bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Bioinformatics, YYYY, 0-0

doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Manuscript Category

Sequence Analysis

Overlapping long sequence reads: Current in-
novations and challenges in developing sensi-
tive, specific and scalable algorithms

Justin Chu'?*, Hamid Mohamadi*?, René L Warren?, Chen Yang'?, and
Inanc Birol'23"

lUniversity of British Columbia, Vancouver, BC V6T 1Z4, Canada, 2Canada’s Michael Smith Genome
Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada, 3Simon Fraser
University, Burnaby, BC V5A 1S6, Canada

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Identifying overlaps between error-prone long reads, specifically those from Oxford Nanopore Tech-
nologies (ONT) and Pacific Biosciences (PB), is essential for certain downstream applications, includ-
ing error correction and de novo assembly. Though akin to the read-to-reference alignment problem,
read-to-read overlap detection is a distinct problem that can benefit from specialized algorithms that
perform efficiently and robustly on high error rate long reads. Here, we review the current state-of-
the-art read-to-read overlap tools for error-prone long reads, including BLASR, DALIGNER, MHAP,
GraphMap, and Minimap. These specialized bioinformatics tools differ not just in their algorithmic
designs and methodology, but also in their robustness of performance on a variety of datasets, time
and memory efficiency, and scalability. We highlight the algorithmic features of these tools, as well as
their potential issues and biases when utilizing any particular method. We benchmarked these tools,
tracking their resource needs and computational performance, and assessed the specificity and pre-
cision of each. The concepts surveyed may apply to future sequencing technologies, as scalability is
becoming more relevant with increased sequencing throughput.

Contact: cjustin@bcgsc.ca; ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

bly (Treangen and Salzberg, 2012). Co-localization of short reads is a

1 Introduction poFentlaI strategy tq increase the contlgmty of assemblies, using technol-
i o) ogies such as lllumina TruSeq synthetic long reads (McCoy, et al., 2014)

As today’s lion share of DNA and RNA sequencing is carried out on and 10X Genomics Chromium (Pleasanton, CA) (Eisenstein, 2015);

Illumina sequencing instruments (San Diego, CA), most de novo assem- however, tandem repeats in the same long single DNA fragment may
bly methods are optimized expecting short read data with an error rate continue confounding assembly methodologies. In that respect, long
Ies§ than 1_% (Laehnemann, et al., 2016; I_?oss, e al_., 2_0_13)' However, sequencing holds great promise, and has proved useful in resolving such
their associated short read length and GC bias bring significant challeng- issues (Ummat and Bashir, 2014). Still, the appreciable error rates asso-

es for downstream analyses (Ross, et al., 2013; Smith, et al., 2008). For ciated with technologies offered by Oxford Nanopore Technologies
instance, short read lengths make it difficult to assemble entire genomes (Oxford, UK; ONT) and Pacific Biosciences (Menlo Park, CA; PB) pose
due to repetitive elements (Alkan, et al., 2010). The development of new challenges for the de novo assembly problem.

paired-end and mate-pair sequencing library protocols has helped miti- Read-to-read overlap detection is typically the first step of de novo
gate this problem (Potato Genome Sequencing Consortium, 2011), but is Overlap-Layout-Consensus (OLC) assembly, which dominate the as-
still a long-standing computational problem for de novo genome assem- sembly of long reads (Berlin, et al., 2015; Loman, et al., 2015). The first

mailto:cjustin@bcgsc.ca
mailto:ibirol@bcgsc.ca
https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

J. Chu et al.

long read de novo assembly methods employed error correction as their
initial pipeline step (Berlin, et al., 2015; Chin, et al., 2013; Loman, et al.,
2015), which also requires read-to-read overlaps. Alternatively, one can
forego the error correction stages of assembly in favor of overlap be-
tween uncorrected raw reads (Li, 2016). The benefits of an uncorrected
read-to-read overlap paradigm for assembly include a lower computation
cost, and repressing artifacts that may arise from read correction, such as
collapsed homologous regions. On the other hand, for these methods,
correctness of the initial set of overlaps are even more critical. Further,
overlap detection has been identified as the efficiency bottleneck when
using OLC assembly methodology (Myers, 2014) for large genomes.

At present, multiple tools are capable of overlapping error-prone long
read data at varying levels of accuracy. These methods differ in their
methodology, but have some common aspects, such as the use of short
exact subsequences (seeds) to discover candidate overlaps. Here we
provide an overview of how each of these tool work, along with the
conceptual motivations within their design.

2 Background

2.1 Current challenges when using PB sequencing

PB sequencing uses a DNA polymerase anchored in a well small enough
to act as a zero-mode waveguide (ZMW) (Levene, et al., 2003). The
polymerase acts on a single DNA molecule incorporating fluorophores
labeled nucleotides, which are excited by a laser. The resulting optical
signal is recorded by a high-speed camera in real time (Eid, et al., 2009).
Base calling errors on this platform occur at a rate of around 16%
(Laehnemann, et al., 2016), and are dominated by insertions (Carneiro, et
al., 2012; Ross, et al., 2013), which are possibly caused by the dissocia-
tion of cognate nucleotides from the active site before the polymerase
can incorporate the bases. Mismatches in the reads are mainly caused by
spectral misassignments of the fluorophores used (Eid, et al., 2009).
Deletions are likely caused by base incorporations that are faster than the
rate of data recording (Eid, et al., 2009). The errors seem to be non-
systematic, resulting in the lowest GC bias to compared to other plat-
forms (Ross, et al., 2013).

The error rate of PB sequencing can be reduced through the use of cir-
cular consensus sequencing (CCS) (Travers, et al., 2010). In CCS, a
hairpin adaptor is ligated to both sides of a linear DNA sequence. During
sequencing, the polymerase can then pass multiple times over the same
sequence (depending on the processivity of the polymerase). The multi-
ple passes are be called into consensus and collapsed, yielding higher
quality yet shorter reads, resulting in lower throughput. Consequently,
many PB datasets generated do not utilize this methodology. Following
this trend, the methods for overlap detection outlined in this paper have
thus been designed for non-CCS reads.

2.2 Current challenges when using ONT sequencing

ONT sequencing works by measuring minute changes in ionic current
across a membrane when a single DNA molecule is driven through a
biological nanopore (Stoddart, et al., 2009). Currently, signal data is
streamed to a cloud-based service called Metrichor that at the time of
writing this paper, still uses hidden Markov models (HMM) with states
for every possible 6-mer to render base calls on the data.

In the current HMM base calling methodology, if one state is identical
to its next state, no net change in the sequence can be detected. This
means that homopolymer states longer than five cannot be captured as

they would be collapsed into a single 6-mer. It has also been observed
that there are some 6-mers, particularly homopolymers, underrepresented
in the data (Jain, et al., 2015; Loman, et al., 2015) when compared to the
6-mer content of the reference sequence, suggesting that there may be a
systematic bias to transition in some states over others. In addition, there
is some evidence suggesting GC biases within this type of data
(Goodwin, et al., 2015; Laver, et al., 2015). We note that the base calling
problem is under active development, with alternative base calling algo-
rithms such as Nanocall (David, et al., 2016) and DeepNano (Boza, et
al., 2016), recently made publicly available.

One can mitigate error rates in ONT data by generating two-direction
(2D) reads. Similar to CCS for the PB platform, 2D sequencing involves
ligating a hairpin adaptor, and allowing the nanopore to process both the
forward and reverse strand of a sequence (Jain, et al., 2015). Combining
information from both strands was shown to decrease the error rate from
40-30% to 10-20% with earlier chemistry (Jain, et al., 2015; Quick, et
al., 2014), similar to the error rates of non-CCS PB sequencing. For the
comparisons presented in this paper, we only consider 2D reads, as we
expect investigators to prefer using higher quality ONT data.

3 Definitions and Concepts

In the context of DNA sequencing, an overlap is a broad term referring
to a sequence match between two reads due to local regions on each read
that originate from the same locus within a larger sequence (e.g., ge-
nome). The detail at which an overlap can be described can have large
implications on both the downstream processing and computational costs
associated with overlap computation, as discussed below.

Overlap between two reads may be full (complete) or partial, and may
dovetail each other or one may be contained in the other (Fig. 1). The
former pair of classifications often is a manifestation of data quality, but
may also indicate haplotypic variations or polymorphisms. Full overlaps
are overlaps that cover at least one end of a read in an overlap pair,
whereas partial overlaps cover any portion of either read without the
ends (Fig. 1). Sources contributing to observed partial overlaps include
false positives due to near-repeats, chimeric sequences, or other artifacts
(Li, 2016). Disambiguating the source of the overhang in partial overlaps
may be important to downstream applications, especially when using
non-haploid, metagenomic, and transcriptomic datasets.

The task of determining overlap candidates (Fig. 2A) is usually the
first step in an overlap algorithm, and it refers to a simple binary pairing
of properly oriented reads. To find overlap candidates on error-prone
long reads, most methods look for matches of short sequence seeds (k-
mers) between the sequences. With a collection of overlap candidates,
one can build a directionless overlap graph.

Overlap distance (Fig. 2B) refers to the relative positions between two
overlapping reads. These distances provide directionality to the edges of
the overlap graph. Theoretically, if the sequences are insertion or dele-
tion (indel) -free, then a correct overlap distance would be sufficient to
produce a layout and build a consensus from the reads. However, even a
single indel error in one of the reads will cause a shift of coordinates,
which would complicate consensus calling. Also, one cannot distinguish

Full
| Dovetai Overlap

Partial

Full —

Containment Overlap
Partial

Fig. 1. Visualization of partial and full overlaps in dovetail or containment forms.

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A Review on Error-prone Read Overlap Tools

between partial and complete overlaps just with the distance information
alone. Overlap distance can be estimated without a full alignment, based
on a small number of shared seeds.

Overlap regions (Fig. 2C) refer to relative positions between overlap-
ping reads, with the added information of start and end positions of the
overlap along each read. If no errors are present, the sizes of the regions
on bhoth reads should be identical. In practice, due to high indel errors in
long reads, this is rarely the case. Nevertheless, one can use this infor-
mation to distinguish between partial and full overlaps. Similar to over-
lap distance, overlap regions can be estimated without a full alignment,
but typically, more shared seeds are required for confident estimations.

There are many similarities between local alignments and overlaps.
However, although a local aligner can serve as a read overlap tool
(Chaisson and Tesler, 2012; Sovi¢, et al., 2016), overlaps are not the
same as local alignments. At the minimum, a read overlapper tool may
simply indicate overlap candidates, rather than full base-to-base align-
ment coordinates. In some cases, similar to the discovery of partial over-
laps, it may be important to find local alignments, as they may help
discover repeats, chimeras, undetected vector sequences and other arti-
facts associated or confused with an overlap (Myers, 2014). Although, it
is possible for an overlap detection algorithm to produce a full account of
all the bases in overlapping reads, doing so would typically require cost-
ly algorithms like Smith-Waterman (Waterman, 1995).

All tools presented in this review have the ability to provide overlap
candidates with at least an estimated local overlap region. Many tools
can produce full local alignments, but due to the high computational
costs, some tools provide an option for computing overlap regions and
local alignments separately (such as GraphMap (Sovié, et al., 2016)).
Alternatively, other tools may not provide alignment refinement (such as
MHAP (Berlin, et al., 2015) and Minimap (Li, 2016)). Indeed, since a
full alignment between every pair of reads is not needed in some pipe-
lines (Berlin, et al., 2015; Li, 2016), it is beneficial for overlap tools to
be able to skip the computation of a full alignment.

4 Long Read Overlap Methodologies

Sequence overlap algorithms look for shared seeds between reads. Due
to the high error rates of sequence reads on the PB and ONT platforms,
these seeds tend to be very short (Supp. Figs. S1 and S2). The core dif-
ferences between algorithms (Fig. 3) relate to not only how shared seeds
are found, but in the way the seeds are used to determine an overlap
candidate. After a method finds candidates, it will then refine them,
usually using relative locations of the seeds within reads, and computing
the estimated overlap regions. It is also common to check whether the
candidate has a valid overlap by considering consistency of relative seed

(k-mer or seed content ™\
A

-

?INININNN?
Overlap Candidates

Inferred orientation but

Significantly shared seed content unknown relative positions

.
s N
2777 E'?'?'??

Can be inferred by
from shared seed
positions

Overlap Distance

Distance between overlaps is inferred

\
(e

Can be estimated by
from shared seed
positions if enough are

Start and end of the found
regions are inferred

\ J/

Overlap Regions

Fig. 2. An overview of possible outcomes from an overlap detection algorithm. Each
level has a computational cost associated with it, with the general trend being A<B<C.
The common seeds-based comparison methods are not the only way to obtain these
overlaps, but it is the most popular method used.

locations. Each method produces a list of overlap candidates, and pro-
vides an overlap region between reads. In some pipelines, the majority of
the compute time is spent on realigning overlapping reads for error cor-
rection after candidates are found (Sovi¢, et al., 2016). In others, precise
alignments may not be needed (Li, 2016). Thus, the output of each over-
lap algorithm contains, at minimum, the overlap regions, and often with
some auxiliary information for downstream applications (Table 1).

4.1 BLASR

BLASR was one of the first tools developed specifically to map PB data
to a reference (Chaisson and Tesler, 2012). It utilizes methods adapted
for fast short read alignments to long read data with high indel rates,
combining concepts from Sanger-era and next-generation sequencing
alignments. BLASR uses an FM-index (Ferragina, et al., 2005) to find
short stretches of clustered alignment anchors (of length k or longer),
generating a short list of candidate intervals/clusters to consider. A score
is assigned to the clusters based on the frequency of alignment anchors.
Top candidates are then processed into a full alignment.

Although BLASR was originally designed for read mapping, it has
since been successfully used to produce overlaps for de novo assembly
of several bacterial genomes (Chin, et al., 2013). However, to use the
method for overlap detection one needs to carefully tune its parameters.
For example, to achieve high sensitivity, BLASR needs prior knowledge
of the read mapping frequency to parameterize nBest and nCandidates
(default 10 for both) to a value higher than the coverage depth. Runtime

E Blglaje]z]=
u alcfefa|e)s
3] |el=]=]s]a]a
Longread] |el=[s]ala]e
putdat E alcje|efe -
5] [e]s]ala]c]= 2
.ccr.Eg . -
FhAdndex [N Hiah I i

E-miE Raads

LB Bk om —IINENT
A —

* AR

—IT T

TTTTTTT | R, B, .. —IriEmr

i TOONmEY
Gappad g gram k-mer sorting

Fig. 3. Visual overview of overlap detection algorithms. At the least, each method produces overlap regions. They may also generate auxiliary information, such as alignment trace

points or full alignments.

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

J. Chu et al.

Table 1. Summary of overlap tools output formats, associated pipelines, and availability.

Software Algorithm features

Associated assembly tools Output

Availability

BLASR FM-Index, anchor clusters PBcR

SAM alignment, other proprietary https://github.com/PacificBiosciences/blasr

formats (overlap regions)

Daligner Cache efficient k-mer sort DAZZLER, MARVEL,

(radix) and merge FALCON
MHAP MinHash PBCcR, Canu
GraphMap Gapped g-gram (spaced Ra

seeds), colinear clustering
Minimap Minimizer colinear clustering Miniasm

Local Alignments, LAS format
(alignment tracepoints)

MHAP output format (overlap
regions)

SAM alignment, MHAP output
format (overlap regions)

PAF (overlap regions)

https://github.com/thegenemyers/DALIGNER

https://github.com/marbl/MHAP

https://github.com/isovic/GraphMap

https://github.com/lh3/Minimap

of the tool is highly dependent on these two parameters (Berlin, et al.,
2015), which may be due to the cost of computing a full alignment or the
added computational cost per lookup to obtain more anchors.

What make this method slower are the choice of data structure, and its
search for all possible candidates (not only the best candidates) for each
lookup performed. The theoretical time complexity of a lookup in an
FM-index data structure is linear with respect to the number of bases
queried (Ferragina, et al., 2005), albeit not being very cache efficient
(Myers, 2014). Thus, if one maps each read to a unique location, this
would only take linear time with respect to the number of bases in the
dataset. However, since only short (and often non-unique, cf. Supp. Figs.
S1, S2) contiguous segments can be queried due to the high error rate,
extra computation is required to consider all additional candidate anchor
positions. Finally, BLASR computes full alignments rather than just
overlap regions, thus, possibly utilizing more computational resources
than needed for downstream processes.

4.2 DALIGNER

DALIGNER was the first tool designed specifically for finding read-to-
read overlaps using PB data (Myers, 2014). This method focuses on
optimizing the cache efficiency, in response to the relatively poor cache
performance of the FM-index suffix array/tree data structure. It works by
first splitting the reads into blocks, sorting the k-mers in each block, and
then merging those blocks. The theoretical time complexity of
DALIGNER is dominated by the merging step, which is quadratic in the
number of occurrences of a given k-mer in a dataset (Myers, 2014).

To optimize speed and mitigate the effect of merging, DALIGNER
filters out or decreases the occurrences of some k-mers in the dataset.
Using a method called DUST (Morgulis, et al., 2006), DALIGNER (-
mdust option) masks out low complexity regions (e.g. homopolymers) in
the reads before the k-mers are extracted. Using a second method it fil-
ters out k-mers by multiplicity (-t option), increasing the speed of com-
putation, decreasing memory usage, and mitigating the effects of repeti-
tive sequences. However, these options also carry the risk of filtering out
important k-mers needed for overlaps.

To use DALIGNER efficiently on larger datasets, splitting of the da-
taset into blocks is necessary. The comparisons required to perform all
overlaps is quadratic in time relative to the number of blocks. Unique
amongst the overlap tools, DALIGNER provides a means to split input
data based on the total number of base pairs and read lengths (using the
DBsplit utility). DALIGNER optionally outputs full overlaps, but will
first output local alignment tracepoints to aid in computing a full align-
ment in later steps, producing large auxiliary files.

4.3 MHAP

MHAP (Berlin, et al., 2015) is a tool that uses the MinHash algorithm
(Broder, 1997) to detect overlaps based on k-mer similarity between any
two reads. MinHash computes the approximate similarity between two or
more sets by hashing all the elements in the set with multiple hash func-
tions, and storing the elements with the smallest hashed values (mini-
mizers) in a sketch list. Using the minimum hash value is a form of local-
ity-sensitive hashing, since it causes similar elements in a set to hash to
the same value. In MHAP, overlap candidates are simply two k-mer sets
that have a Jaccard index score above a predefined threshold.

After the overlap candidates are found, overlap regions are computed
using the median relative positions of the shared minimizers. Because
the sketch size used for each read is the same, MHAP may waste space
and lose sensitivity if reads vary widely in length (Li, 2016). The time
complexity of computing a single MinHash sketch is O(kl), where | is the
number of k-mers in the read set. Thus, evaluating n reads for a sketch
size h for all resemblances takes O((hn)?) time (Broder, 1997). MHAP
further reduces its time complexity by storing h min-mers in h hash
tables to use for lookups to find similar reads (Berlin, et al., 2015).

Like DALIGNER, MHAP functions best when repetitive elements are
not used as seeds. MHAP supports the input of a list of k-mers, ordered
by multiplicity, obtained by using a 3rd party k-mer counting tool, such
as Jellyfish (Margais and Kingsford, 2011). We note that, although this
strategy would improve the performance of the tool, the computational
cost of k-mer counting may not be trivial.

MHAP’s computational performance is confounded by its implemen-
tation. While most high-performance bioinformatics tools utilize C/C++
for their performance benefits, MHAP is implemented in Java. Another
method called Minlookup (Wang and Jones, 2015), written in C, utilizes
a similar algorithm to MHAP, however it is designed with ONT datasets
in mind. The authors demonstrate improved performance associated with
their implementation. However, Minlookup was not evaluated here as it
is in early development, and cannot use multiple CPU threads.

4.4 GraphMap

GraphMap, like BLASR, was designed primarily as a read mapping tool
(Sovi¢, et al., 2016), but for ONT data. It specifically addresses the over-
lap detection problem, notably producing full alignments. GraphMap
also provides an option to generate overlap regions exclusively.

In GraphMap the “-owler” option activates a mode specifically de-
signed for computing overlaps. Like its standard mapping algorithm, it

https://github.com/PacificBiosciences/blasr
https://github.com/thegenemyers/DALIGNER
https://github.com/marbl/MHAP
https://github.com/isovic/GraphMap
https://github.com/lh3/Minimap
https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

A Review on Error-prone Read Overlap Tools

first creates a hash table of seeds from the entire dataset. The seeds it
uses are not k-mers, but rather gapped g-grams (Burkhardt, et al., 2002) —
k-mers with wild card positions, also called spaced seeds (Keich, et al.,
2004). It is not clear what gapped g-grams work optimally with ONT or
PB data; more research is needed to determine the optimal seeds to cope
with high error rates. The current implementation uses a hardcoded seed
that is 12 bases long with an indel/mismatch allowed in the middle (6
matching bases, 1 indel/mismatch base, followed by 6 matching bases).
GraphMap then collects seed hits, using them for finding the longest
common subsequence in k-length substrings (Benson, et al., 2013). The
output from this step is then filtered to find collinear chains of seeds
(private correspondence with Ivan Sovi¢). The bounds of these chains
are then returned, using the MHAP output format.

4.5 Minimap

Minimap (Li, 2016) is an overlapper/mapping tool that combines con-
cepts from many of its predecessors, such as DALIGNER (k-mer sorting
for cache efficiency), MHAP (computing minimizers) and GraphMap
(clustering collinear chains of matching seeds). Minimap subsamples the
hashed k-mer space by computing minimizers, and compiles the corre-
sponding k-mers along with their location on their originating reads.

Like MHAP, the use of repetitive k-mers as the min-k-mer can de-
grade the performance of overlap detection. To minimize the effect of
repetitive elements, Minimap uses an invertible hash function when
choosing min-k-mers. This is similar to DALIGNER’s use of DUST; it
works by preventing certain hash values that correspond to low complex-
ity sequences.

Also similar to DALIGNER, Minimap was designed with cache effi-
ciency in mind. It stores its lists of minimizers initially in an array, which
is later sorted for the seed merging step. Though the computational cost
incurred by sorting the list can negatively impact performance compared
with the constant cost of insertion in a hash table, its cache performance
outperforms a conventional hash table. All hits between two reads are
then collected using this sorted set, and are clustered together into ap-
proximately collinear hits. The overlap regions for each pair of overlaps
are then finally outputted in pairing mapping format (PAF) (Li, 2016).

5 Benchmarking

We profiled and compared results from BLASR, DALIGNER, MHAP,
GraphMap, and Minimap, using publicly available long read datasets
with the newest chemistries available at the time of the study (Supp.
Table S1). For PB we used E. coli (P6-C4) and C. elegans whole genome
shotgun sequencing datasets. For ONT we used an E. coli (SQK-MAP-
006) dataset. We also used simulated E. coli datasets for the PB and
ONT platforms using PBSim (Ono, et al., 2013) and NanoSim (Yang, et
al., 2016), respectively, and simulated ONT C. elegans reads using Na-
noSim (Supp. Table S1). Only the E. coli datasets were used in a pa-
rameter sweep for in-depth evaluations of performance.

5.1 Sensitivity and FDR

We profiled the sensitivity and false discovery rate (FDR = 1 - precision)
on the experimental PB P6-C4 E. coli and the ONT SQK-MAP-006 E.
coli datasets. We also evaluated the tools on simulated data generated
based on these datasets. Our ground truth for the real dataset was deter-
mined via bwa mem alignments to a reference, using -x pacbio and ont2d
options, respectively (Li and Durbin, 2009). We note that these align-

1.0 1.0
A B
? PAETIN
08- %8 08- -
E /4
%ﬂ‘ﬁ - %ﬂ‘s 74
- 3
£ £
goa o4
Tool 4 Tool
BLASR BLASR
oo M DALIGNER 0.2- DALIGNER
GraphMap GraphMap
Minimay Minimay
0.0 " 0.0 "
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0
False Discovery Rate False Discovery Rate

C g = D s
”7. g | & f‘

3
3

Sensitivit

Sensitivit
S
e

o
=

Tool Tool
BLASR BLASR
0.2- DALIGNER 0.2- DALIGNER
GraphMap GraphMap
Minimay Minimay
0.0 " 0.0 "
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0
False Discovery Rate False Discovery Rate

Fig. 4. ROC-like plot on BLASR, DALIGNER, GraphMap, MHAP, GraphMap,
and MHAP. A: PB E. coli simulated with PBsim. B: PB P6-C4 E. coli dataset. C: ONT
E. coli simulated with Nanosim. D: ONT SQK-MAP-006 E. coli dataset.

ments may have missing or false alignments. However, these can still
serve as a good estimate for ground truth comparisons, since mismatch
rate to a reference is much lower than the observed mismatch between
overlapping reads. In the latter case, reads that are, say, 80% accurate
will have a mutual agreement of 64% on average. In addition, due to our
reference-based approach, our metrics are resilient against false overlaps
caused by repetitive elements. Further, all tools are compared against the
same alignments; hence we expect our analysis to preserve the relative
performance of tools. Finally, there is no ambiguity for ground truth in
the simulated datasets, as each simulation tool reports exactly where in
the genome the reads were derived from, allowing us to calculate the
exact precision and sensitivity of each method.

To produce a fair comparison of the tools, we used a variety of param-
eters for each (Supp. note S1). These parameters were chosen based on
tool documentation, personal correspondence with the tool authors, as
well as our current understanding of their algorithms. We ran MHAP
with a list of k-mer counts derived from Jellyfish (Margais and
Kingsford, 2011) for each value of k tested to help filter repetitive k-
mers. GraphMap could not be parameterized when running in the “owl-
er” mode, and had only one set of running parameters.

We counted an overlap as correct when the overlapping pair was pre-
sent in our ground truth with the correct strand orientation. We did not
take into account reported lengths of overlap, but note that this infor-
mation may be important (e.g. to improve performance of realignment).
For each tool we computed the skyline, or Pareto-optimal results, in our
tests (the points with the highest sensitivity for a given FDR), and plotted
these results on receiver operating characteristic (ROC)-like plots (fea-
turing FDR rather than the traditional false positive rate).

We can see that although many tools have similar sensitivity and FDR
depending on the parameterization, the overall trends reveal differences
in sensitivity and FDR on each specific datatype (Fig. 4). For instance,
MHAP can achieve high sensitivity on all datasets but lacks precision
compared to most other methods on the ONT datasets. The only other
tool that may have less precision on the ONT datasets is BLASR.
DALIGNER proves to have a high sensitivity and precision, but it is not

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

J. Chu et al.

Table 2. An overview of sensitivity and precision on simulated and real error-prone long read datasets. In both the PB and ONT simulated datasets, the
best values, shown in bold face, are statistically significantly better than the other values.

Tool Simulated PB E. coli Simulated ONT E. coli PB P6-C4 E. coli ONT SQK-MAP-006 E. coli

Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1(%) Sens. (%) Prec. (%) F1 (%)
BLASR 91.0 819 862 95.2 751 840 66.0 96.5 78.3 89.9 73.0 80.6
DALIGNER 924 919 921 94.9 976 959 83.8 85.8 84.8 92.9 91.0 91.9
MHAP 915 88.0 898 95.1 86.5 906 79.8 79.8 79.8 91.2 82.0 86.3
GraphMap 90.1 96.5 931 904 96.0 931 717 94.0 814 90.6 934 92.0
Minimap 88.9 948 918 94.6 99.0 96.7 59.6 83.8 69.7 91.2 95.4 93.2

We derived these values from the best settings of each tool (according to the best F1 score) after a parameter search. We calculated confidence intervals for the sensitivity,
specificity and F1 scores using three standard deviations around the observed values. The worst case the error never exceeded +0.1%, +0.1% and +0.2% respectively.

always the winner, especially on the ONT dataset. Minimap has high
sensitivity and precision on the ONT datasets but does not maintain such
performance on the PB dataset. Finally, the results for GraphMap were
competitive despite using a single parameterization.

These plots reveal that selection of operating parameters very much
depends on the balance of project-specific importance attributed to sensi-
tivity and precision, as expected. For instance, the importance of sensi-
tivity is clear as it provides critical starting material for downstream
processing. On the other hand, low sensitivity can be tolerated if the
downstream method employs multiple iterations of error correction,
because as errors are resolved within each iteration, the sensitivity is
expected to increase. However, these downstream operations of course
may come with a high computing cost.

The F1 score (also F-score or F-measure) represents a common way to
combine these two score. It is the harmonic mean between the sensitivity
and precision. To better compare these methods, we computed F1 scores
for each using a range of parameters, and considered the highest value
for each method to be representative of its overall performance. We
calculated confidence intervals for the F1 scores using three standard
deviations around the observed values, which revealed that reported F1
values were statistically significantly different from each other.

For the simulated PB data, GraphMap has the highest F1 score (de-
spite being designed for ONT data and not PB data) followed by
DALIGNER, Minimap, MHAP, and BLASR (Table 2). For the real PB
data DALIGNER has the highest F1 score followed by GraphMap,
MHAP, and BLASR. For both the simulated and real ONT datasets,
Minimap was the best method, yielding the highest F1 score, followed
by GraphMap, MHAP and BLASR (Table 2).

Overall, these results suggest that some tools may perform substantial-
ly differently on data from different platforms. We hypothesize that,
differences in the read length distributions and error type frequencies,
could be responsible for this behaviour.

5.2 Computational Performance

To measure the computational performance of each method, we ran
each tool with default parameters (with some exceptions see Supp. note
S2) as well as another run with optimized parameters yielding the high-
est F1 score (Table 2 and Supp. note S1) obtained after a parameter
sweep on the simulated datasets. We note that GraphMap’s owler mode
could not be parameterized, except for choosing the number of threads,
so there was no difference in the settings for default and highest F1 score
parameterization runs. We ran our tests serially on the same 64-core Intel
Xeon CPU E7-8867 v3 @ 2.50GHz machine with 2.5TB of memory. We

measured the peak memory, CPU and wall clock time across read sub-
sets to show the scalability of each method.

We investigated the scalability of each method, testing each method
using 4, 8, 16 or 32 threads of execution on the E. coli datasets (Supp.
Figs. S3-10). Despite specifying the number of threads, each tool often
used more or fewer threads than expected (Supp. Figs. S3, S4, S11, S12).
In particular, MHAP tended to use more threads than the number we
specified.

On all tested E. coli datasets in our study, we observe that Minimap is
the most computationally efficient tool, robustly producing overlap re-
gions at least 3-4 times faster than all other methods, even when parame-
terizing for optimal F1 score (Supp. Fig. S7, S8). Determining the next
fastest method is confounded by the effect of parameterization. For in-
stance when considering only our F1 score optimized settings,
DALIGNER, generally keeping within an order of magnitude or less of
Minimap. On the other hand, DALIGNER can be 2-5 times slower than
MHAP on some datasets under default parameters.

With default settings, DALIGNER performs up to 10 times slower
than F1 score optimized settings. This primarily occurs because the k-
mer filtering threshold (-t) in the F1 optimized parameterization not only
increases specificity but also reduces runtime. In contrast, our parameter-
ization to optimize the F1 score in MHAP decreases the speed (by a
factor of 3-4). In this case, the culprit was the sketch size (--num-hashes)
used; larger sketch sizes increase sensitivity at the cost of time.

Finally, GraphMap is generally the least scalable method, the slowest
when considering default parameters only, and only 1-2 times faster than
BLASR when considering F1 optimized settings. BLASR is also able to
scale better than GraphMap to a more threads (Supp. Figs. S7, S8).

In addition to its impressive computational performance, Minimap us-
es less memory than almost all methods on tested E. coli datasets (Supp.
Figs S9, S10), staying within an order of magnitude of BLASR on aver-
age, despite the latter employing an FM-index. Memory usage in
GraphMap seems to scale linearly with the number of reads at a rate
nearly 10 times that of the BLASR or Minimap, likely owing to the hash
table it uses. The memory usage characteristics of DALIGNER and
MHAP are less clear, drastically changing given the parameters utilized.
Overall MHAP has the worst memory performance even when using
default parameters. The cause of the memory increase between opti-
mized F1 and default setting in MHAP is again due to an increase in the
sketch size between runs. Because of k-mer multiplicity filtering,
DALIGNER’s memory usage is 2-3 times lower when parameterized for
an optimized F1 score.

Many of the trends from the C. elegans datasets mirror the perfor-
mance on the smaller E. coli dataset. Again, computational performance
on the larger C. elegans datasets is still dominated by Minimap (Supp.

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

A Review on Error-prone Read Overlap Tools

Figs. S11, S12), being at least 5 times faster than any other method.
DALIGNER’s performance seems to generally scale well, especially
when k-mer filtering is performed (within an order of magnitude of Min-
imap). With default settings, MHAP is 2-3 times faster than
DALIGNER, but is several orders of magnitude slower, when the F1
score is optimized. The performance of GraphMap shows that it does not
scale well to large number of reads (>100000), and its calculations take
an order of magnitude longer than BLASR.

The performance of BLASR is a bit perplexing. When we use no k-
mer filtering in DALIGNER, BLASR is within an order of magnitude of
speed. When using optimized parameters, BLASR is also at least twice
as fast as MHAP, which becomes more evident when using a large num-
ber (>15) of threads. We note that these results seemingly contradict the
results found in previous studies (Berlin, et al., 2015; Myers, 2014). This
may be due to different datasets and technology versions used by the two
studies. It may also highlight the effects of parameterization of each tool
—adifficult but critical task when tuning the performance of these tools.

The trends in memory performance on the C. elegans datasets are
generally consistent with E. coli datasets (Supp. Fig. S11, S12). A nota-
ble exception however is the memory usage of DALIGNER, which
begins leveling off with increased number of reads. Unlike with the E.
coli dataset, this dataset is large enough that DALIGNER begins to split
the data into batches, reducing its memory usage.

6 Discussion

Our study highlights that there are important considerations to factor in
while developing new or improving existing tools.

6.1 Modularity

A tool that can report intermediate results may help reduce computation
in downstream applications. For example, modularizing overlap candi-
date detection, overlap validation, and alignment can provide flexibility
when used in different pipelines. Graphmap’s owler mode is an example
of this, enabling users to generate MHAP-like output for overlap regions,
rather than a more detailed alignment on detected regions. Further, com-
pliance to standardized output is highly recommended, including for
generating intermediate results. Doing so would not only allow one to
perform comparative performance evaluations on a variety of equivalent
metrics, but also allow for flexibility in creating new pipelines. Examples
of emergent output standards include the Graphical Fragment Assembly
(GFA) (https://github.com/pmelsted/GFA-spec) format, PAF (Li, 2016),
and the MHAP output format.

6.2 Cache Efficiency

Given the concepts presented, and along with our benchmarks performed
herein indicates that theoretical performance estimations based on time
complexity analysis might not be enough to conclude on what works
best. Traditional algorithm complexity analysis suffers from an assump-
tion that all memory access costs are the same. However, on modern
computers intermediate levels of fast-access cache exist between the
registers of the CPU and main memory. A failed attempt to read or write
data in the cache is called a cache miss, causing delays by requiring the
algorithm to fetch data from other cache levels or main memory.

Cache efficiency in algorithmic design has become a major considera-
tion, and in some cases will trump many time complexity based motiva-

tions for algorithmic development. For instance, though the expected
time complexity of DALIGNER has a quadratic component based on the
number of occurrences of a k-mer in the dataset, its actual computational
performance seems to be much better empirically. The authors claim this
is due to the cache efficiency of the method (compared to using an FM-
index) (Myers, 2014), and in practice this also seems to be the case, as
observed in our comparisons.

The basic concept of a cache efficient algorithm relies on minimizing
random access whenever possible, by serializing data accesses in blocks
that are small enough to fit into various levels of cache, especially at the
levels of cache with the lowest latency. Algorithms that exploit a specific
cache configuration utilize an 1/O-model (also called the external-
memory model) (Aggarwal, et al., 1988; Demaine, 2002). Conceptually,
these algorithms must have explicit knowledge of the size of each com-
ponent of the memory hierarchy, and will adjust the size of contiguous
blocks of data to minimize data transfers from memory to cache.

In contrast to the 1/0O model, algorithms that are designed with cache
in mind, but do not explicitly rely on known cache size blocks are called
cache oblivious (Frigo, et al., 1999). Cache oblivious algorithms are
beneficial, as they do not rely on the knowledge of the processor archi-
tecture; instead they utilize classes of algorithms that are inherently
cache efficient such as scanning algorithms (e.g. DALIGNER’s merging
step of a sorted list).

6.3 Batching and Batch/Block Sizes

For many of the methods surveyed in this paper, memory usage can be
roughly quadratic relative to the number of reads, and at least linear to
the number of k-mers in the set. Thus, to perform all necessary compari-
sons (i.e. to compute an upper triangular matrix of candidate compari-
sons), the data must be processed in batches. Generally, it is better to use
as few blocks as possible, since the time required to perform all overlaps
is quadratic relative to the number of batches. Methods that have a very
low memory usage overall will be able to have the computational benefit
of splitting the data into fewer batches. Batching is handled in different
ways depending on the tool. Some tools have built-in splitting
(DALIGNER/DAZZLER database with DBsplit), and others have this
process built into their associated pipelines (e.g. MHAP and PBcR).
Other methods (BLASR, Minimap) seem to have more scalable memory
requirements, and may not require splitting.

6.4 Repetitive elements and sequence filtering

Any common regions due to homology or other repetitive elements
may confound read-to-read overlaps, and may be difficult to disambigu-
ate from true overlaps. Such repetitive elements may lead to many false
positives in overlap detection, and may increase the computational bur-
den, leading to lower quality in downstream assembly. Thus, it is com-
mon for overlap methods to employ sequence filtering, by removal or
masking of repetitive elements to improve algorithmic performance both
in run time and specificity. Many of the methods compared utilize k-mer
frequencies to filter highly repetitive k-mers using an absolute or percent
k-mer multiplicity. Another common filtering strategy is to prevent the
use of low complexity sequences.

7 Conclusions

There are many challenges in evaluating algorithms that function on
error-prone long reads, such as those from PB and ONT instruments.

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081596; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

J. Chu et al.

Although both sequencing technologies have comparable error rates,
characteristics of their errors as well as their read length distributions are
substantially different. Also, within each technology there are rapid
improvements in quality (Jain, et al., 2015; Laver, et al., 2015), causing
disagreement between datasets derived from the same technology.

Despite these issues, we show that Minimap is the most computation-
ally efficient method (in both time and memory) and is the most specific
and sensitive method on the ONT datasets tested. We note that Minimap
is not as sensitive or as specific as Graphmap, DALIGNER or MHAP on
the PB datasets tested. Our results shown that GraphMap and
DALIGNER are most specific and sensitive method on PB datasets
tested, though DALIGNER scales better computationally. PB being a
more mature technology compared to ONT, it is not surprising to see
several tools performing well on the platform.

Here, we have provided an overview of read-to-read overlap detection
concepts, comparing leading methods for researchers can make informed
decisions given their datasets and computational resources. We hope that
our elucidation to open problems and key concepts to consider will be a
helpful resource for those looking to develop new or improve on existing
overlap detection tools.

Acknowledgements

The authors would like to thank Sergey Koren, Ivan Sovi¢ for their help and sug-
gestions when running MHAP and GraphMap, respectively, as well as their in-
sights into the behaviour and results of each tool on different datasets.

Funding

We thank Genome Canada, Genome British Columbia, British Columbia Cancer
Foundation, and University of British Columbia for their financial support. The
work is also partially funded by the National Institutes of Health under Award
Number RO1IHG007182. The content of this work is solely the responsibility of
the authors, and does not necessarily represent the official views of the Na-

tional Institutes of Health or other funding organizations.

Conflict of Interest: none declared.

References

Aggarwal, A., et al. (1988) The input/output complexity of sorting and related
problems, Commun. ACM, 31, 1116-1127.

Alkan, C., et al. (2010) Limitations of next-generation genome sequence assembly,
Nat. Methods, 8, 61-65.

Benson, G., et al. (2013) Longest Common Subsequence in k Length Substrings.
In, Lecture Notes in Computer Science. pp. 257-265.

Berlin, K., et al. (2015) Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing, Nat. Biotechnol., 33, 623-630.

Boza, V., Brejova, B. and Vinaf, T. (2016) DeepNano: Deep Recurrent Neural
Networks for Base Calling in MinlON Nanopore Reads.

Broder, A.Z. (1997) On the resemblance and containment of documents.
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No0.97TB100171). IEEE, pp. 21-29.

Burkhardt, S., Stefan, B. and Juha, K. (2002) One-Gapped g-Gram Filters for
Levenshtein Distance. In, Lecture Notes in Computer Science. pp. 225-234.
Carneiro, M.O., et al. (2012) Pacific biosciences sequencing technology for
genotyping and variation discovery in human data, BMC Genomics, 13, 375.
Chaisson, M.J. and Tesler, G. (2012) Mapping single molecule sequencing reads
using basic local alignment with successive refinement (BLASR): application

and theory, BMC Bioinformatics, 13, 238.

Chin, C.-S,, et al. (2013) Nonhybrid, finished microbial genome assemblies from
long-read SMRT sequencing data, Nat. Methods, 10, 563-569.

David, M., et al. (2016) Nanocall: An Open Source Basecaller for Oxford
Nanopore Sequencing Data.

Demaine, E.D. (2002) Cache-oblivious algorithms and data structures, Lecture
Notes from the EEF Summer School on Massive Data Sets, 8, 1-249.

Eid, J., et al. (2009) Real-Time DNA Sequencing from Single Polymerase
Molecules, Science, 323, 133-138.

Eisenstein, M. (2015) Startups use short-read data to expand long-read sequencing
market, Nat. Biotechnol., 33, 433-435.

Ferragina, P., Paolo, F. and Giovanni, M. (2005) Indexing compressed text, J.
ACM, 52, 552-581.

Frigo, M., et al. (1999) Cache-oblivious algorithms. Foundations of Computer
Science, 1999. 40th Annual Symposium on. IEEE, pp. 285-297.

Goodwin, S., et al. (2015) Oxford Nanopore sequencing, hybrid error correction,
and de novo assembly of a eukaryotic genome, Genome Res., 25, 1750-1756.

Jain, M., et al. (2015) Improved data analysis for the MinlON nanopore sequencer,
Nat. Methods, 12, 351-356.

Keich, U., et al. (2004) On spaced seeds for similarity search, Discrete Appl. Math.,
138, 253-263.

Laehnemann, D., Borkhardt, A. and McHardy, A.C. (2016) Denoising DNA deep
sequencing data-high-throughput sequencing errors and their correction, Brief.
Bioinform., 17, 154-179.

Laver, T., et al. (2015) Assessing the performance of the Oxford Nanopore
Technologies MinlON, Biomol Detect Quantif, 3, 1-8.

Levene, M.J., et al. (2003) Zero-mode waveguides for single-molecule analysis at
high concentrations, Science, 299, 682-686.

Li, H. (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences, Bioinformatics.

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform, Bioinformatics, 25, 1754-1760.

Loman, N.J., Quick, J. and Simpson, J.T. (2015) A complete bacterial genome
assembled de novo using only nanopore sequencing data, Nat. Methods, 12,
733-735.

Margais, G. and Kingsford, C. (2011) A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers, Bioinformatics, 27, 764-770.

McCoy, R.C., et al. (2014) Illumina TruSeq synthetic long-reads empower de novo
assembly and resolve complex, highly-repetitive transposable elements, PLoS
One, 9, e106689.

Morgulis, A., et al. (2006) A Fast and Symmetric DUST Implementation to Mask
Low-Complexity DNA Sequences.

Myers, G. (2014) Efficient Local Alignment Discovery amongst Noisy Long
Reads. In, Algorithms in Bioinformatics. Springer, pp. 52-67.

Ono, Y., Asai, K. and Hamada, M. (2013) PBSIM: PacBio reads simulator--toward
accurate genome assembly, Bioinformatics, 29, 119-121.

Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of
the tuber crop potato, Nature, 475, 189-195.

Quick, J., et al. (2014) A reference bacterial genome dataset generated on the
MinION™ portable single-molecule nanopore sequencer, Gigascience, 3, 22.

Ross, M.G., et al. (2013) Characterizing and measuring bias in sequence data,
Genome Biol., 14, R51.

Smith, D.R., et al. (2008) Rapid whole-genome mutational profiling using next-
generation sequencing technologies, Genome Res., 18, 1638-1642.

Sovi¢, L., et al. (2016) Fast and sensitive mapping of nanopore sequencing reads
with GraphMap, Nat. Commun., 7, 11307.

Sovi¢, L., et al. (2016) Evaluation of hybrid and non-hybrid methods for de novo
assembly of nanopore reads, Bioinformatics.

Stoddart, D., et al. (2009) Single-nucleotide discrimination in immobilized DNA
oligonucleotides with a biological nanopore, Proc. Natl. Acad. Sci. U. S. A.,
106, 7702-7707.

Travers, K.J., et al. (2010) A flexible and efficient template format for circular
consensus sequencing and SNP detection, Nucleic Acids Res., 38, e159.

Treangen, T.J. and Salzberg, S.L. (2012) Repetitive DNA and next-generation
sequencing: computational challenges and solutions, Nat. Rev. Genet., 13, 36-
46.

Ummat, A. and Bashir, A. (2014) Resolving complex tandem repeats with long
reads, Bioinformatics, 30, 3491-3498.

Wang, J.R. and Jones, C.D. (2015) Fast alignment filtering of nanopore sequencing
reads using locality-sensitive hashing. 2015 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM).

Waterman, M.S. (1995) Dynamic Programming Alignment of Two Sequences. In,
Introduction to Computational Biology. pp. 183-232.

Yang, C., et al. (2016) NanoSim: nanopore sequence read simulator based on
statistical characterization.

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

