
Bioinformatics, YYYY, 0–0

doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY

Manuscript Category

Sequence Analysis

Overlapping long sequence reads: Current in-

novations and challenges in developing sensi-
tive, specific and scalable algorithms

Justin Chu1,2,*, Hamid Mohamadi1,2, René L Warren2, Chen Yang1,2, and

Inanc Birol1,2,3,*

1University of British Columbia, Vancouver, BC V6T 1Z4, Canada, 2Canada’s Michael Smith Genome

Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada, 3Simon Fraser

University, Burnaby, BC V5A 1S6, Canada

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Identifying overlaps between error-prone long reads, specifically those from Oxford Nanopore Tech-

nologies (ONT) and Pacific Biosciences (PB), is essential for certain downstream applications, includ-

ing error correction and de novo assembly. Though akin to the read-to-reference alignment problem,

read-to-read overlap detection is a distinct problem that can benefit from specialized algorithms that

perform efficiently and robustly on high error rate long reads. Here, we review the current state-of-

the-art read-to-read overlap tools for error-prone long reads, including BLASR, DALIGNER, MHAP,

GraphMap, and Minimap. These specialized bioinformatics tools differ not just in their algorithmic

designs and methodology, but also in their robustness of performance on a variety of datasets, time

and memory efficiency, and scalability. We highlight the algorithmic features of these tools, as well as

their potential issues and biases when utilizing any particular method. We benchmarked these tools,

tracking their resource needs and computational performance, and assessed the specificity and pre-

cision of each. The concepts surveyed may apply to future sequencing technologies, as scalability is

becoming more relevant with increased sequencing throughput.

Contact: cjustin@bcgsc.ca; ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
As today’s lion share of DNA and RNA sequencing is carried out on

Illumina sequencing instruments (San Diego, CA), most de novo assem-

bly methods are optimized expecting short read data with an error rate

less than 1% (Laehnemann, et al., 2016; Ross, et al., 2013). However,

their associated short read length and GC bias bring significant challeng-

es for downstream analyses (Ross, et al., 2013; Smith, et al., 2008). For

instance, short read lengths make it difficult to assemble entire genomes

due to repetitive elements (Alkan, et al., 2010). The development of

paired-end and mate-pair sequencing library protocols has helped miti-

gate this problem (Potato Genome Sequencing Consortium, 2011), but is

still a long-standing computational problem for de novo genome assem-

bly (Treangen and Salzberg, 2012). Co-localization of short reads is a

potential strategy to increase the contiguity of assemblies, using technol-

ogies such as Illumina TruSeq synthetic long reads (McCoy, et al., 2014)

and 10X Genomics Chromium (Pleasanton, CA) (Eisenstein, 2015);

however, tandem repeats in the same long single DNA fragment may

continue confounding assembly methodologies. In that respect, long

sequencing holds great promise, and has proved useful in resolving such

issues (Ummat and Bashir, 2014). Still, the appreciable error rates asso-

ciated with technologies offered by Oxford Nanopore Technologies

(Oxford, UK; ONT) and Pacific Biosciences (Menlo Park, CA; PB) pose

new challenges for the de novo assembly problem.

Read-to-read overlap detection is typically the first step of de novo

Overlap-Layout-Consensus (OLC) assembly, which dominate the as-

sembly of long reads (Berlin, et al., 2015; Loman, et al., 2015). The first

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

mailto:cjustin@bcgsc.ca
mailto:ibirol@bcgsc.ca
https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Chu et al.

long read de novo assembly methods employed error correction as their

initial pipeline step (Berlin, et al., 2015; Chin, et al., 2013; Loman, et al.,

2015), which also requires read-to-read overlaps. Alternatively, one can

forego the error correction stages of assembly in favor of overlap be-

tween uncorrected raw reads (Li, 2016). The benefits of an uncorrected

read-to-read overlap paradigm for assembly include a lower computation

cost, and repressing artifacts that may arise from read correction, such as

collapsed homologous regions. On the other hand, for these methods,

correctness of the initial set of overlaps are even more critical. Further,

overlap detection has been identified as the efficiency bottleneck when

using OLC assembly methodology (Myers, 2014) for large genomes.

At present, multiple tools are capable of overlapping error-prone long

read data at varying levels of accuracy. These methods differ in their

methodology, but have some common aspects, such as the use of short

exact subsequences (seeds) to discover candidate overlaps. Here we

provide an overview of how each of these tool work, along with the

conceptual motivations within their design.

2 Background

2.1 Current challenges when using PB sequencing

PB sequencing uses a DNA polymerase anchored in a well small enough

to act as a zero-mode waveguide (ZMW) (Levene, et al., 2003). The

polymerase acts on a single DNA molecule incorporating fluorophores

labeled nucleotides, which are excited by a laser. The resulting optical

signal is recorded by a high-speed camera in real time (Eid, et al., 2009).

Base calling errors on this platform occur at a rate of around 16%

(Laehnemann, et al., 2016), and are dominated by insertions (Carneiro, et

al., 2012; Ross, et al., 2013), which are possibly caused by the dissocia-

tion of cognate nucleotides from the active site before the polymerase

can incorporate the bases. Mismatches in the reads are mainly caused by

spectral misassignments of the fluorophores used (Eid, et al., 2009).

Deletions are likely caused by base incorporations that are faster than the

rate of data recording (Eid, et al., 2009). The errors seem to be non-

systematic, resulting in the lowest GC bias to compared to other plat-

forms (Ross, et al., 2013).

The error rate of PB sequencing can be reduced through the use of cir-

cular consensus sequencing (CCS) (Travers, et al., 2010). In CCS, a

hairpin adaptor is ligated to both sides of a linear DNA sequence. During

sequencing, the polymerase can then pass multiple times over the same

sequence (depending on the processivity of the polymerase). The multi-

ple passes are be called into consensus and collapsed, yielding higher

quality yet shorter reads, resulting in lower throughput. Consequently,

many PB datasets generated do not utilize this methodology. Following

this trend, the methods for overlap detection outlined in this paper have

thus been designed for non-CCS reads.

2.2 Current challenges when using ONT sequencing

ONT sequencing works by measuring minute changes in ionic current

across a membrane when a single DNA molecule is driven through a

biological nanopore (Stoddart, et al., 2009). Currently, signal data is

streamed to a cloud-based service called Metrichor that at the time of

writing this paper, still uses hidden Markov models (HMM) with states

for every possible 6-mer to render base calls on the data.

In the current HMM base calling methodology, if one state is identical

to its next state, no net change in the sequence can be detected. This

means that homopolymer states longer than five cannot be captured as

they would be collapsed into a single 6-mer. It has also been observed

that there are some 6-mers, particularly homopolymers, underrepresented

in the data (Jain, et al., 2015; Loman, et al., 2015) when compared to the

6-mer content of the reference sequence, suggesting that there may be a

systematic bias to transition in some states over others. In addition, there

is some evidence suggesting GC biases within this type of data

(Goodwin, et al., 2015; Laver, et al., 2015). We note that the base calling

problem is under active development, with alternative base calling algo-

rithms such as Nanocall (David, et al., 2016) and DeepNano (Boža, et

al., 2016), recently made publicly available.

One can mitigate error rates in ONT data by generating two-direction

(2D) reads. Similar to CCS for the PB platform, 2D sequencing involves

ligating a hairpin adaptor, and allowing the nanopore to process both the

forward and reverse strand of a sequence (Jain, et al., 2015). Combining

information from both strands was shown to decrease the error rate from

40-30% to 10-20% with earlier chemistry (Jain, et al., 2015; Quick, et

al., 2014), similar to the error rates of non-CCS PB sequencing. For the

comparisons presented in this paper, we only consider 2D reads, as we

expect investigators to prefer using higher quality ONT data.

3 Definitions and Concepts
In the context of DNA sequencing, an overlap is a broad term referring

to a sequence match between two reads due to local regions on each read

that originate from the same locus within a larger sequence (e.g., ge-

nome). The detail at which an overlap can be described can have large

implications on both the downstream processing and computational costs

associated with overlap computation, as discussed below.

Overlap between two reads may be full (complete) or partial, and may

dovetail each other or one may be contained in the other (Fig. 1). The

former pair of classifications often is a manifestation of data quality, but

may also indicate haplotypic variations or polymorphisms. Full overlaps

are overlaps that cover at least one end of a read in an overlap pair,

whereas partial overlaps cover any portion of either read without the

ends (Fig. 1). Sources contributing to observed partial overlaps include

false positives due to near-repeats, chimeric sequences, or other artifacts

(Li, 2016). Disambiguating the source of the overhang in partial overlaps

may be important to downstream applications, especially when using

non-haploid, metagenomic, and transcriptomic datasets.

The task of determining overlap candidates (Fig. 2A) is usually the

first step in an overlap algorithm, and it refers to a simple binary pairing

of properly oriented reads. To find overlap candidates on error-prone

long reads, most methods look for matches of short sequence seeds (k-

mers) between the sequences. With a collection of overlap candidates,

one can build a directionless overlap graph.

Overlap distance (Fig. 2B) refers to the relative positions between two

overlapping reads. These distances provide directionality to the edges of

the overlap graph. Theoretically, if the sequences are insertion or dele-

tion (indel) -free, then a correct overlap distance would be sufficient to

produce a layout and build a consensus from the reads. However, even a

single indel error in one of the reads will cause a shift of coordinates,

which would complicate consensus calling. Also, one cannot distinguish

Fig. 1. Visualization of partial and full overlaps in dovetail or containment forms.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Review on Error-prone Read Overlap Tools

between partial and complete overlaps just with the distance information

alone. Overlap distance can be estimated without a full alignment, based

on a small number of shared seeds.

Overlap regions (Fig. 2C) refer to relative positions between overlap-

ping reads, with the added information of start and end positions of the

overlap along each read. If no errors are present, the sizes of the regions

on both reads should be identical. In practice, due to high indel errors in

long reads, this is rarely the case. Nevertheless, one can use this infor-

mation to distinguish between partial and full overlaps. Similar to over-

lap distance, overlap regions can be estimated without a full alignment,

but typically, more shared seeds are required for confident estimations.

There are many similarities between local alignments and overlaps.

However, although a local aligner can serve as a read overlap tool

(Chaisson and Tesler, 2012; Sović, et al., 2016), overlaps are not the

same as local alignments. At the minimum, a read overlapper tool may

simply indicate overlap candidates, rather than full base-to-base align-

ment coordinates. In some cases, similar to the discovery of partial over-

laps, it may be important to find local alignments, as they may help

discover repeats, chimeras, undetected vector sequences and other arti-

facts associated or confused with an overlap (Myers, 2014). Although, it

is possible for an overlap detection algorithm to produce a full account of

all the bases in overlapping reads, doing so would typically require cost-

ly algorithms like Smith-Waterman (Waterman, 1995).

All tools presented in this review have the ability to provide overlap

candidates with at least an estimated local overlap region. Many tools

can produce full local alignments, but due to the high computational

costs, some tools provide an option for computing overlap regions and

local alignments separately (such as GraphMap (Sović, et al., 2016)).

Alternatively, other tools may not provide alignment refinement (such as

MHAP (Berlin, et al., 2015) and Minimap (Li, 2016)). Indeed, since a

full alignment between every pair of reads is not needed in some pipe-

lines (Berlin, et al., 2015; Li, 2016), it is beneficial for overlap tools to

be able to skip the computation of a full alignment.

4 Long Read Overlap Methodologies

Sequence overlap algorithms look for shared seeds between reads. Due

to the high error rates of sequence reads on the PB and ONT platforms,

these seeds tend to be very short (Supp. Figs. S1 and S2). The core dif-

ferences between algorithms (Fig. 3) relate to not only how shared seeds

are found, but in the way the seeds are used to determine an overlap

candidate. After a method finds candidates, it will then refine them,

usually using relative locations of the seeds within reads, and computing

the estimated overlap regions. It is also common to check whether the

candidate has a valid overlap by considering consistency of relative seed

locations. Each method produces a list of overlap candidates, and pro-

vides an overlap region between reads. In some pipelines, the majority of

the compute time is spent on realigning overlapping reads for error cor-

rection after candidates are found (Sović, et al., 2016). In others, precise

alignments may not be needed (Li, 2016). Thus, the output of each over-

lap algorithm contains, at minimum, the overlap regions, and often with

some auxiliary information for downstream applications (Table 1).

4.1 BLASR

BLASR was one of the first tools developed specifically to map PB data

to a reference (Chaisson and Tesler, 2012). It utilizes methods adapted

for fast short read alignments to long read data with high indel rates,

combining concepts from Sanger-era and next-generation sequencing

alignments. BLASR uses an FM-index (Ferragina, et al., 2005) to find

short stretches of clustered alignment anchors (of length k or longer),

generating a short list of candidate intervals/clusters to consider. A score

is assigned to the clusters based on the frequency of alignment anchors.

Top candidates are then processed into a full alignment.

Although BLASR was originally designed for read mapping, it has

since been successfully used to produce overlaps for de novo assembly

of several bacterial genomes (Chin, et al., 2013). However, to use the

method for overlap detection one needs to carefully tune its parameters.

For example, to achieve high sensitivity, BLASR needs prior knowledge

of the read mapping frequency to parameterize nBest and nCandidates

(default 10 for both) to a value higher than the coverage depth. Runtime

Fig. 2. An overview of possible outcomes from an overlap detection algorithm. Each

level has a computational cost associated with it, with the general trend being A<B<C.

The common seeds-based comparison methods are not the only way to obtain these

overlaps, but it is the most popular method used.

Fig. 3. Visual overview of overlap detection algorithms. At the least, each method produces overlap regions. They may also generate auxiliary information, such as alignment trace

points or full alignments.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Chu et al.

of the tool is highly dependent on these two parameters (Berlin, et al.,

2015), which may be due to the cost of computing a full alignment or the

added computational cost per lookup to obtain more anchors.

What make this method slower are the choice of data structure, and its

search for all possible candidates (not only the best candidates) for each

lookup performed. The theoretical time complexity of a lookup in an

FM-index data structure is linear with respect to the number of bases

queried (Ferragina, et al., 2005), albeit not being very cache efficient

(Myers, 2014). Thus, if one maps each read to a unique location, this

would only take linear time with respect to the number of bases in the

dataset. However, since only short (and often non-unique, cf. Supp. Figs.

S1, S2) contiguous segments can be queried due to the high error rate,

extra computation is required to consider all additional candidate anchor

positions. Finally, BLASR computes full alignments rather than just

overlap regions, thus, possibly utilizing more computational resources

than needed for downstream processes.

4.2 DALIGNER

DALIGNER was the first tool designed specifically for finding read-to-

read overlaps using PB data (Myers, 2014). This method focuses on

optimizing the cache efficiency, in response to the relatively poor cache

performance of the FM-index suffix array/tree data structure. It works by

first splitting the reads into blocks, sorting the k-mers in each block, and

then merging those blocks. The theoretical time complexity of

DALIGNER is dominated by the merging step, which is quadratic in the

number of occurrences of a given k-mer in a dataset (Myers, 2014).

To optimize speed and mitigate the effect of merging, DALIGNER

filters out or decreases the occurrences of some k-mers in the dataset.

Using a method called DUST (Morgulis, et al., 2006), DALIGNER (-

mdust option) masks out low complexity regions (e.g. homopolymers) in

the reads before the k-mers are extracted. Using a second method it fil-

ters out k-mers by multiplicity (-t option), increasing the speed of com-

putation, decreasing memory usage, and mitigating the effects of repeti-

tive sequences. However, these options also carry the risk of filtering out

important k-mers needed for overlaps.

To use DALIGNER efficiently on larger datasets, splitting of the da-

taset into blocks is necessary. The comparisons required to perform all

overlaps is quadratic in time relative to the number of blocks. Unique

amongst the overlap tools, DALIGNER provides a means to split input

data based on the total number of base pairs and read lengths (using the

DBsplit utility). DALIGNER optionally outputs full overlaps, but will

first output local alignment tracepoints to aid in computing a full align-

ment in later steps, producing large auxiliary files.

4.3 MHAP

MHAP (Berlin, et al., 2015) is a tool that uses the MinHash algorithm

(Broder, 1997) to detect overlaps based on k-mer similarity between any

two reads. MinHash computes the approximate similarity between two or

more sets by hashing all the elements in the set with multiple hash func-

tions, and storing the elements with the smallest hashed values (mini-

mizers) in a sketch list. Using the minimum hash value is a form of local-

ity-sensitive hashing, since it causes similar elements in a set to hash to

the same value. In MHAP, overlap candidates are simply two k-mer sets

that have a Jaccard index score above a predefined threshold.

After the overlap candidates are found, overlap regions are computed

using the median relative positions of the shared minimizers. Because

the sketch size used for each read is the same, MHAP may waste space

and lose sensitivity if reads vary widely in length (Li, 2016). The time

complexity of computing a single MinHash sketch is O(kl), where l is the

number of k-mers in the read set. Thus, evaluating n reads for a sketch

size h for all resemblances takes O((hn)2) time (Broder, 1997). MHAP

further reduces its time complexity by storing h min-mers in h hash

tables to use for lookups to find similar reads (Berlin, et al., 2015).

Like DALIGNER, MHAP functions best when repetitive elements are

not used as seeds. MHAP supports the input of a list of k-mers, ordered

by multiplicity, obtained by using a 3rd party k-mer counting tool, such

as Jellyfish (Marçais and Kingsford, 2011). We note that, although this

strategy would improve the performance of the tool, the computational

cost of k-mer counting may not be trivial.

MHAP’s computational performance is confounded by its implemen-

tation. While most high-performance bioinformatics tools utilize C/C++

for their performance benefits, MHAP is implemented in Java. Another

method called Minlookup (Wang and Jones, 2015), written in C, utilizes

a similar algorithm to MHAP, however it is designed with ONT datasets

in mind. The authors demonstrate improved performance associated with

their implementation. However, Minlookup was not evaluated here as it

is in early development, and cannot use multiple CPU threads.

4.4 GraphMap

GraphMap, like BLASR, was designed primarily as a read mapping tool

(Sović, et al., 2016), but for ONT data. It specifically addresses the over-

lap detection problem, notably producing full alignments. GraphMap

also provides an option to generate overlap regions exclusively.

In GraphMap the “-owler” option activates a mode specifically de-

signed for computing overlaps. Like its standard mapping algorithm, it

Table 1. Summary of overlap tools output formats, associated pipelines, and availability.

Software Algorithm features Associated assembly tools Output Availability

BLASR FM-Index, anchor clusters PBcR SAM alignment, other proprietary

formats (overlap regions)

https://github.com/PacificBiosciences/blasr

Daligner Cache efficient k-mer sort

(radix) and merge

DAZZLER, MARVEL,

FALCON

Local Alignments, LAS format

(alignment tracepoints)

https://github.com/thegenemyers/DALIGNER

MHAP MinHash PBcR, Canu MHAP output format (overlap

regions)

https://github.com/marbl/MHAP

GraphMap Gapped q-gram (spaced

seeds), colinear clustering

Ra SAM alignment, MHAP output

format (overlap regions)

https://github.com/isovic/GraphMap

Minimap Minimizer colinear clustering Miniasm PAF (overlap regions) https://github.com/lh3/Minimap

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://github.com/PacificBiosciences/blasr
https://github.com/thegenemyers/DALIGNER
https://github.com/marbl/MHAP
https://github.com/isovic/GraphMap
https://github.com/lh3/Minimap
https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Review on Error-prone Read Overlap Tools

first creates a hash table of seeds from the entire dataset. The seeds it

uses are not k-mers, but rather gapped q-grams (Burkhardt, et al., 2002) –

k-mers with wild card positions, also called spaced seeds (Keich, et al.,

2004). It is not clear what gapped q-grams work optimally with ONT or

PB data; more research is needed to determine the optimal seeds to cope

with high error rates. The current implementation uses a hardcoded seed

that is 12 bases long with an indel/mismatch allowed in the middle (6

matching bases, 1 indel/mismatch base, followed by 6 matching bases).

GraphMap then collects seed hits, using them for finding the longest

common subsequence in k-length substrings (Benson, et al., 2013). The

output from this step is then filtered to find collinear chains of seeds

(private correspondence with Ivan Sović). The bounds of these chains

are then returned, using the MHAP output format.

4.5 Minimap

Minimap (Li, 2016) is an overlapper/mapping tool that combines con-

cepts from many of its predecessors, such as DALIGNER (k-mer sorting

for cache efficiency), MHAP (computing minimizers) and GraphMap

(clustering collinear chains of matching seeds). Minimap subsamples the

hashed k-mer space by computing minimizers, and compiles the corre-

sponding k-mers along with their location on their originating reads.

Like MHAP, the use of repetitive k-mers as the min-k-mer can de-

grade the performance of overlap detection. To minimize the effect of

repetitive elements, Minimap uses an invertible hash function when

choosing min-k-mers. This is similar to DALIGNER’s use of DUST; it

works by preventing certain hash values that correspond to low complex-

ity sequences.

Also similar to DALIGNER, Minimap was designed with cache effi-

ciency in mind. It stores its lists of minimizers initially in an array, which

is later sorted for the seed merging step. Though the computational cost

incurred by sorting the list can negatively impact performance compared

with the constant cost of insertion in a hash table, its cache performance

outperforms a conventional hash table. All hits between two reads are

then collected using this sorted set, and are clustered together into ap-

proximately collinear hits. The overlap regions for each pair of overlaps

are then finally outputted in pairing mapping format (PAF) (Li, 2016).

5 Benchmarking
We profiled and compared results from BLASR, DALIGNER, MHAP,

GraphMap, and Minimap, using publicly available long read datasets

with the newest chemistries available at the time of the study (Supp.

Table S1). For PB we used E. coli (P6-C4) and C. elegans whole genome

shotgun sequencing datasets. For ONT we used an E. coli (SQK-MAP-

006) dataset. We also used simulated E. coli datasets for the PB and

ONT platforms using PBSim (Ono, et al., 2013) and NanoSim (Yang, et

al., 2016), respectively, and simulated ONT C. elegans reads using Na-

noSim (Supp. Table S1). Only the E. coli datasets were used in a pa-

rameter sweep for in-depth evaluations of performance.

5.1 Sensitivity and FDR

We profiled the sensitivity and false discovery rate (FDR = 1 - precision)

on the experimental PB P6-C4 E. coli and the ONT SQK-MAP-006 E.

coli datasets. We also evaluated the tools on simulated data generated

based on these datasets. Our ground truth for the real dataset was deter-

mined via bwa mem alignments to a reference, using -x pacbio and ont2d

options, respectively (Li and Durbin, 2009). We note that these align-

ments may have missing or false alignments. However, these can still

serve as a good estimate for ground truth comparisons, since mismatch

rate to a reference is much lower than the observed mismatch between

overlapping reads. In the latter case, reads that are, say, 80% accurate

will have a mutual agreement of 64% on average. In addition, due to our

reference-based approach, our metrics are resilient against false overlaps

caused by repetitive elements. Further, all tools are compared against the

same alignments; hence we expect our analysis to preserve the relative

performance of tools. Finally, there is no ambiguity for ground truth in

the simulated datasets, as each simulation tool reports exactly where in

the genome the reads were derived from, allowing us to calculate the

exact precision and sensitivity of each method.

To produce a fair comparison of the tools, we used a variety of param-

eters for each (Supp. note S1). These parameters were chosen based on

tool documentation, personal correspondence with the tool authors, as

well as our current understanding of their algorithms. We ran MHAP

with a list of k-mer counts derived from Jellyfish (Marçais and

Kingsford, 2011) for each value of k tested to help filter repetitive k-

mers. GraphMap could not be parameterized when running in the “owl-

er” mode, and had only one set of running parameters.

We counted an overlap as correct when the overlapping pair was pre-

sent in our ground truth with the correct strand orientation. We did not

take into account reported lengths of overlap, but note that this infor-

mation may be important (e.g. to improve performance of realignment).

For each tool we computed the skyline, or Pareto-optimal results, in our

tests (the points with the highest sensitivity for a given FDR), and plotted

these results on receiver operating characteristic (ROC)-like plots (fea-

turing FDR rather than the traditional false positive rate).

We can see that although many tools have similar sensitivity and FDR

depending on the parameterization, the overall trends reveal differences

in sensitivity and FDR on each specific datatype (Fig. 4). For instance,

MHAP can achieve high sensitivity on all datasets but lacks precision

compared to most other methods on the ONT datasets. The only other

tool that may have less precision on the ONT datasets is BLASR.

DALIGNER proves to have a high sensitivity and precision, but it is not

A

B

C

D

Fig. 4. ROC-like plot on BLASR, DALIGNER, GraphMap, MHAP, GraphMap,

and MHAP. A: PB E. coli simulated with PBsim. B: PB P6-C4 E. coli dataset. C: ONT

E. coli simulated with Nanosim. D: ONT SQK-MAP-006 E. coli dataset.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Chu et al.

always the winner, especially on the ONT dataset. Minimap has high

sensitivity and precision on the ONT datasets but does not maintain such

performance on the PB dataset. Finally, the results for GraphMap were

competitive despite using a single parameterization.

These plots reveal that selection of operating parameters very much

depends on the balance of project-specific importance attributed to sensi-

tivity and precision, as expected. For instance, the importance of sensi-

tivity is clear as it provides critical starting material for downstream

processing. On the other hand, low sensitivity can be tolerated if the

downstream method employs multiple iterations of error correction,

because as errors are resolved within each iteration, the sensitivity is

expected to increase. However, these downstream operations of course

may come with a high computing cost.

The F1 score (also F-score or F-measure) represents a common way to

combine these two score. It is the harmonic mean between the sensitivity

and precision. To better compare these methods, we computed F1 scores

for each using a range of parameters, and considered the highest value

for each method to be representative of its overall performance. We

calculated confidence intervals for the F1 scores using three standard

deviations around the observed values, which revealed that reported F1

values were statistically significantly different from each other.

For the simulated PB data, GraphMap has the highest F1 score (de-

spite being designed for ONT data and not PB data) followed by

DALIGNER, Minimap, MHAP, and BLASR (Table 2). For the real PB

data DALIGNER has the highest F1 score followed by GraphMap,

MHAP, and BLASR. For both the simulated and real ONT datasets,

Minimap was the best method, yielding the highest F1 score, followed

by GraphMap, MHAP and BLASR (Table 2).

Overall, these results suggest that some tools may perform substantial-

ly differently on data from different platforms. We hypothesize that,

differences in the read length distributions and error type frequencies,

could be responsible for this behaviour.

5.2 Computational Performance

To measure the computational performance of each method, we ran

each tool with default parameters (with some exceptions see Supp. note

S2) as well as another run with optimized parameters yielding the high-

est F1 score (Table 2 and Supp. note S1) obtained after a parameter

sweep on the simulated datasets. We note that GraphMap’s owler mode

could not be parameterized, except for choosing the number of threads,

so there was no difference in the settings for default and highest F1 score

parameterization runs. We ran our tests serially on the same 64-core Intel

Xeon CPU E7-8867 v3 @ 2.50GHz machine with 2.5TB of memory. We

measured the peak memory, CPU and wall clock time across read sub-

sets to show the scalability of each method.

We investigated the scalability of each method, testing each method

using 4, 8, 16 or 32 threads of execution on the E. coli datasets (Supp.

Figs. S3-10). Despite specifying the number of threads, each tool often

used more or fewer threads than expected (Supp. Figs. S3, S4, S11, S12).

In particular, MHAP tended to use more threads than the number we

specified.

On all tested E. coli datasets in our study, we observe that Minimap is

the most computationally efficient tool, robustly producing overlap re-

gions at least 3-4 times faster than all other methods, even when parame-

terizing for optimal F1 score (Supp. Fig. S7, S8). Determining the next

fastest method is confounded by the effect of parameterization. For in-

stance when considering only our F1 score optimized settings,

DALIGNER, generally keeping within an order of magnitude or less of

Minimap. On the other hand, DALIGNER can be 2-5 times slower than

MHAP on some datasets under default parameters.

With default settings, DALIGNER performs up to 10 times slower

than F1 score optimized settings. This primarily occurs because the k-

mer filtering threshold (-t) in the F1 optimized parameterization not only

increases specificity but also reduces runtime. In contrast, our parameter-

ization to optimize the F1 score in MHAP decreases the speed (by a

factor of 3-4). In this case, the culprit was the sketch size (--num-hashes)

used; larger sketch sizes increase sensitivity at the cost of time.

Finally, GraphMap is generally the least scalable method, the slowest

when considering default parameters only, and only 1-2 times faster than

BLASR when considering F1 optimized settings. BLASR is also able to

scale better than GraphMap to a more threads (Supp. Figs. S7, S8).

In addition to its impressive computational performance, Minimap us-

es less memory than almost all methods on tested E. coli datasets (Supp.

Figs S9, S10), staying within an order of magnitude of BLASR on aver-

age, despite the latter employing an FM-index. Memory usage in

GraphMap seems to scale linearly with the number of reads at a rate

nearly 10 times that of the BLASR or Minimap, likely owing to the hash

table it uses. The memory usage characteristics of DALIGNER and

MHAP are less clear, drastically changing given the parameters utilized.

Overall MHAP has the worst memory performance even when using

default parameters. The cause of the memory increase between opti-

mized F1 and default setting in MHAP is again due to an increase in the

sketch size between runs. Because of k-mer multiplicity filtering,

DALIGNER’s memory usage is 2-3 times lower when parameterized for

an optimized F1 score.

Many of the trends from the C. elegans datasets mirror the perfor-

mance on the smaller E. coli dataset. Again, computational performance

on the larger C. elegans datasets is still dominated by Minimap (Supp.

Table 2. An overview of sensitivity and precision on simulated and real error-prone long read datasets. In both the PB and ONT simulated datasets, the

best values, shown in bold face, are statistically significantly better than the other values.

Tool Simulated PB E. coli Simulated ONT E. coli PB P6-C4 E. coli ONT SQK-MAP-006 E. coli

Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%)

BLASR 91.0 81.9 86.2 95.2 75.1 84.0 66.0 96.5 78.3 89.9 73.0 80.6

DALIGNER 92.4 91.9 92.1 94.9 97.6 95.9 83.8 85.8 84.8 92.9 91.0 91.9

MHAP 91.5 88.0 89.8 95.1 86.5 90.6 79.8 79.8 79.8 91.2 82.0 86.3

GraphMap 90.1 96.5 93.1 90.4 96.0 93.1 71.7 94.0 81.4 90.6 93.4 92.0

Minimap 88.9 94.8 91.8 94.6 99.0 96.7 59.6 83.8 69.7 91.2 95.4 93.2

We derived these values from the best settings of each tool (according to the best F1 score) after a parameter search. We calculated confidence intervals for the sensitivity,

specificity and F1 scores using three standard deviations around the observed values. The worst case the error never exceeded ±0.1%, ±0.1% and ±0.2% respectively.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Review on Error-prone Read Overlap Tools

Figs. S11, S12), being at least 5 times faster than any other method.

DALIGNER’s performance seems to generally scale well, especially

when k-mer filtering is performed (within an order of magnitude of Min-

imap). With default settings, MHAP is 2-3 times faster than

DALIGNER, but is several orders of magnitude slower, when the F1

score is optimized. The performance of GraphMap shows that it does not

scale well to large number of reads (>100000), and its calculations take

an order of magnitude longer than BLASR.

The performance of BLASR is a bit perplexing. When we use no k-

mer filtering in DALIGNER, BLASR is within an order of magnitude of

speed. When using optimized parameters, BLASR is also at least twice

as fast as MHAP, which becomes more evident when using a large num-

ber (>15) of threads. We note that these results seemingly contradict the

results found in previous studies (Berlin, et al., 2015; Myers, 2014). This

may be due to different datasets and technology versions used by the two

studies. It may also highlight the effects of parameterization of each tool

– a difficult but critical task when tuning the performance of these tools.

The trends in memory performance on the C. elegans datasets are

generally consistent with E. coli datasets (Supp. Fig. S11, S12). A nota-

ble exception however is the memory usage of DALIGNER, which

begins leveling off with increased number of reads. Unlike with the E.

coli dataset, this dataset is large enough that DALIGNER begins to split

the data into batches, reducing its memory usage.

6 Discussion
Our study highlights that there are important considerations to factor in

while developing new or improving existing tools.

6.1 Modularity

A tool that can report intermediate results may help reduce computation

in downstream applications. For example, modularizing overlap candi-

date detection, overlap validation, and alignment can provide flexibility

when used in different pipelines. Graphmap’s owler mode is an example

of this, enabling users to generate MHAP-like output for overlap regions,

rather than a more detailed alignment on detected regions. Further, com-

pliance to standardized output is highly recommended, including for

generating intermediate results. Doing so would not only allow one to

perform comparative performance evaluations on a variety of equivalent

metrics, but also allow for flexibility in creating new pipelines. Examples

of emergent output standards include the Graphical Fragment Assembly

(GFA) (https://github.com/pmelsted/GFA-spec) format, PAF (Li, 2016),

and the MHAP output format.

6.2 Cache Efficiency

Given the concepts presented, and along with our benchmarks performed

herein indicates that theoretical performance estimations based on time

complexity analysis might not be enough to conclude on what works

best. Traditional algorithm complexity analysis suffers from an assump-

tion that all memory access costs are the same. However, on modern

computers intermediate levels of fast-access cache exist between the

registers of the CPU and main memory. A failed attempt to read or write

data in the cache is called a cache miss, causing delays by requiring the

algorithm to fetch data from other cache levels or main memory.

Cache efficiency in algorithmic design has become a major considera-

tion, and in some cases will trump many time complexity based motiva-

tions for algorithmic development. For instance, though the expected

time complexity of DALIGNER has a quadratic component based on the

number of occurrences of a k-mer in the dataset, its actual computational

performance seems to be much better empirically. The authors claim this

is due to the cache efficiency of the method (compared to using an FM-

index) (Myers, 2014), and in practice this also seems to be the case, as

observed in our comparisons.

The basic concept of a cache efficient algorithm relies on minimizing

random access whenever possible, by serializing data accesses in blocks

that are small enough to fit into various levels of cache, especially at the

levels of cache with the lowest latency. Algorithms that exploit a specific

cache configuration utilize an I/O-model (also called the external-

memory model) (Aggarwal, et al., 1988; Demaine, 2002). Conceptually,

these algorithms must have explicit knowledge of the size of each com-

ponent of the memory hierarchy, and will adjust the size of contiguous

blocks of data to minimize data transfers from memory to cache.

In contrast to the I/O model, algorithms that are designed with cache

in mind, but do not explicitly rely on known cache size blocks are called

cache oblivious (Frigo, et al., 1999). Cache oblivious algorithms are

beneficial, as they do not rely on the knowledge of the processor archi-

tecture; instead they utilize classes of algorithms that are inherently

cache efficient such as scanning algorithms (e.g. DALIGNER’s merging

step of a sorted list).

6.3 Batching and Batch/Block Sizes

For many of the methods surveyed in this paper, memory usage can be

roughly quadratic relative to the number of reads, and at least linear to

the number of k-mers in the set. Thus, to perform all necessary compari-

sons (i.e. to compute an upper triangular matrix of candidate compari-

sons), the data must be processed in batches. Generally, it is better to use

as few blocks as possible, since the time required to perform all overlaps

is quadratic relative to the number of batches. Methods that have a very

low memory usage overall will be able to have the computational benefit

of splitting the data into fewer batches. Batching is handled in different

ways depending on the tool. Some tools have built-in splitting

(DALIGNER/DAZZLER database with DBsplit), and others have this

process built into their associated pipelines (e.g. MHAP and PBcR).

Other methods (BLASR, Minimap) seem to have more scalable memory

requirements, and may not require splitting.

6.4 Repetitive elements and sequence filtering

Any common regions due to homology or other repetitive elements

may confound read-to-read overlaps, and may be difficult to disambigu-

ate from true overlaps. Such repetitive elements may lead to many false

positives in overlap detection, and may increase the computational bur-

den, leading to lower quality in downstream assembly. Thus, it is com-

mon for overlap methods to employ sequence filtering, by removal or

masking of repetitive elements to improve algorithmic performance both

in run time and specificity. Many of the methods compared utilize k-mer

frequencies to filter highly repetitive k-mers using an absolute or percent

k-mer multiplicity. Another common filtering strategy is to prevent the

use of low complexity sequences.

7 Conclusions
There are many challenges in evaluating algorithms that function on

error-prone long reads, such as those from PB and ONT instruments.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Chu et al.

Although both sequencing technologies have comparable error rates,

characteristics of their errors as well as their read length distributions are

substantially different. Also, within each technology there are rapid

improvements in quality (Jain, et al., 2015; Laver, et al., 2015), causing

disagreement between datasets derived from the same technology.

Despite these issues, we show that Minimap is the most computation-

ally efficient method (in both time and memory) and is the most specific

and sensitive method on the ONT datasets tested. We note that Minimap

is not as sensitive or as specific as Graphmap, DALIGNER or MHAP on

the PB datasets tested. Our results shown that GraphMap and

DALIGNER are most specific and sensitive method on PB datasets

tested, though DALIGNER scales better computationally. PB being a

more mature technology compared to ONT, it is not surprising to see

several tools performing well on the platform.

Here, we have provided an overview of read-to-read overlap detection

concepts, comparing leading methods for researchers can make informed

decisions given their datasets and computational resources. We hope that

our elucidation to open problems and key concepts to consider will be a

helpful resource for those looking to develop new or improve on existing

overlap detection tools.

Acknowledgements
The authors would like to thank Sergey Koren, Ivan Sović for their help and sug-

gestions when running MHAP and GraphMap, respectively, as well as their in-

sights into the behaviour and results of each tool on different datasets.

Funding
We thank Genome Canada, Genome British Columbia, British Columbia Cancer

Foundation, and University of British Columbia for their financial support. The

work is also partially funded by the National Institutes of Health under Award

Number R01HG007182. The content of this work is solely the responsibility of

the authors, and does not necessarily represent the official views of the Na-

tional Institutes of Health or other funding organizations.

Conflict of Interest: none declared.

References
Aggarwal, A., et al. (1988) The input/output complexity of sorting and related

problems, Commun. ACM, 31, 1116-1127.

Alkan, C., et al. (2010) Limitations of next-generation genome sequence assembly,

Nat. Methods, 8, 61-65.

Benson, G., et al. (2013) Longest Common Subsequence in k Length Substrings.

In, Lecture Notes in Computer Science. pp. 257-265.

Berlin, K., et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing, Nat. Biotechnol., 33, 623-630.

Boža, V., Brejová, B. and Vinař, T. (2016) DeepNano: Deep Recurrent Neural

Networks for Base Calling in MinION Nanopore Reads.

Broder, A.Z. (1997) On the resemblance and containment of documents.

Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No.97TB100171). IEEE, pp. 21-29.

Burkhardt, S., Stefan, B. and Juha, K. (2002) One-Gapped q-Gram Filters for

Levenshtein Distance. In, Lecture Notes in Computer Science. pp. 225-234.

Carneiro, M.O., et al. (2012) Pacific biosciences sequencing technology for

genotyping and variation discovery in human data, BMC Genomics, 13, 375.

Chaisson, M.J. and Tesler, G. (2012) Mapping single molecule sequencing reads

using basic local alignment with successive refinement (BLASR): application

and theory, BMC Bioinformatics, 13, 238.

Chin, C.-S., et al. (2013) Nonhybrid, finished microbial genome assemblies from

long-read SMRT sequencing data, Nat. Methods, 10, 563-569.

David, M., et al. (2016) Nanocall: An Open Source Basecaller for Oxford

Nanopore Sequencing Data.

Demaine, E.D. (2002) Cache-oblivious algorithms and data structures, Lecture

Notes from the EEF Summer School on Massive Data Sets, 8, 1-249.

Eid, J., et al. (2009) Real-Time DNA Sequencing from Single Polymerase

Molecules, Science, 323, 133-138.

Eisenstein, M. (2015) Startups use short-read data to expand long-read sequencing

market, Nat. Biotechnol., 33, 433-435.

Ferragina, P., Paolo, F. and Giovanni, M. (2005) Indexing compressed text, J.

ACM, 52, 552-581.

Frigo, M., et al. (1999) Cache-oblivious algorithms. Foundations of Computer

Science, 1999. 40th Annual Symposium on. IEEE, pp. 285-297.

Goodwin, S., et al. (2015) Oxford Nanopore sequencing, hybrid error correction,

and de novo assembly of a eukaryotic genome, Genome Res., 25, 1750-1756.

Jain, M., et al. (2015) Improved data analysis for the MinION nanopore sequencer,

Nat. Methods, 12, 351-356.

Keich, U., et al. (2004) On spaced seeds for similarity search, Discrete Appl. Math.,

138, 253-263.

Laehnemann, D., Borkhardt, A. and McHardy, A.C. (2016) Denoising DNA deep

sequencing data-high-throughput sequencing errors and their correction, Brief.

Bioinform., 17, 154-179.

Laver, T., et al. (2015) Assessing the performance of the Oxford Nanopore

Technologies MinION, Biomol Detect Quantif, 3, 1-8.

Levene, M.J., et al. (2003) Zero-mode waveguides for single-molecule analysis at

high concentrations, Science, 299, 682-686.

Li, H. (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy

long sequences, Bioinformatics.

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform, Bioinformatics, 25, 1754-1760.

Loman, N.J., Quick, J. and Simpson, J.T. (2015) A complete bacterial genome

assembled de novo using only nanopore sequencing data, Nat. Methods, 12,

733-735.

Marçais, G. and Kingsford, C. (2011) A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers, Bioinformatics, 27, 764-770.

McCoy, R.C., et al. (2014) Illumina TruSeq synthetic long-reads empower de novo

assembly and resolve complex, highly-repetitive transposable elements, PLoS

One, 9, e106689.

Morgulis, A., et al. (2006) A Fast and Symmetric DUST Implementation to Mask

Low-Complexity DNA Sequences.

Myers, G. (2014) Efficient Local Alignment Discovery amongst Noisy Long

Reads. In, Algorithms in Bioinformatics. Springer, pp. 52-67.

Ono, Y., Asai, K. and Hamada, M. (2013) PBSIM: PacBio reads simulator--toward

accurate genome assembly, Bioinformatics, 29, 119-121.

Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of

the tuber crop potato, Nature, 475, 189-195.

Quick, J., et al. (2014) A reference bacterial genome dataset generated on the

MinION™ portable single-molecule nanopore sequencer, Gigascience, 3, 22.

Ross, M.G., et al. (2013) Characterizing and measuring bias in sequence data,

Genome Biol., 14, R51.

Smith, D.R., et al. (2008) Rapid whole-genome mutational profiling using next-

generation sequencing technologies, Genome Res., 18, 1638-1642.

Sović, I., et al. (2016) Fast and sensitive mapping of nanopore sequencing reads

with GraphMap, Nat. Commun., 7, 11307.

Sović, I., et al. (2016) Evaluation of hybrid and non-hybrid methods for de novo

assembly of nanopore reads, Bioinformatics.

Stoddart, D., et al. (2009) Single-nucleotide discrimination in immobilized DNA

oligonucleotides with a biological nanopore, Proc. Natl. Acad. Sci. U. S. A.,

106, 7702-7707.

Travers, K.J., et al. (2010) A flexible and efficient template format for circular

consensus sequencing and SNP detection, Nucleic Acids Res., 38, e159.

Treangen, T.J. and Salzberg, S.L. (2012) Repetitive DNA and next-generation

sequencing: computational challenges and solutions, Nat. Rev. Genet., 13, 36-

46.

Ummat, A. and Bashir, A. (2014) Resolving complex tandem repeats with long

reads, Bioinformatics, 30, 3491-3498.

Wang, J.R. and Jones, C.D. (2015) Fast alignment filtering of nanopore sequencing

reads using locality-sensitive hashing. 2015 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM).

Waterman, M.S. (1995) Dynamic Programming Alignment of Two Sequences. In,

Introduction to Computational Biology. pp. 183-232.

Yang, C., et al. (2016) NanoSim: nanopore sequence read simulator based on

statistical characterization.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/

