonymous
codon usage clearly varies between functional categories in general, and between

120 proliferation and differentiation in particular. What property of sequence composition
underlies this difference? It is well known that synonymous codon usage is strongly
correlated to GC content at third position of codons — termed GC3; (Mouchiroud et al. 1988).
Thus, we computed the average GC3 of each GO gene set. The GC3 of these functional
categories vary widely (from 0.45 to 0.73) and is perfectly correlated to their coordinates on

125 the first PCA axis (R? = 0.99; Fig 1B). Hence, variation in SCU between functional categories

is fully explained by variation in GC3.

On average, in our dataset, each gene is associated to 9 GO biological processes. Many genes
belong to more than one GO biological-process category, either because they have several
130 functions (pleiotropy) or because these categories are nested from specific to broad functions.
Hence, GO-terms are not independent. To avoid this redundancy, for the remainder of this
study we switched from analyses at the level of GO gene sets to analyses at the level of

individual genes (except when stated otherwise). Each gene was assigned with one of three

4
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categories based on their GO annotation: 1,008 genes associated with “proliferation”, 2,833
135 genes associated with “differentiation”, and 12,129 “other” genes unrelated to these key-
words (see methods). The distribution of GC3 content over the entire dataset is bimodal (Fig
1C). For the subsets of genes associated to “proliferation” and “differentiation”, the two
distributions of GC3 differ significantly from each other (T-test, p-value < 2.10-¢), and their
peaks coincide with each of the two modes observed for the whole genome. Genes associated
140 to “proliferation” are on average less GC-rich than genes associated to “differentiation”

(mean GC3 are respectively 0.53 and 0.61 in the two subsets).

Variation in synonymous codon usage is not driven by translational

selection.

We first investigated whether the observed variation in synonymous codon usage (i.e.
145 variation in GC3) might be driven by translational selection. This model proposes that the
relative usage of synonymous codons should co-vary with the abundance of their cognate
tRNAs. A property of the tRNA gene repertoires allows us to test this hypothesis. The human
genome contains 506 tRNA genes (decoding the 20 standard amino-acids), corresponding to
48 different tRNA isoacceptors (Chan and Lowe 2009). Among the 18 amino acids having
150 two or more synonymous codons, four are decoded by a single tRNA isoacceptor (mono-
isoacceptor amino-acids: Phe, Asp, His and Cys), and the 14 other ones are decoded by

several tRNA isoacceptors (multi-isoacceptors amino-acids).

For multi-isoacceptors amino-acids, the relative abundance of the different tRNA isoacceptors
155 can vary among different cell types, and hence might covary with the relative synonymous
codon usage of genes preferentially expressed in these cell types. For instance, let us consider
Gln, which has two synonymous codons (CAG, CAA) that are decoded by two tRNA
isoacceptors (respectively anticodons CTG and TTG). Let us consider a theoretical example
of two cell types (say A and B) that differ in their relative tRNA abundance (CTG-tRNA
160 being more abundant in A cells, and TTG-tRNA in B cells). According to the translational
selection model, sets of genes that are over-expressed in A cells, should preferentially use the
CAG codon whereas genes that are over-expressed in B cells, should preferentially use the
CAA codon. However mono-isoacceptor amino-acids are, by definition, decoded by a single
tRNA isoacceptor and the relative tRNA abundance cannot vary across cell types. Hence,
165 according to the translational selection model, the relative synonymous codon usage for

mono-isoacceptor amino-acids is not expected to vary among cell-specific gene sets. In other
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words, for mono-isoacceptor amino-acids, variation in synonymous codon usage among GO
gene sets cannot be explained by co-adaptation with the tRNA pool.
To test whether variation in synonymous codon usage was driven by translational selection,
170  we computed synonymous codon usage (GC3) in GO gene sets, separately for codons
corresponding to mono-isoacceptor amino-acids and for codons corresponding to multi-
isoacceptor amino-acids. We observed that the range of variation in GC3 is very similar for
mono- and multi-isoacceptor amino-acids. Importantly, the two parameters are strongly
correlated (R? = 0.90) (Fig 1D). This implies that GC3 variation is driven by a process that
175  affects both mono-isoacceptor and multi-isoacceptor amino-acids, and hence that this process
is not related to variation in tRNA abundance. This observation holds true for all functional
categories, including those associated to differentiation or proliferation (red and blue dots in

Fig 1D).

Impact of large-scale variation in genomic GC-content on synonymous codon

180 usage.

So far, we have shown that genome-wide variation in synonymous codon usage is not driven
by translational selection. Early studies, more than 30 years ago, have shown that variation in
human synonymous codon usage is strongly correlated with large-scale fluctuations of GC-
185 content along chromosomes (the so-called isochores), affecting both coding and noncoding
regions (Bernardi et al. 1985; Mouchiroud et al. 1988; Mouchiroud et al. 1991; Clay and
Bernardi 2011). We therefore tested whether genes associated with “proliferation” were
located in genomic regions with a lower GC-content than genes associated with
“differentiation”. We observed as expected that the GC3 of genes correlates with the GC-
190 content of their flanking regions (Fig 2A, R? = 0.48, p-value <2.10-16). This correlation is
observed for all genes, including the subsets of genes associated with “proliferation” and
“differentiation” (R? = 0.48 and 0.46, all p-values <2.107!6). Thus, in agreement with the
literature (Bernardi et al., 1985; Clay & Bernardi, 2011; Mouchiroud et al., 1991; Mouchiroud
et al.,, 1988), our observations indicate that variation in SCU between genes is to a large
195 extent attributable to their position in the genome. However, when the regional GC-content is
controlled for, there remains a significant difference in GC3 between gene categories: on
average, for a given regional GC-content, there is a gap of 5% to 7% of GC3 between the
categories “differentiation” and “proliferation” (Fig 2A, p-value <2.10-%6). This implies that
the difference in synonymous codon usage between these gene categories does not result from

200 a preferential location in different isochores.
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Variation in synonymous codon usage among functional categories

correlates with differences in intragenic recombination rate.

Previous studies have shown that the evolution of GC-content along chromosomes is driven
205 by meiotic recombination, both on a broad (Mb) scale (Duret & Arndt, 2008; Munch et al.,
2014) and on a fine (kb) scale (Clément and Arndt 2013; Pratto et al. 2014). There is now
strong evidence that this correlation between GC-content and recombination is caused by the
process of GC-biased gene conversion (gBGC) which leads to increase the GC-content in
regions of high recombination (Duret & Galtier, 2009; Galtier & Duret, 2007; Galtier et al.,
210 2001; Glémin et al., 2015; Munch et al., 2014; Pratto et al., 2014; Williams et al., 2015).
Recombination rate varies along chromosomes, and notably tends to be lower within genes
than in flanking regions (Myers et al. 2005; McVicker and Green 2010). Interestingly, we
observed that intragenic recombination rates (in cM/Mb) differ among the three sets of genes
defined previously, and covary with their GC3: the average intragenic recombination rate is
215 lower in “proliferation” genes compared to other genes, whereas it is higher in
“differentiation” genes (Fig 2B; p-value of Kruskal-Wallis test < 2.10-16 as for all pairwise
Wilcoxon tests). These observations are therefore consistent with the hypothesis that
differences in GC3 between “differentiation” and “proliferation” genes could also be driven

by gBGC.

220 The difference in intragenic recombination rate between functional

categories is explained by their expression level in meiosis.

Why do recombination rates vary across functional categories? Previous studies have shown
that intragenic recombination rates vary according to gene expression patterns: genes that are
expressed in many tissues tend to have lower intragenic crossover rates (McVicker & Green,
225 2010; Necsulea, Sémon, Duret, & Hurst, 2009). Mc Vicker and Green (2010) analyzed
expression levels in many different samples, including both somatic tissues and meiotic or
non-meiotic germ cells. Interestingly, they showed that the negative correlation between
intragenic recombination rate and expression level is stronger in germ cells than in somatic
tissue, and more specifically, stronger in meiotic cells than in other germ cells, most probably
230 because gene expression in meiotic cells interferes with the formation of crossovers

(McVicker and Green 2010).

To test whether the differences in intragenic recombination rates that we observed between

“proliferation” and “differentiation” genes could be linked to their expression patterns, we
-
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235 analyzed published RNA-seq data sets, covering a broad range of samples: somatic or germ
cells at different stages of developing male and female embryo (20 different conditions;(Guo
et al. 2015)); pachytene spermatocytes and round spermatids from adult males (Lesch et al.
2016), and differentiated adult tissues (26 somatic tissues plus testis, which contains a
fraction of germ cells;(Fagerberg et al. 2014) . We first confirmed the negative relationship

240 between intragenic recombination rate and gene expression level during meiosis (Fig 3A,
S2A, S2D). We also confirmed that for both single cell data and bulk samples, the negative
correlation between expression level and intragenic recombination rate is stronger in samples
including germ cells than in somatic samples (Fig S3). This confirms that the intragenic
crossover rate is affected specifically by expression in the germline.

245
Many “proliferation” genes are involved in basic cellular functions, and hence, tend to be
expressed at relatively high levels in many tissues and at all developmental stages. In
particular, most of these genes are highly expressed in meiotic cells: 65% of “proliferation”
genes are among the top 33% of genes with highest expression level (whereas only 11% are

250 in the first tercile; Fig 3B). Conversely, only 26% of “differentiation” genes are highly

expressed in meiotic cells, while 42% of are in the first tercile (Fig 3B).

This large proportion of “proliferation” genes with high meiotic expression levels can
therefore explain why they tend to have relatively low intragenic recombination rate (Fig 2B),
255 and hence, given the gBGC process, why they tend to have a lower GC3 (Fig 1C). To further
test whether these differences in expression patterns could account for the difference in GC3
between “proliferation”, “differentiation” and “other genes”, we binned genes into three
classes of increasing meiotic expression level. The distribution of GC3 is clearly shifted
towards lower values for genes highly expressed at meiosis, compared to genes weakly
260 expressed (average GC3 0.51 in the “high” category compared to 0.65 in the “low” category,
p-value <2.10'%) (Fig 3B). However, there is no significant difference in the distribution of
GC3 between “proliferation” and “differentiation” within bins of low or high expression (p-
value = 0.68 and 0.15 respectively). Hence, the striking difference in synonymous codon
usage between these functional categories (Figure 1C) disappears once the level of expression

265 during meiosis is controlled for (Fig 3B).

Thus, differences in expression levels at meiosis may be responsible for differences in
synonymous codon usage among gene categories in human, through the following causative

chain: (i) The set of “proliferation” genes is enriched in genes highly expressed in meiosis.

8
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270 (ii) Because high expression at meiosis decreases the rate of crossovers, intragenic
recombination rates are lower in the “proliferation” set. (iii) In turn, reduced intragenic
recombination diminishes the effect of gBGC on exon base composition, and hence GC3 is

lower in the set “proliferation” compared to “differentiation”.

275 To check whether this cascade of effects fully recapitulates the difference in synonymous
codon usage between “proliferation” and “differentiation”, we investigated whether
differences in SCU between functional categories is driven by expression level in cells
undergoing meiosis, rather than by expression level in another cell type or tissue. We
examined the relationship between GC3 and expression levels in a broad panel of cell and

280 tissue conditions (Fig 4). As predicted by our model, expression levels in germ cells, either
from single cell samples or from testis (which contains germ cells) are better predictors of
GC3 than expression in all other somatic tissues. Strikingly, the levels of expression in
primary germ cells is, on average, twice as informative than expression in somatic cells taken
at comparable stage of development (Fig 4B). Among all individual samples, the strongest

285 correlation between GC3 and expression level was found in male meiotic cells (pachytene
spermatocytes, R>=6.3%, p-value<2.101%). Female meiotic cells (primordial germ cells, PGC
17 W) showed a similar correlation level (R?=4.0%, p-value <2.10-16). As expected, the
correlation is even stronger with sex-averaged meiotic expression level (R?=8.6%, p-
value<2.10-16). Hence, these results confirm that the cell type for which gene expression level

290 is the best predictor of GC3 (and therefore SCU) corresponds to meiotic cells.

GC-content of non-coding regions and meiotic expression explain 70%

of the variation in synonymous codon usage of human genes.

Meiotic expression affects recombination rates along the entire gene (McVicker and Green
2010). Thus, the expression pattern is expected to affect gBGC intensity (and hence the GC-
295 content) both in exons and in introns. Consistent with that prediction, the GC3 of human
genes is strongly correlated to the GC-content of their introns (GCi, R?=62.7%, p-value
<2.10°'%), We build a linear model to quantify the relative contribution of the different
parameters that covary with the GC3 of human genes (GCi, GC-flank, intragenic
recombination rate, meiotic expression level, and “proliferation” or “differentiation”
300 functional category). The analysis of variance demonstrates that GCi is by far the best
predictor of GC3, but GC-flank, intragenic recombination rate and gene expression level
during meiosis, also significantly improve the model (by 1%, 4% and 1.4% respectively,

Table 1, ANOVA, p-values < 2.10%6). The integration of a categorical variable
9
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“differentiation” versus “proliferation” in the model significantly improves the model but its

305 quantitative influence is minor (0.1%, p-value < 2.10-16, Table 1). Altogether, 68.2% of the
variance in GC3 among human genes can be explained by the first four parameters (GCi, GC-
flank, intragenic recombination rate, meiotic expression). Adding interaction terms to the
linear model gives very similar results (70.4% variance explained, same levels of significance
for all variables).

310

Discussion

In the human genome, gene sets that belong to different functional categories differ by their
synonymous codon usage. Initially this pattern has been interpreted as evidence that the
translation program was under tight control, notably to ensure a precise regulation of genes
315 involved in cellular differentiation or proliferation (Gingold et al. 2014). According to this
model, selection should optimize the match between the SCU of genes and tRNA abundances
in the cells where they are expressed. However, the comparison of synonymous codon usage
for amino-acids with single or multiple tRNA isoacceptors (Fig 1D) shows that the difference
in SCU between functional categories does not result from constraints linked to tRNA
320 abundance. In fact, variation in synonymous codon usage among functional categories is
explained by one single dominant factor: the GC-content at third codon position (Fig 1B).
The GC3 of human genes is strongly correlated to the GC-content of their introns and
flanking regions (Table 1). This implies that variation in SCU results from a process that
affects both coding and non-coding regions, and hence that it is not caused by translational

325 selection.

Many lines of evidence indicate that large-scale variation in GC-content along chromosomes
(isochores) is driven by the gBGC process, both in mammals and birds. First, there is direct
evidence that recombination favors the transmission of GC-alleles over AT-alleles during
330 meiosis (Odenthal-hesse et al. 2014; Arbeithuber et al. 2015; de Boer et al. 2015; Williams et
al. 2015; Smeds et al. 2016). Second, the analysis of polymorphism and divergence at
different physical scales (from kb to Mb) showed that recombination induces a fixation bias
in favor of GC alleles (Duret and Arndt 2008; Clément and Arndt 2013; Munch et al. 2014,
Pratto et al. 2014; Weber et al. 2014; Singhal et al. 2015; Glémin et al. 2015). Third, the
335 gBGC model predicts that the GC-content of a given genomic segment should reflect its
average long-term recombination rate over tens of million years (Duret & Arndt, 2008).

Consistent with this prediction, analyses of ancestral genetic maps in the primate lineage
10 10
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revealed a very strong correlation between long-term recombination rates (in 1 Mb long
windows) and stationary GC-content — R?=0.64; (Munch et al. 2014). The strong correlation
340 between GC3 and GC-flank therefore implies that variation in synonymous codon usage is

primarily driven by large-scale variation in long-term recombination rate.

Besides these regional fluctuations, recombination rates also vary at finer scale. In particular,
recombination rates tend to be reduced within human genes compared to their flanking
345 regions (Myers et al. 2005), and this decrease depends on the level of expression of genes
during meiosis (McVicker and Green 2010) — see also Fig 3A. Hence, the gBGC model
predicts that the GC3 of a gene should depend not only of the long-term recombination rate of
the region where it is located, but also on its specific pattern of expression. And indeed, we
observed that the difference in synonymous codon usage between "proliferation" and
350 ‘"differentiation" genes is not due to their preferential location in different classes of
isochores, but to the fact that "proliferation" genes tend to be expressed a high level in

meiotic cells, and therefore to have a reduced intragenic recombination rate (Fig 2, 3).

To test whether this observation holds true for other functional categories, we measured the
355 average GC3, intragenic crossover rate and meiotic expression level of each GO gene set. As
predicted by the gBGC model, we observed a very strong correlation between GC3 and the
average intragenic recombination rate of GO gene sets (R?>=0.51, Fig 5A). The variance in
intragenic recombination rate, in turn, is very well explained by differences in meiotic
expression levels among functional classes (R?=0.46, Fig 5B). As mentioned previously, these
360 correlations measured on gene concatenates should be interpreted with caution because the
different points are not independent (a same gene can belong to different GO categories).
However, this analysis clearly shows that a large fraction of the variance in SCU observed
among GO gene sets can be explained by variation in gBGC intensity, caused by variation in
intragenic recombination rates, driven by differences expression patterns (Fig 5C). In
365 agreement with the gBGC model, the intragenic recombination rate correlates with the base
composition of the entire gene, including introns (Fig 5D). This observation clearly
invalidates the hypothesis that the observed differences in SCU among functional categories

might be driven by selection on codon usage.

370 The analysis of individual genes showed a much weaker correlation between GC3 and
intragenic recombination rate (R?=12.8%; Table 1) than that observed with gene sets

(R?=51%, Fig 5A). This difference can be explained by the fact that fine-scale recombination
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landscapes evolve very rapidly (Auton et al. 2012) and hence, present-day genetic maps are
poor predictors of long-term intragenic recombination rate. For instance, although human and
375 chimpanzee diverged only ~7 million years ago, their recombination rates at the 10 kb scale
are weakly correlated (R?>=10%) (Auton et al. 2012). In gene set analyses, intragenic
recombination rates are averaged over a large number of genes, which leads to reduce the
variance caused by measurement errors and temporal fluctuations, and hence leads to increase
the correlation with GC3 (Fig 5A). In absence of accurate estimates of long-term intragenic
380 recombination rate of individual genes, we analyzed four indirect predictors: GCi, GC-flank,
present-day intragenic recombination rate and meiotic expression levels. As expected, GCi is
by far the best predictor of GC3 (Table 1). According to the gBGC model, if GCi was a
perfect predictor of the long-term recombination rate within exons, then the other parameters
should not appear as significant predictors of GC3. However, there is evidence that
385 recombination rates differ between exons and introns (Kong et al. 2010). Moreover, whereas
the base composition of exons is almost exclusively driven by base substitutions, introns are
also affected by deletions and insertions (notably of transposable elements). Thus the base
composition of introns does not perfectly reflect the long-term intensity of gBGC within
exons. On the other hand, patterns of gene expression are well conserved among mammals
390 (Brawand et al. 2011). Thus, expression levels measured in humans are expected to be good
predictors of long-term average meiotic expression level, and thereby to provide some
information on long-term intragenic recombination. This can explain why meiotic expression
level appears as an important additional predictor of GC3 (Table 1). Altogether, these four
variables explain 70% of the variance in GC3 of individual genes. In other words, the gBGC
395 model can account for virtually all the variation in synonymous codon usage in the human

genome.

It should be noted that co-variation between SCU and expression is generally considered as a
400 typical signature of translational selection, and is often used to predict optimal codons (Duret
2002; Plotkin et al. 2004; Dos Reis and Wernisch 2009). However, as shown here, such
correlations can also emerge as a result of a non-adaptive process. Given that gBGC is
widespread in eukaryotes (Mancera et al. 2008; Capra and Pollard 2011; Pessia et al. 2012; de
Boer et al. 2015; Williams et al. 2015; Smeds et al. 2016), it appears essential to take this
405 process into account to interpret variation in synonymous codon usage (and more generally in

base composition) among genes.
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There is clear evidence the usage of synonymous codons is under selective pressure in some
metazoan species (such as drosophila or nematode), which implies that it has a significant
410 impact on the fitness of organisms — for review, see (Chamary et al., 2006; Duret, 2002;
Plotkin & Kudla, 2011). It is a priori expected that codon usage should also affect translation
efficiency (speed and accuracy) in mammals. However, our results show that selection on
codon usage is not strong enough to counteract the impact of gBGC. In principle this does not
exclude the hypothesis that the human genome might be subject to selection for translational
415 efficiency: even if the GC-content of genes is driven by non-adaptive processes, there might
be a selective pressure on the expression of tRNA genes to match the demand in synonymous
codon usage. However, recent analyses of tRNA isoacceptors pools found no evidence for
such variation (Schmitt et al. 2014; Rudolph et al. 2016). Moreover, we argue here that the
peculiar base composition landscape induced by gBGC in the genomes of mammals and birds
420 makes it impossible to match the tRNA pool to the demand in codon usage. Indeed, large-
scale variation in recombination rates along the genome causes very strong variation in GC3
among genes, and this, whatever their functional category. In particular, "proliferative" genes,
which are involved in basic cellular process, and are expressed at high levels in most tissues,
show a very strong heterogeneity in GC3 (from 20% to almost 100%; Fig 1C). This implies
425 that in any given cell, the set of highly expressed genes will show a very heterogeneous usage
of synonymous codons. Hence, whatever the pool of tRNA available in that cell, there will be
a large fraction of genes with a codon usage that does not match tRNA abundance. In other
words, the heterogeneity of synonymous codon usage in mammalian genomes reflects a non-
optimal situation, caused the gBGC process, in which it is not possible to adapt the tRNA

430 pool to the demand in codon usage of the transcriptome of any cell type.

Material and Methods

Human protein coding genes

435 For each of the human protein coding genes in the Ensembl release 83 ((Yates et al. 2016);

assembly GRCh38.p5), we identified a canonical transcript as defined in

http://www.ensembl.org/Help/Glossary?id=346 (PERL script available in supplementary

material on Zenodo platform: doi.org/10.5281/zenodo.229167). Mitochondrial genes were
excluded from this analysis. Sequences of the remaining 19,766 canonical transcripts together
440 with exons coordinates, were downloaded through the BioMart query interface (Smedley et

al., 2015).
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Recombination rates

445 Intragenic crossover rates were measured using the HapMap genetic map (The International
HapMap Consortium, 2007). We chose this genetic map, which is based on the analysis of
linkage disequilibrium in human populations, because its resolution (~1 SNP per kb) is much

higher than that of pedigree-based genetic maps (~1 SNP per 10 kb) (Kong et al. 2010).

450  Definition of functional categories

The GO Term Accessions and GO domain were retrieved from Ensembl version 83 for the
19,766 genes. We retrieved biological process GO terms, counted the number of genes
associated to each GO term and kept the ones that include at least 40 genes, except
455 GO:0005515 that is too general to be informative (“protein binding” GO set, which includes
14,542 genes). This led to a final list of 687 GO gene sets. For each gene set, we concatenated
coding sequences to compute the total codon usage, the relative synonymous codon usage
(RSCU) and GC-content, and we also computed the average intragenic recombination rate
and average expression levels (see below). The RSCU of a given codon corresponds to its
460 frequency, normalized by its expected frequency if all corresponding synonymous codons
were equally used (Sharp et al. 1986). For a given amino-acid (x), encoded by nx synonymous
codons, the RSCU of its codon y is given by:
RSCUyy = Cxy / (Ax/nx)
where Cyy is the number of occurrence of the codon y for amino-acid x, Ay is the total number

465 of occurrence of codons for the amino-acid x.

Following the classification used by (Gingold et al. 2014), we further defined two broad
functional categories: “proliferation” and “differentiation”. GO terms containing the
following keywords were associated to “proliferation”: “Chromatin modification”,
470  “chromatin remodeling”, “mitotic cell cycle”, “mRNA metabolic process”, “negative
regulation of cell cycle”, “nucleosome assembly”, “translation”. GO terms containing the
following keywords were associated to “differentiation”: “Development”, “differentiation”,
“cell adhesion”, “pattern specification”, “multicellular organism growth”, “angiogenesis”.
Please note that GO terms corresponding to negative effects were excluded where appropriate
475 (e.g. “negative regulation of proliferation” was not included in the “proliferation” category).

Complete lists of GO terms are available at doi.org/10.5281/zenodo0.229167
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Analyses of individual genes

480 We also measured the codon usage of individual genes, to analyze covariations with their GC-

content, expression levels and intragenic recombination rate. Owing to the low SNP density in
human populations, the resolution of recombination maps is limited to about 5 kb (Myers et al, 2005).

Because we investigate the relationship between GC3 and intragenic recombination rate, we selected
genes that are long enough to measure recombination, i.e. at least 5 kb long (N=16,223 genes).
485
We defined three non-overlapping classes of genes according to their GO category: genes
associated to at least one of the “proliferation” GO terms (N=1,008), genes associated to
“differentiation” GO terms (N=2,833) and other genes (N=12,129). A group of 253 genes that
were associated to both “proliferation” and “differentiation” GO terms were discarded from
490 further analyses. The final dataset used in our analyses included 15,970 genes. In this dataset,
there were 15,848 genes that contain at least one intron and for which we computed the GC

content of intronic regions.

Expression data
495
Gene expression levels were collected from three publicly available human RNA-seq
experiment datasets. The first one includes 27 differentiated adult tissues (Fagerberg et al.
2014; Kryuchkova-Mostacci and Robinson-Rechavi 2015) EBI accession number E-MTAB-
1733). We downloaded normalized expression levels, already averaged across replicates,
500 from Kryuchkova-Mostacci and Robinson-Rechavi (2015) (see supplementary information
available on Zenodo platform at 10.5281/zenodo.229167). The second one is based on single-
cell RNA-seq analysis, and includes 20 samples, corresponding to inner cell mass (ICM) of
the blastocysts, and to primordial germ cells (PGC) and somatic cells, from male and female
embryos at different development stages (4, 7 or 8, 10, 11 and 17 or 19 weeks, (Guo et al.
505 2015) GEO accession number GSE63818). We downloaded normalized expression levels
from their dataset of pool-split PGCs (for more details see supplementary information at
doi.org/10.5281/zenodo.229167). Female 17 weeks PGCs are entered in meiosis (Guo et al.
2015). This sample was therefore taken as representative of the transcriptome of meiotic cells
in female. The third dataset corresponds to human male germ cells at pachytene
510 spermatocyetes (i.e. cells entering meiosis) and at round spermatids stages (post meiotic stage)

((Lesch et al. 2016); GEO accession number GSE68507, human RNA expression datasets
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GSM1673959, GSM1673963, GSM1673967, GSM1673971, GSM1673975 and
GSM1673978). Guo and Lesch datasets include several replicates for each sample. We
therefore computed the average expression levels over all replicates for each sample. The sex-
515 averaged meiotic expression level was estimated by computing the mean of expression levels
in female 17 weeks PGCs (Guo et al. 2015) and male spermatocytes or spermatids (Lesch et
al, 2016). The correspondence between gene expression datasets and codon usage tables was
based on Ensembl gene identifiers (Fagerberg and Lesch datasets), or on gene names (Guo
dataset). In total, our analyses of expression levels were based on 15,305 genes (665 genes

520 were absent from the Guo dataset).

Statistical analysis

Unless stated otherwise, reported R? values correspond to Pearson correlation tests. R version
525 3.2.2 (R Core Team 2015) was used with Base package for statistical tests and graphics, plus
ade4 library (Dray and Dufour 2007) for PCA analysis. The data and R scripts, which permit
to reproduce the figures and tests presented here, are provided at:

doi.org/10.5281/zenodo.229167

530
Acknowledgement

This work was supported by French National Research Agency (ANR) grant DaSiRe (ANR-
15-CE12-0010-01/DaSiRe). FP received a doctoral scholarship from Ecole Normale
Supérieure de Lyon (http://www.ens-lyon.eu/). We thank Gaél Yvert for initiating the
535 discussion and Adam Eyre-Walker for helpful suggestions on a first version of our

manuscript.

Disclosure declaration

The authors declare no competing financial interest.

References

540  Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-boege I. 2015. Crossovers are associated with
mutation and biased gene conversion at recombination hotspots. Proc. Natl. Acad. Sci. U.S.A.

112(7):2109-2114.

16


https://doi.org/10.1101/086447
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086447; this version posted March 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L, Street T, Leffler EM, Bowden R, Aneas I,
Broxholme J, et al. 2012. A fine-scale chimpanzee genetic map from population sequencing. Science

545  336(6078):193-8.

Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F. 1985.

The mosaic genome of warm-blooded vertebrates. Science. 228(4702):953-8.

de Boer E, Jasin M, Keeney S. 2015. Local and sex-specific biases in crossover vs. noncrossover

outcomes at meiotic recombination hot spots in mice. Genes Dev. 29(16):1721-33.

550 Brawand D, Soumillon M, Necsulea M, Julien P, Csardi G, Harrigan P, Weier M, Liechti A, Aximu-
Petri A, Kircher M, et al. 2011. The evolution of gene expression levels in mammalian organs. Nature
478(7369):343-8.

Capra JA, Pollard KS. 2011. Substitution patterns are GC-biased in divergent sequences across the

metazoans. Genome Biol. Evol. 3:516-527.

555 Chamary J V, Parmley JL, Hurst LD. 2006. Hearing silence: non-neutral evolution at synonymous

sites in mammals. Nature Rev. Genet. 7(2):98-108.

Chan PP, Lowe TM. 2009. GtRNAdb: A database of transfer RNA genes detected in genomic
sequence. Nucleic Acids Res. 37(Database issue):D93-97.

Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH. 2004. Codon usage between genomes is
560 constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. U.S.A. 101(10):3480-3485.

Clay OK, Bernardi G. 2011. GC3 of Genes Can Be Used as a Proxy for Isochore Base Composition: A
Reply to Elhaik et al. Mol. Biol. Evol 28(1):21-23.

Clément Y, Arndt PF. 2013. Meiotic recombination strongly influences GC-content evolution in short

regions in the mouse genome. Mol. Biol. Evol. 30(12):2612—-2618.

565 Dray S, Dufour AB. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. J.
Stat. Softw. 22(4):1-20.

Drummond DA, Wilke CO. 2008. Mistranslation-induced protein misfolding as a dominant constraint

on coding-sequence evolution. Cell 134(2):341-352.

Duret L. 2002. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev.

570  12(6):640-649.

Duret L, Arndt PF. 2008. The impact of recombination on nucleotide substitutions in the human

genome. PLoS Genet. 4(5):e1000071

Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian genomic

landscapes. Annu. Rev. Genomics Hum. Genet. 10:285-311.

17


https://doi.org/10.1101/086447
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086447; this version posted March 2, 2017. The copyright holder for this preprint (which was

575

580

585

590

595

600

605

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M,
Tahmasebpoor S, Danielsson A, Edlund K, et al. 2014. Analysis of the human tissue-specific
expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell.

Proteomics 13(2):397—-406.

Galtier N, Duret L. 2007. Adaptation or biased gene conversion? Extending the null hypothesis of
molecular evolution. Trends Genet. 23(6):273-277.

Galtier N, Piganeau G, Mouchiroud D, Duret L. 2001. GC-content evolution in mammalian genomes:

the Biased Gene Conversion hypothesis. Genetics 159(2):907-911.

Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, Christophersen NS,
Christensen LL, Borre M, Sgrensen KD, et al. 2014. A dual program for translation regulation in

cellular proliferation and differentiation. Cell 158(6):1281-92.

Glémin S, Arndt PF, Messer PW, Petrov D, Galtier N, Duret L. 2015. Quantification of GC-biased

gene conversion in the human genome. Genome Res. 25(8):1215-28.

Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y, et al. 2015. The
transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161(6):1437—
1452.

Hershberg R, Petrov DA. 2008. Selection on codon bias. Annu. Rev. Genet. 42:287-299.

Tkemura T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the
occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice

that is optimal for the E coli translational system. J. Mol. Evol. 151(3):389—-409.

Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. 2001. Codon usage and tRNA genes in
eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide

usage as assessed by multivariate analysis. J. Mol. Evol. 53(4-5):290-298.

Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, Walters GB,
Gylfason A, Kristinsson KT, Gudjonsson SA, et al. 2010. Fine-scale recombination rate differences

between sexes, populations and individuals. Nature 467(7319):1099-1103.

Kryuchkova-Mostacci N, Robinson-Rechavi M. 2015. Tissue-specific evolution of protein coding

genes in Human and Mouse. PLoS One 10(6):e0131673

Lesch BJ, Silber SJ, McCarrey JR, Page DC. 2016. Parallel evolution of male germline epigenetic

poising and somatic development in animals. Nat. Genet. 48(8):888:94

Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. 2008. High-resolution mapping of meiotic

crossovers and non-crossovers in yeast. Nature 454(7203):479-485.

McVicker G, Green P. 2010. Genomic signatures of germline gene expression. Genome Res.

20(11):1503-1511.
18


https://doi.org/10.1101/086447
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086447; this version posted March 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Mouchiroud D, D’Onofrio G, Aissani B, Macaya G, Gautier C, Bernardi G. 1991. The distribution of
610 genes in the human genome. Gene 100:181-187.

Mouchiroud D, Gautier C, Bernardi G. 1988. The compositional distribution of coding sequences and

DNA molecules in humans and murids. J. Mol. Evol. 27(4):311-320.

Munch K, Mailund T, Dutheil JY, Schierup MH. 2014. A fine-scale recombination map of the human-
chimpanzee ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-

615 biased gene conversion. Genome Res. 24(3):467-474.

Myers S, Bottolo L, Freeman C, Mcvean G, Donnelly P. 2005. A fine-scale map of recombination

rates and hotspots across the Human genome. Science 310(5746):321-324.

Necsulea A, Sémon M, Duret L, Hurst LD. 2009. Monoallelic expression and tissue specificity are

associated with high crossover rates. Trends Genet. 25(12):519-522.

620 Odenthal-hesse L, Berg IL, Veselis A, Jeffreys AJ, May CA. 2014. Transmission distortion affecting
Human noncrossover but not crossover recombination: A Hidden Source of Meiotic Drive. PLoS

Genet. 10(2):e1004106.

Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GAB. 2012. Evidence for widespread GC-

biased gene conversion in eukaryotes. Genome Biol. Evol. 4(7):675-682.

625 Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and consequences of codon bias.

Nat. Rev. Genet. 12(1):32-42.

Plotkin JB, Robins H, Levine AJ. 2004. Tissue-specific codon usage and the expression of human

genes. Proc. Natl. Acad. Sci. U. S. A. 101(34):12588-91.

Pratto F, Brick K, Khil P, Smagulova F, Petukhova G V, Camerini-Otero RD. 2014. DNA
630 recombination. Recombination initiation maps of individual human genomes. Science

346(6211):1256442.
R Core Team. 2015. R: A language and environment for statistical computing.

Dos Reis M, Wernisch L. 2009. Estimating translational selection in eukaryotic genomes. Mol. Biol.

Evol. 26(2):451-461.

635 Rudolph KLM, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, Odom DT. 2016. Codon-
driven translational efficiency is stable across diverse mammalian cell states. PLoS Genet.

12(5):e1006024.

Schmitt BM, Rudolph KL M, Karagianni P, Fonseca NA, White RJ, Talianidis I, Odom DT, Marioni
JC, Kutter C. 2014. High-resolution mapping of transcriptional dynamics across tissue development

640 reveals a stable mRNA-tRNA interface. Genome Res. 24(11):1797-1807.

19


https://doi.org/10.1101/086447
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086447; this version posted March 2, 2017. The copyright holder for this preprint (which was

645

650

655

660

665

20

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.
Sémon M, Lobry JR, Duret L. 2006. No evidence for tissue-specific adaptation of synonymous codon

usage in humans. Mol. Biol. Evol. 23(3):523-529.

Sharp PM, Tuohy TM, Mosurski KR. 1986. Codon usage in yeast: cluster analysis clearly
differentiates highly and lowly expressed genes. Nucleic Acids Res. 14(13):5125-5143.

Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM, Strand Al, Li Q, Raney B,
Balakrishnan CN, et al. 2015. Stable recombination hotspots in birds. Science. 350(6263):928-932.

Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R,
Barbiera G, et al. 2015. The BioMart community portal: an innovative alternative to large, centralized

data repositories. Nucleic Acids Res. 43(W1):W589-98.

Smeds L, Mugal CF, Qvarnstrém A, Ellegren H. 2016. High-Resolution mapping of crossover and
non-crossover recombination events by whole-genome re-sequencing of an avian pedigree. PL.oS

Genet. 12(5):e1006044.

The International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1

million SNPs. Nature 449(7164):851-61.

Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H. 2014. Evidence for GC-biased gene
conversion as a driver of between-lineage differences in avian base composition. Genome Biol.

15(12):549.

Williams AL, Genovese G, Dyer T, Altemose N, Truax K, Jun G, Patterson N, Myers SR, Curran JE,
Duggirala R et al. 2015. Non-crossover gene conversions show strong GC bias and unexpected

clustering in humans. Elife 4:e04637.

Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P,
Fitzgerald S, Gil L, et al. 2016. Ensembl 2016. Nucleic Acids Res. 44(D1):D710-D716.

Figure legends:

Fig 1: Variation in synonymous codon usage and in GC3 among functional categories.

(A) Factorial map of the principal-component analysis of synonymous codon usage in GO functional
categories in the human genome. Each dot corresponds to a GO gene set, for which the relative

synonymous codon usage (RSCU) was computed. GO categories that are associated with
20
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670  “differentiation” or with “proliferation” are displayed respectively in blue and in red. (B) Correlation
between the RSCU of GO gene sets (first PCA axis) and their average GC-content at third codon
position (GC3). (C) Distribution of GC3 of human protein coding genes. The black histogram
represents the distribution for whole dataset (15,970 genes). The blue curve (resp. the red curve) is a
smoothed distribution of GC3 for “differentiation” genes (N=2,833) (resp. “Proliferation” genes,

675 N=1,008) (D) Correlation between the GC3 of mono-isoacceptor amino-acids and multi-isoacceptor
amino-acids. For each GO gene set, the average GC3 was computed separately for amino-acids
decoded by multiple tRNA isoacceptors (N=14 multi-isoacceptor amino-acids), and for those decoded
by one single tRNA isoacceptor (mono-isoacceptor amino-acids: Phe, Asp, His, Cys). Amino-acids
encoded by a single codon (Met, Trp) were excluded.

680
Fig 2: Difference in SCU between “proliferation” and “differentiation” genes is linked to variation
in intragenic recombination rate, and not to their isochore context.

(A) Correlation between the GC3 of genes and the GC content of their flanking regions (GC-flank).
Each dot corresponds to one gene. GC-flank was measured in 10 kb upstream and 10 kb downstream

685  of the transcription unit. The curves show a generalized linear model (glm), predicting GC3 with GC-
flank and the gene function. The curves corresponding to “differentiation” genes (blue) “proliferation”
genes (red) and other genes (grey) differ significantly (LRT of glm with and without gene function, p-
values < 2.107'%). Correlation coefficients were computed on logit transformed values, independently
for “differentiation” genes (N=2,833, R? = 0.46), “proliferation” genes (N=1,008, R? = 0.48), other

690 genes (N=12,129, R? = 0.49) and all genes (N=15,970, R? = 0.48). All p-values < 2.10%, (B) Average

intragenic recombination rate in each functional category. Error bars represent standard errors.

Fig 3: Variation in intragenic recombination rate and GC3 according to expression levels in
meiotic cells.

695 (A) Genes were classified according to their sex-averaged expression level in meiotic cells into 10
bins of equal sample size. The mean intragenic recombination rate was computed for each bin. Error
bars represent the standard error of the mean. Similar results were obtained when analyzing separately
expression levels in female or male meiotic cells (Fig S2A, S2D). (B) Variation in GC3 according to
meiotic expression levels. Genes were first binned into 3 classes of equal sample size according to

700 their sex-averaged expression level in meiotic cells (low: < 3.07 FPKM; high: >22.68 FPKM:
medium: the others), and then split into three sets according to their functional category:
“proliferation” (red), “differentiation” (blue), and “other” genes (grey). Boxplots display the
distribution of GC3 for each functional category within each expression bin. Above barplots display
the distribution of genes among expression bins for each functional category.

705
Fig 4: Correlation between expression level and GC3 in a panel of tissues and cell types.

(A) bulk adult tissues data (Fagerberg et al. 2014) and (B) early embryo single cell data (Guo et al.

2015). These two subsets were obtained via very different protocols, which prevents direct cross-
21
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comparisons. Samples are sorted by increasing correlation coefficient (R?) between expression levels
710 and GC3 (NB: all correlations are negative). Samples containing somatic cells are shown in blue; male
germ cells in orange (testis or single cell) and female germ cells in red (PGC : primordial germ cells).
The green point corresponds to cells from the inner cell mass (ICM) of the blastocysts, i.e. pluripotent

cells from an early stage of development preceding the differentiation of germ cells.

715  Table 1: Analysis of the variance of GC3 among individual genes.
Variables included in the linear model are: GC-content of introns (GCi), GC-content of flanking
regions (GC-flank), intragenic recombination rate (log scale), sex-averaged meiotic gene expression
level (log scale) and functional category (“differentiation”, “proliferation” and “other”). Pairwise
correlations (pairwise R?) were computed between GC3 and each of the other variables. Correlations

720  of the model (model R?) were computed by adding variables sequentially.

Fig 5: Relationships between GC-content, intragenic recombination rates and meiotic expression
levels (sex-averaged) among functional gene categories.
Average values of these parameters were computed for each GO gene set. We then measured
725  correlations between these parameters: (A) Mean GC3 vs. mean intragenic recombination rate. (B)
Mean intragenic recombination rate vs. mean expression level in meiotic cells. (C) Mean GC3 vs.
mean expression level in meiotic cells. (D) Mean intronic GC-content (GCi) vs. mean intragenic
recombination rate. GO gene sets associated to “proliferation” (red) or “differentiation” (blue) are
displayed as in Fig 1. Similar results were obtained when analyzing separately expression levels in

730  female or male meiosis (Fig S2).
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760 Table 1:
GC3 predictors Pairwise R? p-value Model R? F statistic ~ p-value
GCi 62.7% <2.10°1° 62.7% 30232.4 <2.10°%6
+ GC-flank 48.1% <2.10°1° 62.9% 126.8 <2.10°%6
+ Intragenic recombination 12.8% <2.10°%6 66.8% 1453.3 <2.10°16
rate
+ Expression level in 8.3% <2.101¢ 68.2% 875.7 <2.10°1¢
meiosis
+ Functional category 1% <2.1016 68.3% 30.43 <2.10°1¢
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