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Abstract

Background: Genomic prediction is a genomics assisted breeding methodology that can
increase genetic gains by accelerating the breeding cycle and potentially improving the
accuracy of breeding values. In this study, we used 41,304 informative SNPs genotyped in a

Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla parents and their
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23 949 F; hybrids to develop genomic prediction models for eight phenotypic traits - basic
24 density and pulp yield, circumference at breast height and height and tree volume scored at
25 age thee and six years. Based on different genomic prediction methods we assessed the
26  impact of the composition and size of the training/validation sets and the number and
27  genomic location of SNPs on the predictive ability (PA).

28  Results: Heritabilities estimated using the realized genomic relationship matrix (GRM) were
29  considerably higher than estimates based on the expected pedigree, mainly due to
30 inconsistencies in the expected pedigree that were readily corrected by the GRM. Moreover,
31 GRM more precisely capture Mendelian sampling among related individuals, such that the
32 genetic covariance was based on the actual proportion of the genome shared between
33 individuals. PA improved considerably when increasing the size of the training set and by
34 enhancing relatedness to the validation set. Prediction models trained on pure species parents
35  could not predict well in F; hybrids, indicating that model training has to be carried out in
36  hybrid populations if one is to predict in hybrid selection candidates. The different genomic
37  prediction methods provided similar results for all traits, therefore GBLUP or rrBLUP
38  represents better compromises between computational time and prediction efficiency. Only
39  slight improvement was observed in PA when more than 5,000 SNPs were used for all traits.
40  Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled
41  exclusively in genic regions.

42  Conclusions. Effects of training set size and composition and number of SNPs used are the
43 most important factors for model prediction rather than prediction method and the genomic
44  location of SNPs. Furthermore, training the prediction model on pure parental species
45  provide limited ability to predict traits in interspecific hybrids. Our results provide additional
46  promising perspectives for the implementation of genomic prediction in Eucalyptus breeding

47  programs.
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52 Background

53 Eucalyptus species and their hybrids are the most widely planted hardwoods in tropical,
54  subtropical and temperate regions, due to their fast growth, short rotation, wide
55  environmental adaptability and suitability for commercial pulp and paper production [1, 2].
56 Interspecific hybrids of E.grandis and E.urophylla, in particular, are generally superior to
57  their parents in growth, wood quality and biotic and abiotic stresses resistance, by inheriting
58  both the fast growth and good rooting abilities of E.grandis and the disease tolerance and
59  wide adaptability of E.urophylla [3]. A conventional breeding cycle toward clonal selection
60 in hybrid populations involves mating, progeny trial, a small-scale clonal trial and a second
61 expanded clonal trial, that together typically take between 12 and 18 years [1, 4]. To
62  accelerate the genetic gain per unit time, new methods that can help shorten the breeding
63  cycles are greatly needed.

64 Genomic prediction or genomic selection (GS) is one of the most recent developments in
65 genomics-assisted methods that are aimed at improving breeding efficiency and genetic gains.
66  Genomic prediction provides a genome-wide paradigm for marker-assisted selection
67 (MAS)[5, 6]. In GS all markers are fitted simultaneously in a model that relies on the
68  principle of linkage disequilibrium (LD) to capture most of the relevant variation throughout
69 the genome, whereas MAS focuses on discrete quantitative trait loci (QTLs) that had
70  previously been detected, usually in underpowered experiments and thus leaving most of the
71  variation unaccounted for [7]. GS are generally performed in three steps: (1) genotyping and
72 phenotyping a ‘reference’ or ‘training population’ and developing genomic prediction models

3
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73  that allow for prediction of phenotypes from genotypes; (2) validation of the predictive
74 models in a “validation population’, i.e. a set of individuals that did not participate in model
75  training; (3) application of the models to predict the genomic estimated breeding values
76  (GEBVs) of unphenotyped individuals which are then selected according to their GEBVs [6].
77  GS has been successfully implemented in the breeding of livestock [7, 8] and crops [9, 10]
78  and several recent papers suggest that has great potential also in forest trees [11, 12].

79 The accuracy of genomic prediction models can vary depending on the statistical method
80 employed. Several methods have been developed for GS, including ridge-regression best
81 linear unbiased prediction (rrBLUP), genomic best linear unbiased prediction (GBLUP),
82  BayesA, BayesB, Bayesian LASSO, BayesR and reproducing kernel Hilbert space (RKHS)
83  regression [7, 13]. These methods vary in the assumptions of the distribution and variances
84  of marker effects. rrBLUP assumes that marker effects follow a normal distribution where all
85  effects are shrunk to a similar and small size, while Bayesian methods (BayesA, BayesB,
86  Bayesian LASSO and BayesR) assume that genetic variances specific to the marker effects
87 and including a priori data on the probability distributions of marker effects. The GBLUP
88  method computes the additive genetic merits from a genomic relationship matrix and is
89  equivalent to rrBLUP under conditions that are generally met in practice [14]. The RKHS
90 regression model is a linear combination of the basic function provided by the reproducing
91  kernel [15]. Recent studies have indicated that the selection of suitable statistical methods
92  depends on the actual data at hand and the pattern of phenotypic variation in the traits of
93 interest and with reference population used [9, 16].

94 Besides statistical methods, other factors are known to influence the accuracy of genomic
95  prediction models, such as the size of the training population, number of markers employed,
96 and relatedness between the training and validation population and, by extension, to the

97  future selection candidates. Hayes et al. [17] found that for a given effective population size
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98  (Ng), increasing the size of the reference population leads to improved accuracy of GS based

99  predictions. Closer relationship between training population and selection candidates has
100  been reported to lead to a higher accuracy of genomic predictions, while enlarge genetic
101  diversity of the training population resulted in lower accuracy [18]. A number of simulation
102  and empirical studies have shown that increasing the number of markers may improve the
103  predictive accuracy as the N also increases [9, 19-21]. However, increasing the number of
104  markers in small N populations has little or no improvement on predictive accuracy [22, 23].
105 Going one step further from previous studies in forest trees, where individuals of the same
106  breeding generation were allocated to training and validation sets for the evaluation of
107  genomic prediction models, in this study we used both the parental and progeny generations
108 of E. grandis, E. urophylla and their F; hybrids to build prediction models using different
109  subsets of parents and progeny for training and validation. A multi-species single-nucleotide
110  polymorphism (SNP) chip containing 60,904 SNPs [24] were used to provide high-density
111 genotyping of the two generations. Based on these data, we developed genomic prediction
112 models for height, circumference at breast height (CBH), volume, wood basic density and
113 pulp yield, using a number of statistical methods and compared their performance to the
114  traditional pedigree-based prediction. Furthermore, we evaluated the impact of varying the
115 number of SNPs and the training set/validation set composition and size on the predictive

116  ability (PA) of genomic prediction.
117 Methods

118 Breeding population

119 The breeding population in this study was established by controlled crossings of 86 E.
120 urophylla and 95 E. grandis trees (GO population) following a incomplete diallel mating
121  design, resulting in 16,660 progeny individuals (G1 population) comprising 476 full-sib

122  families with 35 individuals per family. In 2009, the progenies were deployed in a field trial
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123  in a randomized complete block design with single-tree plots and 35 reps per family in
124 Belmonte (Brazil, 39.19W, 16.06 S, 210 m above the sea level) at Veracel Celulose S.A.
125  (Eunépolis, BA, Brazil). Our experimental population consists of 168 parents (78 of
126  E.urophylla and 90 of E.grandis) (G0), as not all parents were still alive at the time of study,
127  and 958 progeny individuals (G1) sampled across 338 full-sib families by avoiding low
128  performing trees. The number of individuals in each full-sib family ranged from one to 13
129  with an average of 2.8 individuals per family.
130 Phenotyping
131 For the 958 G1 samples, height, volume, and circumference at breast height (CBH) were
132 measured at age three and six years, respectively, and the wood traits (basic density and pulp
133  yield) were measured at age five years. For the 168 GO parents, the same traits had been
134  measured at age seven years for E. grandis and at age five years for E. urophylla. Briefly,
135  height was measured using a Suunto hypsometer/height meter (PM-5/1520 series) and CBH
136  was measured with a centimetre tape at 130 cm above ground. Wood properties were
137  estimated by employing near-infrared reflectance spectra of sawdust samples collected at
138  breast height using a FOSS NIRSystem 5000-M and applying calibration models developed
139  earlier by Veracel S.A..
140 A mixed linear model was applied to minimize the impacts of environmental and age
141  differences on each trait.

Y=XB +Zu+ Wb +e
142 where Y is a vector of trait; B is a vector of fixed effects, including overall mean,
143  experimental sites and age differences; u is a vector of random additive genetic effect of
144  individuals with a normal distribution, u ~ N(0, Ag?), A is a matrix of additive genetic
145  relationships among individuals; b is a vector of random incomplete block effect nested in

146  each experimental site; and e is a heterogeneous random residual effect in each experimental
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147  site. X, Z and W are incidence matrices for 8, u and b, respectively. The phenotypes of each
148  trait were then corrected by subtracting variation of sites, ages and blocks effects for all
149  individuals, and are referred to as adjusted phenotypes. The adjusted phenotypic traits were
150  used for calculating the heritability of traits and for building genomic prediction models.

151 Genotyping and quality control

152 The 168 GO and 958 G1 populations were genotyped using the Illumina Infinium
153  EuCHIP60K [24] that contains probes for 60,904 SNPs. EUChip60K intensity data (.idat files)
154  were obtained through GENESEEK (Lincoln, NE, USA). SNP genotypes were called using
155  GenomeStudio (Illumina Inc., San Diego, CA, USA) following standard genotyping and
156  quality control procedures with no manual editing of clusters as described earlier [24].
157  Further quality control of the genotyped samples was performed using PLINK [25]. Nine G1
158 individuals were removed due to low sample call rate (<70%) or high inbreeding coefficient
159  (F>1). 10,240 SNPs were excluded due to low call rate (<70%), 9,243 SNPs were filtered out
160  due to monomorphism or minor allele frequency (MAF) < 0.01, and 117 SNPs were removed
161  due strong deviations from Hardy-Weinberg equilibrium (p-value < 1x10°).

162 After quality control, missing genotypes of the remaining individuals were filled in by
163  imputation. We first tested the accuracy of imputation methods across a range of missing data
164 (2% - 30%) by artificial removing SNPs from a fraction of our genotypes. Among the
165 available family-based and population based methods we assessed the following programs for
166  imputation accuracy: BEAGLE [26], fastPHASE [27], MENDEL [28], random forest, SVD
167  Impute, k-nearest neighbors [29], BLUP A matrix, Bayesian PCA, NIPALS, Probabilistic
168 PCA [30]. BEAGLE provided the best accuracy for all missing data percentages, with
169 accuracies exceeding 95% in all cases (Additional file 1). We therefore used BEAGLE to
170  impute missing genotypes at the retained 41,304 SNPs across the 168 GO and 949 G1

171  individuals. The imputed genotypic data was subsequently used in all genomic prediction
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172  analyses. LD between SNP pairs was measured using the squared correlation coefficient (r?)
173  for SNPs located on the same chromosome. The decay of LD versus physical distance was
174  then modelled using the nonlinear regression method described in Remington et al. [31].

175 We further studied the population structure and pairwise genomic relationship among the
176 1117 individuals by performing principal components analysis (PCA) [32] and kinship
177  analysis [33] using 10,213 independent SNPs (LD-pruned) (r* < 0.2) calculated in PLINK
178  [25]. Pedigree-based genetic relationship was estimated from ABLUP (see below for further
179  information).

180 Statistical methodsfor genomic prediction

181 Four statistical methods were assessed to estimate the parameters in equation (1) and for
182  predicting GEBVs, including genomic best linear unbiased predictor (GBLUP) [5], ridge
183  regression BLUP (rrBLUP) [6], Bayesian LASSO (BL) [34], and reproducing kernel Hilbert
184  space (RKHS) regression [15]. The performance of the four genomic prediction methods was

185  compared with that of the commonly used pedigree-based BLUP (ABLUP) [35].

186 The GEBVs were estimated using the following mixed linear model:
187 y=18+Za +e 1)
188 where vy is the vector of adjusted phenotypes of single trait, g8 is the vector of overall mean

189  fitted as a fixed effect, a is the vector of random effects, and e is the vector of random
190 residual effects. 1 and Z are incident matrix of 8 and a, respectively.

191 ABLUP. ABLUP is the standard method for predicting breeding values using the expected
192  relatedness among individuals based on pedigree information [35]. For ABLUP, the vector of
193  random additive effects (a) in the equation (1) is assumed to follow a normal distribution,
194 a~ N(0,Ac?), where A is the additive numerator relationship matrix estimated from

195  pedigree information and the o2 is the additive genetic variance. The residual vector e is
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196  assumed as e ~ N(0, Ic2), where | is the identity matrix. Under these assumptions, equation
197 (1) can be re-written as:

XTx

198 VAD.¢ sz +A12%

[][] @

2
199  where % is estimated using a restricted maximum likelihood method. The estimated breeding
a

200  values (a) can be calculated directly from equation (2). ABLUP calculations were performed
201  using ASReml 3.0 [36].

202 GBLUP. The GBLUP method is derived from ABLUP, but differs in that the matrix A in
203  equation (2) is replaced with the genomic relationship matrix (G) that is calculated from the

M-P)(M-P)T

204  genotypic data as G = 257 2P

where M is the matrix of samples and their

205  corresponding SNPs denoted as 0, 1, 2, P is the matrix of allele frequencies with the j-th
206 column given by 2(p;— 0.5), where p; is the observed allele frequency of the samples [5]. In
207 GBLUP, the random additive effects (a) in the equation (1) is assumed to follow
208 a~ N(0,Go), where of is the genetic variance and GEBVs are again calculated from
209  equation (2) but with A~" replaced by G~ and o7 replaced by g;. The GBLUP calculations
210  were performed using ASReml 3.0 [36].

211 rrBLUP. As opposed to the previous two methods rrBLUP alters the notations of
212  parameters a and Z in the equation (1), where Z now refers to a design matrix for SNP
213  effects, rather than incident matrix and a refers to SNP effects that are assumed to follow
214 a~ N(0,Ic2), where ¢ denotes the proportion of the genetic variance contributed by each

215  SNP [6]. With these alterations, equation (2) becomes:

XX X'z ”ﬁ] X"y
216 = 3
Z'x 7Z"z+1nllal |77y @)
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217 where 1 = ¢2/02 is the ratio between the residual and marker variances. A prediction for
218  the GEBV for each individual is calculated as §, = Za from equation (3), where Z[ is the
219  SNP vector for individual i and a is the vector of estimated SNP effects. All calculations
220  were performed using the rrBLUP package in the R environment [33].

221 Bayesian LASSO. The Bayesian LASSO (BL) method is the Bayesian treatment of
222  LASSO regression proposed by Legarra et al. [34]. In BL the vector of SNP effects a in
223 equation (1) is assumed to follow a hierarchical prior distribution with @ ~ N(0, Tg2), where
224 T =diag(z},...,7p) . 7/ is assigned as ti~Exp(A*) , j=1,...p. A° is assigned as
225 A% ~ Gamma(r, §). The residual variance o2 is assigned as 2~y ~2(df,, S,).

226 We implemented the BL method using the BLR package in R [37]. Here a Monte Carlo
227  Markov Chains sampler was applied and prior parameters (df., S,, r, §,and A?) were defined
228  following the guidelines proposed by de los Campos et al. [38]. The chain length was 20,000
229  iterations, with the first 2,000 excluded as burn-in and with a subsequent thinning interval of
230  100.

231 RKHS. RKHS assumes that the random additive effects in equation (1) are a ~ N(O0, Kaj),
232 where K is computed by means of a Gaussian kernel that is given by K;; = exp(—hd;;) [15].
233 his a semi-parameter that controls how fast the prior covariance function declines as genetic
234 distance increase and d;; is the genetic distance between two samples computed as d;; =
235 e —xjk)z, where x;; and xj.are kth SNPs (k=1,...,p) for the ith and jth samples,
236 respectively. We implemented the RKHS method through the BGLR package in R [39],
237  which uses a Gibbs sampler for the Bayesian framework and assigns the prior distribution of

238 o; and gas g ~ x~*(df,,S,) and 6 ~ x~*(df,S,), respectively. Here we chose a multi-

239  kernel model suggested by Perez [39], where three h were defined as h, = 2/(5*d),

10
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240 h,=2/d, h3 =2%5/d, d was the median of d;;. The Gibbs chain length was 20,000
241  iterations with the first 2000 iterations discarded as burn-in and a thinning interval set to 100.
242 Heritability estimation

243 We estimated the pedigree-based narrow-sense heritability (h2) using the relationship
244 matrix from the ABLUP method, and the narrow-sense genomic heritability (h2) using the
245  genomic relationship matrix from GBLUP [40]. The respective heritabilities were calculated

246  as:

247 hZ = 2%

248  where g2 is the additive genetic variance and ¢Z, is the residual variance estimated with

249  ABLUP, while g/ is the genetic variance and o, is the residual variance estimated with

250 GBLUP.
251 Size and genetic composition of the training and validation sets
252 We simultaneously assessed the impact of the size and genetic participation of GO and G1

253  individuals in the training set (TS) and validation set (VS) of the genomic prediction models.
254  Regarding TS/VS sizes, we divided all 1,117 (GO and G1) individuals into five different size
255  groups with a ratio of TS to VS of 1:1, 2:1, 3:1, 4:1 and 9:1. The corresponding sizes of the
256  TS/VS were respectively 558/559, 743/374, 836/281, 892/225 and 1003/114. Within these
257  pre-established size compositions, four scenarios of the participation of GO and G1
258 individuals were evaluated to assess the impact of varying the degrees of relationship and
259  diversity between TS and VS. In the first scenario (CV1) assignment of individuals to either
260 TS or VS was random. For the second scenario (CV) all GO parents were assigned to the TS
261  and complemented with G1 individuals up to the required number in the set, while the VS
262  was composed exclusively of G1 individuals. The third and fourth scenarios were built based
263 on minimizing and maximizing relatedness between TS and VS. The relatedness-based
264  assignment of individuals was determined using the procedure described in Spindel et al. [9].

11
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265  Briefly, 1,117 individuals were assigned to 182 clusters based on genotypes using the k-
266  means clustering algorithm, a method that attempts to minimize the distance between
267 individuals in a cluster and the centre of that cluster. Using the relatedness estimates, CV3
268 was then built by assigning individuals to TS and VS based on dissimilarity, such that
269  individuals from the same cluster were not allowed to be both in the same TS or VS. For CV,
270  individuals from same cluster were forced to be either in the TS or VS [9].

271 Genomic prediction models

272 We evaluated the effects of the five statistical methods (GBLUP, rrBLUP, BL, RKHS and
273  ABLUP), five TS/VS sizes and four TS/VS composition scenarios (5*5*4 = 100 models in
274  total) on the predictive ability (PA) of genomic prediction. For each of the 100 models, 200
275  replicate runs were carried out for each trait and the performance of the models were
276  evaluated in terms of their PA (ry, §), which is defined as the Pearson correlation between the
277  adjusted phenotypes and the GEBVs of the samples in the VS. ANOVA was performed on 80
278  out of 100 models tested (20 ABLUP models excluded) to partition the variance into different
279  sources, with all effects declared as fixed, comparing all the sources of variation (genomic
280  prediction method, TS/VS size and genetic composition). Significant differences found were
281  further assessed by means of a paired t tests (o = 5%), adjusted by a Bonferroni correction.
282  The 80 models as described above were used for assessing the impact of TS/VS composition
283 and TS/VS size, while all 100 models were used to evaluate the statistical methods against
284  ABLUP. All available SNPs were used in all the analyses of these models.

285 Numbers and genomic location of SNPs subsets

286 We finally assessed the impact of the number of SNPs and their locations (gene vs.
287  intergenic region) on the PA of genomic prediction models. 12 subsets with different
288  numbers of SNPs were generated by randomly selecting 10, 20, 50, 100, 200, 500, 1,000,

289 2,000, 5,000, 10,000, 20,000 and 41,304 SNPs from all the available SNPs. For SNP location,

12
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290  SNPs subsets located in different regions of the genome were established by including SNPs
291 located in four different regions: (i) coding sequences (CDS) only (11,786 SNPs); (ii) entire
292  genic regions including CDS, UTRs, introns, and sequences 2kb up and downstream of the
293  gene (30,405 SNPs); (iii) intergenic regions (10,899 SNPs), and (iv) all 41,304 SNPs. The
294  location of each SNP was obtained by mapping SNPs onto E.grandis genome database using
295  SnpEff [41]. Genomic prediction models were built for all four TS/VS compositions using
296 only the two statistical methods (GBLUP and RKHS) that showed optimal predictive
297  performance in the previous analyses, and the TS/VS size ratio of 4:1 (892/224) were used on

298  the PA evaluations.
299 Reaults

300 Phenotypic trait correlations

301 Growth (height, volume, and CBH) and wood properties (basic density and pulp yield)
302  were measured for all 168 GO and 949 G1 individuals. The raw phenotypic data were
303 adjusted using a mixed linear model to minimize the impacts of environment and age
304  differences. The pairwise correlations between the adjusted traits were described by
305 calculating Pearson correlation coefficients (Figure 1). Growth traits were correlated with
306 each other. Interestingly, however, while CBH and volume at age three and six years were
307  highly correlated (r = 0.92 and 0.95 respectively), height at age three was only weakly
308 correlated with height at age 6 (r = 0.36). For wood properties traits, basic density was
309 negatively correlated with pulp yield, although weakly (r = -0.28). Growth traits showed no
310  correlations with wood traits (r = - 0.1t0 0.1).

311 Breeding population structur e and r elatedness

312 Population structure across GO and G1 individuals was assessed by PCA based on 10,213
313  LD-pruned, independent SNPs (r°<0.2). The first two PCs explained 6.07% and 3.8% of the

314  total genetic variance (Figure 2a) and clearly separated the GO individuals of the two species,
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315 E.grandis and E.urophylla, with the E.grandis individuals further subdivided into two
316  subgroups likely representing the two main provenances used in breeding programs in Brazil.
317  The Gl individuals were generally projected into the space defined by their parents, but with
318 a few outliers. The expected pedigree-based and realized genomic-based genomic
319 relationships among GO and G1 individuals were visualized in heatmaps (blue and red in
320  Figure 2b, respectively). The result of the genomic relationship analysis corroborated the
321  PCA result, in which E. urophylla was clustered into a single group, whereas E. grandis
322  formed two subgroups. The average values of the realized genomic relationships among what
323  were considered to be full-sibs, half-sibs and unrelated individuals from the pedigree data
324 were generally lower than the expected relationships values (0.309 vs. 0.5, 0.131 vs. 0.25
325 and .0056 vs. 0, respectively) (Table 1). This result suggests that pedigree errors were likely
326  present in this population. These putative pedigree errors in turn negatively affected the
327  pedigree-based trait heritability, which were considerably lower than those estimated using
328  genomic-based realized genomic relationships (Table 2).

329 Table 1. Pairwise expected pedigree-based and realized genomic-based relationships in the

330 different family types.

Full-sib families Half-sib families  Unrelated individuals
(961)° (12718) (434252)
Min Mean Max Min Mean Max Min Mean Max

05 05 05 025 025 025 O 0 0

Pedigree-expected
relationship
Genomic-realized 57, 309 0.933 -0.464 0.131 0.908 -0.467 -0.056 0.891

relationship

331 *Number in parentheses indicate the number of pairwise estimates

332 Table 2. Pedigree-based and genomic heritabilities for each trait

CBH (3)® Height (3) Volume (3) CBH (6) Height (6) Volume (6) Basic density Pulp yield

h2P 0.051(0.03) 0.074(0.04) 0.057(0.03) 0.085(0.04) 0.097(0.05) 0.068(0.04) 0.23(0.04) 0.27(0.05)
h? 0.113(0.04) 0.171(0.05) 0.162(0.04) 0.184(0.04) 0.193(0.05) 0.196(0.04) 0.35(0.05) 0.46(0.05)

333 ® Number in parentheses correspond the age at measurement;
334 ® h2 and hZ correspond to the pedigree and genomic narrow-sense heritability, respectively,
335 with their standard deviation in parenthesis.
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336

337 Predictive abilitieswith different statistical methods

338 Estimates of PAs were obtained using different statistical methods, compositions and sizes
339  of TS/VS for each trait (Additional file 2). An ANOVA showed that all these factors had a
340  significant effect on the PA (P-value < 0.005) (Additional file 3). Across the four genomic
341  prediction methods used (GBLUP, rrBLUP, BL, and RKHS) the average PA varied from
342  0.27 to 0.274 (Additional file 4). All the four methods outperformed the pedigree-based
343  ABLUP prediction (mean PA = 0.121) by an average of 80%-200% across the eight traits
344 (Figure 3). RKHS yielded a slightly better PAs for six out of eight traits and this method was
345  particularly suitable for predicting traits that displayed a lower heritability such as CBH and
346  height. The other three methods generally gave similar results across all traits, although with
347  aslightly better performance than RKHS for pulp yield (Figure 3).

348 Impact of TS/VS compositions and relative sizes on predictive ability

349 The average PAs differed significantly for the different TS/VS composition tested varying
350 from 0.253 to 0.286 (Additional file 5). The genomic prediction model built with CV; (all GO
351 parents in the TS) showed the highest PAs for all traits except pulp yield, whereas models
352  based on CV3; (minimum relatedness between TS and VS) gave the worst predictions. The
353  models based on CV; (random assignment) and CV, (maximum relatedness between TS and
354  VS) showed no significant differences in PA (Figure 4, Additional file 5). The average PA
355  was significantly improved from 0.251 to 0.285, as the TS/VS ratio increased from 1:1
356  (558/559) to 9:1 (1003/113) (Additional file 6), irrespective of the prediction method (Figure
357  3) or the genetic composition of TS/VS used (Figure 4), clearly showing the importance of an
358  adequate size of the training set used to build prediction models. Furthermore, there was a
359  steeper increase in PA when TS/VS ratio increased from 1:1 (558/559) to 2:1 (743/374) than

360  from 2:1 (743/374) to 9:1 (1003/114) for all traits (Figure 3 and 4).
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361 Impact of the number of SNPs and their genomic location on predictive ability

362 Estimates of PA using different numbers of SNPs (Additional file 7) and sets of SNPs in
363  different genomic locations (Additional file 8) were obtained with two prediction methods for
364 all the different TS/VS compositions. An ANOVA showed that both the number of
365  genotyped SNPs and their genomic location significantly affect the PA for both prediction
366  methods (GBLUP and RKHS) (P-value < 0.005), and that the number of SNPs has a larger
367  impact than their genomic location (Additional file 9). The average PAs across all traits
368  decreased from 0.278 to 0.113 when the number of SNPs used in the prediction models
369  dropped from 41,304 to only 10, and the reduction was especially strong when the number of
370  SNPs went below 5,000 (Additional file 10). On the other hand, no significant improvement
371  was generally seen in the average of PA when more than 5,000 SNPs were used (Additional
372  file 10, Figure 5). The results obtained for the different traits suggest that traits with lower
373  heritability are more sensitive to the reduction in the number of SNPs (Figure 5). For instance,
374  PA for basic density (h? = 0.35) went from 0.47 to 0.24 (a 50% decrease) when the number of
375  SNPs dropped from 40,000 to 10, whereas CBH of age three (h? = 0.113) decreased from
376  0.1281t00.03 (a 77% decrease). Overall, few and only slight significant differences were seen
377  in PAs by using SNP sets located in different genomic regions (Figure 6), the average PAs
378  range from 0.270 to 0.284 (Additional file 11). Predictions using SNPs located in intergenic
379  regions were marginally better than using SNPs in genic regions or all SNPs, except for pulp
380 yield that could be better predicted based on models using SNPs from coding and gene
381  regions (Figure 6). When comparing the PA of models using SNPs in coding versus entire
382  gene regions, the latter had a slightly better performance, most likely due to the larger
383  number of SNPs used (30,504 vs. 11,786) and not to any specific effect of genomic location.

384  When we assessed the pairwise LD (r’) amongst the SNPs in the four regions tested, the
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385 extent of LD differed among them, with LD showing the most rapid decay in coding regions

386  and the slowest one in intergenic regions (Additional file 12).
387 Discussion

388 This study presents the results of an empirical evaluation of the accuracy of genomic
389  prediction of growth and wood quality traits in Eucalyptus using data from a high-density
390  SNP array. Our results are based on data from a two generations breeding population and
391 provide additional encouraging results on the prospects of using genomic prediction to
392  accelerate breeding. We have assessed a range of factors, including the statistical methods
393  used to estimate predictive ability, the size and composition of the training and validation sets
394  as well as the number and genomic locations of SNPs used in the prediction model.
395  Hereafter we will discuss how these factors influenced the prediction accuracy.

396 Genomic data corrected pedigreeinconsistencies

397 All four genomic prediction methods performed significantly better than the pedigree-
398  based evaluations for all complex traits assessed (Figure 3). While similar results have been
399  reported for animals [16, 42] and crop species [9, 35] across a number of traits, in forest trees
400 prediction accuracies using genomic data have generally been similar or up to 10-30% lower
401 than accuracies obtained using pedigree-estimated breeding values, including Eucalyptus [4],
402 loblolly pine (Pinus taeda) [43], white spruce (Picea glauca) [44, 45], interior spruce (Picea
403  engelmannii x glauca) [46, 47] and maritime pine (Pinus pinaster) [48]. Genomic predictions
404  with lower accuracies than pedigree-based predictions could arise from insufficient marker
405  density, such that not all casual variants are captured in the genomic estimate [40], or an
406  overestimate of the pedigree-based prediction due to its inability of ascertaining the true
407  genetic relationships in half-sib families [46]. Our result however differ from previous studies
408 in forest trees due to the fact that the average pairwise estimates of genetic relationship

409 among individuals were substantially lower using SNP data than expectations based on
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410 pedigree information (Table 1), clearly suggesting that the expected pedigrees, and
411  consequently the pairwise relationships, had considerable inconsistencies that were corrected
412 by the SNP data. We speculate that these inconsistencies likely derived from pollen
413  contamination and mislabelling in the process of generating the full and half-sib families.
414  Besides correcting potential pedigree errors, the relatively dense SNP data used in our study
415 also was able to accurately capture the Mendelian sampling variation within families so that
416  genetic variances estimates were based on the actual proportion of the genome that is identity
417 by descent (IBD) or state (IBS) among half- or full-sib individuals, resulting in improved
418  estimates of trait heritability (Table 2).

419 Genomic predictions show that traits adequately fit the infinitesimal model

420 Overall, the different genomic prediction methods provided similar results for the traits
421  evaluated with only a slight advantage for RKHS showing better PAs for growth traits that
422  had lower heritability (Figure 3) although for pulp yield, RKHS instead was the worst
423  performing method. It is possible that the definition of a kernel simply was not suitable for
424 this particular trait [15]. Our results corroborate previous reports both in crops and animals
425  [16, 49, 50], as well as in forest tree studies. In loblolly pine, for example, the performance of
426  rrBLUP and three Bayesian methods was only marginally different when compared across 17
427  traits with distinct heritabilities, with a small improvement using BayesA only for fusiform
428  rust resistance where loci of relatively larger effect have been described [43]. Similar results
429  were obtained for growth and wood traits in other forest trees studies showing no
430 performance difference between rrBLUP and Bayesian methods [45, 47, 48]. This occurs
431  despite simulation studies suggesting that Bayesian methods, like BL, should outperform
432  univariate methods such as rfBLUP and GBLUP [6, 51, 52]. One possible reason for the
433  apparent disagreement between simulations and empirical data sets is that the true QTL

434  effects for most of traits are relatively small and the distribution is less extreme than
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435  simulated data [53]. Our results therefore support the proposal that either rrBLUP or GBLUP
436  are effective methods in providing the best compromise between computation time and
437  prediction efficiency [54] and that the quantitative traits assessed in our study adequately fit
438  the assumption of the infinitesimal model.

439 Training set size, composition and relatedness strongly affect predictive ability

440 Our results show that the size and the variable TS/VS compositions in terms of relatedness
441  between training and validation sets had the largest impact on the PA irrespective of the
442  analytical method used (Figure 4). The average PA rapidly increased with increasing sizes of
443  the TS and did not show any sign of plateauing. Earlier simulations of Eucalyptus breeding
444 scenarios had in fact shown that with up to N= 1,000 individuals in the TS, the accuracy
445  would rapidly increase, and additional gains would be seen up to N= 2,000 individuals for
446  lower heritability traits, larger numbers of QTLs involved and larger effective population size
447  (Ng). After N= 2,000 the predictive accuracy would tend to plateau irrespective of the N and
448  genotyping density [20]. Later simulations mirroring a eucalypt breeding scheme also
449  showed a considerable improvement of genomic predictions with increasing training
450  population sizes by consolidating phenotypic and genotypic data of individuals from previous
451  breeding cycles [55]. Simulations [19, 56] and proof-of-concept studies [57] in crop species
452  also show improved PA with larger TS sizes. Larger training populations alleviate the
453  probability of losing rare favourable alleles from the breeding population as generations of
454  selection advance. Additionally by sampling more individuals for training, a larger diversity
455  is captured and better estimates of the marker effects are obtained which in turn positively
456  impact predictions in cross-validations and future genomic selection candidates.

457 As expected, relatedness between TS and VS had a large impact on PAs for all traits.
458  Prediction models built under scenario CV3; (minimized relatedness between TS and VS)

459  resulted in significantly worse predictions than in scenario CV4 when relatedness was
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460 maximized. Increasing the genetic relationships between training and selection candidates
461  effectively has the same consequence as reducing the Ne such that the stronger the
462  relationship, the higher in the predictive accuracy. Our results are in line with previous
463  reports in forest trees showing that models developed for one population had limited or no
464  ability of predicting phenotypes in an unrelated one in white spruce [44, 45] and Eucalyptus
465  [4], indicating that prediction models will be population specific. With lower relationship
466  between TS and VS, the extent of LD is shorter and not stable across distantly related
467  populations and the predictive ability of genomic prediction model is reduced. Recent
468  simulations show that the accuracy of genomic prediction models decline approximately
469 linearly with increasing genetic distance between training and prediction populations [58].
470  Increased relatedness reduce the number of independently segregating chromosome segments
471  and therefore increase the probability that chromosome segments IBD sampled in the training
472  population are also found in the selection candidates. Our results provide additional
473  experimental evidence that for successful implementation of GS the selection candidates have
474 toshow a close genetic relationship to the training population.

475 PAs were considerably higher when all the GO parents were kept in the TS (scenario CV5).
476  This result could be due to two reasons. On one hand, by keeping all GO parents in TS, we
477  had a large diversity available for training, which could explain the positive impact of GO
478 inclusion on predictions. On the other hand, it is possible that by allocating all GO individuals
479  to the TS the positive effect we observe could strictly not be due to increased predictive
480  power of including GO individuals but rather a way to avoid the potentially negative impact
481  of having pure species parents in the validation set in combination with G1 progeny that were
482  largely F; hybrids. In order to evaluate this, we estimated PA of genomic prediction models
483 by using GBLUP and RKHS, having only the 168 GO parents for TS and randomly selected

484 168 G1 individuals in VS. To control for the effect of the strongly reduced TS size, we
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485  compared this setup with random assignment of individuals to TS or VS but keeping the size
486  of each at N=168. The results showed considerably lower PAs (even zero or negative) when
487  using only pure species parents to predict G1 hybrid progeny phenotypes (Additional file 13).
488  This observation, together with the fact that PAs with scenario CV4 (maximum relatedness
489  between TS and VS) were also generally lower than CV», suggesting that the higher PAs we
490  observe for scenario CV; is mostly due to avoiding the negative effect of having pure species
491  parents in the VS.

492 The issue of genomic prediction in hybrid breeding has been investigated so far only within
493  species and only for domestic animals, more specifically for bovine and pig breeding in
494 which selection is carried out in pure breeds but the aim is to improve crossbred performance
495  [42,59]. Results from simulations show that training on crossbred data provides good PAs by
496  selecting purebred individuals for crossbred performance, although PAs drop with increasing
497  distances between breeds [60]. When crossbred data is not available, separate purebred
498 training populations can be used either separately or combined depending on the correlation
499  of LD phase between the pure lines [61], which in turn is in part determined by the time of
500 divergence between the populations. Compared to bovine breeds that belong to the same
501 species and have diverged relatively recently (<300KY A) [62], the estimated divergence time
502  between the two Eucalyptus species used in our study is much older, estimated at 2-5 MYA
503 [63]. Therefore, no correlation of LD phase between these two species is expected and it is
504  not surprising that training on the combined pure species sets to validate on the F; hybrids
505  resulted in poor PA. To the best of our knowledge, our results are the first ones to provide an
506 initial look at the issue of genomic prediction from pure species to interspecific hybrids
507 indicating that, consistent with expectations, models have to be trained in hybrids if one is to
508  predict phenotypes in hybrid selection candidates.

509 Number of SNPsismoreimportant than SNP genomic location
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510 Across all traits, no major improvement was detected in PA when more than 5,000 SNPs
511  were used (Additional file 10, Figure 5), although a slight increase were observed for height
512  of age three, basic density and pulp yield when using GBLUP based on 20,000 SNPs. Several
513  studies have also shown that considerably lower numbers of SNPs provided PAs equivalent
514  to those observed using all SNPs available [22, 64]. The necessary number of SNPs needed
515  for genomic prediction model depends on the extent of LD, which strictly related to Ne. Our
516  results, where we achieve equivalent PAs using either all of 12-20% of the genotyped
517  markers suggests that it represents a closed breeding population with a relatively limited Ne.
518  This has been a common approach in domestic animals with the intent of developing low-
519  density genotyping chips to reduce genotyping costs [8]. The main advantage of using
520 reduced SNP panels is cost-effectiveness, although it is expected that using a higher density
521  of markers will be necessary to mitigate the decay of PAs over generations due to the
522  combined effect of recombination and selection on the patterns of LD [65]. It is also
523  questionable whether it will be more cost effective to have targeted low-density SNP chips
524 for specific populations or a full SNP chip that can be used across breeding populations of
525  several organizations. By having a SNP chip that will accommodate several populations the
526  cost-effectiveness and economy of scale of amassing many more samples to be genotyped
527  with the same chip will likely be much larger than the cost reduction observed by using a
528  smaller number of SNPs on each specific population.

529 SNP location also contributed to the predictive ability of genomic prediction model
530 although the effects were rather modest. PAs using SNPs in intergenic regions were slightly
531  better than using SNPs in genic regions or using all SNPs, except for pulp yield that could be
532 somewhat better predicted with SNPs in coding and gene regions (Figure 6). This likely
533  represents a random sampling effect and not any specific enrichment for functional variants

534  for this trait. However, the decline of LD was slower for SNPs in intergenic regions when

22


https://doi.org/10.1101/081281
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/081281; this version posted October 15, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

535 compared to SNPs in gene and coding regions (Additional file 12) and the slightly longer
536  range of LD might help explain why using SNPs in intergenic regions provided better PAs.
537  With slower LD decay, SNPs in intergenic regions might better capture QTLs across longer

538  genomic segments than SNPs in coding regions where LD decays more rapidly.
539 Conclusions

540 Our experimental results provide further promising perspectives for the implementation of
541 genomic prediction in Eucalyptus breeding programs. Genomic predictions largely
542  outperformed the pedigree-based ones in our experiment, mainly due to the fact that our
543  expected pedigree had major inconsistencies, such that all pedigree-based estimates were
544  grossly underestimated. This unexpected result illustrated an additional advantage of using
545 SNP data and genomic prediction in breeding programs. While the main advantage of
546  genomic prediction in eucalypt breeding will likely be the reduction of the breeding cycle
547  length [4], the use of a genomic relationship matrix allowed us to obtain precise estimates of
548  genetic relationship and heritability that we would otherwise not have had access to.
549  Furthermore our results corroborated the key role of relatedness as a driver of PA, the
550 potential of using lower density SNP panels, and the fact that growth and wood traits
551 adequately fit the infinitesimal model such that GBLUP or rrBLUP represent a good
552  compromise between computation time and prediction efficiency. In contrast to previous
553  studies in Eucalyptus, we had access to both the pure species parents (E. grandis and E.
554  urophylla) and their F; progeny. We show that models trained on pure species parents do not
555 allow for accurate prediction in F; hybrids, likely due to the strong genetic divergence
556  between the two species and lack of consistent patterns of LD between the two species and
557  their hybrids.

558 Several issues remain to be investigated for the operational adoption of genomic prediction

559 in eucalypt breeding. First, how does the accuracy of genomic prediction decline over
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successive generations of selection due to subsequent recombination? Second, how stable are
genomic prediction models across multiple environments and how important is it to consider
genotype by environment interactions in the models? Finally, we have only considered
additive genetic variance for building genomic prediction models in our population, but it is
possible and perhaps even likely that non-additive genetic effects will play an important role
in many breeding populations and specifically in populations consisting of early generation

hybrids.
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781

782  Figures

783  Figure 1 Corréation and distribution of phenotypes. Scatter plots (lower off-diagonal)
784  and correlations with probability values (upper off-diagonal; Ho: r=0) for adjusted phenotypes
785  between pairs of traits. Color key on the right indicates the strength of the correlations.
786  Diagonal: histograms of the distribution of adjusted phenotypes values.

787  Figure 2 Genetic structure and relatedness in the breeding population. (a) First two
788  principal components of a PCA revealing population structure. Dots represent E.grandis
789  (blue), E.urophylla (red) and their F; (green) individuals. (b) Heatmaps of the pairwise
790  pedigree-expected relationships (blue, upper off-diagonal) and genomic-realized relationship
791  (red, lower off-diagonal) of the 1117 individuals assigned to E.grandis (G), E.urophylla (U)

792  and their hybrid progenies (H).
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793  Figure 3 Predictive abilities with different methods and increasing sizes of training sets.
794  Predictive ability (y axis) estimated using five methods across five training set/validation set
795  sizes in numbers of individuals (x axis) 558/559, 743/374, 836/281, 892/225 and 1003/114.
796 Red and blue dashed lines indicate the pedigree-based (h2) and genomic-realized (hg)
797  narrow-sense heritability respectively.

798  Figure 4 Predictive abilities with variable levels of relatedness between training and
799 validation sets. CV;: random assignment of individuals to either training set (TS) or
800 validation set (VS); CV: all the GO pure species parents assigned to the TS; CV3: minimum
801 relatedness between TS and VS individuals; CV.: maximum relatedness between TS and VS
802 individuals. Estimates were obtained using GBLUP and RKHS across five TS/VS sizes in
803  numbers of individuals (x axis): 558/559, 743/374, 836/281, 892/225 and 1003/114.

804 Figure 5 Predictive abilities with increasng numbers of SNPs. Predictive ability
805  estimated with GBLUP and RKHS with increasingly larger sets of SNP sampled at random
806 from the total of 41,304 SNPs. Outliers are indicated by black dots. Letters indicate
807  significant difference between the different models after Bonferroni adjustment (P < 0.05).
808 Figure 6 Predictive abilities using SNPs located in different genomic regions. Predictive
809  ability estimated with GBLUP and RKHS using 11,786 SNPs in coding DNA, 30,405 SNPs
810 in genic regions (CDS, UTR, intron, and within 2kb upstream and downstream of genes),
811 10,899 SNPs in intergenic regions and all 41,304 SNPs. Letters indicate significant difference
812  between the different models after Bonferroni adjustment (P < 0.05).

813

814 Additional files

815 Additional file 1: Average accuracy of SNP imputation methods with increasing proportions

816  of missing data. SNPs on chromosomes 6 and 8 were randomly removed from the dataset to
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817  generate specific missing data proportions. Accuracy between imputed and true SNP
818  genotypes were subsequently calculated with the different methods. (DOCX 1.8Mb)

819  Additional file 2: Predictive abilities on genomic selection model that comprises of
820 statistical methods, genetic compositions and relative sizes of Training Set/Validation Set for
821  each trait. (XLSX 17 kb)

822  Additional file 3: ANOVA analysis of sources of variation affecting the predictive ability.
823 (DOCX 50 kb)

824  Additional file 4: Mean and standard deviation of predictive ability with the five prediction
825  methods for the eight traits. (DOCX 99kb)

826  Additional file 5. Mean and standard deviation of predictive ability estimated with the four
827  Training Set/Validation Set compositions. (DOCX 87kb)

828  Additional file 6: Mean and standard deviation of predictive ability estimated with the five
829 relative sizes of Training Set/Validation Set expressed in proportions and numbers of
830 individuals. (DOCX 91kb)

831 Additional file 7. Mean and standard deviation of predictive ability across increasing
832  numbers of SNPs, statistical methods (RKHS and GBLUP), four Training Set/Validation Set
833  compositions for each of eight traits (XLSX 62kb)

834  Additional file 8: Mean and standard deviation of predictive ability estimated with SNPs in
835  four genomic locations, with two statistical methods (RKHS and GBLUP), four Training
836  Set/Validation Set compositions for each of eight traits (XLSX 59kb)

837  Additional file 9: ANOVA of predictive ability with SNP genomic location and SNP number
838  as sources of variation. (DOCX 63kb)

839  Additional file 10: Average predictive ability estimated with different numbers of SNPs

840 fitted into the model. (DOCX 138kb)
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841  Additional file 11: Average predictive abilities estimated using SNP sets located in different
842  genomic regions. (DOCX 83kb)

843  Additional file 12: Decay of linkage disequilibrium (LD) with physical distance estimated
844  with SNPs in different genomic locations. (a) A comparison of the decay of LD with physical
845 distance in four classes of SNPs located with coding, genic, intergenic and all regions,
846  respectively. Dots of pairwise LD versus physical distance and the LD decay for SNPs
847 located in all regions (b), coding region (c), genic region (d) and intergenic region (e),
848  respectively. (DOCX 1.4Mb)

849  Additional file 13: Predictive abilities by training in pure species eucalypt parents and
850  predicting in their F; hybrids. Predictive ability estimated under three training/validation sets
851  (TS/VS) scenarios with two methods (GBLUP and RKHS) for each trait. PO168 (red boxes):
852 all 168 E. grandis and E. urophylla pure species GO parents used for training and 168 G1
853  random selected hybrid progeny for validation; random168 (green): randomly selected 168
854  individuals from all 1,117 for TS and 168 randomly also for VS; random558 (blue):
855 randomly divided all 1,117 individuals into TS and VS of same size (558/558). Outlier

856  estimates are indicated by black dots. (DOCX 179kb)
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