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Abstract 16 
The elemental content of a soybean seed is a determined by both genetic and environmental 17 
factors and is an important component of its nutritional value. The elemental content is 18 
chemically stable, making the samples stored in germplasm repositories an intriguing source of 19 
experimental material. To test the efficacy of using samples from germplasm banks for gene 20 
discovery, we analyzed the elemental profile of seeds from 1653 lines in the USDA Soybean 21 
Germplasm Collection. We observed large differences in the elemental profiles based on where 22 
the lines were grown, which lead us to break up the genetic analysis into multiple small 23 
experiments. Despite these challenges, we were able to identify candidate SNPs controlling 24 
elemental accumulation as well as lines with extreme elemental accumulation phenotypes. Our 25 
results suggest that elemental analysis of germplasm samples can identify SNPs in linkage 26 
disequilibrium to genes, which can be leveraged to assist in crop improvement efforts.  27 
 28 
 29 
Introduction 30 
 31 
One of the biggest challenges facing agricultural research today is finding ways to improve crop 32 
yield and nutrition while farming in increasingly erratic climates and on more marginal lands. 33 
Throughout modern agriculture, crops have been bred for maximal yield under optimal  34 
environmental conditions. Farming marginal soils with insufficient fertilization or irrigation leads 35 
to dramatic decreases in crop yield. In addition, plants grown on marginal soils may exhibit a 36 
reduced nutritional profile, which is an important consideration for staple crops. To properly 37 
address these issues, we need to develop a more complete understanding of the genetic 38 
mechanisms underlying a plant's response to various environmental stresses (Baxter and Dilkes 39 
2012). 40 
 41 
An important aspect underlying a plant's response to environmental stresses is its ability to 42 
regulate mineral nutrients. Apart from carbon and oxygen, a plant relies entirely on the 43 
bioavailable nutrients in the soil in which it is growing for survival. Soil nutrient bioavailability can 44 
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vary drastically, not just as a result of soil composition, but also as a side effect of drought and 45 
flood conditions, changes in soil pH, and changes in the soil microbiome (FAO 1996). 46 
Understanding the uptake, regulation, transport, and storage of mineral nutrients under a variety 47 
of environmental conditions is essential to deciphering the complex relationship between a plant 48 
and its environment. 49 
 50 
Single-seed ionomic profiles have proven both highly heritable and susceptible to environmental 51 
perturbations in maize (Baxter et al. 2014). This makes the study of the seed ionome a powerful 52 
tool for matching a plant’s genetic characteristics with its response to environmental 53 
perturbations. Both environmental and genetic properties can effect multiple elements in 54 
combination, resulting in genetic loci that might control different elements in different 55 
environments (Baxter 2015; Asaro et al. 2016). Additionally, once collected, apart from the 56 
possibility of external contamination, the elemental content of a seed sample is fixed. Tissue for 57 
ionomic analysis doesn't need to be specially stored or quickly analyzed after collection. 58 
Conveniently, this allows for the ionomic analysis of excess tissue collected for other purposes, 59 
without the necessity of a separate field experiment. Here we demonstrate the utility of 60 
leveraging existing germplasm by performing a genome-wide association study on ionomic traits 61 
in seed tissue measured from diverse soybean lines selected from the USDA Soybean 62 
Germplasm Collection.  63 
 64 
Results 65 
 66 
Experimental Design 67 
 68 
The mission of the USDA-ARS National Plant Germplasm System (NPGS) is “to acquire, 69 
evaluate, preserve and provide a national collection of genetic resources to secure the 70 
biological diversity that underpins a sustainable U.S. agricultural economy.” Some of these 71 
collections are the target for high-density genotyping projects making them ideal populations for 72 
genome-wide association studies. However, the prohibitive cost of controlled field trials to 73 
measure novel phenotypes can limit their utility for genetics research. In this experiment, we 74 
used existing germplasm to find novel genotype-phenotype associations without the expensive 75 
overhead of independent field trials. Although this experiment is limited by the inability to grow 76 
plants in a common environment, the high heritability of ionomics traits (Baxter et al. 2014), as 77 
well as the stability of the ionome in stored tissue (Baxter et al. 2014), makes ionomic 78 
phenotyping an ideal test case for mining germplasm resources. To test the power of ionomics 79 
to find genetic factors underpinning elemental accumulation, we analyzed seeds from 1653 80 
soybean [Glycine max (L.) Merr.] lines representing the diversity found in the USDA Soybean 81 
Germplasm Collection stored at Urbana, IL. 82 
 83 
A core collection of 1685 accessions of the USDA Soybean Germplasm Collection represents a 84 
substantial amount of the genetic diversity in the entire collection.  The core collection contains 85 
approximately 10% of the total number of introduced soybean accessions.  The 1653 soybean 86 
lines used in this study comprised all of the 1685 accessions available when the research was 87 
started. For accessions in maturity groups 000 through VIII for which field evaluation data were 88 
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available the core was selected using origin, qualitative and quantitative data.  Accessions were 89 
divided in groups based on origin and then further subdivided based on maturity group, which 90 
classifies soybean accessions based on photoperiod and temperature response.  A total of 81 91 
strata were established. A multivariate proportional sampling strategy within each stratum was 92 
determined to be the optimal procedure for identifying a sample of accessions that best 93 
represents the diversity of the total collection. Field evaluation data were not available for 94 
accessions in maturity groups IX and X, but because these accessions are adapted to sub-95 
tropical and tropical conditions and are likely to have unique genetic diversity, a sample of 10% 96 
of these accessions was added to the core collection based on multivariate analysis of the 97 
qualitative data.  A full explanation of the development of the core collection can be found in 98 
Oliveira et al. (2010). The seeds available in the NPGS for this core collection come from grow-99 
outs that span 12 years at three locations (Urbana, IL, Stoneville, MS, and Upala, Costa Rica) 100 
(Table 1). The selection of which lines to grow for line maintenances in a given year is 101 
independent of the strata used to select the core collection, making each growout year an 102 
independent experiment to look for loci controlling elemental accumulation. Additonally, analysis 103 
of the first two principal components from the SNP dataset shows no apparent bias between 104 
genetic architecture and growout (Supplemental Figure 1).   105 
 106 
Table 1. Number of lines and markers in each GWAS dataset. There is no overlap between lines in the 107 
datasets. Markers are the number of segregating SNPs in each dataset, filtered for minor allele frequency > 108 
0.05. 109 

Location	 Growout	Year	 Lines	
GWAS	

Markers	
Stoneville	 1999	 104	 33962	
Stoneville	 2004	 121	 34571	
Stoneville	 2006	 59	 35192	
Urbana	 2000	 109	 36432	
Urbana	 2001	 69	 36032	
Urbana	 2002	 94	 36151	
Urbana	 2003	 147	 35783	
Urbana	 2004	 89	 35490	
Urbana	 2005	 87	 35559	
Urbana	 2006	 143	 36065	
Urbana	 2007	 98	 36091	
Urbana	 2008	 58	 35432	
Urbana	 2009	 102	 36489	
Costa	Rica	 9	years	combined	 111	 31479	

 110 
 111 
Phenotypes 112 
Using the elemental analysis pipeline described in Ziegler et al. (2013, see methods), we 113 
analyzed ~6 seeds from each line, measuring the levels of 20 elements in each seed 114 
(Supplemental Table 1). While 1653 lines were analyzed in total, 262 of these lines were from 115 
grow-outs containing fewer than 50 lines in the dataset. We excluded these lines from further 116 
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analysis and all following analysis is based on the remaining 1391 lines (elemental profiles for 117 
excluded lines are included in the Supplemental Table 1). We performed an ANOVA 118 
significance test to assess whether there are significant environmental effects on the phenotypic 119 
data gathered from lines grown in separate locations and in separate years at the same 120 
location. Although a distinct set of lines were grown in each grow-out, lines were assigned to a 121 
grow-out without regard to population structure.  As a result, we would expect, in the absence of 122 
environmental effects, phenotypic measurements to be similar. The ANOVA test indicates a 123 
significant location effect, and for Stoneville and Urbana, significant effects for growth year, for 124 
most elements measured (p<0.01 with Bonferroni correction, Table 2). This effect can also be 125 
seen in the phenotypic distribution (before transformation) for many of the traits (Figure 1 and 126 
Supplemental Figure 2). These results clearly demonstrate that most of the year growouts were 127 
unique environments, supporting their analysis as individual experiments. The lack of significant 128 
differences by year for many elements in Costa Rica (13 out of 21) may be indicative of a lack of 129 
statistical power due to the small number of lines grown per year. Because there were not 130 
enough lines in any one grow-out from Costa Rica for a GWAS analysis, the only way we were 131 
able to analyze the Costa Rica data was by combining data across all 10 years.  132 
 133 
Table 2. Analysis of grow out location and year effect on elemental accumulation. The p-value for each 134 
element from an ANOVA of a linear model with Location or Location x Year interaction. The significance 135 
cutoff was set at p < 0.01 with Bonferroni correction. NS=Not Significant 136 

Element	 Location	 Costa	Rica	x	Year	 Stoneville	x	Year	 Urbana	x	Year	
Seed	Weight	 NS	 NS	 6.87E-07	 0.0001776	
B	 0.0001174	 NS	 1.24E-07	 NS	
Na	 3.06E-307	 NS	 NS	 NS	
Mg	 0.0003425	 5.24E-08	 7.19E-09	 2.19E-29	
Al	 9.17E-31	 8.70E-13	 2.62E-11	 3.56E-36	
P	 5.72E-27	 1.26E-05	 NS	 3.29E-16	
S	 6.49E-34	 NS	 3.58E-10	 6.23E-35	
K	 2.37E-24	 1.16E-05	 1.46E-07	 2.12E-06	
Ca	 1.63E-19	 NS	 6.78E-13	 1.17E-26	
Mn	 9.80E-45	 0.0003116	 3.03E-15	 1.53E-17	
Fe	 7.12E-29	 NS	 8.44E-09	 2.36E-34	
Co	 3.42E-148	 NS	 1.10E-19	 3.65E-12	
Ni	 3.04E-173	 5.90E-13	 5.75E-06	 2.37E-33	
Cu	 1.33E-243	 NS	 1.05E-14	 1.40E-29	
Zn	 1.34E-145	 NS	 6.38E-08	 9.29E-30	
As	 1.66E-57	 NS	 5.50E-12	 NS	
Se	 0	 0.0001141	 1.13E-16	 2.23E-14	
Rb	 0	 4.39E-08	 6.75E-44	 2.17E-15	
Sr	 0	 NS	 7.59E-06	 3.34E-18	
Mo	 0	 NS	 3.68E-40	 6.66E-44	
Cd	 3.25E-45	 NS	 5.48E-26	 3.79E-07	

 137 
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 139 
Figure 1. Molybdenum accumulation in single soybean seeds (mg/kg) across experimental grow-outs. 140 

  141 
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 142 
Comparison of elemental concentrations of replicate seeds from the same line in each grow-out 143 
does indicate the presence of a genotypic effect on elemental concentrations. Concentrations in 144 
seeds from the same line were usually more similar to each other than they were to the 145 
population as a whole (Figure 2 and Supplemental Figure 3).  146 

 147 
Figure 2. Distribution of Cadmium phenotype (linear model residuals, see Methods) in lines from a single 148 
growout: Stoneville, MS, 1999. Lines are ordered by median of between 2 and 8 seed replicates. 149 

  150 
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 151 
The Box-Cox procedure (Box and Cox 1964) was used to estimate appropriate transformation 152 
functions for the phenotype data to meet the assumptions of GWAS for normally distributed 153 
dependent variables. The Box-Cox algorithm suggested that 138 of the 294 traits (14 154 
environments x 21 phenotypes) needed no transformation and an additional 151 needed only 155 
minor transformations to control for the long-tail distributions often seen in concentration data 156 
(inverse, inverse square root, log, or square root) (Supplemental Table 2). Because most traits 157 
appear to only need minor transformations, for uniformity and ease of interpretation, all of the 158 
traits in which a transformation was recommended were transformed using a log transformation. 159 
 160 
Population Structure 161 
 162 
The first two principal components obtained using the 36,340 polymorphic SNPs from the entire 163 
1391 lines in the dataset explained 15% of the total SNP variance and the first 10 principal 164 
components explained 28% of the total variance. Variance explained by each PC drops rapidly 165 
after the first 10 PCs with 50% variance not reached until PC76. The first two principal 166 
components separate the population into groups roughly corresponding to each lines country of 167 
origin, with South Korean and Japanese accessions forming distinct clades while Chinese, 168 
Russian and other accessions form a much less cohesive block (Figure 3).  169 

 170 
Figure 3. Principal component analysis of the genotypes of 1391 soybean lines. Colored by country of origin: 171 
China (532), Japan (267), South Korea (200), Russia (61), Other or unknown country of origin (331). 172 
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MLMM GWAS 173 
 174 
Using the SoySNP50k chip data (Song et al. 2013), we performed a GWAS study using a multi-175 
locus mixed model (MLMM) to identify associated loci for each of 21 phenotypes (20 elements, 176 
seed weight) in 13 distinct grow-outs of diverse soybean lines and the Costa Rica dataset of 177 
grow-outs pooled across years (Table 1). The MLMM procedure starts with an EMMAX scan of 178 
all markers and then iteratively adds the markers with the highest association to the model and 179 
rescans.  The MLMM procedure returns a list of cofactors that together describe the total 180 
estimated narrow-sense heritability of a given trait (which we will refer to as the all cofactor 181 
model). By definition, MLMM will create a model containing at least one cofactor for each trait. 182 
Of the models generated, 84 models met the stopping criteria after only one SNP was added to 183 
the model. The average model contained 11 SNPs, with no traits reaching the maximum 40 184 
SNP model (e.g. not converging on a model describing all of the phenotypic variance). The 185 
largest model contained 29 SNPs, for iron in the 2009 Urbana grow-out. The 294 GWAS tests 186 
returned 1756 unique SNPs. While these most complex models likely contain factors that 187 
account for phenotypic variance merely by chance (e.g., false positives), many of these 188 
cofactors are likely real.  189 
 190 
A simpler model, which includes only a subset of the total cofactors, can be selected using a 191 
model selection parameter (Segura et al. 2012). Segura et al. proposed two model selection 192 
criteria: the extended Bayesian information criterion (EBIC) and the multiple-Bonferroni criterion 193 
(mBonf) (Segura et al. 2012). Although both criteria produced generally similar results, we found 194 
the EBIC criteria to be less stringent than mBonf. Due to the relatively small sample size in 195 
many of our grow-outs, we have chosen the more inclusive EBIC criteria in an attempt to 196 
include more moderate effect loci in our model at the cost of a higher false positive rate. QQ-197 
plots for both the null model, containing no cofactors, and the optimal EBIC model were 198 
generated to assess whether there were uncontrolled confounding effects in our model arising 199 
from cryptic relatedness and population structure. While there was some inflation of p-values in 200 
the null model, the MLMM procedure of iteratively including large-effect loci into the model 201 
successfully controls for this p-value inflation and the distribution of p-values in the EBIC models 202 
closely follows the expected null distribution except for the significantly associated loci (Figure 4 203 
and Supplemental Figure 4). 204 
  205 
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 206 

 207 
Figure 4. Quantile-quantile plot of the observed p-values against expected p-values from the GWAS analysis 208 
for sulfur accumulation. The MLMM algorithm includes cofactors that reduce inflation of p-values (green 209 
line). The model without cofactors indicates presence of p-value inflation (blue line). The expected 210 
distribution of p-values under the null hypothesis (red line). 211 

  212 
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The EBIC model selection method returned the MLMM model containing no cofactors for about 213 
half of the GWAS tests (164/294). The remaining 130 tests returned a total of 573 unique SNPs. 214 
When looking at the combined set of SNPs returned across all grow-outs, of the 21 phenotypes 215 
tested, at least one SNP was returned for each trait, with seed weight returning the most (96) 216 
and boron returning the least (6). Table 3 contains information about the number of cofactors 217 
returned in each model (EBIC and all) for each trait and Supplemental Table 3 contains the 218 
complete list of SNPs returned.  219 
 220 
Overall, despite a large number of tests for association (294), a relatively small number of SNPs 221 
were identified. Given the ability of the multi cofactor model to reduce the levels of spurious 222 
false positives, a large number of even the full model SNPS are likely to be real. However, given 223 
the large number of independent growouts and the partial independence of the elemental traits, 224 
we are able to apply more stringent criteria confidence in associations. Below, we list several 225 
sets of SNPs associated with elemental traits, ordered from ‘most confident’ to ‘lower 226 
confidence’.   Since the likelihood of the same false associations being found more than once 227 
for the same trait in separate grow-outs with independent sets of lines is small, we looked for 228 
SNPs returned in multiple scans, which are likely to be real. Across these 130 experiments, 10 229 
SNPs were returned more than once. Of these 10 SNPs, the exact same SNP was found for the 230 
same element in a different grow-out two times (ss715604985 and ss715605104, both for 231 
cadmium), different elements in the same grow-out once (ss715608340 for Ca and Sr), and 232 
different elements in different growouts 7 times (Table 4). The same element/multiple location 233 
and multiple element/same location SNPs constitute our highest confidence set for SNPs 234 
affecting the ionome, but likely greatly underestimate the useful information in the dataset.  235 
  236 
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 237 
   238 
Table 3. Number of SNP cofactors returned by each GWAS experiment. Each cell contains the number of cofactors in the EBIC selected model and the 239 
all cofactor model, respectively. See methods for criteria for inclusion of a SNP in the EBIC or all cofactor model. 240 

Growout/
Element	 Al	 As	 B	 Ca	 Cd	 Co	 Cu	 Fe	 K	 Mg	 Mn	 Mo	 Na	 Ni	 P	 Rb	 S	

Seed	
Weight	 Se	 Sr	 Zn	 Total	

00U	 1/1	 0/1	 3/7	 4/10	 12/13	 0/10	 0/3	 0/14	 0/3	 18/19	 8/10	 1/4	 0/1	 0/13	 0/12	 0/3	 0/13	 2/16	 0/10	 2/10	 4/20	 55/193	

01U	 8/8	 1/1	 1/1	 1/8	 1/1	 2/4	 0/2	 0/7	 2/6	 1/1	 3/5	 0/8	 1/1	 0/1	 0/1	 0/1	 0/1	 7/8	 17/18	 1/4	 0/1	 46/88	

02U	 0/2	 0/11	 0/1	 1/4	 10/13	 0/14	 0/4	 0/3	 0/7	 0/1	 1/2	 0/8	 0/1	 2/11	 5/10	 2/3	 0/9	 14/16	 1/3	 0/14	 0/9	 36/146	

03U	 2/3	 0/2	 0/2	 0/1	 3/19	 2/7	 0/4	 0/8	 0/11	 0/12	 1/3	 1/11	 0/2	 0/6	 3/7	 0/1	 0/8	 26/26	 3/6	 0/11	 0/7	 41/157	

04S	 1/9	 0/1	 0/4	 2/6	 3/3	 0/3	 0/1	 0/6	 3/5	 0/14	 0/1	 0/1	 0/4	 0/3	 1/11	 1/1	 0/4	 1/24	 0/11	 4/12	 0/8	 16/132	

04U	 0/1	 0/1	 0/3	 5/5	 1/1	 0/2	 0/1	 1/7	 0/3	 0/1	 1/1	 0/1	 0/2	 1/2	 0/1	 0/1	 2/6	 0/15	 1/2	 0/7	 0/1	 12/64	

05U	 0/10	 0/1	 1/1	 2/4	 3/6	 3/6	 0/2	 0/23	 0/4	 0/5	 2/5	 0/1	 0/1	 0/1	 1/1	 0/1	 2/13	 17/18	 14/16	 1/1	 0/2	 46/122	

06S	 0/4	 8/8	 0/5	 0/1	 0/1	 0/2	 0/1	 0/5	 2/10	 1/1	 0/1	 0/3	 0/1	 1/5	 16/17	 0/8	 0/2	 3/4	 15/15	 0/5	 5/6	 51/105	

06U	 0/1	 0/2	 0/1	 1/7	 1/15	 0/1	 1/10	 5/13	 3/10	 0/9	 0/6	 0/3	 0/1	 1/11	 0/1	 0/1	 0/10	 3/12	 1/14	 0/11	 0/1	 16/140	

07U	 0/1	 0/1	 1/2	 1/1	 2/5	 1/2	 1/1	 0/1	 3/3	 0/9	 1/3	 1/2	 0/2	 2/3	 0/3	 1/4	 0/1	 1/10	 1/4	 0/3	 0/3	 16/64	

08U	 1/2	 2/3	 0/1	 14/15	 1/4	 20/20	 8/8	 9/10	 0/1	 12/12	 0/1	 0/1	 0/1	 0/1	 9/11	 2/3	 0/1	 5/7	 1/2	 3/4	 0/1	 87/109	

09U	 1/1	 0/1	 0/1	 19/20	 0/10	 0/14	 0/14	 29/29	 1/1	 0/2	 1/2	 22/22	 18/18	 1/1	 1/1	 0/21	 19/19	 17/18	 0/1	 0/10	 0/1	 129/207	

99S	 2/2	 0/5	 0/1	 1/11	 1/12	 1/13	 0/10	 0/2	 0/1	 1/6	 0/15	 1/1	 0/4	 0/7	 0/1	 1/11	 0/4	 0/15	 0/17	 0/1	 0/20	 8/159	

CR	 0/11	 0/1	 0/3	 0/8	 4/7	 0/11	 0/1	 2/3	 7/8	 3/11	 1/7	 7/9	 0/3	 0/4	 0/9	 0/8	 0/9	 0/12	 0/1	 2/13	 0/12	 26/151	

Total	 16/56	 11/39	 6/33	 51/101	 42/110	 29/109	 10/62	 46/131	 21/73	 36/103	 19/62	 33/75	 19/42	 8/69	 36/86	 7/67	 23/100	 96/201	 54/120	 13/106	 9/92	 585/1837	
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Because each grow-out contains an independent set of lines, the set of SNPs tested differs 241 
between grow-outs depending upon the SNP minor allele frequency in each dataset. 242 
Additionally, common SNPs between growouts will still differ in allele frequency, which could 243 
result in neighboring SNPs, still in LD with the causal variant, being returned for different GWAS 244 
experiments. Therefore, looking for only exact overlaps between datasets may be overly 245 
restrictive. Soybean has been estimated to have a linkage disequilibrium (LD) decay distance of 246 
between 360Kbp in euchromatic regions and 9.6Mbp in heterochromatic regions (Hwang et al., 247 
2014). To better search for overlaps between our datasets while also taking into account the 248 
large variability in LD range across the soybean genome, we grouped all of the SNPs returned 249 
across experiments by whether they are in LD with one another. Although many factors affect 250 
the ability to detect an association between a QTL and the actual causative loci, the minimal r2 251 
for detection between the loci is generally estimated to be between 0.2 and 0.33 (Ardlie et al. 252 
2002; Qanbari et al. 2010; Wallace et al. 2014) with a value of 0.2 previously being used to 253 
define LD range in the soybean genome (Hwang et al. 2014). Therefore, we defined an overlap 254 
between SNPs as whether a pair of SNPs has an r2 > 0.2. When this approach was applied to 255 
the all cofactors model, the same locus was returned for the same phenotype in different grow-256 
outs 18 times, a different phenotype in the same grow-out 44 times and different phenotypes in 257 
different growouts 237 times (Supplemental Table 4).  Often a SNP returned as significant in the 258 
EBIC model for one growout, will have a corresponding SNP in the all cofactor model of another 259 
growout, indicating that the signal is there in other populations, but at too weak a level to meet 260 
strict significance thresholds.  261 
 262 
Another line of evidence that the SNPs identified are real is the co-location with candidate 263 
genes.  Due to the large regions of linkage disequilibrium in the soybean genome, each of the 264 
30,000 SNPs in our experiment is linked to dozens to hundreds of genes. Many plant 265 
processes, including root structure/function, water relations, and inter, intra and extra-cellular 266 
structures, can alter the elemental accumulation (Baxter et al. 2009; Tian et al. 2010; Chao et al. 267 
2011, 2013; Barberon 2017). Each SNP is therefore likely to be associated with several 268 
plausible candidate genes. We looked under the SNPs of our overlap sets for strong 269 
candidates- those with orthologs associated directly with elemental phenotypes.   Table 5 270 
contains a list of SNPs found on or near candidate or already characterized genes. Many of the 271 
candidates are under SNPs associated with individual elements to which they or their orthologs 272 
were previously linked, or with chemically related elements (i.e Mn, Co, Cd with Fe or Se with 273 
S). The presence of these strong candidates under the detected SNPS supports the evidence 274 
from overlap that they are real associations.    275 
 276 
Table 4. SNPs returned in the EBIC selected model in two or more grow-outs. 277 

Chromosome	 Base	Pair	 Environment	 Trait	 logP	 Model	 Overlap	Type	

9	 4612586	 99S	 Cd	 10.06	 EBIC	 Same	Element,	Different	Location	

9	 4612586	 04U	 Cd	 5.39	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 00U	 Cd	 18.68	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 02U	 Cd	 18.95	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 03U	 Cd	 11.88	 EBIC	 Same	Element,	Different	Location	
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9	 4991159	 06U	 Cd	 6.77	 EBIC	 Same	Element,	Different	Location	

10	 5863544	 04S	 Ca	 6.20	 EBIC	 Different	Element,	Same	Location	

10	 5863544	 04S	 Sr	 7.68	 EBIC	 Different	Element,	Same	Location	

2	 46468030	 03U	 Seed	Weight	 11.73	 EBIC	 Different	Element,	Different	Location	

2	 46468030	 05U	 Se	 29.18	 EBIC	 Different	Element,	Different	Location	

5	 41315343	 06S	 Mg	 4.82	 EBIC	 Different	Element,	Different	Location	

5	 41315343	 09U	 Mo	 4.58	 EBIC	 Different	Element,	Different	Location	

10	 5179735	 05U	 S	 5.73	 EBIC	 Different	Element,	Different	Location	

10	 5179735	 06S	 Ni	 7.36	 EBIC	 Different	Element,	Different	Location	

13	 19554349	 07U	 Ni	 6.66	 EBIC	 Different	Element,	Different	Location	

13	 19554349	 09U	 Ca	 18.06	 EBIC	 Different	Element,	Different	Location	

13	 22047323	 02U	 Cd	 14.82	 EBIC	 Different	Element,	Different	Location	

13	 22047323	 06S	 K	 5.59	 EBIC	 Different	Element,	Different	Location	

13	 26504428	 00U	 Cd	 6.30	 EBIC	 Different	Element,	Different	Location	

13	 26504428	 03U	 Seed	Weight	 10.48	 EBIC	 Different	Element,	Different	Location	

19	 84371	 08U	 Cu	 16.51	 EBIC	 Different	Element,	Different	Location	

19	 84371	 09U	 Fe	 51.76	 EBIC	 Different	Element,	Different	Location	
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Table 5. Returned SNPs overlapping candidate or already characterized genes. Bold font indicates lines returned in the more conservative EBIC model 278 
for at least one growout. SNP basepairs are mapped to soybean reference genome build Glyma1.1. 279 

280 
Chromosome	

Base	Pair	(of	most	
significant	SNP)	 Environment(s)	 Trait(s)	

-logP	(Of	most	
significant	SNP)	 Candidate	Gene	

9	 4991159	
00U;	02U;	03U;	
06U	 Cd	 18.95	 HMA13;	Glyma.09g055600	(Benitez	et	al.,	2012);	(Fang	et	al.,	2016)	

2	 43023030	 99S;CR	 Cd	 20.67	
Glyma.02g215700	is	similar	to	At2-MMP	which	is	induced	during	cadmium	stress	to	leaves	(Golldack	et	al.,	
2002)	

3	 40883820	 02U;	99S	 Se	 21.15	 NRAMP	metal	transporter	(Glyma.03g181400);	Aluminum	Sensitive	3	(ALS3;	Glyma.03g175800)	

5	 33737561	 CR;	09U	 Ca	 36.24	
Multidrug	resistance-associated	protein	3	(MRP3,	Glyma.05g145000);	AtMRP5	implicated	in	Calcium	
homeostasis	in	Arabidopsis	(Gaillard	et	al.,	2008)	

14	 47003645	 06S;	03U	 Co	 17.91	 ZIP	metal	ion	transporter	(Glyma.14g196200);	Overlaps	with	a	Zn	and	Rubidium	(in	all	cofactor)	

15	 410656	 04S;	07U	 Mn	 7.11	
CAX2	(Glyma.15g001600),	implicated	in	Mn	transport	(Shigaki	et	al.,	2002);	NRAMP6	(Glyma.15g003500),	
Mn	transport;	MGT2	(Glyma.15g002700)	and	MGT4	(Glyma.15g005200),	magnesium	transport	

2	 5555909	 07U	
Fe;	Zn;	P;	
Cu	 6.91	 ATOX1	(Glyma.02g068700),	Copper	transport		

1	 54551283	
01U;	CR;	00U;	
04U	

Al;	Rb;	Mo;	
Co;	K	 7.64	

ALMT	(Glyma.01g223300),	Aluminum	activated	malate	transport,	malate	is	a	chelator	for	aluminum	and	
critical	in	detoxification	

2	 44460357	 09U;	02U	 Co;	Ca	 10.96	
Heavy	metal	transport/detoxification	(Glyma.02g222600,	Glyma.02g222700);Potassium	transporter	1	
(Glyma.02g228500);	Phosphate	transporter	4;3	(Glyma.02g224200)	

3	 5165511	 09U;	06U	 Fe;	Mn	 36.05	 YSL6	(Glyma.03g040200);	FPN1	ferroportin	(Glyma.03g042500)	

7	 5480577	 06S;	06U	 As;	Ni	 22.46	 Heavy	metal	transport/detoxification	(Glyma.07g065800);	NRAMP2	(Glyma.07g058900)	

11	 17367460	 04U;	06U	 Fe;	Se	 21.13	 ABC	Transporter	(Glyma.11g194700,	Glyma.11g196100)	

19	 84371	 08U;	09U	 Cu;	Fe	 51.76	 ATOX1	(Glyma.19g001000),	Copper	transport	

3	 5455217	 00U;	04U	 Mg;	Co	 7.45	 iron	regulated	1	(Glyma.03g042500);	iron	regulated	2	(Glyma.03g042400);	YSL6	(Glyma.03g040200)	

15	 1222084	 05U	 Se	 29.64	
Sulphate	Transporter	(Glyma.15g014000)	(El	Kassis	et	al.,	2007;	Cabannes	et	al.,	2011);	Sulfite	Transporter	
(Glyma.15g015600)	

9	 4799335	 06S	 K	 4.31	 Potassium	Transporter	(Glyma.09g052700)	

7	 5900018	 06U	 Fe	 5.07	
Overlap	with	IDC	for	FRO2	(Mamidi	et	al.	2014);	Glyma.07g067700;	Also	Glyma.07g065800	a	heavy	metal	
detox	

9	 4518093	 09U	 Mo	 17.96	 Molybdenum	Cofactor	sulfurase	(Glyma.09g050100)	

9	 3807440	 09U	 S	 31.98	 Glyma.09g045200	Heavy	Metal	Transport;	Close	to	all	cofactor	selenium	

5	 8074553	 00U;	06S	 Fe	 7.06	 Stabilizer	of	iron	transporter	(AGO10,	PNH,	ZLL;	Glyma.05g011300),	in	IDC	datset	(Mamidi	et	al.	2014)	

3	 45338714	 03U	 Fe	 8.30	 NAS3;	Glyma.03g231200;	Overlaps	IDC	(Mamidi	et	al.	2014)	
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Verification of High and Low Sulfur and Phosphorus accumulating lines 281 
 282 
To test whether the elemental accumulation of ionomic traits in the lines in our panel are 283 
intrinsic to the genetics of the lines or an artifact of the environmental and field conditions, we 284 
performed two experiments in which we selected the highest and lowest accumulating lines for 285 
sulfur and phosphorus and regrew the seeds in controlled field and greenhouse conditions. 286 
Eight lines, four with a high phosphorus phenotype and four with a low phosphorus phenotype 287 
were selected for regrowth in a field in Columbia, MO. Three of the four high phosphorus lines 288 
exhibited a high phosphorus phenotype in the regrow experiment, while the low phosphorus 289 
lines had phenotypes closer to the control line level (Figure 5 and Table 6). Broad-sense 290 
heritability for phosphorus between the GRIN growout concentrations and this experiment was 291 
0.65 (Supplemental Table 5). 292 
 293 
Table 6. Accessions chosen for validation of phosphorus accumulation. High and low phosphorus 294 
accumulating lines were chosen to regrow to test the reproducibility of ionomic traits. Values listed in the 295 
table are mg Phosphorus/kg tissue. 296 

Accession	

Regrow	
Phosphorus	
(mg/kg)	

Regrow	
Phosphorus	
Standard	
Error	

Regrow	
Number	of	
Seeds	
Tested	

Collection	
Phosphorus	

Collection	
Phosphorus	
Standard	
Error	

Collection	
Number	of	
seeds	tested	

Phosphorus	
Level	

PI081042-1	 5464.77	 127.08	 12	 4149.66	 109.15	 5	 Low	
PI424159B	 5965.40	 160.35	 12	 4305.02	 168.68	 5	 Low	
PI475822B	 5830.14	 179.63	 11	 5819.22	 335.34	 6	 Low	
PI567691	 6121.47	 186.62	 11	 6001.76	 372.65	 6	 Low	
PI086081	 6665.44	 123.66	 12	 8280.90	 123.01	 6	 High	
PI423813	 7100.48	 198.13	 14	 8421.17	 481.09	 6	 High	
PI089772	 6432.51	 130.76	 12	 8785.44	 300.08	 6	 High	
PI567721	 5622.10	 193.65	 12	 9602.50	 504.11	 5	 High	

 297 
 298 
In a separate experiment, 10 lines total, four low sulfur accumulating lines and six high sulfur 299 
accumulating lines were selected and regrown in both a field and greenhouse trial. In both the 300 
field and greenhouse experiment, all of the six high sulfur lines had a higher sulfur accumulation 301 
than the four low accumulating lines. Interestingly, the field grown varieties had a larger 302 
difference in sulfur accumulation between the high and low varieties (Figure 5 and Table 7). 303 
Although not selected for accumulation of other elements, there was also a correlation between 304 
measured values in the germplasm collection and the regrow set for many other elemental 305 
phenotypes tested (Supplemental Figures 5 and 6). Broad-sense heritability for sulfur between 306 
the GRIN growout concentrations, the greenhouse, and the field growouts was 0.64 307 
(Supplemental Table 5). 308 
  309 
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Table 7. Accessions chosen for validation of sulfur accumulation. High and low sulfur accumulating lines were chosen to regrow to test the reproducibility 310 
of ionomic traits. Values listed in the table are mg sulfur/kg tissue. 311 

312 

Accession	

Regrow	
Field	
Sulfur	
(mg/kg)	

Regrow	
Field	
Standard	
Error	

Regrow	
Field	
Number	of	
Seeds	
Tested	

Regrow	
Greenhouse	
Sulfur	
(mg/kg)	

Regrow	
Greenhouse	
Standard	
Error	

Regrow	
Greenhouse	
Number	of	
Seeds	
Tested	

Collection	
Sulfur	
(mg/kg)	

Collection	
Sulfur	
Standard	
Error	

Collection	
Number	of	
seeds	
tested	

Sulfur	
Level	

PI096322	 3674.77	 82.01	 6	 3303.99	 86.76	 6	 2694.52	 75.46	 7	 Low	
PI229327	 3183.07	 69.30	 6	 NA	 NA	 NA	 2764.57	 62.35	 7	 Low	
PI507411	 3190.73	 26.38	 4	 3126.35	 84.73	 6	 2797.00	 67.14	 8	 Low	
PI603599A	 3584.44	 48.23	 6	 3075.94	 114.71	 8	 2874.06	 64.85	 8	 Low	
PI603162	 4336.25	 45.05	 6	 3703.22	 70.82	 6	 3771.84	 71.02	 8	 High	
PI339734	 4856.20	 158.22	 6	 4875.50	 68.81	 4	 3774.48	 21.99	 2	 High	
PI437377	 4728.93	 112.23	 6	 3413.30	 82.30	 6	 3847.54	 82.38	 7	 High	
PI603910B	 4301.96	 64.81	 5	 4074.24	 80.70	 5	 3925.33	 71.42	 8	 High	
PI082278	 4703.29	 51.39	 5	 4265.62	 99.98	 6	 3929.56	 117.16	 7	 High	
PI424078	 NA	 NA	 NA	 4791.33	 187.03	 5	 4245.06	 78.57	 5	 High	
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  313 

Figure 5. Confirmation grow out of high and low sulfur and phosphorus 
accumulating lines. A, Regrow versus original concentration of 8 lines 
selected for high and low phosphorus accumulation. Correlation 
between GRIN concentration and regrow was 0.24. B, Regrow versus 
original concentration of 10 lines selected for high and low sulfur 
accumulation, regrown in both greenhouse and field environments. 
Error bars indicate the standard error of the replicate seeds. Correlation 
(r2) between GRIN seed concentrations and the regrown high and low 
varieties grown in the greenhouse and in the fields were 0.61 and 0.84, 
respectively.  
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Discussion 314 
 315 
Analysis of ionomic traits has led to a deeper understanding of the complex regulatory system 316 
organisms use to maintain homeostasis of essential elements (Baxter et al. 2008; Baxter 2010; 317 
Atwell et al. 2010; Yu et al. 2012). To broaden our understanding of how genetic and 318 
environmental components affect the ionome, we have developed a high-throughput ionomic 319 
phenotyping system that can rapidly measure 20 ionomic traits and seed weight in 320 
agronomically important crops, such as soybean, maize, sorghum and cotton. To assess the 321 
utility of our phenotyping system for genome wide association studies in soybean, we measured 322 
the ionome of a diverse set of more than 1300 soybean lines, divided into 14 independent 323 
populations grown in three locations over the course of a decade. Coupled with a high-324 
resolution genetic map (Song et al. 2013), we performed a genome wide association study 325 
using a multi-locus mixed model procedure (Segura et al. 2012). We were also able to show 326 
that lines selected from these experiments for extreme phenotypes of elemental accumulation 327 
were likely to display similar phenotypes in follow up experiments.  328 
 329 
In spite of the limited number of lines in each grow-out, one of the strengths of this study is the 330 
number of distinct field replications. Although there was no overlap between lines for any of the 331 
14 grow-outs, we found many genetic interactions that were robust across environments and 332 
genotypes. We report several different sets of SNPs corresponding to different levels of 333 
stringency in the individual experiments and the way we compared results between the 334 
experiments. These range from the 1756 SNPs from the full models, which likely contain several 335 
false positive associations, to the two SNPs that were returned in multiple experiments for the 336 
same element. Hundreds of SNPs in the total dataset are likely to be real due to their inclusion 337 
in a more conservative model or due to being found in several locations once LD is taken into 338 
account.  Several of these mapped directly to what could be considered a priori candidate 339 
genes that have either already been characterized in soybean or are close orthologs of metal 340 
homeostasis proteins in A. thaliana and other species (Table 5). The discovery of orthologs of 341 
known Arabidopsis genes in soybean experiments highlights the value of studies in model 342 
organisms, where the genetics and growth habits are more amenable to large scale studies. 343 
Many more overlaps between different phenotypes found in different locations suggests genetic 344 
by environmental effect on which phenotype is affected by a causal locus. Many of the SNPs 345 
which overlap across environments are novel associations with no obvious gene candidates and 346 
are strong candidates for follow-up studies to determine their relationship to plant nutrient 347 
homeostasis.  348 
 349 
The strongest element-loci association in our study was for the cadmium phenotype which is 350 
associated with a gene that codes for HMA13, a P1B-ATPase (HMA13; Glyma.09g055600) 351 
previously implicated in seed cadmium concentration in soybean (Benitez et al. 2012).  A 352 
previous GWAS study on iron deficiency chlorosis found seven loci strongly associated with the 353 
disease phenotype (Mamidi et al. 2014). Our analysis returned 3 of the seven loci found in that 354 
study, all associated with seed Fe,  including the two strongest associations from the IDC panel: 355 
a locus associated with nicotianamine synthase 3 (NAS3; Glyma.03g231200) and a locus 356 
associated with a stabilizer of iron transporter (AGO10; Glyma.05g011300). If gene discovery of 357 
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small to medium effect loci is the goal of a study, using samples from germplasm banks may not 358 
be appropriate, but even with all the caveats about statistical power and gene by environment 359 
interactions, we found loci that had strong candidates for some elements. These results could 360 
be used to prioritize genes and lines for further characterization experiments.  361 
 362 
 363 
Conclusion 364 
Using state-of-the-art association mapping techniques we were able to use the data we 365 
collected using our high-throughput ionomic phenotyping pipeline to identify both lines with 366 
extreme phenotypes and loci associated with elemental traits. Many of these associations were 367 
strong enough to occur across a diverse set of environmental conditions, while others were 368 
found in only one of the environments tested. While there are likely many more associations in 369 
our GWAS dataset that we haven't yet explored, this experiment serves as a proof of concept of 370 
using stored seed to perform GWAS on ionomic traits. While our efforts were focused on the 371 
identification of markers associated with elemental traits, the SNPs identified were associated 372 
with many a priori candidate genes.  The use of seeds as the phenotyped tissue allows for the 373 
direct association of the consequences of allelic difference of SNPs and associated candidate 374 
genes with traits that affect the tissue with the most agronomic importance in soybeans. While 375 
planned experiments with more replication and higher numbers of lines will always have more 376 
power to identify genetic and environmental factors driving elemental accumulation in the seed, 377 
this study demonstrates the utility of leveraging available samples to screen germplasm.  378 
 379 
Materials and Methods 380 
 381 
Germplasm 382 
 383 
A diverse panel of 1653 soybean accessions was selected from the core soybean collection of 384 
the USDA Soybean Germplasm Collection, as described in the results. Because the mission of 385 
NPGS is to maintain a viable collection of plant germplasm, the collections are periodically 386 
regrown to maintain viable seed. The size of the soybean germplasm collection necessitates 387 
that only a subset of the complete germplasm collection is grown-out each year. Furthermore, 388 
the diverse panel of accessions belongs to a variety of maturity groups and was grown-out in 389 
three separate locations: Stoneville, MS, Urbana, IL, and Upala, Costa Rica. The 1653 lines in 390 
the panel are, thus, broken into 13 distinct year and location sets, with no overlap of lines 391 
between years or locations (Table 1). The Costa Rica dataset had no individual years with 392 
enough lines (>50) to perform a successful association analysis. However, by creating three 393 
additional datasets by combining data from each location, regardless of year, we were able to 394 
analyze data from the Costa Rica grow-outs. 395 
 396 
Confirmation Growouts  397 
 398 
Small plots of four low sulfur accumulating lines and six high sulfur accumulating lines were 399 
grown in Mexico silt loam soil at Bradford Research and Extension Center, Columbia, Missouri. 400 
Cultural practices were typical of those utilized for soybean production in the Midwest US. The 401 
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same set of plants were also grown in environmentally controlled greenhouse in 6 liter pots 402 
containing PRO-MIX (Premier Horticulture, Quebec, Canada) medium amended with Osmocote 403 
Classic controlled release fertilizer (Scotts, OH). Greenhouse settings were 16 h day length with 404 
30/18°C day/night temperatures.  405 
 406 
Small plots of differential phosphorus lines were grown out in 2012 at South Farm Agricultural 407 
Research Center (Columbia, MO, Latitude 38.908189, Longitude -92.278693, Mexico silt loam 408 
soil) as single plots of 5 feet long with a 3 foot gap between rows and 30 inches between rows. 409 
Field conditions were typical of soybean production in the Midwest US, with NPK Fertilizer 410 
applied at rates appropriate according to soil analyses (10.6/50/75) and two pre-emergent 411 
herbicides were applied before planting: Authority First (Authority First Corp, Philadelphia, PA) 412 
applied at 6.45 oz/acre; and Stealth applied at 1 qt/ac (Loveland Products, Loveland, CO, USA). 413 
Post-emergent herbicides were also used: Ultra Blazer (UPI, King of Prussia, PA, USA) applied 414 
at 1.5pt/acre;  Basagran (Arysta LifeScience North America, LLC, Cary, NC, USA) applied at 415 
1.5pt/acre and Select Max (Valent Biosciences Corp., Libertyville, IL, USA) applied at 24 416 
oz/acre. At maturity, plots were bulk harvested and threshed and a subsample was used for 417 
ICP-MS analysis. 418 
 419 
Ionomic Phenotyping by ICP-MS 420 
 421 
Samples were phenotyped on two separate occasions for the elemental concentrations for B, 422 
Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Mo, and Cd following the analytical 423 
methods described in Ziegler et al. (2013). Seed weight is also recorded for each sample 424 
analyzed, so it was also included as a phenotype in our study. 425 
 426 
A simple weight normalization procedure to correct measured sample concentrations for seed 427 
size was found to introduce artifacts, especially for elements whose concentration is at or near 428 
the method detection limit. This could either be due to a systematic over or under reporting of 429 
elemental concentrations by the ICP-MS procedure or a violation of the assumption that all 430 
elemental concentrations scale linearly with weight. We used an alternative method to normalize 431 
for seed weight following the method recently reported in Shakoor et al. (2016). A linear model 432 
was developed modeling unnormalized seed concentrations against seed weight and the 433 
analytical experiment the seed was run in. The residuals from this linear model were then 434 
extracted and used as the elemental phenotype. For each element, the phenotypic 435 
measurement was taken as the median of the elemental concentrations from the 2 or 8 seeds 436 
measured from each line (after outlier removal of measurements with a median absolute 437 
deviation of >10 where we had enough samples). To meet the normality assumptions required 438 
for GWAS, an analysis using the Box-Cox algorithm was used to determine an appropriate 439 
transformation for each trait (Box and Cox 1964). Since each grow-out has a distinct set of lines, 440 
which may result in different phenotypic distributions, transformations were performed 441 
separately for each element in each dataset listed in Table 1. Transformations were selected 442 
based upon the 95% confidence interval returned by the Box-Cox function implemented in the R 443 
package MASS (Box and Cox 1964; Venables et al. 2002). 444 
 445 
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GWAS 446 
 447 
All of the lines included in this analysis (and all of the annual accessions in the Soybean 448 
Germplasm Collection in 2010) have been genotyped using the SoySNP50K beadchip and are 449 
available at soybase.org (Song et al. 2013). Separate genotype files were generated for each 450 
grow-out that contain only the lines present in that grow-out. The genotype files were each 451 
filtered to remove SNPs with a minor allele frequency less than 0.05 and missing SNPs were 452 
imputed as the average allele for that SNP. The number of SNPs for each grow-out varied 453 
between 31,479 and 36,340. The final number of SNPs used for association mapping of each 454 
grow-out are listed in Table 1. SNPs were called using the Glyma1.1 reference genome. All 455 
SNP base pair locations reported are from a map to Glyma1.1. 456 
 457 
Both kinship and structural components were included in the mixed model and were calculated 458 
using the filtered genotype matrix containing all 1391 lines found across all 13 grow-outs. The 459 
kinship matrix was calculated using the VanRaden method as implemented in GAPIT 460 
(VanRaden 2008; Lipka et al. 2012). To correct for population stratification a principal 461 
component analysis was performed. The first ten principal components were used as fixed 462 
effects in the mixed model. 463 
 464 
Association mapping was performed using a multilocus mixed model (MLMM) approach that 465 
performs a stepwise mixed-model regression with forward inclusion and backward elimination of 466 
genotypic markers included as fixed effects (Segura et al. 2012). In this model forward steps are 467 
performed until the heritable variance estimate reaches 0 (indicating the current model includes 468 
covariates that explain all of the heritable phenotypic variance) or a maximum number of 469 
forward-inclusion steps have been performed, which we set at 40. 470 
 471 
MLMM implements two model selection methods to determine the optimal mixed model from the 472 
set of step-wise models calculated: the extended Bayesian information criterion (EBIC, Chen 473 
and Chen 2008) and the multiple-Bonferroni criterion (mbonf, Segura et al. 2012). The EBIC 474 
model uses the Bayesian information criteria to select a model taking into account both number 475 
of SNPs in the analysis as well as number of cofactors in the model. In our analysis, the EBIC 476 
was usually less conservative (eg. selected larger models). A larger model likely increases the 477 
number of type 1 errors, but it is less likely to miss true associations. Because we are 478 
performing a further selection step comparing results across independent experiments, we used 479 
the EBIC models for further analysis. Additionally, we also analyzed the cofactors returned by 480 
the final forward inclusion model (maximum model), which includes either the maximum 40 481 
cofactors or the total number of cofactors needed to explain the estimated heritability. 482 
 483 
SNPs included as cofactors in either the EBIC model or the maximum model were compared 484 
across GWAS experiments. SNPs were determined to overlap with a neighboring SNP if it had 485 
an r2 LD of >0.2. 486 
 487 
Calculation of Linkage Disequilibrium 488 
 489 
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Linkage disequilibrium, expressed as a correlation coefficient between markers (r2), was 490 
calculated using the filtered SNP data set containing all 1391 lines from the experiment and the 491 
LD function of the ‘genetics’ R package (Warnes et al. 2013).  492 
 493 
Germplasm and Data Availability 494 
 495 
Lines used can be found at the USDA Soybean Germplasm Center. All scripts and data used 496 
can be found at www.ionomicshub.org and https://github.com/baxterlab/SoyIonomicsGWAS. 497 
 498 
Figure/Table Legends 499 
 500 
Supplemental Figure 1. Principal component analysis of the genotypes of 1391 soybean 501 
lines. Colored by GRIN growout. 502 
 503 
Supplemental Figure 2. Elemental accumulation in soybean seeds across experimental 504 
grow-outs. 505 
 506 
Supplemental Figure 3. Distribution of all elemental phenotypes in all grow-outs. Lines 507 
are ordered by the median of between 2 and 8 seed replicates. 508 
 509 
Supplemental Figure 4. QQ-plots for all GWAS experiments performed. 510 
 511 
Supplemental Figure 5. Regrow versus original concentration for all phenotypes in the 512 
phosphorus selection experiment. 513 
 514 
Supplemental Figure 6. Regrow versus original concentration for all phenotypes in the 515 
sulfur selection experiment. 516 
 517 
Supplemental Table 1. Raw ionomics data and phenotypes after transformation for 518 
GWAS for all lines in the experiment. 519 
 520 
Supplemental Table 2. Box-Cox suggested transformations for ionomics phenotypes. 521 
 522 
Supplemental Table 3.  All SNPs returned in either ‘All Cofactor’, ‘EBIC’, or ‘Multiple 523 
Bonferroni’ models for all GWAS experiments.  524 
 525 
Supplemental Table 4. SNPs returned in two or more grow-outs based on Linkage 526 
Disequilibrium calculation. 527 
 528 
Supplemental Table 5. Broad-sense heritabilities calculated for ionomic traits in the 529 
sulfur and phosphorus confirmation experiments. 530 
 531 
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