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 3 

Abstract 37 

Lower pH is a well-replicated finding in the postmortem brains of patients with schizophrenia and 38 

bipolar disorder. Interpretation of the data, however, is controversial as to whether this finding 39 

reflects a primary feature of the diseases or is a result of confounding factors such as medication, 40 

postmortem interval, and agonal state. To date, systematic investigation of brain pH has not been 41 

undertaken using animal models, which can be studied without confounds inherent in human studies. 42 

In the present study, we first confirmed that the brains of patients with schizophrenia and bipolar 43 

disorder exhibit lower pH values by conducting a meta-analysis of existing datasets. We then 44 

utilized neurodevelopmental mouse models of psychiatric disorders in order to test the hypothesis 45 

that lower brain pH exists in these brains compared to controls due to the underlying 46 

pathophysiology of the disorders. We measured pH, lactate levels, and related metabolite levels in 47 

brain homogenates from three mouse models of schizophrenia (Schnurri-2 KO, forebrain-specific 48 

calcineurin KO, and neurogranin KO mice) and one of bipolar disorder (Camk2a HKO mice), and 49 

one of autism spectrum disorders (Chd8 HKO mice). All mice were drug-naïve with the same 50 

postmortem interval and agonal state at death. Upon postmortem examination, we observed 51 

significantly lower pH and higher lactate levels in the brains of model mice relative to controls. 52 

There was a significant negative correlation between pH and lactate levels. These results suggest 53 

that lower pH associated with increased lactate levels is a pathophysiology of such diseases rather 54 

than mere artifacts. 55 

  56 
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Introduction 57 

Schizophrenia, bipolar disorder, and autism spectrum disorders (ASD) are highly heritable 58 

psychiatric conditions, with clinical features transcending diagnostic categories1,2. Accumulating 59 

evidence indicates that some genetic influences3–6, gene expression abnormalities7,8, and neuronal 60 

dysfunctions9,10 associated with these conditions overlap, suggesting a common underlying 61 

biological basis. However, the shared neurobiological alterations among the three conditions remain 62 

largely unknown. 63 

 64 

A number of postmortem studies have indicated that pH is lower in the brains of patients with 65 

schizophrenia and bipolar disorder8,11–19. Lower brain pH has also been observed in patients with 66 

ASD20. In general, pH balance is considered critical for maintaining optimal health, and low pH has 67 

been associated with a number of somatic disorders21–23. Therefore, it is reasonable to assume that 68 

lower pH may exert a negative impact on brain function and play a key role in the pathogenesis of 69 

various psychiatric disorders. However, lower brain pH has largely been considered as an 70 

artifact11,24–27 rather than a pathophysiology of such disorders13,28 for two main reasons. One is that 71 

chronic treatment with antipsychotics may affect brain pH by increasing lactate levels in rats11, and 72 

most patients with these disorders receive chronic antipsychotics treatment throughout their lives. 73 

Another is that the agonistic state experienced before death decreases brain pH25–27 and this state 74 

could be different in patients with psychiatric disorders in comparison to controls. In human 75 

postmortem studies, it is technically difficult to exclude such confounding factors and to determine 76 

whether lower pH and increased lactate levels are indeed artifacts.  77 
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 78 

In the present study, we first confirmed that patients with schizophrenia and bipolar disorder exhibit 79 

lower postmortem brain pH by conducting a meta-analysis of publicly available datasets. We then 80 

measured brain pH in multiple mouse models of psychiatric disorders, which are devoid of such 81 

confounding factors, in order to test the hypothesis that lower brain pH is a pathophysiology or an 82 

endophenotype rather than an artifact in a subgroup of psychiatric disorders. We also measured 83 

lactate levels, increases in which have frequently been linked to lower pH in the brains of patients 84 

with psychiatric disorders11,13,29. To our knowledge, the present study is the first to systematically 85 

evaluate pH and lactate levels in mouse models of psychiatric disorders which eliminate the 86 

confounds inherent in the human studies. 87 

 88 

For the mouse models of psychiatric disorders, we focused on the ones reported to have 89 

neurodevelopmental abnormalities in the brain, a part of which stay at pseudo-immature status30–33. 90 

Specifically, we measured pH, lactate, and related metabolite levels in the postmortem brains of the 91 

following mouse models: schnurri-2 (Shn2) knockout (KO) mice34, forebrain-specific calcineurin 92 

(Cn) KO mice35–38 and neurogranin (Nrgn) KO mice39–41 as a model of schizophrenia; mice with 93 

heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha (Camk2a HKO 94 

mice)42,43 as a model of bipolar disorder;, and mice with heterozygous knockout of the long isoform 95 

of chromodomain helicase DNA-binding protein 8 (Chd8 HKO mice)33 as a model of ASD. 96 

These mouse strains have mutations in the genes implicated in the respective disorders and exhibit 97 

molecular and behavioral abnormalities relevant to each condition, indicating good construct and 98 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2016. ; https://doi.org/10.1101/083550doi: bioRxiv preprint 

https://doi.org/10.1101/083550
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

face validities, respectively (as described in detail in Materials and Methods).  99 

 100 

Materials and Methods 101 

Human data 102 

Nine publicly available datasets were utilized in the present study (Supplementary Table 1): four 103 

schizophrenia datasets (GSE17612, GSE21935, GSE21138; NSWBTRC-SC44), one bipolar 104 

disorder dataset (GSE5392), and three combined schizophrenia and bipolar disorder datasets 105 

(Stanley Medical Research Institute [SMRI] Collection A, SMRI Collection C, GSE35977, 106 

GSE53987). We obtained data regarding postmortem interval and age from these studies and data 107 

regarding medication from SMRI Collection A and SMRI Collection C. 108 

 109 

Animals 110 

We measured pH, lactate, and related metabolite levels in Shn2 KO mice34 (n = 5, 6 [controls, 111 

mutants]), Cn KO mice35–38 (n = 6, 5), Nrgn KO mice39–41 (n = 6, 5), Camk2a HKO mice42,43 (n = 5, 112 

5) and Chd8 HKO mice33 (n = 5, 5), and their corresponding control mice. Both male and female 113 

mice were used in the present study, as no difference in pH between genders has been observed45. 114 

All mice were between 19 and 45 weeks of age, and no significant difference in age was observed 115 

between controls and mutants within each strain. All animal experiments were approved by the 116 

Institutional Animal Care and Use Committee of Fujita Health University, based on the Law for the 117 

Humane Treatment and Management of Animals and the Standards Relating to the Care and 118 

Management of Laboratory Animals and Relief of Pain. Every effort was made to minimize the 119 
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number of animals used. 120 

 121 

Shn2 was originally identified as a nuclear factor-κB (NF-κB) site-binding protein that tightly binds 122 

to the enhancers of major histocompatibility complex (MHC) class I genes and acts as an 123 

endogenous inhibitor of NF-κB.46 Its deficiencies in Shn2 may cause mild chronic inflammation in 124 

the brain and confer molecular, neuronal, and behavioral phenotypes relevant to schizophrenia in 125 

mice34. Genome-wide association studies (GWASs) have identified a number of single nucleotide 126 

polymorphisms (SNPs) in the MHC region associated with schizophrenia47–49. Shn2 KO mice 127 

exhibit multiple abnormal behaviors related to schizophrenia, including increased locomotor 128 

activity, deficits in working memory, abnormal social behavior and impaired prepulse inhibition, 129 

which are commonly observed in Cn KO mice35,36 and Nrgn KO mice39–41 as well. 130 

 131 

Calcineurin (Cn) is a calcium-dependent protein phosphatase and has been implicated in synaptic 132 

plasticity50. CN has been reported to be associated with schizophrenia51–53, and altered expression of 133 

calcineurin has been observed in the postmortem brains of patients with schizophrenia54,55. 134 

Forebrain-specific Cn KO mice exhibit behavioral and cognitive abnormalities related to 135 

schizophrenia35,36. Deficits in synaptic transmission in the frontal cortex have been suggested to be 136 

the underlying mechanism of working memory impairment in these mice38. In addition, Cn KO 137 

mice exhibit disruption in ripple-associated information processing in the hippocampal CA1, which 138 

is implicated in cognitive impairments associated with schizophrenia37.  139 

 140 
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Neurogranin (Nrgn) is a calmodulin-binding protein that modulates activity of the Camk2 protein 141 

downstream of N-methyl-d-aspartic acid (NMDA) receptors, and is implicated in synaptic 142 

plasticity39. GWAS revealed significant association with SNPs located upstream of the NRGN49, a 143 

finding recently confirmed by a large-scale GWAS56, strongly suggesting that NRGN is a 144 

susceptibility gene for schizophrenia. Nrgn KO mice exhibit behavioral phenotypes related to 145 

schizophrenia39–41.  146 

 147 

Camk2 is a major downstream molecule of the NMDA receptor and is thought to play an essential 148 

role in synaptic plasticity. A recent study demonstrated genetic association of CAMK2A with 149 

bipolar disorder57, and decreased mRNA expression has been observed in the frontal cortex of 150 

patients with bipolar disorder58. In addition, the Camk2a gene was identified as one of the top 151 

candidate genes for bipolar disorder by a meta-analysis that integrated genetic and genomic data 152 

from both human and animal studies59. At cellular level, neuronal hyperexcitability, which we 153 

previously detected in the hippocampal granule cells of Camk2a HKO mice42, was also found in the 154 

granule cell-like neurons differentiated from induced pluripotent stem cells (iPSCs) derived from 155 

patients with bipolar disorder60. Camk2a HKO mice exhibit abnormal behaviors, such as deficits in 156 

social activity and working memory, which are analogous to those in patients with bipolar 157 

disorder/schizophrenia42. In addition, these mutant mice exhibit infradian cyclic activity levels, 158 

which may reflect infradian oscillation of mood substantially observed in patients with bipolar 159 

disorder43. These findings suggest that Camk2a HKO mice have construct and face validity as a 160 

model of psychiatric disorders, especially of bipolar disorder. 161 
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 162 

Chd8, a member of the chromodomain helicase DNA-binding family of proteins, is known to act as 163 

a chromatin-remodeling factor. Recent exome sequencing analyses have identified a number of de 164 

novo mutations in a variety of genes in individuals with ASD, further revealing that CHD8 is the 165 

most frequently affected gene61–64. Chd8 HKO mice exhibit behavioral abnormalities reminiscent of 166 

ASD in humans, including increased anxiety, increased persistence and abnormal social 167 

interaction33. Chd8 deficiency induces aberrant activation of RE1 silencing transcription factor 168 

(REST), a molecular brake of neuronal development, resulting in neurodevelopment abnormalities 169 

in mice33. 170 

 171 

Collectively, these findings indicate that the mouse models used in the present study exhibit good 172 

construct and face validities for their respective disorders. 173 

 174 

Measurement of pH 175 

Mice were sacrificed by cervical dislocation followed by decapitation, following which whole 176 

brains were removed. The brains were immediately frozen in liquid nitrogen and stored at –80°C 177 

until use. We measured brain pH basically as previously described11. Briefly, the brains were 178 

homogenized using the tissue homogenizer attached with a conical pestle in ice-cold distilled H2O 179 

(5 mL per 500 mg of tissue). The pH was measured using a pH meter (LAQUA F-72, Horiba 180 

Scientific, Kyoto, Japan) after a three-point calibration at pH 4.0, pH 7.0 and pH 9.0. The pH of the 181 

samples from control and mutant mice were read in triplicate for each sample. After pH 182 
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measurement, homogenates were immediately frozen and stored at –80°C until required for further 183 

analyses. 184 

 185 

Lactate and glucose measurements 186 

The concentration of lactate in the brain homogenates was determined using a multi-assay analyzer 187 

(GM7 MicroStat; Analox Instruments, London, UK) according to manufacturer’s instructions. In 188 

our prior tests using several samples, we loaded 5 µl, 10 µl and 20 µl of supernatants to the 189 

instrument, observing that the measurements increased linearly in a volume-dependent manner (r2 > 190 

0.99). Based on these results, we used 20 µl of supernatants for each sample for lactate 191 

measurements. Likewise, glucose concentrations in 20 µl supernatant samples were determined 192 

using a multi-assay analyzer following calibration with 10 mmol/ml glucose standard solution. To 193 

normalize the effects of differences among strains, such as genetic background and age, z-scores for 194 

pH and lactate levels were calculated within each strain and used for the correlation analysis. 195 

 196 

Pyruvate measurement 197 

Pyruvate concentrations in 20 µl supernatant samples were determined using a pyruvate assay kit 198 

(BioVision, Mountain View, CA, USA). The fluorescence intensities were measured using a 199 

microplate reader equipped with a spectrofluorometer (ARVO X, PerkinElmer). 200 

 201 

Adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio 202 

An ADP/ATP Ratio Assay Kit (BioVision) was used to measure the ADP and ATP concentrations 203 
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according to the manufacturer’s instructions. 204 

 205 

Bioinformatics analysis of transcriptome data 206 

We used the following mouse brain transcriptome data: frontal cortex and hippocampal dentate 207 

gyrus of Shn2 KO mice (microarray)34, hippocampal dentate gyrus of Camk2a HKO mice 208 

(microarray)65, and whole brains of Chd8 HKO mice (RNA-sequencing)33. Gene expression 209 

patterns of the frontal cortex of Camk2a HKO mice (n = 6, 6) and hippocampal DG of Cn KO mice 210 

(n = 6, 6) were analyzed via microarray (Mouse Genome 430 2.0 Array; Affymetrix, Santa Clara, 211 

CA, USA), as previously described34. Gene expression patterns of the frontal cortex and 212 

hippocampal DG of Nrgn KO mice (n = 5, 5) were analyzed via RNA-sequencing using the HiSeq 213 

platform basically according to the manufacturer’s instructions (Illumina, San Diego, CA, USA). 214 

Genes with an absolute fold change > 1.2 and a t-test P-value < 0.05 (mutants vs. controls; without 215 

correction for multiple testing) were imported into the bioinformatics tool BaseSpace (Illumina), 216 

with which the gene expression data obtained from different platforms can be matched. Genes with 217 

altered expression in at least four out of the eight datasets (yielding 80 features; Supplementary 218 

Table 2) were selected based on the criteria of the BaseSpace tool and assessed for enrichment in 219 

biological themes using the DAVID functional annotation clustering tool, ADGO, and GOToolBox, 220 

in which the default feature listings and algorithm settings were used.  221 

 222 

Results 223 

Meta-analysis of human brain pH studies 224 
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We first re-evaluated the results of postmortem studies of brain pH in patients with schizophrenia 225 

and bipolar disorder by conducting a meta-analysis of publicly available datasets. We searched the 226 

National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO), 227 

ArrayExpress, and Stanley Medical Research Institute (SMRI) databases, and found nine studies 228 

that included individual brain pH data from patients with schizophrenia, bipolar disorder, or both as 229 

well as from healthy control participants (Supplementary Table 1). A two-way analysis of variance 230 

(ANOVA) revealed a significant effect of condition (F2,645 = 3.35, P = 3.09 × 10-10) and study (F8,645 231 

= 10.00, P = 2.00 × 10-16) as well as between the two factors (F11,645 = 47.66, P = 0.043) (Figure 1). 232 

Post hoc comparisons with Tukey’s honest significant difference test indicated a lower brain pH in 233 

both patients with schizophrenia (P < 1.0 × 10-7) and bipolar disorder (P = 0.00036) compared to 234 

healthy controls, and no significant difference between the two conditions (P = 0.56). The results of 235 

our meta-analysis therefore support the finding of lower brain pH in patients with schizophrenia and 236 

bipolar disorder.  237 

 238 

Brain pH was not correlated with lifetime use of antipsychotics (measured as fluphenazine 239 

equivalents) in a schizophrenia group (Pearson’s r = -0.27, p = 0.12), a bipolar disorder group (r = 240 

-0.27, P = 0.13), or a group including both conditions (r = -0.15, P = 0.23) from the SMRI 241 

Collection A cohort (Supplementary Figure 1a). No correlation between pH and antipsychotics was 242 

replicated in a separate cohort from SMRI Collection C (schizophrenia: r = 0.16, P = 0.58; bipolar 243 

disorder: r = 0.036, P = 0.90; both: r = 0.090, P = 0.64) (Supplementary Figure 1b). These suggest 244 

that antipsychotics treatment may not affect pH in the postmortem brains of patients with 245 
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schizophrenia and bipolar disorder. On the other hand, in the combined data, pH was positively 246 

correlated with postmortem interval (r = 0.13, P = 0.0010; Supplementary Figure 1c) and negatively 247 

correlated with age (r = -0.13, P = 0.00092; Supplementary Figure 1d), suggesting that these factors 248 

may contribute to the changes in the pH of postmortem brains. 249 

 250 

Lower pH and increased lactate levels in the postmortem brain of mouse models of 251 

schizophrenia, bipolar disorder, and ASD 252 

The confounding factors identified in previous studies11,26 are beyond investigator’s control in 253 

human postmortem brain studies. We therefore measured pH and lactate levels in the brains of 254 

mouse models of schizophrenia (Shn2 KO, Cn KO, Nrgn KO mice), bipolar disorder (Camk2a 255 

HKO mice), and ASD (Chd8 HKO mice). All the mice used were drug-naïve and sacrificed by 256 

cervical dislocation (controling for agonal state differences). The removed brains were snap-frozen 257 

within a few minutes (controling for postmortem interval differences). Brain pH was significantly 258 

lower in all five mutant strains examined relative to the corresponding controls (Shn2 KO, 7.17 ± 259 

0.0060, controls [Con], 7.20 ± 0.056, P = 0.0083; Cn KO, 7.08 ± 0.0057, Con, 7.13 ± 0.0080, P = 260 

0.0014; Nrgn KO, 7.10 ± 0.017, Con, 7.16 ± 0.0080, P = 0.0090; Camk2a HKO, 7.14 ± 0.0093, 261 

Con, 7.21 ± 0.0090, P = 0.0014; Chd8 HKO, 7.08 ± 0.0066, Con, 7.12 ± 0.0031, P = 0.00080) 262 

(Figure 2a).  263 

 264 

Significantly higher levels of lactate were observed in the postmortem brains of all mutant mice 265 

strains compared to corresponding controls (Shn2 KO, 2.98 ± 0.080 mM, Con, 2.55 ± 0.076 mM, P 266 
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= 0.0038; Cn KO, 3.24 ± 0.051 mM, Con, 2.90 ± 0.073 mM, P = 0.0052; Nrgn KO, 2.98 ± 0.11 267 

mM, Con, 2.58 ± 0.054 mM, P = 0.0080; Camk2a HKO, 2.86 ± 0.024 mM, Con, 2.58 ± 0.037 mM, 268 

P = 0.00024; Chd8 HKO, 3.04 ± 0.081 mM, Con, 2.58 ± 0.086 mM, P = 0.0046; Figure 2b). 269 

Analysis of the combined data expressed as the z-score revealed that pH was significantly 270 

negatively correlated with lactate levels (Pearson’s r = -0.65, P = 1.19 × 10-7; Figure 2c). 271 

 272 

Lactate is formed from pyruvate during glycolysis. We therefore measured pyruvate levels in 273 

mutant mouse brains and observed that levels were significantly increased in Shn2 KO (P = 0.011), 274 

Cn KO (P = 0.046), Nrgn KO (P = 0.011) and Chd8 HKO mice (P = 0.0036) and showed increased 275 

tendency in Camk2a HKO mice (P = 0.068) (Figure 2d). Glucose levels remained unchanged in 276 

mutant mice relative to controls (Figure 2e), suggesting glucose supply/demand ratio in the brain 277 

may be comparable in these mouse models. The ADP/ATP ratio was decreased in Nrgn KO mice (P 278 

= 0.035) and increased in Chd8 HKO mice (P = 0.047) (Figure 2f), suggesting a contrasting energy 279 

consumption ratio in mouse models of schizophrenia and ASD. 280 

 281 

We then analyzed transcriptome data (Supplementary Table 2) in order to investigate the potential 282 

underlying molecular mechanisms of increased lactate levels in mutant mouse brains. The 283 

transcriptome data from five mouse strains revealed an enrichment in Wnt- and epidermal growth 284 

factor (EGF)-related pathways when analyzed with DAVID software (Supplementary Table 3). 285 

Enrichment in Wnt-related pathways was replicated in the analyses using other bioinformatics tools 286 

(ADGO and GOToolBox) using different statistical methods (Supplementary Table 3).  287 
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 288 

Since lactate is produced via glycolytic pathways in astrocytes in the brain66, we analyzed the 289 

transcriptome data of mutant mice with particular focus on glycolysis-related genes (Gene Ontology 290 

Consortium database), as well as those related to pyruvate metabolism. The results of the targeted 291 

gene expression analyses suggest that elevated glycolysis and pyruvate metabolism shifting toward 292 

lactate synthesis occurs in the brains of mutant mice, especially in Shn2 KO and Camk2a HKO 293 

mice (Supplementary Table 4; Supplementary Figure 2). 294 

 295 

Discussion 296 

In the present study, we confirmed lower pH in the postmortem brains of patients with 297 

schizophrenia and bipolar disorder by conducting a meta-analysis of existing datasets. Lower pH 298 

was also observed in five different mouse models of psychiatric disorders, all of which were 299 

drug-naïve and were controlled for other confounding factors, such as agonal state and postmortem 300 

interval. We also observed increased lactate levels in the brains of mutant mice, as well as a highly 301 

significant negative correlation between pH and lactate levels, which is consistent with the findings 302 

of previous human postmortem studies11. These results suggest that lower pH and increased lactate 303 

levels represent components of the underlying pathophysiology of the diseases rather than mere 304 

artifacts. 305 

 306 

Researches have revealed that brain acidosis influences a number of brain functions, such as anxiety, 307 

mood, and cognition67. Acidosis may affect the structure and function of several types of brain cells, 308 
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including the electrophysiological functioning of GABAergic neurons68 and morphological 309 

properties of oligodendrocytes69. Alterations in these types of cells have been well-documented in 310 

the brains of patients with schizophrenia, bipolar disorder, and ASD70,71 and may underlie some of 311 

the cognitive deficits associated with these disorders. Deficits in GABAergic neurons and 312 

oligodendrocytes have been identified in the mouse models of the disorders, including Shn2 KO 313 

mice30,34. Brain acidosis may therefore be associated with deficits in such cell types in 314 

schizophrenia, bipolar disorder, and ASD. 315 

 316 

A previous study indicated that chronic treatment with antipsychotics increases lactate levels in the 317 

rat cerebral cortex11, suggesting that such increases may be medication-related. The authors of the 318 

report, however, found no significant correlation between lactate levels and history of antipsychotic 319 

use (which was represented by chlorpromazine equivalents) in the postmortem brains of patients 320 

with schizophrenia11. In addition, increased lactate levels have been observed in the anterior 321 

cingulate of medication-free patients with bipolar disorder in in vivo spectroscopic imaging 322 

studies72. Furthermore, studies utilizing animal models of psychiatric disorders—including the 323 

current study—have identified increased lactate levels in mutant mouse brains73. In addition, 324 

increased lactate levels were associated with lower pH in the brains of mutant mice, consistent with 325 

findings from previous studies on patients with schizophrenia11,13. Lower brain pH has also been 326 

observed in the medication-free patients with bipolar disorder28. Although it remains possible that 327 

antipsychotic treatment increases lactate levels and lowers pH in the brain, the aforementioned 328 

findings suggest that such changes may occur as primary features of schizophrenia and bipolar 329 
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disorder. 330 

 331 

Interestingly, we observed that Wnt- and EGF-related pathways, which are highly implicated in 332 

somatic and brain cancers74, are enriched in the genes whose expressions were altered among the 333 

five mutant mouse strains. It is known that cancer cells display high rates of glycolysis, resulting in 334 

high lactate and pyruvate levels, even in normoxia75; this phenomenon has been referred to as the 335 

Warburg effect. Genes whose expression is known to positively regulate the Warburg effect, such 336 

as Hk276, Hif1a75, and Pfkfb3,77 were increased in the brains of any of mouse models examined in 337 

the present study, while expression of Prkaa1, a negative regulator of the Warburg effect78, was 338 

decreased (Supplementary Table 2). These findings raise the possibility that elevated glycolysis 339 

underlies the increased lactate and pyruvate levels in the brains of the mouse models of 340 

schizophrenia, bipolar disorder, and ASD. The results of the targeted gene expression analyses 341 

conducted in the present study also support the hypothesis. Glycolysis is also stimulated by the 342 

uptake of glutamate in astrocytes following neuronal excitation79. Dysregulation of the 343 

excitation-inhibition balance has been proposed as a candidate cause of schizophrenia, bipolar 344 

disorder, and ASD80,81. A shift in the balance towards excitation would result in increased energy 345 

expenditure and may lead to increased glycolysis. Indeed, Shn2 KO mice exhibit higher glutamate 346 

levels in the hippocampus34. In vivo metabolite measurements have indicated that increased 347 

glycolysis occurs in the brains of patients with bipolar disorder29,72, while gene ontology analysis of 348 

microarray data has indicated that decreased glycolysis occurs in the brains of patients with 349 

schizophrenia13. Further studies are required to determine whether altered glycolysis rate is 350 
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associated with increased lactate levels. 351 

 352 

It has been indicted that lactate levels in the mouse brain rapidly increase after at least 1 min of 353 

decapitation as compared to in vivo fixation by focused microwave irradiation, which is regarded as 354 

a consequence of enhanced glycolysis under oxygen-deprived conditions82. While the current 355 

findings may differ from those obtained under physiological conditions, they may reflect functional 356 

changes, such as the activation of astrocytes34,40, which represent the main source of lactate 357 

production in the brain. 358 

 359 

Brain pH is associated with notable changes in gene expression16,26,45,83 and has hence been 360 

considered as a confound for investigating changes in gene expression related to the 361 

pathophysiology of psychiatric disorders. Therefore, substantial effort has been made to match the 362 

tissue pH between patients and controls. Given that lower brain pH is a pathophysiology of certain 363 

conditions, pH-dependent changes in gene expression would not be negligible when attempting to 364 

elucidate the molecular basis of the conditions. It has been known that gene expression patterns are 365 

partially similar across diseases such as schizophrenia, bipolar disorder, and ASD7,8. Lower pH may 366 

underlie the similarities of gene expression patterns. Thus, pH may be an important factor in the 367 

elucidation of molecular alternations in the brains of patients with these psychiatric conditions.  368 
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Figure legends 617 

Figure 1. Lower pH in the postmortem brains of patients with schizophrenia and bipolar 618 

disorder revealed by meta-analysis of publicly available data 619 

Box plot of pH in the brain of control participants (white box), patients with schizophrenia (red box) 620 

and patients with bipolar disorder (blue box). #P = 0.017; One-way analysis of variance 621 

(ANOVA)/Tukey’s honest significant difference test. *1 P = 8.0 × 10-6, *2 P = 1.3 × 10-4, *2 P = 622 

0.027; Student’s t-test. The boxes represent the interquartile range between first and third quartiles, 623 

the whiskers the maximum and minimum values and the circles population outliers. 624 

 625 

Figure 2. Negative correlation between lower pH and increased lactate levels in the 626 

postmortem brains of mouse models of psychiatric disorders 627 

Bar graphs of pH (a), lactate levels (b), pyruvate levels (d), glucose levels (e), and ADT/ATP ratio 628 

(f) in the brains of Shn2 KO, Cn KO, Nrgn KO, Camk2a HKO, and Chd8 HKO mice and their 629 

corresponding controls (average ± SEM). Each plot represents individual mouse values. (c) Scatter 630 

plot showing correlations between pH and lactate levels in the mouse brain. *P < 0.05, **P < 0.01; 631 

Student’s t-test. SEM: standard error of the mean. ADP: adenosine diphosphate; ATP: adenosine 632 

triphosphate. 633 

 634 
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Supplementary information 636 

Supplementary Figure 1. Correlations between pH and lifetime antipsychotic use, 637 

postmortem interval, and age 638 

Scatter plots showing correlations between pH and lifetime antipsychotic (fluphenazine equivalents) 639 

use in the SMRI collection A (a) and SMRI collection C (b) datasets. Scatter plots showing the 640 

correlation between pH and postmortem interval (controls: r = 0.027, P = 0.66; schizophrenia: r = 641 

0.27, P = 2.1 × 10-5; bipolar disorder: r = 0.14, P = 0.085; Total: r = 0.13, P = 0.0010) (c), and age 642 

(controls: r = -0.14, P = 0.021; schizophrenia: r = -0.22, P = 0.00075; bipolar disorder: r = 0.14, P = 643 

0.096; Total: r = -0.13, P = 0.00092) (d). SMRI: Stanley Medical Research Institute. 644 

 645 

Supplementary Figure 2. Potentially elevated glycolysis in the brains of mouse models of 646 

psychiatric disorders 647 

Glycolysis-related genes whose expression was altered in the brains of mouse models of psychiatric 648 

disorders were mapped in a schematic of the glycolysis pathway. 649 

 650 

Supplementary Table 1. Patient characteristics 651 

Antipsychotic dose (mg) is measured as fluphenazine equivalents. M, male; F, female; na, not 652 

available. 653 

 654 

Supplementary Table 2. Genes whose expression was altered in the brains of mouse models of 655 

psychiatric disorders 656 
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Genes whose expression was altered in at least four out of eight mouse datasets were processed for 657 

pathway analyses. 658 

 659 

Supplementary Table 3. Pathway analyses of the genes whose expression was altered in the 660 

brains of mouse models of the psychiatric disorders using DAVID, ADGO, and GoToolBox 661 

The top 20 pathways (ranked based on the P-value) are shown for each analysis. 662 

 663 

Supplementary Table 4. Expression patterns of genes encoding enzymes related to glycolysis 664 

pathway in the brains of mouse models of psychiatric disorders 665 
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