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Abstract  18 

Background: Genomic prediction is a genomics assisted breeding methodology that can 19 

increase genetic gains by accelerating the breeding cycle and potentially improving the 20 

accuracy of breeding values. In this study, we used 41,304 informative SNPs genotyped in a 21 

Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla parents and their 22 
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949 F1 hybrids to develop genomic prediction models for eight phenotypic traits - basic 23 

density and pulp yield, circumference at breast height and height and tree volume scored at 24 

age thee and six years. Based on different genomic prediction methods we assessed the 25 

impact of the composition and size of the training/validation sets and the number and 26 

genomic location of SNPs on the predictive ability (PA). 27 

Results: Heritabilities estimated using the realized genomic relationship matrix (GRM) were 28 

considerably higher than estimates based on the expected pedigree, mainly due to 29 

inconsistencies in the expected pedigree that were readily corrected by the GRM. Moreover, 30 

GRM more precisely capture Mendelian sampling among related individuals, such that the 31 

genetic covariance was based on the actual proportion of the genome shared between 32 

individuals. PA improved considerably when increasing the size of the training set and by 33 

enhancing relatedness to the validation set. Prediction models trained on pure species parents 34 

could not predict well in F1 hybrids, indicating that model training has to be carried out in 35 

hybrid populations if one is to predict in hybrid selection candidates. The different genomic 36 

prediction methods provided similar results for all traits, therefore GBLUP or rrBLUP 37 

represents better compromises between computational time and prediction efficiency. Only 38 

slight improvement was observed in PA when more than 5,000 SNPs were used for all traits. 39 

Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled 40 

exclusively in genic regions.  41 

Conclusions: Effects of training set size and composition and number of SNPs used are the 42 

most important factors for model prediction rather than prediction method and the genomic 43 

location of SNPs. Furthermore, training the prediction model on pure parental species 44 

provide limited ability to predict traits in interspecific hybrids. Our results provide additional 45 

promising perspectives for the implementation of genomic prediction in Eucalyptus breeding 46 

programs. 47 
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Background 52 

Eucalyptus species and their hybrids are the most widely planted hardwoods in tropical, 53 

subtropical and temperate regions, due to their fast growth, short rotation, wide 54 

environmental adaptability and suitability for commercial pulp and paper production [1, 2]. 55 

Interspecific hybrids of E.grandis and E.urophylla, in particular, are generally superior to 56 

their parents in growth, wood quality and biotic and abiotic stresses resistance, by inheriting 57 

both the fast growth and good rooting abilities of E.grandis and the disease tolerance and 58 

wide adaptability of E.urophylla [3]. A conventional breeding cycle toward clonal selection 59 

in hybrid populations involves mating, progeny trial, a small-scale clonal trial and a second 60 

expanded clonal trial, that together typically take between 12 and 18 years [1, 4]. To 61 

accelerate the genetic gain per unit time, new methods that can help shorten the breeding 62 

cycles are greatly needed. 63 

Genomic prediction or genomic selection (GS) is one of the most recent developments in 64 

genomics-assisted methods that are aimed at improving breeding efficiency and genetic gains. 65 

Genomic prediction provides a genome-wide paradigm for marker-assisted selection 66 

(MAS)[5, 6]. In GS all markers are fitted simultaneously in a model that relies on the 67 

principle of linkage disequilibrium (LD) to capture most of the relevant variation throughout 68 

the genome, whereas MAS focuses on discrete quantitative trait loci (QTLs) that had 69 

previously been detected, usually in underpowered experiments and thus leaving most of the 70 

variation unaccounted for [7]. GS are generally performed in three steps: (1) genotyping and 71 

phenotyping a ‘reference’ or ‘training population’ and developing genomic prediction models 72 
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that allow for prediction of phenotypes from genotypes; (2) validation of the predictive 73 

models in a ‘validation population’, i.e. a set of individuals that did not participate in model 74 

training; (3) application of the models to predict the genomic estimated breeding values 75 

(GEBVs) of unphenotyped individuals which are then selected according to their GEBVs [6]. 76 

GS has been successfully implemented in the breeding of livestock [7, 8] and crops [9, 10] 77 

and several recent papers suggest that has great potential also in forest trees [11, 12]. 78 

The accuracy of genomic prediction models can vary depending on the statistical method 79 

employed. Several methods have been developed for GS, including ridge-regression best 80 

linear unbiased prediction (rrBLUP), genomic best linear unbiased prediction (GBLUP), 81 

BayesA, BayesB, Bayesian LASSO, BayesR and reproducing kernel Hilbert space (RKHS) 82 

regression [7, 13].  These methods vary in the assumptions of the distribution and variances 83 

of marker effects. rrBLUP assumes that marker effects follow a normal distribution where all 84 

effects are shrunk to a similar and small size, while Bayesian methods (BayesA, BayesB, 85 

Bayesian LASSO and BayesR) assume that genetic variances specific to the marker effects 86 

and including a priori data on the probability distributions of marker effects. The GBLUP 87 

method computes the additive genetic merits from a genomic relationship matrix and is 88 

equivalent to rrBLUP under conditions that are generally met in practice [14]. The RKHS 89 

regression model is a linear combination of the basic function provided by the reproducing 90 

kernel [15]. Recent studies have indicated that the selection of suitable statistical methods 91 

depends on the actual data at hand and the pattern of phenotypic variation in the traits of 92 

interest and with reference population used [9, 16].  93 

Besides statistical methods, other factors are known to influence the accuracy of genomic 94 

prediction models, such as the size of the training population, number of markers employed, 95 

and relatedness between the training and validation population and, by extension, to the 96 

future selection candidates.  Hayes et al. [17] found that for a given effective population size 97 
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(Ne), increasing the size of the reference population leads to improved accuracy of GS based 98 

predictions. Closer relationship between training population and selection candidates has 99 

been reported to lead to a higher accuracy of genomic predictions, while enlarge genetic 100 

diversity of the training population resulted in lower accuracy [18]. A number of simulation 101 

and empirical studies have shown that increasing the number of markers may improve the 102 

predictive accuracy as the Ne also increases [9, 19-21]. However, increasing the number of 103 

markers in small Ne populations has little or no improvement on predictive accuracy [22, 23].  104 

Going one step further from previous studies in forest trees, where individuals of the same 105 

breeding generation were allocated to training and validation sets for the evaluation of 106 

genomic prediction models, in this study we used both the parental and progeny generations 107 

of E. grandis, E. urophylla and their F1 hybrids to build prediction models using different 108 

subsets of parents and progeny for training and validation.  A multi-species single-nucleotide 109 

polymorphism (SNP) chip containing 60,904 SNPs [24] were used to provide high-density 110 

genotyping of the two generations. Based on these data, we developed genomic prediction 111 

models for height, circumference at breast height (CBH), volume, wood basic density and 112 

pulp yield, using a number of statistical methods and compared their performance to the 113 

traditional pedigree-based prediction. Furthermore, we evaluated the impact of varying the 114 

number of SNPs and the training set/validation set composition and size on the predictive 115 

ability (PA) of genomic prediction.  116 

Methods 117 

Breeding population 118 

The breeding population in this study was established by controlled crossings of 86 E. 119 

urophylla and 95 E. grandis trees (G0 population) following a incomplete diallel mating 120 

design, resulting in 16,660 progeny individuals (G1 population) comprising 476 full-sib 121 

families with 35 individuals per family. In 2009, the progenies were deployed in a field trial 122 
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in a randomized complete block design with single-tree plots and 35 reps per family in 123 

Belmonte (Brazil, 39.19W, 16.06 S, 210 m above the sea level) at Veracel Celulose S.A. 124 

(Eunápolis, BA, Brazil). Our experimental population consists of 168 parents (78 of 125 

E.urophylla and 90 of E.grandis) (G0), as not all parents were still alive at the time of study, 126 

and 958 progeny individuals (G1) sampled across 338 full-sib families by avoiding low 127 

performing trees. The number of individuals in each full-sib family ranged from one to 13 128 

with an average of 2.8 individuals per family.   129 

Phenotyping 130 

For the 958 G1 samples, height, volume, and circumference at breast height (CBH) were 131 

measured at age three and six years, respectively, and the wood traits (basic density and pulp 132 

yield) were measured at age five years. For the 168 G0 parents, the same traits had been 133 

measured at age seven years for E. grandis and at age five years for E. urophylla. Briefly, 134 

height was measured using a Suunto hypsometer/height meter (PM-5/1520 series) and CBH 135 

was measured with a centimetre tape at 130 cm above ground. Wood properties were 136 

estimated by employing near-infrared reflectance spectra of sawdust samples collected at 137 

breast height using a FOSS NIRSystem 5000-M and applying calibration models developed 138 

earlier by Veracel S.A.. 139 

A mixed linear model was applied to minimize the impacts of environmental and age 140 

differences on each trait.  141 

� � �� � �� � 	
 � � 

where �  is a vector of trait; �  is a vector of fixed effects, including overall mean, 142 

experimental sites and age differences; � is a vector of random additive genetic effect of 143 

individuals with a normal distribution, � ~ N(0, A���), A is a matrix of additive genetic 144 

relationships among individuals; 
 is a vector of random incomplete block effect nested in 145 

each experimental site; and � is a heterogeneous random residual effect in each experimental 146 
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site. X, Z and W are incidence matrices for �, � and 
, respectively. The phenotypes of each 147 

trait were then corrected by subtracting variation of sites, ages and blocks effects for all 148 

individuals, and are referred to as adjusted phenotypes. The adjusted phenotypic traits were 149 

used for calculating the heritability of traits and for building genomic prediction models. 150 

Genotyping and quality control 151 

The 168 G0 and 958 G1 populations were genotyped using the Illumina Infinium 152 

EuCHIP60K [24] that contains probes for 60,904 SNPs. EUChip60K intensity data (.idat files) 153 

were obtained through GENESEEK (Lincoln, NE, USA). SNP genotypes were called using 154 

GenomeStudio (Illumina Inc., San Diego, CA, USA) following standard genotyping and 155 

quality control procedures with no manual editing of clusters as described earlier [24]. 156 

Further quality control of the genotyped samples was performed using PLINK [25]. Nine G1 157 

individuals were removed due to low sample call rate (<70%) or high inbreeding coefficient 158 

(F>1). 10,240 SNPs were excluded due to low call rate (<70%), 9,243 SNPs were filtered out 159 

due to monomorphism or minor allele frequency (MAF) < 0.01, and 117 SNPs were removed 160 

due strong deviations from Hardy-Weinberg equilibrium (p-value < 1×10-6).  161 

After quality control, missing genotypes of the remaining individuals were filled in by 162 

imputation. We first tested the accuracy of imputation methods across a range of missing data 163 

(2% - 30%) by artificial removing SNPs from a fraction of our genotypes. Among the 164 

available family-based and population based methods we assessed the following programs for 165 

imputation accuracy: BEAGLE [26], fastPHASE [27], MENDEL [28], random forest, SVD 166 

Impute, k-nearest neighbors [29], BLUP A matrix, Bayesian PCA, NIPALS, Probabilistic 167 

PCA [30]. BEAGLE provided the best accuracy for all missing data percentages, with 168 

accuracies exceeding 95% in all cases (Additional file 1). We therefore used BEAGLE to 169 

impute missing genotypes at the retained 41,304 SNPs across the 168 G0 and 949 G1 170 

individuals.  The imputed genotypic data was subsequently used in all genomic prediction 171 
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analyses. LD between SNP pairs was measured using the squared correlation coefficient (r2) 172 

for SNPs located on the same chromosome. The decay of LD versus physical distance was 173 

then modelled using the nonlinear regression method described in Remington et al. [31]. 174 

We further studied the population structure and pairwise genomic relationship among the 175 

1117 individuals by performing principal components analysis (PCA) [32] and kinship 176 

analysis [33] using 10,213 independent SNPs (LD-pruned) (r2 < 0.2) calculated in PLINK 177 

[25]. Pedigree-based genetic relationship was estimated from ABLUP (see below for further 178 

information).  179 

Statistical methods for genomic prediction 180 

Four statistical methods were assessed to estimate the parameters in equation (1) and for 181 

predicting GEBVs, including genomic best linear unbiased predictor (GBLUP) [5], ridge 182 

regression BLUP (rrBLUP) [6], Bayesian LASSO (BL) [34], and reproducing kernel Hilbert 183 

space (RKHS) regression [15]. The performance of the four genomic prediction methods was 184 

compared with that of the commonly used pedigree-based BLUP (ABLUP) [35].  185 

The GEBVs were estimated using the following mixed linear model: 186 


 � �� � �� � �                                         (1) 187 

where y is the vector of adjusted phenotypes of single trait, � is the vector of overall mean 188 

fitted as a fixed effect, a is the vector of random effects, and e is the vector of random 189 

residual effects. 1 and Z are incident matrix of � and a, respectively.  190 

ABLUP. ABLUP is the standard method for predicting breeding values using the expected 191 

relatedness among individuals based on pedigree information [35]. For ABLUP, the vector of 192 

random additive effects (a) in the equation (1) is assumed to follow a normal distribution, 193 

� ~ ���, ����� , where A is the additive numerator relationship matrix estimated from 194 

pedigree information and the ���  is the additive genetic variance. The residual vector e is 195 
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assumed as � ~ ���, �����, where I is the identity matrix. Under these assumptions, equation 196 

(1) can be re-written as: 197 

���� ���
��� ��� � ��� ��

�

��
�

� ��� ��� �  ��
��
!                                          (2) 198 

where 
��
�

��
� is estimated using a restricted maximum likelihood method. The estimated breeding 199 

values (��) can be calculated directly from equation (2). ABLUP calculations were performed 200 

using ASReml 3.0 [36]. 201 

GBLUP. The GBLUP method is derived from ABLUP, but differs in that the matrix A in 202 

equation (2) is replaced with the genomic relationship matrix (G) that is calculated from the 203 

genotypic data as " � 	
���	
����

� ∑ ��	�����
�

���

, where M is the matrix of samples and their 204 

corresponding SNPs denoted as 0, 1, 2, P is the matrix of allele frequencies with the j-th 205 

column given by 2(#�− 0.5), where #� is the observed allele frequency of the samples [5]. In 206 

GBLUP, the random additive effects (a) in the equation (1) is assumed to follow 207 

� ~ ���, "����, where ���  is the genetic variance and  GEBVs are again calculated from 208 

equation (2) but with ��� replaced by $�� and ��� replaced by ���. The GBLUP calculations 209 

were performed using ASReml 3.0 [36]. 210 

rrBLUP. As opposed to the previous two methods rrBLUP alters the notations of 211 

parameters � and �  in the equation (1), where � now refers to a design matrix for SNP 212 

effects, rather than incident matrix and � refers to SNP effects that are assumed to follow 213 

� ~ ���, %��� �, where ���  denotes the proportion of the genetic variance contributed by each 214 

SNP [6]. With these alterations, equation (2) becomes: 215 

���� ������ ��� � �&� ��� ��� �  ��
��
!                                           (3) 216 
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where & �  ���/���  is the ratio between the residual and marker variances. A prediction for 217 

the GEBV for each individual is calculated as (�� � ��
�)* from equation (3), where ��

� is the 218 

SNP vector for individual i and )* is the vector of estimated SNP effects. All calculations 219 

were performed using the rrBLUP package in the R environment [33]. 220 

Bayesian LASSO. The Bayesian LASSO (BL) method is the Bayesian treatment of 221 

LASSO regression proposed by Legarra et al. [34]. In BL the vector of SNP effects � in 222 

equation (1) is assumed to follow a hierarchical prior distribution with � ~ ���, +��� �, where 223 

+ � diag�0��, … , 0��� . 0��  is assigned as 0��~23#�&�� , j=1,…,p. &�  is assigned as 224 

&� ~ 45665�7, 8�. The residual variance ��� is assigned as ���~9���:;� , <��.  225 

We implemented the BL method using the BLR package in R [37]. Here a Monte Carlo 226 

Markov Chains sampler was applied and prior parameters (:;� , <� , 7, 8, and &�) were defined 227 

following the guidelines proposed by de los Campos et al. [38]. The chain length was 20,000 228 

iterations, with the first 2,000 excluded as burn-in and with a subsequent thinning interval of 229 

100. 230 

RKHS. RKHS assumes that the random additive effects in equation (1) are � ~ ���, >����, 231 

where K is computed by means of a Gaussian kernel that is given by K�� � @3#�AB:��� [15]. 232 

h is a semi-parameter that controls how fast the prior covariance function declines as genetic 233 

distance increase and :��  is the genetic distance between two samples computed as :�� �234 

∑ �3�� A 3�����
��� , where 3��  and 3��are kth SNPs (k=1,…,p) for the ith and jth samples, 235 

respectively. We implemented the RKHS method through the BGLR package in R [39], 236 

which uses a Gibbs sampler for the Bayesian framework and assigns the prior distribution of 237 

��� and ���as ��� ~ 9���:;� , <�� and ��� ~ 9���:;� , <��, respectively. Here we chose a multi-238 

kernel model suggested by Perez [39], where three h were defined as B� � 2/�5 F :G� , 239 
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B� � 2/:G , B� � 2 F 5/:G , :G  was the median of :�� . The Gibbs chain length was 20,000 240 

iterations with the first 2000 iterations discarded as burn-in and a thinning interval set to 100. 241 

Heritability estimation 242 

We estimated the pedigree-based narrow-sense heritability (B�� ) using the relationship 243 

matrix from the ABLUP method, and the narrow-sense genomic heritability (B��) using the 244 

genomic relationship matrix from GBLUP [40]. The respective heritabilities were calculated 245 

as: 246 

B�� � ��
�

��
�����

�       B�� � �	
�

�	
����	

�  247 

where ���  is the additive genetic variance and ����  is the residual variance estimated with 248 

ABLUP, while ���  is the genetic variance and ����  is the residual variance estimated with 249 

GBLUP. 250 

Size and genetic composition of the training and validation sets 251 

We simultaneously assessed the impact of the size and genetic participation of G0 and G1 252 

individuals in the training set (TS) and validation set (VS) of the genomic prediction models. 253 

Regarding TS/VS sizes, we divided all 1,117 (G0 and G1) individuals into five different size 254 

groups with a ratio of TS to VS of 1:1, 2:1, 3:1, 4:1 and 9:1. The corresponding sizes of the 255 

TS/VS were respectively 558/559, 743/374, 836/281, 892/225 and 1003/114. Within these 256 

pre-established size compositions, four scenarios of the participation of G0 and G1 257 

individuals were evaluated to assess the impact of varying the degrees of relationship and 258 

diversity between TS and VS. In the first scenario (CV1) assignment of individuals to either 259 

TS or VS was random. For the second scenario (CV2) all G0 parents were assigned to the TS 260 

and complemented with G1 individuals up to the required number in the set, while the VS 261 

was composed exclusively of G1 individuals. The third and fourth scenarios were built based 262 

on minimizing and maximizing relatedness between TS and VS. The relatedness-based 263 

assignment of individuals was determined using the procedure described in Spindel et al. [9]. 264 
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Briefly, 1,117 individuals were assigned to 182 clusters based on genotypes using the k-265 

means clustering algorithm, a method that attempts to minimize the distance between 266 

individuals in a cluster and the centre of that cluster. Using the relatedness estimates, CV3 267 

was then built by assigning individuals to TS and VS based on dissimilarity, such that 268 

individuals from the same cluster were not allowed to be both in the same TS or VS. For CV4 269 

individuals from same cluster were forced to be either in the TS or VS [9]. 270 

Genomic prediction models 271 

We evaluated the effects of the five statistical methods (GBLUP, rrBLUP, BL, RKHS and 272 

ABLUP), five TS/VS sizes and four TS/VS composition scenarios (5*5*4 = 100 models in 273 

total) on the predictive ability (PA) of genomic prediction. For each of the 100 models, 200 274 

replicate runs were carried out for each trait and the performance of the models were 275 

evaluated in terms of their PA (ry, (*), which is defined as the Pearson correlation between the 276 

adjusted phenotypes and the GEBVs of the samples in the VS. ANOVA was performed on 80 277 

out of 100 models tested (20 ABLUP models excluded) to partition the variance into different 278 

sources, with all effects declared as fixed, comparing all the sources of variation (genomic 279 

prediction method, TS/VS size and genetic composition). Significant differences found were 280 

further assessed by means of a paired t tests (α = 5%), adjusted by a Bonferroni correction. 281 

The 80 models as described above were used for assessing the impact of TS/VS composition 282 

and TS/VS size, while all 100 models were used to evaluate the statistical methods against 283 

ABLUP. All available SNPs were used in all the analyses of these models. 284 

Numbers and genomic location of SNPs subsets 285 

 We finally assessed the impact of the number of SNPs and their locations (gene vs. 286 

intergenic region) on the PA of genomic prediction models. 12 subsets with different 287 

numbers of SNPs were generated by randomly selecting 10, 20, 50, 100, 200, 500, 1,000, 288 

2,000, 5,000, 10,000, 20,000 and 41,304 SNPs from all the available SNPs. For SNP location, 289 
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SNPs subsets located in different regions of the genome were established by including SNPs 290 

located in four different regions: (i) coding sequences (CDS) only  (11,786 SNPs); (ii) entire 291 

genic regions including CDS, UTRs, introns, and sequences 2kb up and downstream of the 292 

gene (30,405 SNPs); (iii) intergenic regions (10,899 SNPs), and (iv) all 41,304 SNPs. The 293 

location of each SNP was obtained by mapping SNPs onto E.grandis genome database using 294 

SnpEff [41]. Genomic prediction models were built for all four TS/VS compositions using 295 

only the two statistical methods (GBLUP and RKHS) that showed optimal predictive 296 

performance in the previous analyses, and the TS/VS size ratio of 4:1 (892/224) were used on 297 

the PA evaluations.  298 

Results  299 

Phenotypic trait correlations 300 

Growth (height, volume, and CBH) and wood properties (basic density and pulp yield) 301 

were measured for all 168 G0 and 949 G1 individuals. The raw phenotypic data were 302 

adjusted using a mixed linear model to minimize the impacts of environment and age 303 

differences. The pairwise correlations between the adjusted traits were described by 304 

calculating Pearson correlation coefficients (Figure 1). Growth traits were correlated with 305 

each other. Interestingly, however, while CBH and volume at age three and six years were 306 

highly correlated (r = 0.92 and 0.95 respectively), height at age three was only weakly 307 

correlated with height at age 6 (r = 0.36). For wood properties traits, basic density was 308 

negatively correlated with pulp yield, although weakly (r = -0.28). Growth traits showed no 309 

correlations with wood traits (r = - 0.1 to 0.1). 310 

 Breeding population structure and relatedness 311 

Population structure across G0 and G1 individuals was assessed by PCA based on 10,213 312 

LD-pruned, independent SNPs (r2<0.2). The first two PCs explained 6.07% and 3.8% of the 313 

total genetic variance (Figure 2a) and clearly separated the G0 individuals of the two species, 314 
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E.grandis and E.urophylla, with the E.grandis individuals further subdivided into two 315 

subgroups likely representing the two main provenances used in breeding programs in Brazil. 316 

The G1 individuals were generally projected into the space defined by their parents, but with 317 

a few outliers. The expected pedigree-based and realized genomic-based genomic 318 

relationships among G0 and G1 individuals were visualized in heatmaps (blue and red in 319 

Figure 2b, respectively). The result of the genomic relationship analysis corroborated the 320 

PCA result, in which E. urophylla was clustered into a single group, whereas E. grandis 321 

formed two subgroups. The average values of the realized genomic relationships among what 322 

were considered to be full-sibs, half-sibs and unrelated individuals from the pedigree data 323 

were generally lower than the expected relationships values (0.309 vs. 0.5, 0.131 vs. 0.25 324 

and .0056 vs. 0, respectively) (Table 1). This result suggests that pedigree errors were likely 325 

present in this population. These putative pedigree errors in turn negatively affected the 326 

pedigree-based trait heritability, which were considerably lower than those estimated using 327 

genomic-based realized genomic relationships (Table 2). 328 

Table 1. Pairwise expected pedigree-based and realized genomic-based relationships in the 329 

different family types. 330 

 Full-sib families 
(961)a 

Half-sib families 
(12718) 

Unrelated individuals 
(434252) 

 Min Mean Max Min Mean Max Min Mean Max 
Pedigree-expected 

relationship 0.5 0.5 0.5 0.25 0.25 0.25 0 0 0 

Genomic-realized 
relationship 

-0.274 0.309 0.933 -0.464 0.131 0.908 -0.467 -0.056 0.891 
a Number in parentheses indicate the number of pairwise estimates 331 

Table 2. Pedigree-based and genomic heritabilities for each trait 332 

 CBH (3)a Height (3) Volume (3) CBH (6) Height (6) Volume (6) Basic density Pulp yield 

B��b 0.051(0.03) 0.074(0.04) 0.057(0.03) 0.085(0.04) 0.097(0.05) 0.068(0.04) 0.23(0.04) 0.27(0.05)  B�� 0.113(0.04) 0.171(0.05) 0.162(0.04) 0.184(0.04) 0.193(0.05) 0.196(0.04) 0.35(0.05) 0.46(0.05) 
a Number in parentheses correspond the age at measurement; 333 
b B��  and B�� correspond to the pedigree and genomic narrow-sense heritability, respectively, 334 
with their standard deviation in parenthesis.  335 
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 336 

Predictive abilities with different statistical methods  337 

Estimates of PAs were obtained using different statistical methods, compositions and sizes 338 

of TS/VS for each trait (Additional file 2). An ANOVA showed that all these factors had a 339 

significant effect on the PA (P-value < 0.005) (Additional file 3). Across the four genomic 340 

prediction methods used (GBLUP, rrBLUP, BL, and RKHS) the average PA varied from 341 

0.27 to 0.274 (Additional file 4). All the four methods outperformed the pedigree-based 342 

ABLUP prediction (mean PA = 0.121) by an average of 80%-200% across the eight traits 343 

(Figure 3). RKHS yielded a slightly better PAs for six out of eight traits and this method was 344 

particularly suitable for predicting traits that displayed a lower heritability such as CBH and 345 

height. The other three methods generally gave similar results across all traits, although with 346 

a slightly better performance than RKHS for pulp yield (Figure 3).  347 

Impact of TS/VS compositions and relative sizes on predictive ability  348 

The average PAs differed significantly for the different TS/VS composition tested varying 349 

from 0.253 to 0.286 (Additional file 5). The genomic prediction model built with CV2 (all G0 350 

parents in the TS) showed the highest PAs for all traits except pulp yield, whereas models 351 

based on CV3 (minimum relatedness between TS and VS) gave the worst predictions. The 352 

models based on CV1 (random assignment) and CV4 (maximum relatedness between TS and 353 

VS) showed no significant differences in PA (Figure 4, Additional file 5). The average PA 354 

was significantly improved from 0.251 to 0.285, as the TS/VS ratio increased from 1:1 355 

(558/559) to 9:1 (1003/113) (Additional file 6), irrespective of the prediction method (Figure 356 

3) or the genetic composition of TS/VS used (Figure 4), clearly showing the importance of an 357 

adequate size of the training set used to build prediction models. Furthermore, there was a 358 

steeper increase in PA when TS/VS ratio increased from 1:1 (558/559) to 2:1 (743/374) than 359 

from 2:1 (743/374) to 9:1 (1003/114) for all traits (Figure 3 and 4). 360 
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Impact of the number of SNPs and their genomic location on predictive ability 361 

Estimates of PA using different numbers of SNPs (Additional file 7) and sets of SNPs in 362 

different genomic locations (Additional file 8) were obtained with two prediction methods for 363 

all the different TS/VS compositions. An ANOVA showed that both the number of 364 

genotyped SNPs and their genomic location significantly affect the PA for both prediction 365 

methods (GBLUP and RKHS) (P-value < 0.005), and that the number of SNPs has a larger 366 

impact than their genomic location (Additional file 9).  The average PAs across all traits 367 

decreased from 0.278 to 0.113 when the number of SNPs used in the prediction models 368 

dropped from 41,304 to only 10, and the reduction was especially strong when the number of 369 

SNPs went below 5,000 (Additional file 10). On the other hand, no significant improvement 370 

was generally seen in the average of PA when more than 5,000 SNPs were used (Additional 371 

file 10, Figure 5). The results obtained for the different traits suggest that traits with lower 372 

heritability are more sensitive to the reduction in the number of SNPs (Figure 5). For instance, 373 

PA for basic density (h2 = 0.35) went from 0.47 to 0.24 (a 50% decrease) when the number of 374 

SNPs dropped from 40,000 to 10, whereas CBH of age three (h2 = 0.113) decreased from 375 

0.128 to 0.03 (a 77% decrease). Overall, few and only slight significant differences were seen 376 

in PAs by using SNP sets located in different genomic regions (Figure 6), the average PAs 377 

range from 0.270 to 0.284 (Additional file 11). Predictions using SNPs located in intergenic 378 

regions were marginally better than using SNPs in genic regions or all SNPs, except for pulp 379 

yield that could be better predicted based on models using SNPs from coding and gene 380 

regions (Figure 6). When comparing the PA of models using SNPs in coding versus entire 381 

gene regions, the latter had a slightly better performance, most likely due to the larger 382 

number of SNPs used (30,504 vs. 11,786) and not to any specific effect of genomic location. 383 

When we assessed the pairwise LD (r2) amongst the SNPs in the four regions tested, the 384 
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extent of LD differed among them, with LD showing the most rapid decay in coding regions 385 

and the slowest one in intergenic regions (Additional file 12).  386 

Discussion  387 

This study presents the results of an empirical evaluation of the accuracy of genomic 388 

prediction of growth and wood quality traits in Eucalyptus using data from a high-density 389 

SNP array. Our results are based on data from a two generations breeding population and 390 

provide additional encouraging results on the prospects of using genomic prediction to 391 

accelerate breeding. We have assessed a range of factors, including the statistical methods 392 

used to estimate predictive ability, the size and composition of the training and validation sets 393 

as well as the number and genomic locations of SNPs used in the prediction model.  394 

Hereafter we will discuss how these factors influenced the prediction accuracy.  395 

Genomic data corrected pedigree inconsistencies  396 

All four genomic prediction methods performed significantly better than the pedigree-397 

based evaluations for all complex traits assessed (Figure 3). While similar results have been 398 

reported for animals [16, 42] and crop species [9, 35] across a number of traits, in forest trees 399 

prediction accuracies using genomic data have generally been similar or up to 10-30% lower 400 

than accuracies obtained using pedigree-estimated breeding values, including Eucalyptus [4], 401 

loblolly pine (Pinus taeda) [43], white spruce (Picea glauca) [44, 45], interior spruce (Picea 402 

engelmannii × glauca) [46, 47] and maritime pine (Pinus pinaster) [48]. Genomic predictions 403 

with lower accuracies than pedigree-based predictions could arise from insufficient marker 404 

density, such that not all casual variants are captured in the genomic estimate [40], or an 405 

overestimate of the pedigree-based prediction due to its inability of ascertaining the true 406 

genetic relationships in half-sib families [46]. Our result however differ from previous studies 407 

in forest trees due to the fact that the average pairwise estimates of genetic relationship 408 

among individuals were substantially lower using SNP data than expectations based on 409 
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pedigree information (Table 1), clearly suggesting that the expected pedigrees, and 410 

consequently the pairwise relationships, had considerable inconsistencies that were corrected 411 

by the SNP data. We speculate that these inconsistencies likely derived from pollen 412 

contamination and mislabelling in the process of generating the full and half-sib families. 413 

Besides correcting potential pedigree errors, the relatively dense SNP data used in our study 414 

also was able to accurately capture the Mendelian sampling variation within families so that 415 

genetic variances estimates were based on the actual proportion of the genome that is identity 416 

by descent (IBD) or state (IBS) among half- or full-sib individuals, resulting in improved 417 

estimates of trait heritability (Table 2). 418 

Genomic predictions show that traits adequately fit the infinitesimal model 419 

Overall, the different genomic prediction methods provided similar results for the traits 420 

evaluated with only a slight advantage for RKHS showing better PAs for growth traits that 421 

had lower heritability (Figure 3) although for pulp yield, RKHS instead was the worst 422 

performing method. It is possible that the definition of a kernel simply was not suitable for 423 

this particular trait [15]. Our results corroborate previous reports both in crops and animals 424 

[16, 49, 50], as well as in forest tree studies. In loblolly pine, for example, the performance of 425 

rrBLUP and three Bayesian methods was only marginally different when compared across 17 426 

traits with distinct heritabilities, with a small improvement using BayesA only for fusiform 427 

rust resistance where loci of relatively larger effect have been described [43]. Similar results 428 

were obtained for growth and wood traits in other forest trees studies showing no 429 

performance difference between rrBLUP and Bayesian methods [45, 47, 48]. This occurs 430 

despite simulation studies suggesting that Bayesian methods, like BL, should outperform 431 

univariate methods such as rrBLUP and GBLUP [6, 51, 52]. One possible reason for the 432 

apparent disagreement between simulations and empirical data sets is that the true QTL 433 

effects for most of traits are relatively small and the distribution is less extreme than 434 
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simulated data [53]. Our results therefore support the proposal that either rrBLUP or GBLUP 435 

are effective methods in providing the best compromise between computation time and 436 

prediction efficiency [54] and that the quantitative traits assessed in our study adequately fit 437 

the assumption of the infinitesimal model. 438 

Training set size, composition and relatedness strongly affect predictive ability 439 

Our results show that the size and the variable TS/VS compositions in terms of relatedness 440 

between training and validation sets had the largest impact on the PA irrespective of the 441 

analytical method used (Figure 4). The average PA rapidly increased with increasing sizes of 442 

the TS and did not show any sign of plateauing. Earlier simulations of Eucalyptus breeding 443 

scenarios had in fact shown that with up to N= 1,000 individuals in the TS, the accuracy 444 

would rapidly increase, and additional gains would be seen up to N= 2,000 individuals for 445 

lower heritability traits, larger numbers of QTLs involved and larger effective population size 446 

(Ne). After N= 2,000 the predictive accuracy would tend to plateau irrespective of the Ne and 447 

genotyping density [20]. Later simulations mirroring a eucalypt breeding scheme also 448 

showed a considerable improvement of genomic predictions with increasing training 449 

population sizes by consolidating phenotypic and genotypic data of individuals from previous 450 

breeding cycles [55]. Simulations [19, 56] and proof-of-concept studies [57] in crop species 451 

also show improved PA with larger TS sizes. Larger training populations alleviate the 452 

probability of losing rare favourable alleles from the breeding population as generations of 453 

selection advance. Additionally by sampling more individuals for training, a larger diversity 454 

is captured and better estimates of the marker effects are obtained which in turn positively 455 

impact predictions in cross-validations and future genomic selection candidates. 456 

As expected, relatedness between TS and VS had a large impact on PAs for all traits. 457 

Prediction models built under scenario CV3 (minimized relatedness between TS and VS) 458 

resulted in significantly worse predictions than in scenario CV4 when relatedness was 459 
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maximized. Increasing the genetic relationships between training and selection candidates 460 

effectively has the same consequence as reducing the Ne such that the stronger the 461 

relationship, the higher in the predictive accuracy. Our results are in line with previous 462 

reports in forest trees showing that models developed for one population had limited or no 463 

ability of predicting phenotypes in an unrelated one in white spruce [44, 45] and Eucalyptus 464 

[4], indicating that prediction models will be population specific. With lower relationship 465 

between TS and VS, the extent of LD is shorter and not stable across distantly related 466 

populations and the predictive ability of genomic prediction model is reduced. Recent 467 

simulations show that the accuracy of genomic prediction models decline approximately 468 

linearly with increasing genetic distance between training and prediction populations [58]. 469 

Increased relatedness reduce the number of independently segregating chromosome segments 470 

and therefore increase the probability that chromosome segments IBD sampled in the training 471 

population are also found in the selection candidates. Our results provide additional 472 

experimental evidence that for successful implementation of GS the selection candidates have 473 

to show a close genetic relationship to the training population. 474 

PAs were considerably higher when all the G0 parents were kept in the TS (scenario CV2). 475 

This result could be due to two reasons. On one hand, by keeping all G0 parents in TS, we 476 

had a large diversity available for training, which could explain the positive impact of G0 477 

inclusion on predictions. On the other hand, it is possible that by allocating all G0 individuals 478 

to the TS the positive effect we observe could strictly not be due to increased predictive 479 

power of including G0 individuals but rather a way to avoid the potentially negative impact 480 

of having pure species parents in the validation set in combination with G1 progeny that were 481 

largely F1 hybrids. In order to evaluate this, we estimated PA of genomic prediction models 482 

by using GBLUP and RKHS, having only the 168 G0 parents for TS and randomly selected 483 

168 G1 individuals in VS. To control for the effect of the strongly reduced TS size, we 484 
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compared this setup with random assignment of individuals to TS or VS but keeping the size 485 

of each at N=168. The results showed considerably lower PAs (even zero or negative) when 486 

using only pure species parents to predict G1 hybrid progeny phenotypes (Additional file 13). 487 

This observation, together with the fact that PAs with scenario CV4 (maximum relatedness 488 

between TS and VS) were also generally lower than CV2, suggesting that the higher PAs we 489 

observe for scenario CV2 is mostly due to avoiding the negative effect of having pure species 490 

parents in the VS.  491 

The issue of genomic prediction in hybrid breeding has been investigated so far only within 492 

species and only for domestic animals, more specifically for bovine and pig breeding in 493 

which selection is carried out in pure breeds but the aim is to improve crossbred performance 494 

[42, 59]. Results from simulations show that training on crossbred data provides good PAs by 495 

selecting purebred individuals for crossbred performance, although PAs drop with increasing 496 

distances between breeds [60]. When crossbred data is not available, separate purebred 497 

training populations can be used either separately or combined depending on the correlation 498 

of LD phase between the pure lines [61], which in turn is in part determined by the time of 499 

divergence between the populations. Compared to bovine breeds that belong to the same 500 

species and have diverged relatively recently (<300KYA) [62], the estimated divergence time 501 

between the two Eucalyptus species used in our study is much older, estimated at 2-5 MYA 502 

[63]. Therefore, no correlation of LD phase between these two species is expected and it is 503 

not surprising that training on the combined pure species sets to validate on the F1 hybrids 504 

resulted in poor PA. To the best of our knowledge, our results are the first ones to provide an 505 

initial look at the issue of genomic prediction from pure species to interspecific hybrids 506 

indicating that, consistent with expectations, models have to be trained in hybrids if one is to 507 

predict phenotypes in hybrid selection candidates. 508 

Number of SNPs is more important than SNP genomic location  509 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2016. ; https://doi.org/10.1101/081281doi: bioRxiv preprint 

https://doi.org/10.1101/081281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

Across all traits, no major improvement was detected in PA when more than 5,000 SNPs 510 

were used (Additional file 10, Figure 5), although a slight increase were observed for height 511 

of age three, basic density and pulp yield when using GBLUP based on 20,000 SNPs. Several 512 

studies have also shown that considerably lower numbers of SNPs provided PAs equivalent 513 

to those observed using all SNPs available [22, 64]. The necessary number of SNPs needed 514 

for genomic prediction model depends on the extent of LD, which strictly related to Ne. Our 515 

results, where we achieve equivalent PAs using either all of 12-20% of the genotyped 516 

markers suggests that it represents a closed breeding population with a relatively limited Ne. 517 

This has been a common approach in domestic animals with the intent of developing low-518 

density genotyping chips to reduce genotyping costs [8]. The main advantage of using 519 

reduced SNP panels is cost-effectiveness, although it is expected that using a higher density 520 

of markers will be necessary to mitigate the decay of PAs over generations due to the 521 

combined effect of recombination and selection on the patterns of LD [65]. It is also 522 

questionable whether it will be more cost effective to have targeted low-density SNP chips 523 

for specific populations or a full SNP chip that can be used across breeding populations of 524 

several organizations. By having a SNP chip that will accommodate several populations the 525 

cost-effectiveness and economy of scale of amassing many more samples to be genotyped 526 

with the same chip will likely be much larger than the cost reduction observed by using a 527 

smaller number of SNPs on each specific population. 528 

SNP location also contributed to the predictive ability of genomic prediction model 529 

although the effects were rather modest. PAs using SNPs in intergenic regions were slightly 530 

better than using SNPs in genic regions or using all SNPs, except for pulp yield that could be 531 

somewhat better predicted with SNPs in coding and gene regions (Figure 6). This likely 532 

represents a random sampling effect and not any specific enrichment for functional variants 533 

for this trait. However, the decline of LD was slower for SNPs in intergenic regions when 534 
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compared to SNPs in gene and coding regions (Additional file 12) and the slightly longer 535 

range of LD might help explain why using SNPs in intergenic regions provided better PAs. 536 

With slower LD decay, SNPs in intergenic regions might better capture QTLs across longer 537 

genomic segments than SNPs in coding regions where LD decays more rapidly.  538 

Conclusions 539 

Our experimental results provide further promising perspectives for the implementation of 540 

genomic prediction in Eucalyptus breeding programs. Genomic predictions largely 541 

outperformed the pedigree-based ones in our experiment, mainly due to the fact that our 542 

expected pedigree had major inconsistencies, such that all pedigree-based estimates were 543 

grossly underestimated. This unexpected result illustrated an additional advantage of using 544 

SNP data and genomic prediction in breeding programs. While the main advantage of 545 

genomic prediction in eucalypt breeding will likely be the reduction of the breeding cycle 546 

length [4], the use of a genomic relationship matrix allowed us to obtain precise estimates of 547 

genetic relationship and heritability that we would otherwise not have had access to. 548 

Furthermore our results corroborated the key role of relatedness as a driver of PA, the 549 

potential of using lower density SNP panels, and the fact that growth and wood traits 550 

adequately fit the infinitesimal model such that GBLUP or rrBLUP represent a good 551 

compromise between computation time and prediction efficiency. In contrast to previous 552 

studies in Eucalyptus, we had access to both the pure species parents (E. grandis and E. 553 

urophylla) and their F1 progeny. We show that models trained on pure species parents do not 554 

allow for accurate prediction in F1 hybrids, likely due to the strong genetic divergence 555 

between the two species and lack of consistent patterns of LD between the two species and 556 

their hybrids. 557 

Several issues remain to be investigated for the operational adoption of genomic prediction 558 

in eucalypt breeding. First, how does the accuracy of genomic prediction decline over 559 
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successive generations of selection due to subsequent recombination? Second, how stable are 560 

genomic prediction models across multiple environments and how important is it to consider 561 

genotype by environment interactions in the models? Finally, we have only considered 562 

additive genetic variance for building genomic prediction models in our population, but it is 563 

possible and perhaps even likely that non-additive genetic effects will play an important role 564 

in many breeding populations and specifically in populations consisting of early generation 565 

hybrids.  566 

 567 

 568 

List of abbreviations 569 

BL: Bayesian LASSO; CBH: circumference at breast height; CDS: coding sequences; 570 

GBLUP: genomic best linear unbiased predictor; GEBV: genomic estimated breeding values; 571 
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identity by state; LD: linkage disequilibrium; MAS: marker-assisted selection; Ne: effective 573 

population size; PA: predictive ability; PCA: principal components analysis; QTLs: 574 

quantitative trait loci; RKHS: reproducing kernel Hilbert space; rrBLUP: ridge-regression 575 
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 781 

Figures 782 

Figure 1 Correlation and distribution of phenotypes. Scatter plots (lower off-diagonal) 783 

and correlations with probability values (upper off-diagonal; H0: r=0) for adjusted phenotypes 784 

between pairs of traits. Color key on the right indicates the strength of the correlations. 785 

Diagonal: histograms of the distribution of adjusted phenotypes values.  786 

Figure 2 Genetic structure and relatedness in the breeding population. (a) First two 787 

principal components of a PCA revealing population structure. Dots represent E.grandis 788 

(blue), E.urophylla (red) and their F1 (green) individuals. (b) Heatmaps of the pairwise 789 

pedigree-expected relationships (blue, upper off-diagonal) and genomic-realized relationship 790 

(red, lower off-diagonal) of the 1117 individuals assigned to E.grandis (G), E.urophylla (U) 791 

and their hybrid progenies (H). 792 
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Figure 3 Predictive abilities with different methods and increasing sizes of training sets. 793 

Predictive ability (y axis) estimated using five methods across five training set/validation set 794 

sizes in numbers of individuals (x axis) 558/559, 743/374, 836/281, 892/225 and 1003/114.  795 

Red and blue dashed lines indicate the pedigree-based (B�� ) and genomic-realized (B�� ) 796 

narrow-sense heritability respectively.   797 

Figure 4 Predictive abilities with variable levels of relatedness between training and 798 

validation sets. CV1: random assignment of individuals to either training set (TS) or 799 

validation set (VS); CV2: all the G0 pure species parents assigned to the TS; CV3: minimum 800 

relatedness between TS and VS individuals; CV4: maximum relatedness between TS and VS 801 

individuals. Estimates were obtained using GBLUP and RKHS across five TS/VS sizes in 802 

numbers of individuals (x axis): 558/559, 743/374, 836/281, 892/225 and 1003/114.  803 

Figure 5 Predictive abilities with increasing numbers of SNPs. Predictive ability 804 

estimated with GBLUP and RKHS with increasingly larger sets of SNP sampled at random 805 

from the total of 41,304 SNPs. Outliers are indicated by black dots. Letters indicate 806 

significant difference between the different models after Bonferroni adjustment (P < 0.05). 807 

Figure 6 Predictive abilities using SNPs located in different genomic regions. Predictive 808 

ability estimated with GBLUP and RKHS using 11,786 SNPs in coding DNA, 30,405 SNPs 809 

in genic regions (CDS, UTR, intron, and within 2kb upstream and downstream of genes), 810 

10,899 SNPs in intergenic regions and all 41,304 SNPs. Letters indicate significant difference 811 

between the different models after Bonferroni adjustment (P < 0.05). 812 

 813 

Additional files 814 

Additional file 1: Average accuracy of SNP imputation methods with increasing proportions 815 

of missing data. SNPs on chromosomes 6 and 8 were randomly removed from the dataset to 816 
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generate specific missing data proportions. Accuracy between imputed and true SNP 817 

genotypes were subsequently calculated with the different methods. (DOCX 1.8Mb) 818 

Additional file 2: Predictive abilities on genomic selection model that comprises of 819 

statistical methods, genetic compositions and relative sizes of Training Set/Validation Set for 820 

each trait. (XLSX 17 kb) 821 

Additional file 3: ANOVA analysis of sources of variation affecting the predictive ability. 822 

(DOCX 50 kb) 823 

Additional file 4: Mean and standard deviation of predictive ability with the five prediction 824 

methods for the eight traits. (DOCX 99kb) 825 

Additional file 5: Mean and standard deviation of predictive ability estimated with the four 826 

Training Set/Validation Set compositions. (DOCX 87kb) 827 

Additional file 6: Mean and standard deviation of predictive ability estimated with the five 828 

relative sizes of Training Set/Validation Set expressed in proportions and numbers of 829 

individuals. (DOCX 91kb) 830 

Additional file 7: Mean and standard deviation of predictive ability across increasing 831 

numbers of SNPs, statistical methods (RKHS and GBLUP), four Training Set/Validation Set 832 

compositions for each of eight traits (XLSX 62kb) 833 

Additional file 8: Mean and standard deviation of predictive ability estimated with SNPs in 834 

four genomic locations, with two statistical methods (RKHS and GBLUP), four Training 835 

Set/Validation Set compositions for each of eight traits (XLSX 59kb) 836 

Additional file 9: ANOVA of predictive ability with SNP genomic location and SNP number 837 

as sources of variation. (DOCX 63kb) 838 

Additional file 10: Average predictive ability estimated with different numbers of SNPs 839 

fitted into the model. (DOCX 138kb) 840 
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Additional file 11: Average predictive abilities estimated using SNP sets located in different 841 

genomic regions. (DOCX 83kb) 842 

Additional file 12: Decay of linkage disequilibrium (LD) with physical distance estimated 843 

with SNPs in different genomic locations. (a) A comparison of the decay of LD with physical 844 

distance in four classes of SNPs located with coding, genic, intergenic and all regions, 845 

respectively. Dots of pairwise LD versus physical distance and the LD decay for SNPs 846 

located in all regions (b), coding region (c), genic region (d) and intergenic region (e), 847 

respectively.  (DOCX 1.4Mb) 848 

Additional file 13: Predictive abilities by training in pure species eucalypt parents and 849 

predicting in their F1 hybrids. Predictive ability estimated under three training/validation sets 850 

(TS/VS) scenarios with two methods (GBLUP and RKHS) for each trait. PO168 (red boxes): 851 

all 168 E. grandis and E. urophylla pure species G0 parents used for training and 168 G1 852 

random selected hybrid progeny for validation; random168 (green): randomly selected 168 853 

individuals from all 1,117 for TS and 168 randomly also for VS; random558 (blue): 854 

randomly divided all 1,117 individuals into TS and VS of same size (558/558). Outlier 855 

estimates are indicated by black dots. (DOCX 179kb) 856 
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