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Abstract 
Identifying overlaps between error-prone long reads, specifically those from Oxford Nanopore Tech-

nologies (ONT) and Pacific Biosciences (PB), is essential for certain downstream applications, includ-

ing error correction and de novo assembly. Though akin to the read-to-reference alignment problem, 

read-to-read overlap detection is a distinct problem that can benefit from specialized algorithms that 

perform efficiently and robustly on high error rate long reads. Here, we review the current state-of-

the-art read-to-read overlap tools for error-prone long reads, including BLASR, DALIGNER, MHAP, 

GraphMap, and Minimap. These specialized bioinformatics tools differ not just in their algorithmic 

designs and methodology, but also in their robustness of performance on a variety of datasets, time 

and memory efficiency, and scalability. We highlight the algorithmic features of these tools, as well as 

their potential issues and biases when utilizing any particular method. We benchmarked these tools, 

tracking their resource needs and computational performance, and assessed the specificity and pre-

cision of each. The concepts surveyed may apply to future sequencing technologies, as scalability is 

becoming more relevant with increased sequencing throughput. 

Contact: cjustin@bcgsc.ca; ibirol@bcgsc.ca 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  
As today’s lion share of DNA and RNA sequencing is carried out on 

Illumina sequencing instruments (San Diego, CA), most de novo assem-

bly methods are optimized expecting short read data with an error rate 

less than 1% (Laehnemann, et al., 2016; Ross, et al., 2013). However, 

their associated short read length and GC bias bring significant challeng-

es for downstream analyses (Ross, et al., 2013; Smith, et al., 2008). For 

instance, short read lengths make it difficult to assemble entire genomes 

due to repetitive elements (Alkan, et al., 2010). The development of 

paired-end and mate-pair sequencing library protocols has helped miti-

gate this problem (Potato Genome Sequencing Consortium, 2011), but is 

still a long-standing computational problem for de novo genome assem-

bly (Treangen and Salzberg, 2012). Co-localization of short reads is a 

potential strategy to increase the contiguity of assemblies, using technol-

ogies such as Illumina TruSeq synthetic long reads (McCoy, et al., 2014) 

and 10X Genomics Chromium (Pleasanton, CA) (Eisenstein, 2015); 

however, tandem repeats in the same long single DNA fragment may 

continue confounding assembly methodologies. In that respect, long 

sequencing holds great promise, and has proved useful in resolving such 

issues (Ummat and Bashir, 2014). Still, the appreciable error rates asso-

ciated with technologies offered by Oxford Nanopore Technologies 

(Oxford, UK; ONT) and Pacific Biosciences (Menlo Park, CA; PB) pose 

new challenges for the de novo assembly problem. 

Read-to-read overlap detection is typically the first step of de novo 

Overlap-Layout-Consensus (OLC) assembly, which dominate the as-

sembly of long reads (Berlin, et al., 2015; Loman, et al., 2015). The first 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint 

mailto:cjustin@bcgsc.ca
mailto:ibirol@bcgsc.ca
https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Chu et al. 

long read de novo assembly methods employed error correction as their 

initial pipeline step (Berlin, et al., 2015; Chin, et al., 2013; Loman, et al., 

2015), which also requires read-to-read overlaps. Alternatively, one can 

forego the error correction stages of assembly in favor of overlap be-

tween uncorrected raw reads (Li, 2016). The benefits of an uncorrected 

read-to-read overlap paradigm for assembly include a lower computation 

cost, and repressing artifacts that may arise from read correction, such as 

collapsed homologous regions. On the other hand, for these methods, 

correctness of the initial set of overlaps are even more critical. Further, 

overlap detection has been identified as the efficiency bottleneck when 

using OLC assembly methodology (Myers, 2014) for large genomes. 

At present, multiple tools are capable of overlapping error-prone long 

read data at varying levels of accuracy. These methods differ in their 

methodology, but have some common aspects, such as the use of short 

exact subsequences (seeds) to discover candidate overlaps. Here we 

provide an overview of how each of these tool work, along with the 

conceptual motivations within their design. 

2 Background 

2.1 Current challenges when using PB sequencing 

PB sequencing uses a DNA polymerase anchored in a well small enough 

to act as a zero-mode waveguide (ZMW) (Levene, et al., 2003). The 

polymerase acts on a single DNA molecule incorporating fluorophores 

labeled nucleotides, which are excited by a laser. The resulting optical 

signal is recorded by a high-speed camera in real time (Eid, et al., 2009). 

Base calling errors on this platform occur at a rate of around 16% 

(Laehnemann, et al., 2016), and are dominated by insertions (Carneiro, et 

al., 2012; Ross, et al., 2013), which are possibly caused by the dissocia-

tion of cognate nucleotides from the active site before the polymerase 

can incorporate the bases. Mismatches in the reads are mainly caused by 

spectral misassignments of the fluorophores used (Eid, et al., 2009). 

Deletions are likely caused by base incorporations that are faster than the 

rate of data recording (Eid, et al., 2009). The errors seem to be non-

systematic, resulting in the lowest GC bias to compared to other plat-

forms (Ross, et al., 2013). 

The error rate of PB sequencing can be reduced through the use of cir-

cular consensus sequencing (CCS) (Travers, et al., 2010). In CCS, a 

hairpin adaptor is ligated to both sides of a linear DNA sequence. During 

sequencing, the polymerase can then pass multiple times over the same 

sequence (depending on the processivity of the polymerase). The multi-

ple passes are be called into consensus and collapsed, yielding higher 

quality yet shorter reads, resulting in lower throughput. Consequently, 

many PB datasets generated do not utilize this methodology. Following 

this trend, the methods for overlap detection outlined in this paper have 

thus been designed for non-CCS reads. 

2.2 Current challenges when using ONT sequencing 

ONT sequencing works by measuring minute changes in ionic current 

across a membrane when a single DNA molecule is driven through a 

biological nanopore (Stoddart, et al., 2009). Currently, signal data is 

streamed to a cloud-based service called Metrichor that at the time of 

writing this paper, still uses hidden Markov models (HMM) with states 

for every possible 6-mer to render base calls on the data. 

In the current HMM base calling methodology, if one state is identical 

to its next state, no net change in the sequence can be detected. This 

means that homopolymer states longer than five cannot be captured as 

they would be collapsed into a single 6-mer. It has also been observed 

that there are some 6-mers, particularly homopolymers, underrepresented 

in the data (Jain, et al., 2015; Loman, et al., 2015) when compared to the 

6-mer content of the reference sequence, suggesting that there may be a 

systematic bias to transition in some states over others. In addition, there 

is some evidence suggesting GC biases within this type of data 

(Goodwin, et al., 2015; Laver, et al., 2015). We note that the base calling 

problem is under active development, with alternative base calling algo-

rithms such as Nanocall (David, et al., 2016) and DeepNano (Boža, et 

al., 2016), recently made publicly available.  

One can mitigate error rates in ONT data by generating two-direction 

(2D) reads. Similar to CCS for the PB platform, 2D sequencing involves 

ligating a hairpin adaptor, and allowing the nanopore to process both the 

forward and reverse strand of a sequence (Jain, et al., 2015). Combining 

information from both strands was shown to decrease the error rate from 

40-30% to 10-20% with earlier chemistry (Jain, et al., 2015; Quick, et 

al., 2014), similar to the error rates of non-CCS PB sequencing. For the 

comparisons presented in this paper, we only consider 2D reads, as we 

expect investigators to prefer using higher quality ONT data. 

3 Definitions and Concepts 
In the context of DNA sequencing, an overlap is a broad term referring 

to a sequence match between two reads due to local regions on each read 

that originate from the same locus within a larger sequence (e.g., ge-

nome). The detail at which an overlap can be described can have large 

implications on both the downstream processing and computational costs 

associated with overlap computation, as discussed below. 

Overlap between two reads may be full (complete) or partial, and may 

dovetail each other or one may be contained in the other (Fig. 1). The 

former pair of classifications often is a manifestation of data quality, but 

may also indicate haplotypic variations or polymorphisms. Full overlaps 

are overlaps that cover at least one end of a read in an overlap pair, 

whereas partial overlaps cover any portion of either read without the 

ends (Fig. 1). Sources contributing to observed partial overlaps include 

false positives due to near-repeats, chimeric sequences, or other artifacts 

(Li, 2016). Disambiguating the source of the overhang in partial overlaps 

may be important to downstream applications, especially when using 

non-haploid, metagenomic, and transcriptomic datasets. 

The task of determining overlap candidates (Fig. 2A) is usually the 

first step in an overlap algorithm, and it refers to a simple binary pairing 

of properly oriented reads. To find overlap candidates on error-prone 

long reads, most methods look for matches of short sequence seeds (k-

mers) between the sequences. With a collection of overlap candidates, 

one can build a directionless overlap graph.  

Overlap distance (Fig. 2B) refers to the relative positions between two 

overlapping reads. These distances provide directionality to the edges of 

the overlap graph. Theoretically, if the sequences are insertion or dele-

tion (indel) -free, then a correct overlap distance would be sufficient to 

produce a layout and build a consensus from the reads. However, even a 

single indel error in one of the reads will cause a shift of coordinates, 

which would complicate consensus calling. Also, one cannot distinguish 

 

Fig. 1.  Visualization of partial and full overlaps in dovetail or containment forms. 
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between partial and complete overlaps just with the distance information 

alone. Overlap distance can be estimated without a full alignment, based 

on a small number of shared seeds. 

Overlap regions (Fig. 2C) refer to relative positions between overlap-

ping reads, with the added information of start and end positions of the 

overlap along each read. If no errors are present, the sizes of the regions 

on both reads should be identical. In practice, due to high indel errors in 

long reads, this is rarely the case. Nevertheless, one can use this infor-

mation to distinguish between partial and full overlaps. Similar to over-

lap distance, overlap regions can be estimated without a full alignment, 

but typically, more shared seeds are required for confident estimations. 

There are many similarities between local alignments and overlaps. 

However, although a local aligner can serve as a read overlap tool 

(Chaisson and Tesler, 2012; Sović, et al., 2016), overlaps are not the 

same as local alignments. At the minimum, a read overlapper tool may 

simply indicate overlap candidates, rather than full base-to-base align-

ment coordinates. In some cases, similar to the discovery of partial over-

laps, it may be important to find local alignments, as they may help 

discover repeats, chimeras, undetected vector sequences and other arti-

facts associated or confused with an overlap (Myers, 2014). Although, it 

is possible for an overlap detection algorithm to produce a full account of 

all the bases in overlapping reads, doing so would typically require cost-

ly algorithms like Smith-Waterman (Waterman, 1995). 

All tools presented in this review have the ability to provide overlap 

candidates with at least an estimated local overlap region. Many tools 

can produce full local alignments, but due to the high computational 

costs, some tools provide an option for computing overlap regions and 

local alignments separately (such as GraphMap (Sović, et al., 2016)). 

Alternatively, other tools may not provide alignment refinement (such as 

MHAP (Berlin, et al., 2015) and Minimap (Li, 2016)). Indeed, since a 

full alignment between every pair of reads is not needed in some pipe-

lines (Berlin, et al., 2015; Li, 2016), it is beneficial for overlap tools to 

be able to skip the computation of a full alignment. 

4 Long Read Overlap Methodologies 

Sequence overlap algorithms look for shared seeds between reads. Due 

to the high error rates of sequence reads on the PB and ONT platforms, 

these seeds tend to be very short (Supp. Figs. S1 and S2). The core dif-

ferences between algorithms (Fig. 3) relate to not only how shared seeds 

are found, but in the way the seeds are used to determine an overlap 

candidate. After a method finds candidates, it will then refine them, 

usually using relative locations of the seeds within reads, and computing 

the estimated overlap regions. It is also common to check whether the 

candidate has a valid overlap by considering consistency of relative seed 

locations. Each method produces a list of overlap candidates, and pro-

vides an overlap region between reads. In some pipelines, the majority of 

the compute time is spent on realigning overlapping reads for error cor-

rection after candidates are found (Sović, et al., 2016). In others, precise 

alignments may not be needed (Li, 2016). Thus, the output of each over-

lap algorithm contains, at minimum, the overlap regions, and often with 

some auxiliary information for downstream applications (Table 1). 

4.1 BLASR 

BLASR was one of the first tools developed specifically to map PB data 

to a reference (Chaisson and Tesler, 2012). It utilizes methods adapted 

for fast short read alignments to long read data with high indel rates, 

combining concepts from Sanger-era and next-generation sequencing 

alignments. BLASR uses an FM-index (Ferragina, et al., 2005) to find 

short stretches of clustered alignment anchors (of length k or longer), 

generating a short list of candidate intervals/clusters to consider. A score 

is assigned to the clusters based on the frequency of alignment anchors. 

Top candidates are then processed into a full alignment. 

Although BLASR was originally designed for read mapping, it has 

since been successfully used to produce overlaps for de novo assembly 

of several bacterial genomes (Chin, et al., 2013). However, to use the 

method for overlap detection one needs to carefully tune its parameters. 

For example, to achieve high sensitivity, BLASR needs prior knowledge 

of the read mapping frequency to parameterize nBest and nCandidates 

(default 10 for both) to a value higher than the coverage depth. Runtime 

 

Fig. 2.  An overview of possible outcomes from an overlap detection algorithm. Each 

level has a computational cost associated with it, with the general trend being A<B<C. 

The common seeds-based comparison methods are not the only way to obtain these 

overlaps, but it is the most popular method used. 

 

Fig. 3.  Visual overview of overlap detection algorithms. At the least, each method produces overlap regions. They may also generate auxiliary information, such as alignment trace 

points or full alignments. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2016. ; https://doi.org/10.1101/081596doi: bioRxiv preprint 

https://doi.org/10.1101/081596
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Chu et al. 

of the tool is highly dependent on these two parameters (Berlin, et al., 

2015), which may be due to the cost of computing a full alignment or the 

added computational cost per lookup to obtain more anchors. 

What make this method slower are the choice of data structure, and its 

search for all possible candidates (not only the best candidates) for each 

lookup performed. The theoretical time complexity of a lookup in an 

FM-index data structure is linear with respect to the number of bases 

queried (Ferragina, et al., 2005), albeit not being very cache efficient 

(Myers, 2014). Thus, if one maps each read to a unique location, this 

would only take linear time with respect to the number of bases in the 

dataset. However, since only short (and often non-unique, cf. Supp. Figs. 

S1, S2) contiguous segments can be queried due to the high error rate, 

extra computation is required to consider all additional candidate anchor 

positions. Finally, BLASR computes full alignments rather than just 

overlap regions, thus, possibly utilizing more computational resources 

than needed for downstream processes.  

4.2 DALIGNER 

DALIGNER was the first tool designed specifically for finding read-to-

read overlaps using PB data (Myers, 2014). This method focuses on 

optimizing the cache efficiency, in response to the relatively poor cache 

performance of the FM-index suffix array/tree data structure. It works by 

first splitting the reads into blocks, sorting the k-mers in each block, and 

then merging those blocks. The theoretical time complexity of 

DALIGNER is dominated by the merging step, which is quadratic in the 

number of occurrences of a given k-mer in a dataset (Myers, 2014). 

To optimize speed and mitigate the effect of merging, DALIGNER 

filters out or decreases the occurrences of some k-mers in the dataset. 

Using a method called DUST (Morgulis, et al., 2006), DALIGNER (-

mdust option) masks out low complexity regions (e.g. homopolymers) in 

the reads before the k-mers are extracted. Using a second method it fil-

ters out k-mers by multiplicity (-t option), increasing the speed of com-

putation, decreasing memory usage, and mitigating the effects of repeti-

tive sequences. However, these options also carry the risk of filtering out 

important k-mers needed for overlaps. 

To use DALIGNER efficiently on larger datasets, splitting of the da-

taset into blocks is necessary. The comparisons required to perform all 

overlaps is quadratic in time relative to the number of blocks. Unique 

amongst the overlap tools, DALIGNER provides a means to split input 

data based on the total number of base pairs and read lengths (using the 

DBsplit utility). DALIGNER optionally outputs full overlaps, but will 

first output local alignment tracepoints to aid in computing a full align-

ment in later steps, producing large auxiliary files. 

4.3 MHAP 

MHAP (Berlin, et al., 2015) is a tool that uses the MinHash algorithm 

(Broder, 1997) to detect overlaps based on k-mer similarity between any 

two reads. MinHash computes the approximate similarity between two or 

more sets by hashing all the elements in the set with multiple hash func-

tions, and storing the elements with the smallest hashed values (mini-

mizers) in a sketch list. Using the minimum hash value is a form of local-

ity-sensitive hashing, since it causes similar elements in a set to hash to 

the same value. In MHAP, overlap candidates are simply two k-mer sets 

that have a Jaccard index score above a predefined threshold.  

After the overlap candidates are found, overlap regions are computed 

using the median relative positions of the shared minimizers. Because 

the sketch size used for each read is the same, MHAP may waste space 

and lose sensitivity if reads vary widely in length (Li, 2016). The time 

complexity of computing a single MinHash sketch is O(kl), where l is the 

number of k-mers in the read set. Thus, evaluating n reads for a sketch 

size h for all resemblances takes O((hn)2) time (Broder, 1997). MHAP 

further reduces its time complexity by storing h min-mers in h hash 

tables to use for lookups to find similar reads (Berlin, et al., 2015). 

Like DALIGNER, MHAP functions best when repetitive elements are 

not used as seeds. MHAP supports the input of a list of k-mers, ordered 

by multiplicity, obtained by using a 3rd party k-mer counting tool, such 

as Jellyfish (Marçais and Kingsford, 2011). We note that, although this 

strategy would improve the performance of the tool, the computational 

cost of k-mer counting may not be trivial.  

MHAP’s computational performance is confounded by its implemen-

tation. While most high-performance bioinformatics tools utilize C/C++ 

for their performance benefits, MHAP is implemented in Java. Another 

method called Minlookup (Wang and Jones, 2015), written in C, utilizes 

a similar algorithm to MHAP, however it is designed with ONT datasets 

in mind. The authors demonstrate improved performance associated with 

their implementation. However, Minlookup was not evaluated here as it 

is in early development, and cannot use multiple CPU threads. 

4.4 GraphMap 

GraphMap, like BLASR, was designed primarily as a read mapping tool 

(Sović, et al., 2016), but for ONT data. It specifically addresses the over-

lap detection problem, notably producing full alignments. GraphMap 

also provides an option to generate overlap regions exclusively. 

In GraphMap the “-owler” option activates a mode specifically de-

signed for computing overlaps. Like its standard mapping algorithm, it 

Table 1.  Summary of overlap tools output formats, associated pipelines, and availability. 

Software Algorithm features Associated assembly tools Output Availability 

BLASR FM-Index, anchor clusters PBcR SAM alignment, other proprietary 

formats (overlap regions) 

https://github.com/PacificBiosciences/blasr 

Daligner Cache efficient k-mer sort 

(radix) and merge 

DAZZLER, MARVEL, 

FALCON 

Local Alignments, LAS format 

(alignment tracepoints) 

https://github.com/thegenemyers/DALIGNER  

MHAP MinHash PBcR, Canu MHAP output format (overlap 

regions) 

https://github.com/marbl/MHAP 

GraphMap Gapped q-gram (spaced 

seeds), colinear clustering 

Ra SAM alignment, MHAP output 

format (overlap regions) 

https://github.com/isovic/GraphMap 

Minimap Minimizer colinear clustering Miniasm PAF (overlap regions) https://github.com/lh3/Minimap 
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first creates a hash table of seeds from the entire dataset. The seeds it 

uses are not k-mers, but rather gapped q-grams (Burkhardt, et al., 2002) – 

k-mers with wild card positions, also called spaced seeds (Keich, et al., 

2004). It is not clear what gapped q-grams work optimally with ONT or 

PB data; more research is needed to determine the optimal seeds to cope 

with high error rates. The current implementation uses a hardcoded seed 

that is 12 bases long with an indel/mismatch allowed in the middle (6 

matching bases, 1 indel/mismatch base, followed by 6 matching bases). 

GraphMap then collects seed hits, using them for finding the longest 

common subsequence in k-length substrings (Benson, et al., 2013). The 

output from this step is then filtered to find collinear chains of seeds 

(private correspondence with Ivan Sović). The bounds of these chains 

are then returned, using the MHAP output format. 

4.5 Minimap 

Minimap (Li, 2016) is an overlapper/mapping tool that combines con-

cepts from many of its predecessors, such as DALIGNER (k-mer sorting 

for cache efficiency), MHAP (computing minimizers) and GraphMap 

(clustering collinear chains of matching seeds). Minimap subsamples the 

hashed k-mer space by computing minimizers, and compiles the corre-

sponding k-mers along with their location on their originating reads.  

Like MHAP, the use of repetitive k-mers as the min-k-mer can de-

grade the performance of overlap detection. To minimize the effect of 

repetitive elements, Minimap uses an invertible hash function when 

choosing min-k-mers. This is similar to DALIGNER’s use of DUST; it 

works by preventing certain hash values that correspond to low complex-

ity sequences. 

Also similar to DALIGNER, Minimap was designed with cache effi-

ciency in mind. It stores its lists of minimizers initially in an array, which 

is later sorted for the seed merging step. Though the computational cost 

incurred by sorting the list can negatively impact performance compared 

with the constant cost of insertion in a hash table, its cache performance 

outperforms a conventional hash table. All hits between two reads are 

then collected using this sorted set, and are clustered together into ap-

proximately collinear hits. The overlap regions for each pair of overlaps 

are then finally outputted in pairing mapping format (PAF) (Li, 2016). 

5 Benchmarking 
We profiled and compared results from BLASR, DALIGNER, MHAP, 

GraphMap, and Minimap, using publicly available long read datasets 

with the newest chemistries available at the time of the study (Supp. 

Table S1). For PB we used E. coli (P6-C4) and C. elegans whole genome 

shotgun sequencing datasets. For ONT we used an E. coli (SQK-MAP-

006) dataset. We also used simulated E. coli datasets for the PB and 

ONT platforms using PBSim (Ono, et al., 2013) and NanoSim (Yang, et 

al., 2016), respectively, and simulated ONT C. elegans reads using Na-

noSim (Supp. Table S1). Only the E. coli datasets were used in a pa-

rameter sweep for in-depth evaluations of performance. 

5.1 Sensitivity and FDR 

We profiled the sensitivity and false discovery rate (FDR = 1 - precision) 

on the experimental PB P6-C4 E. coli and the ONT SQK-MAP-006 E. 

coli datasets. We also evaluated the tools on simulated data generated 

based on these datasets. Our ground truth for the real dataset was deter-

mined via bwa mem alignments to a reference, using -x pacbio and ont2d 

options, respectively (Li and Durbin, 2009). We note that these align-

ments may have missing or false alignments. However, these can still 

serve as a good estimate for ground truth comparisons, since mismatch 

rate to a reference is much lower than the observed mismatch between 

overlapping reads. In the latter case, reads that are, say, 80% accurate 

will have a mutual agreement of 64% on average. In addition, due to our 

reference-based approach, our metrics are resilient against false overlaps 

caused by repetitive elements. Further, all tools are compared against the 

same alignments; hence we expect our analysis to preserve the relative 

performance of tools. Finally, there is no ambiguity for ground truth in 

the simulated datasets, as each simulation tool reports exactly where in 

the genome the reads were derived from, allowing us to calculate the 

exact precision and sensitivity of each method.  

To produce a fair comparison of the tools, we used a variety of param-

eters for each (Supp. note S1). These parameters were chosen based on 

tool documentation, personal correspondence with the tool authors, as 

well as our current understanding of their algorithms. We ran MHAP 

with a list of k-mer counts derived from Jellyfish (Marçais and 

Kingsford, 2011) for each value of k tested to help filter repetitive k-

mers. GraphMap could not be parameterized when running in the “owl-

er” mode, and had only one set of running parameters. 

We counted an overlap as correct when the overlapping pair was pre-

sent in our ground truth with the correct strand orientation. We did not 

take into account reported lengths of overlap, but note that this infor-

mation may be important (e.g. to improve performance of realignment). 

For each tool we computed the skyline, or Pareto-optimal results, in our 

tests (the points with the highest sensitivity for a given FDR), and plotted 

these results on receiver operating characteristic (ROC)-like plots (fea-

turing FDR rather than the traditional false positive rate).  

We can see that although many tools have similar sensitivity and FDR 

depending on the parameterization, the overall trends reveal differences 

in sensitivity and FDR on each specific datatype (Fig. 4). For instance, 

MHAP can achieve high sensitivity on all datasets but lacks precision 

compared to most other methods on the ONT datasets. The only other 

tool that may have less precision on the ONT datasets is BLASR. 

DALIGNER proves to have a high sensitivity and precision, but it is not 

A 

 

B 

 

  

C 

 

D 

 

  

Fig. 4.  ROC-like plot on BLASR, DALIGNER, GraphMap, MHAP, GraphMap, 

and MHAP. A: PB E. coli simulated with PBsim. B: PB P6-C4 E. coli dataset. C: ONT 

E. coli simulated with Nanosim. D: ONT SQK-MAP-006 E. coli dataset. 
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always the winner, especially on the ONT dataset. Minimap has high 

sensitivity and precision on the ONT datasets but does not maintain such 

performance on the PB dataset. Finally, the results for GraphMap were 

competitive despite using a single parameterization. 

These plots reveal that selection of operating parameters very much 

depends on the balance of project-specific importance attributed to sensi-

tivity and precision, as expected. For instance, the importance of sensi-

tivity is clear as it provides critical starting material for downstream 

processing. On the other hand, low sensitivity can be tolerated if the 

downstream method employs multiple iterations of error correction, 

because as errors are resolved within each iteration, the sensitivity is 

expected to increase. However, these downstream operations of course 

may come with a high computing cost. 

The F1 score (also F-score or F-measure) represents a common way to 

combine these two score. It is the harmonic mean between the sensitivity 

and precision. To better compare these methods, we computed F1 scores 

for each using a range of parameters, and considered the highest value 

for each method to be representative of its overall performance. We 

calculated confidence intervals for the F1 scores using three standard 

deviations around the observed values, which revealed that reported F1 

values were statistically significantly different from each other. 

For the simulated PB data, GraphMap has the highest F1 score (de-

spite being designed for ONT data and not PB data) followed by 

DALIGNER, Minimap, MHAP, and BLASR (Table 2). For the real PB 

data DALIGNER has the highest F1 score followed by GraphMap, 

MHAP, and BLASR. For both the simulated and real ONT datasets, 

Minimap was the best method, yielding the highest F1 score, followed 

by GraphMap, MHAP and BLASR (Table 2). 

Overall, these results suggest that some tools may perform substantial-

ly differently on data from different platforms. We hypothesize that, 

differences in the read length distributions and error type frequencies, 

could be responsible for this behaviour.  

5.2 Computational Performance 

To measure the computational performance of each method, we ran 

each tool with default parameters (with some exceptions see Supp. note 

S2) as well as another run with optimized parameters yielding the high-

est F1 score (Table 2 and Supp. note S1) obtained after a parameter 

sweep on the simulated datasets. We note that GraphMap’s owler mode 

could not be parameterized, except for choosing the number of threads, 

so there was no difference in the settings for default and highest F1 score 

parameterization runs. We ran our tests serially on the same 64-core Intel 

Xeon CPU E7-8867 v3 @ 2.50GHz machine with 2.5TB of memory. We 

measured the peak memory, CPU and wall clock time across read sub-

sets to show the scalability of each method. 

We investigated the scalability of each method, testing each method 

using 4, 8, 16 or 32 threads of execution on the E. coli datasets (Supp. 

Figs. S3-10). Despite specifying the number of threads, each tool often 

used more or fewer threads than expected (Supp. Figs. S3, S4, S11, S12). 

In particular, MHAP tended to use more threads than the number we 

specified. 

On all tested E. coli datasets in our study, we observe that Minimap is 

the most computationally efficient tool, robustly producing overlap re-

gions at least 3-4 times faster than all other methods, even when parame-

terizing for optimal F1 score (Supp. Fig. S7, S8). Determining the next 

fastest method is confounded by the effect of parameterization. For in-

stance when considering only our F1 score optimized settings, 

DALIGNER, generally keeping within an order of magnitude or less of 

Minimap. On the other hand, DALIGNER can be 2-5 times slower than 

MHAP on some datasets under default parameters.  

With default settings, DALIGNER performs up to 10 times slower 

than F1 score optimized settings. This primarily occurs because the k-

mer filtering threshold (-t) in the F1 optimized parameterization not only 

increases specificity but also reduces runtime. In contrast, our parameter-

ization to optimize the F1 score in MHAP decreases the speed (by a 

factor of 3-4). In this case, the culprit was the sketch size (--num-hashes) 

used; larger sketch sizes increase sensitivity at the cost of time. 

Finally, GraphMap is generally the least scalable method, the slowest 

when considering default parameters only, and only 1-2 times faster than 

BLASR when considering F1 optimized settings. BLASR is also able to 

scale better than GraphMap to a more threads (Supp. Figs. S7, S8). 

In addition to its impressive computational performance, Minimap us-

es less memory than almost all methods on tested E. coli datasets (Supp. 

Figs S9, S10), staying within an order of magnitude of BLASR on aver-

age, despite the latter employing an FM-index. Memory usage in 

GraphMap seems to scale linearly with the number of reads at a rate 

nearly 10 times that of the BLASR or Minimap, likely owing to the hash 

table it uses. The memory usage characteristics of DALIGNER and 

MHAP are less clear, drastically changing given the parameters utilized. 

Overall MHAP has the worst memory performance even when using 

default parameters. The cause of the memory increase between opti-

mized F1 and default setting in MHAP is again due to an increase in the 

sketch size between runs. Because of k-mer multiplicity filtering, 

DALIGNER’s memory usage is 2-3 times lower when parameterized for 

an optimized F1 score. 

Many of the trends from the C. elegans datasets mirror the perfor-

mance on the smaller E. coli dataset. Again, computational performance 

on the larger C. elegans datasets is still dominated by Minimap (Supp. 

Table 2.  An overview of sensitivity and precision on simulated and real error-prone long read datasets. In both the PB and ONT simulated datasets, the 

best values, shown in bold face, are statistically significantly better than the other values.  

Tool Simulated PB E. coli Simulated ONT E. coli PB P6-C4 E. coli ONT SQK-MAP-006 E. coli 

Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) 

BLASR 91.0 81.9 86.2 95.2 75.1 84.0 66.0 96.5 78.3 89.9 73.0 80.6 

DALIGNER 92.4 91.9 92.1 94.9 97.6 95.9 83.8 85.8 84.8 92.9 91.0 91.9 

MHAP 91.5 88.0 89.8 95.1 86.5 90.6 79.8 79.8 79.8 91.2 82.0 86.3 

GraphMap 90.1 96.5 93.1 90.4 96.0 93.1 71.7 94.0 81.4 90.6 93.4 92.0 

Minimap 88.9 94.8 91.8 94.6 99.0 96.7 59.6 83.8 69.7 91.2 95.4 93.2 

We derived these values from the best settings of each tool (according to the best F1 score) after a parameter search. We calculated confidence intervals for the sensitivity, 

specificity and F1 scores using three standard deviations around the observed values. The worst case the error never exceeded ±0.1%, ±0.1% and ±0.2% respectively. 
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Figs. S11, S12), being at least 5 times faster than any other method. 

DALIGNER’s performance seems to generally scale well, especially 

when k-mer filtering is performed (within an order of magnitude of Min-

imap). With default settings, MHAP is 2-3 times faster than 

DALIGNER, but is several orders of magnitude slower, when the F1 

score is optimized. The performance of GraphMap shows that it does not 

scale well to large number of reads (>100000), and its calculations take 

an order of magnitude longer than BLASR. 

The performance of BLASR is a bit perplexing. When we use no k-

mer filtering in DALIGNER, BLASR is within an order of magnitude of 

speed. When using optimized parameters, BLASR is also at least twice 

as fast as MHAP, which becomes more evident when using a large num-

ber (>15) of threads. We note that these results seemingly contradict the 

results found in previous studies (Berlin, et al., 2015; Myers, 2014). This 

may be due to different datasets and technology versions used by the two 

studies. It may also highlight the effects of parameterization of each tool 

– a difficult but critical task when tuning the performance of these tools. 

The trends in memory performance on the C. elegans datasets are 

generally consistent with E. coli datasets (Supp. Fig. S11, S12). A nota-

ble exception however is the memory usage of DALIGNER, which 

begins leveling off with increased number of reads. Unlike with the E. 

coli dataset, this dataset is large enough that DALIGNER begins to split 

the data into batches, reducing its memory usage. 

6 Discussion 
Our study highlights that there are important considerations to factor in 

while developing new or improving existing tools. 

6.1 Modularity 

A tool that can report intermediate results may help reduce computation 

in downstream applications. For example, modularizing overlap candi-

date detection, overlap validation, and alignment can provide flexibility 

when used in different pipelines. Graphmap’s owler mode is an example 

of this, enabling users to generate MHAP-like output for overlap regions, 

rather than a more detailed alignment on detected regions. Further, com-

pliance to standardized output is highly recommended, including for 

generating intermediate results. Doing so would not only allow one to 

perform comparative performance evaluations on a variety of equivalent 

metrics, but also allow for flexibility in creating new pipelines. Examples 

of emergent output standards include the Graphical Fragment Assembly 

(GFA) (https://github.com/pmelsted/GFA-spec) format, PAF (Li, 2016), 

and the MHAP output format. 

6.2 Cache Efficiency 

Given the concepts presented, and along with our benchmarks performed 

herein indicates that theoretical performance estimations based on time 

complexity analysis might not be enough to conclude on what works 

best. Traditional algorithm complexity analysis suffers from an assump-

tion that all memory access costs are the same. However, on modern 

computers intermediate levels of fast-access cache exist between the 

registers of the CPU and main memory. A failed attempt to read or write 

data in the cache is called a cache miss, causing delays by requiring the 

algorithm to fetch data from other cache levels or main memory. 

Cache efficiency in algorithmic design has become a major considera-

tion, and in some cases will trump many time complexity based motiva-

tions for algorithmic development. For instance, though the expected 

time complexity of DALIGNER has a quadratic component based on the 

number of occurrences of a k-mer in the dataset, its actual computational 

performance seems to be much better empirically. The authors claim this 

is due to the cache efficiency of the method (compared to using an FM-

index) (Myers, 2014), and in practice this also seems to be the case, as 

observed in our comparisons. 

The basic concept of a cache efficient algorithm relies on minimizing 

random access whenever possible, by serializing data accesses in blocks 

that are small enough to fit into various levels of cache, especially at the 

levels of cache with the lowest latency. Algorithms that exploit a specific 

cache configuration utilize an I/O-model (also called the external-

memory model) (Aggarwal, et al., 1988; Demaine, 2002). Conceptually, 

these algorithms must have explicit knowledge of the size of each com-

ponent of the memory hierarchy, and will adjust the size of contiguous 

blocks of data to minimize data transfers from memory to cache. 

In contrast to the I/O model, algorithms that are designed with cache 

in mind, but do not explicitly rely on known cache size blocks are called 

cache oblivious (Frigo, et al., 1999). Cache oblivious algorithms are 

beneficial, as they do not rely on the knowledge of the processor archi-

tecture; instead they utilize classes of algorithms that are inherently 

cache efficient such as scanning algorithms (e.g. DALIGNER’s merging 

step of a sorted list).  

6.3 Batching and Batch/Block Sizes 

For many of the methods surveyed in this paper, memory usage can be 

roughly quadratic relative to the number of reads, and at least linear to 

the number of k-mers in the set. Thus, to perform all necessary compari-

sons (i.e. to compute an upper triangular matrix of candidate compari-

sons), the data must be processed in batches. Generally, it is better to use 

as few blocks as possible, since the time required to perform all overlaps 

is quadratic relative to the number of batches. Methods that have a very 

low memory usage overall will be able to have the computational benefit 

of splitting the data into fewer batches. Batching is handled in different 

ways depending on the tool. Some tools have built-in splitting 

(DALIGNER/DAZZLER database with DBsplit), and others have this 

process built into their associated pipelines (e.g. MHAP and PBcR). 

Other methods (BLASR, Minimap) seem to have more scalable memory 

requirements, and may not require splitting. 

6.4 Repetitive elements and sequence filtering 

Any common regions due to homology or other repetitive elements 

may confound read-to-read overlaps, and may be difficult to disambigu-

ate from true overlaps. Such repetitive elements may lead to many false 

positives in overlap detection, and may increase the computational bur-

den, leading to lower quality in downstream assembly. Thus, it is com-

mon for overlap methods to employ sequence filtering, by removal or 

masking of repetitive elements to improve algorithmic performance both 

in run time and specificity. Many of the methods compared utilize k-mer 

frequencies to filter highly repetitive k-mers using an absolute or percent 

k-mer multiplicity. Another common filtering strategy is to prevent the 

use of low complexity sequences. 

7 Conclusions 
There are many challenges in evaluating algorithms that function on 

error-prone long reads, such as those from PB and ONT instruments. 
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Although both sequencing technologies have comparable error rates, 

characteristics of their errors as well as their read length distributions are 

substantially different. Also, within each technology there are rapid 

improvements in quality (Jain, et al., 2015; Laver, et al., 2015), causing 

disagreement between datasets derived from the same technology. 

Despite these issues, we show that Minimap is the most computation-

ally efficient method (in both time and memory) and is the most specific 

and sensitive method on the ONT datasets tested. We note that Minimap 

is not as sensitive or as specific as Graphmap, DALIGNER or MHAP on 

the PB datasets tested. Our results shown that GraphMap and 

DALIGNER are most specific and sensitive method on PB datasets 

tested, though DALIGNER scales better computationally. PB being a 

more mature technology compared to ONT, it is not surprising to see 

several tools performing well on the platform. 

Here, we have provided an overview of read-to-read overlap detection 

concepts, comparing leading methods for researchers can make informed 

decisions given their datasets and computational resources. We hope that 

our elucidation to open problems and key concepts to consider will be a 

helpful resource for those looking to develop new or improve on existing 

overlap detection tools. 
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