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Abstract

The elemental content of a soybean seed is a determined by both genetic and environmental
factors and is an important component of its nutritional value. The elemental content is
chemically stable, making the samples stored in germplasm repositories an intriguing source of
experimental material. To test the efficacy of using samples from germplasm banks for gene
discovery, we analyzed the elemental profile of seeds from 1653 lines in the USDA Soybean
Germplasm Collection. We observed large differences in the elemental profiles based on where
the lines were grown, which lead us to break up the genetic analysis into multiple small
experiments. Despite these challenges, we were able to identify candidate SNPs controlling
elemental accumulation as well as lines with extreme elemental accumulation phenotypes. Our
results suggest that elemental analysis of germplasm samples can identify SNPs in linkage
disequilibrium to genes, which can be leveraged to assist in crop improvement efforts.

Introduction

One of the biggest challenges facing agricultural research today is finding ways to improve crop
yield and nutrition while farming in increasingly erratic climates and on more marginal lands.
Throughout modern agriculture, crops have been bred for maximal yield under optimal
environmental conditions. Farming marginal soils with insufficient fertilization or irrigation leads
to dramatic decreases in crop yield. In addition, plants grown on marginal soils may exhibit a
reduced nutritional profile, which is an important consideration for staple crops. To properly
address these issues, we need to develop a more complete understanding of the genetic
mechanisms underlying a plant's response to various environmental stresses (Baxter and Dilkes
2012).

An important aspect underlying a plant's response to environmental stresses is its ability to
regulate mineral nutrients. Apart from carbon and oxygen, a plant relies entirely on the
bioavailable nutrients in the soil in which it is growing for survival. Soil nutrient bioavailability can
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vary drastically, not just as a result of soil composition, but also as a side effect of drought and
flood conditions, changes in soil pH, and changes in the soil microbiome (FAO 1996).
Understanding the uptake, regulation, transport, and storage of mineral nutrients under a variety
of environmental conditions is essential to deciphering the complex relationship between a plant
and its environment.

Single-seed ionomic profiles have proven both highly heritable and susceptible to environmental
perturbations in maize (Baxter et al. 2014). This makes the study of the seed ionome a powerful
tool for matching a plant’s genetic characteristics with its response to environmental
perturbations. Both environmental and genetic properties can effect multiple elements in
combination, resulting in genetic loci that might control different elements in different
environments (Baxter 2015; Asaro ef al. 2016). Additionally, once collected, apart from the
possibility of external contamination, the elemental content of a seed sampile is fixed. Tissue for
ionomic analysis doesn't need to be specially stored or quickly analyzed after collection.
Conveniently, this allows for the ionomic analysis of excess tissue collected for other purposes,
without the necessity of a separate field experiment. Here we demonstrate the utility of
leveraging existing germplasm by performing a genome-wide association study on ionomic traits
in seed tissue measured from diverse soybean lines selected from the USDA Soybean
Germplasm Collection.

Results
Experimental Design

The mission of the USDA-ARS National Plant Germplasm System (NPGS) is “to acquire,
evaluate, preserve and provide a national collection of genetic resources to secure the
biological diversity that underpins a sustainable U.S. agricultural economy.” Some of these
collections are the target for high-density genotyping projects making them ideal populations for
genome-wide association studies. However, the prohibitive cost of controlled field trials to
measure novel phenotypes can limit their utility for genetics research. In this experiment, we
used existing germplasm to find novel genotype-phenotype associations without the expensive
overhead of independent field trials. Although this experiment is limited by the inability to grow
plants in a common environment, the high heritability of ionomics traits (Baxter et al. 2014), as
well as the stability of the ionome in stored tissue (Baxter et al. 2014), makes ionomic
phenotyping an ideal test case for mining germplasm resources. To test the power of ionomics
to find genetic factors underpinning elemental accumulation, we analyzed seeds from 1653
soybean [Glycine max (L.) Merr.] lines representing the diversity found in the USDA Soybean
Germplasm Collection stored at Urbana, IL.

A core collection of 1685 accessions of the USDA Soybean Germplasm Collection represents a
substantial amount of the genetic diversity in the entire collection. The core collection contains
approximately 10% of the total number of introduced soybean accessions. The 1653 soybean
lines used in this study comprised all of the 1685 accessions available when the research was
started. For accessions in maturity groups 000 through VIII for which field evaluation data were
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89 available the core was selected using origin, qualitative and quantitative data. Accessions were
90 divided in groups based on origin and then further subdivided based on maturity group, which
91 classifies soybean accessions based on photoperiod and temperature response. A total of 81
92  strata were established. A multivariate proportional sampling strategy within each stratum was
93 determined to be the optimal procedure for identifying a sample of accessions that best
94  represents the diversity of the total collection. Field evaluation data were not available for
95  accessions in maturity groups IX and X, but because these accessions are adapted to sub-
96 tropical and tropical conditions and are likely to have unique genetic diversity, a sample of 10%
97  of these accessions was added to the core collection based on multivariate analysis of the
98 qualitative data. A full explanation of the development of the core collection can be found in
99  Oliveira et al. (2010). The seeds available in the NPGS for this core collection come from grow-
100 outs that span 12 years at three locations (Urbana, IL, Stoneville, MS, and Upala, Costa Rica)
101  (Table 1). The selection of which lines to grow for line maintenances in a given year is
102 independent of the strata used to select the core collection, making each growout year an
103  independent experiment to look for loci controlling elemental accumulation. Additonally, analysis
104  of the first two principal components from the SNP dataset shows no apparent bias between
105 genetic architecture and growout (Supplemental Figure 1).
106

107 Table 1. Number of lines and markers in each GWAS dataset. There is no overlap between lines in the
108 datasets. Markers are the number of segregating SNPs in each dataset, filtered for minor allele frequency >

109 0.05.

GWAS

Location Growout Year Lines Markers

Stoneville 1999 104 33962

Stoneville 2004 121 34571

Stoneville 2006 59 35192

Urbana 2000 109 36432

Urbana 2001 69 36032

Urbana 2002 94 36151

Urbana 2003 147 35783

Urbana 2004 89 35490

Urbana 2005 87 35559

Urbana 2006 143 36065

Urbana 2007 98 36091

Urbana 2008 58 35432

Urbana 2009 102 36489

Costa Rica 9 years combined 111 31479
110
111

112  Phenotypes

113  Using the elemental analysis pipeline described in Ziegler et al. (2013, see methods), we

114  analyzed ~6 seeds from each line, measuring the levels of 20 elements in each seed

115  (Supplemental Table 1). While 1653 lines were analyzed in total, 262 of these lines were from
116  grow-outs containing fewer than 50 lines in the dataset. We excluded these lines from further
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117  analysis and all following analysis is based on the remaining 1391 lines (elemental profiles for
118  excluded lines are included in the Supplemental Table 1). We performed an ANOVA

119  significance test to assess whether there are significant environmental effects on the phenotypic
120 data gathered from lines grown in separate locations and in separate years at the same

121 location. Although a distinct set of lines were grown in each grow-out, lines were assigned to a
122  grow-out without regard to population structure. As a result, we would expect, in the absence of
123  environmental effects, phenotypic measurements to be similar. The ANOVA test indicates a

124  significant location effect, and for Stoneville and Urbana, significant effects for growth year, for
125  most elements measured (p<0.01 with Bonferroni correction, Table 2). This effect can also be
126  seen in the phenotypic distribution (before transformation) for many of the traits (Figure 1 and
127  Supplemental Figure 2). These results clearly demonstrate that most of the year growouts were
128  unique environments, supporting their analysis as individual experiments. The lack of significant
129  differences by year for many elements in Costa Rica (13 out of 21) may be indicative of a lack of
130  statistical power due to the small number of lines grown per year. Because there were not

131 enough lines in any one grow-out from Costa Rica for a GWAS analysis, the only way we were
132  able to analyze the Costa Rica data was by combining data across all 10 years.

133

134 Table 2. Analysis of grow out location and year effect on elemental accumulation. The p-value for each
135 element from an ANOVA of a linear model with Location or Location x Year interaction. The significance
136 cutoff was set at p < 0.01 with Bonferroni correction. NS=Not Significant

Element Location Costa Rica x Year | Stoneville x Year | Urbana x Year
Seed Weight | NS NS 6.87E-07 0.0001776
B 0.0001174 | NS 1.24E-07 | NS

Na 3.06E-307 | NS NS NS

Mg 0.0003425 5.24E-08 7.19E-09 2.19E-29
Al 9.17E-31 8.70E-13 2.62E-11 3.56E-36
P 5.72E-27 1.26E-05 | NS 3.29E-16
S 6.49E-34 | NS 3.58E-10 6.23E-35
K 2.37E-24 1.16E-05 1.46E-07 2.12E-06
Ca 1.63E-19 | NS 6.78E-13 1.17E-26
Mn 9.80E-45 0.0003116 3.03E-15 1.53E-17
Fe 7.12E-29 | NS 8.44E-09 2.36E-34
Co 3.42E-148 | NS 1.10E-19 3.65E-12
Ni 3.04E-173 5.90E-13 5.75E-06 2.37E-33
Cu 1.33E-243 | NS 1.05E-14 1.40E-29
Zn 1.34E-145 | NS 6.38E-08 9.29E-30
As 1.66E-57 | NS 5.50E-12 | NS

Se 0 0.0001141 1.13E-16 2.23E-14
Rb 0 4.39E-08 6.75E-44 2.17E-15
Sr 0| NS 7.59E-06 3.34E-18
Mo 0| NS 3.68E-40 6.66E-44
Cd 3.25E-45 | NS 5.48E-26 3.79E-07

137
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140 Figure 1. Molybdenum accumulation in single soybean seeds (mg/kg) across experimental grow-outs.
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Comparison of elemental concentrations of replicate seeds from the same line in each grow-out
does indicate the presence of a genotypic effect on elemental concentrations. Concentrations in
seeds from the same line were usually more similar to each other than they were to the
population as a whole (Figure 2 and Supplemental Figure 3).
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Figure 2. Distribution of Cadmium phenotype (linear model residuals, see Methods) in lines from a single
growout: Stoneville, MS, 1999. Lines are ordered by median of between 2 and 8 seed replicates.
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The Box-Cox procedure (Box and Cox 1964) was used to estimate appropriate transformation
functions for the phenotype data to meet the assumptions of GWAS for normally distributed
dependent variables. The Box-Cox algorithm suggested that 138 of the 294 traits (14
environments x 21 phenotypes) needed no transformation and an additional 151 needed only
minor transformations to control for the long-tail distributions often seen in concentration data
(inverse, inverse square root, log, or square root) (Supplemental Table 2). Because most traits
appear to only need minor transformations, for uniformity and ease of interpretation, all of the
traits in which a transformation was recommended were transformed using a log transformation.

Population Structure

The first two principal components obtained using the 36,340 polymorphic SNPs from the entire
1391 lines in the dataset explained 15% of the total SNP variance and the first 10 principal
components explained 28% of the total variance. Variance explained by each PC drops rapidly
after the first 10 PCs with 50% variance not reached until PC76. The first two principal
components separate the population into groups roughly corresponding to each lines country of
origin, with South Korean and Japanese accessions forming distinct clades while Chinese,
Russian and other accessions form a much less cohesive block (Figure 3).
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Figure 3. Principal component analysis of the genotypes of 1391 soybean lines. Colored by country of origin:
China (532), Japan (267), South Korea (200), Russia (61), Other or unknown country of origin (331).
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173 MLMM GWAS

174

175  Using the SoySNP50k chip data (Song et al. 2013), we performed a GWAS study using a multi-
176  locus mixed model (MLMM) to identify associated loci for each of 21 phenotypes (20 elements,
177  seed weight) in 13 distinct grow-outs of diverse soybean lines and the Costa Rica dataset of
178  grow-outs pooled across years (Table 1). The MLMM procedure starts with an EMMAX scan of
179  all markers and then iteratively adds the markers with the highest association to the model and
180 rescans. The MLMM procedure returns a list of cofactors that together describe the total

181  estimated narrow-sense heritability of a given trait (which we will refer to as the all cofactor

182  model). By definition, MLMM will create a model containing at least one cofactor for each trait.
183  Of the models generated, 84 models met the stopping criteria after only one SNP was added to
184  the model. The average model contained 11 SNPs, with no traits reaching the maximum 40
185  SNP model (e.g. not converging on a model describing all of the phenotypic variance). The

186  largest model contained 29 SNPs, for iron in the 2009 Urbana grow-out. The 294 GWAS tests
187  returned 1756 unique SNPs. While these most complex models likely contain factors that

188  account for phenotypic variance merely by chance (e.g., false positives), many of these

189  cofactors are likely real.

190

191 A simpler model, which includes only a subset of the total cofactors, can be selected using a
192  model selection parameter (Segura et al. 2012). Segura et al. proposed two model selection
193  criteria: the extended Bayesian information criterion (EBIC) and the multiple-Bonferroni criterion
194  (mBonf) (Segura et al. 2012). Although both criteria produced generally similar results, we found
195 the EBIC criteria to be less stringent than mBonf. Due to the relatively small sample size in

196  many of our grow-outs, we have chosen the more inclusive EBIC criteria in an attempt to

197 include more moderate effect loci in our model at the cost of a higher false positive rate. QQ-
198  plots for both the null model, containing no cofactors, and the optimal EBIC model were

199  generated to assess whether there were uncontrolled confounding effects in our model arising
200 from cryptic relatedness and population structure. While there was some inflation of p-values in
201 the null model, the MLMM procedure of iteratively including large-effect loci into the model

202  successfully controls for this p-value inflation and the distribution of p-values in the EBIC models
203 closely follows the expected null distribution except for the significantly associated loci (Figure 4
204  and Supplemental Figure 4).

205
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208 Figure 4. Quantile-quantile plot of the observed p-values against expected p-values from the GWAS analysis
209 for sulfur accumulation. The MLMM algorithm includes cofactors that reduce inflation of p-values (green

210 line). The model without cofactors indicates presence of p-value inflation (blue line). The expected
211 distribution of p-values under the null hypothesis (red line).
212
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213  The EBIC model selection method returned the MLMM model containing no cofactors for about
214 half of the GWAS tests (164/294). The remaining 130 tests returned a total of 573 unique SNPs.
215  When looking at the combined set of SNPs returned across all grow-outs, of the 21 phenotypes
216  tested, at least one SNP was returned for each trait, with seed weight returning the most (96)
217  and boron returning the least (6). Table 3 contains information about the number of cofactors
218  returned in each model (EBIC and all) for each trait and Supplemental Table 3 contains the

219  complete list of SNPs returned.

220

221 Overall, despite a large number of tests for association (294), a relatively small number of SNPs
222  were identified. Given the ability of the multi cofactor model to reduce the levels of spurious

223 false positives, a large number of even the full model SNPS are likely to be real. However, given
224  the large number of independent growouts and the partial independence of the elemental traits,
225  we are able to apply more stringent criteria confidence in associations. Below, we list several
226  sets of SNPs associated with elemental traits, ordered from ‘most confident’ to ‘lower

227  confidence’. Since the likelihood of the same false associations being found more than once
228  for the same trait in separate grow-outs with independent sets of lines is small, we looked for
229  SNPs returned in multiple scans, which are likely to be real. Across these 130 experiments, 10
230  SNPs were returned more than once. Of these 10 SNPs, the exact same SNP was found for the
231  same element in a different grow-out two times (ss715604985 and ss715605104, both for

232  cadmium), different elements in the same grow-out once (ss715608340 for Ca and Sr), and

233  different elements in different growouts 7 times (Table 4). The same element/multiple location
234  and multiple element/same location SNPs constitute our highest confidence set for SNPs

235 affecting the ionome, but likely greatly underestimate the useful information in the dataset.

236

11
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237

238

239 Table 3. Number of SNP cofactors returned by each GWAS experiment. Each cell contains the number of cofactors in the EBIC selected model and the

240 all cofactor model, respectively. See methods for criteria for inclusion of a SNP in the EBIC or all cofactor model.
Growout/ Seed
Beret | Al As B Ca cd Co Cu Fe K Mg Mn Mo Na Ni P Rb S Weight | Se Sr Zn Total
00U 1/1 0/1 3/7 | 4/10 12/13 0/10 0/3 0/14 0/3 18/19 | 8/10 | 1/4 0/1 0/13 | 0/12 | 0/3 | 0/13 2/16 0/10 2/10 4/20 | 55/193
01U 8/8 1/1 1/1 | 1/8 1/1 2/4 0/2 0/7 2/6 1/1 3/5 0/8 1/1 0/1 | 0/1 0/1 | 0/1 7/8 17/18 1/4 0/1 | 46/88
02U 0/2 0/11 | 0/1 | 1/4 10/13 0/14 0/4 0/3 0/7 0/1 1/2 0/8 0/1 2/11 | 5/10 | 2/3 | 0/9 14/16 1/3 0/14 0/9 | 36/146
03U 2/3 0/2 0/2 | 0/1 3/19 2/7 0/4 0/8 0/11 | 0/12 1/3 1/11 | 0/2 0/6 | 3/7 0/1 | 0/8 26/26 3/6 0/11 0/7 | 41/157
04S 1/9 0/1 0/4 | 2/6 3/3 0/3 0/1 0/6 3/5 0/14 0/1 0/1 0/4 0/3 | 1/11 1/1 | 0/4 1/24 0/11 4/12 0/8 | 16/132
04U 0/1 0/1 0/3 | 5/5 1/1 0/2 0/1 1/7 0/3 0/1 1/1 0/1 0/2 1/2 | 0/1 0/1 | 2/6 0/15 1/2 0/7 0/1 | 12/64
05U 0/10 | 0/1 1/1 | 2/4 3/6 3/6 0/2 0/23 0/4 0/5 2/5 0/1 0/1 0/1 |11 0/1 | 2/13 17/18 14/16 1/1 0/2 | 46/122
06S 0/4 8/8 0/5 | 0/1 0/1 0/2 0/1 0/5 2/10 |11 0/1 0/3 0/1 1/5 | 16/17 | 0/8 | 0/2 3/4 15/15 0/5 5/6 | 51/105
06U 0/1 0/2 o/1 | 1/7 1/15 0/1 1/10 | 5/13 3/10 | 0/9 0/6 0/3 0/1 1/11 | 0/1 0/1 | 0/10 3/12 1/14 0/11 0/1 | 16/140
07U 0/1 0/1 1/2 |11 2/5 1/2 1/1 0/1 3/3 0/9 1/3 1/2 0/2 2/3 | 0/3 1/4 | 0/1 1/10 1/4 0/3 0/3 | 16/64
08U 1/2 2/3 0/1 | 14/15 1/4 20/20 | 8/8 9/10 0/1 12/12 0/1 0/1 0/1 0/1 |9/11 |2/3 |01 5/7 1/2 3/4 0/1 | 87/109
09U 1/1 0/1 0/1 | 19/20 | 0/10 0/14 0/14 | 29/29 1/1 0/2 1/2 22/22 | 18/18 | 1/1 | 1/1 0/21 | 19/19 17/18 | 0/1 0/10 0/1 | 129/207
995 2/2 0/5 0/1 | 111 1/12 1/13 0/10 | 0/2 0/1 1/6 0/15 1/1 0/4 0/7 | 0/1 1/11 | 0/4 0/15 0/17 0/1 0/20 | 8/159
CR 0/11 | 0/1 0/3 | 0/8 4/7 0/11 0/1 2/3 7/8 3/11 1/7 7/9 0/3 0/4 | 0/9 0/8 | 0/9 0/12 0/1 2/13 0/12 | 26/151
Total | 16/56 | 11/39 | 6/33 | 51/101 | 42/110 | 29/109 | 10/62 | 46/131 | 21/73 | 36/103 | 19/62 | 33/75 | 19/42 | 8/69 | 36/86 | 7/67 | 23/100 | 96/201 | 54/120 | 13/106 | 9/92 | 585/1837

12
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241  Because each grow-out contains an independent set of lines, the set of SNPs tested differs

242  between grow-outs depending upon the SNP minor allele frequency in each dataset.

243  Additionally, common SNPs between growouts will still differ in allele frequency, which could
244  result in neighboring SNPs, still in LD with the causal variant, being returned for different GWAS
245  experiments. Therefore, looking for only exact overlaps between datasets may be overly

246  restrictive. Soybean has been estimated to have a linkage disequilibrium (LD) decay distance of
247  between 360Kbp in euchromatic regions and 9.6Mbp in heterochromatic regions (Hwang et al.,
248  2014). To better search for overlaps between our datasets while also taking into account the
249 large variability in LD range across the soybean genome, we grouped all of the SNPs returned
250 across experiments by whether they are in LD with one another. Although many factors affect
251 the ability to detect an association between a QTL and the actual causative loci, the minimal r?
252  for detection between the loci is generally estimated to be between 0.2 and 0.33 (Ardlie et al.
253  2002; Qanbari et al. 2010; Wallace et al. 2014) with a value of 0.2 previously being used to

254  define LD range in the soybean genome (Hwang et al. 2014). Therefore, we defined an overlap
255  between SNPs as whether a pair of SNPs has an r? > 0.2. When this approach was applied to
256  the all cofactors model, the same locus was returned for the same phenotype in different grow-
257  outs 18 times, a different phenotype in the same grow-out 44 times and different phenotypes in
258  different growouts 237 times (Supplemental Table 4). Often a SNP returned as significant in the
259  EBIC model for one growout, will have a corresponding SNP in the all cofactor model of another
260 growout, indicating that the signal is there in other populations, but at too weak a level to meet
261  strict significance thresholds.

262

263  Another line of evidence that the SNPs identified are real is the co-location with candidate

264 genes. Due to the large regions of linkage disequilibrium in the soybean genome, each of the
265 30,000 SNPs in our experiment is linked to dozens to hundreds of genes. Many plant

266  processes, including root structure/function, water relations, and inter, intra and extra-cellular
267  structures, can alter the elemental accumulation (Baxter et al. 2009; Tian et al. 2010; Chao et al.
268 2011, 2013; Barberon 2017). Each SNP is therefore likely to be associated with several

269 plausible candidate genes. We looked under the SNPs of our overlap sets for strong

270 candidates- those with orthologs associated directly with elemental phenotypes. Table 5

271 contains a list of SNPs found on or near candidate or already characterized genes. Many of the
272  candidates are under SNPs associated with individual elements to which they or their orthologs
273  were previously linked, or with chemically related elements (i.e Mn, Co, Cd with Fe or Se with
274  S). The presence of these strong candidates under the detected SNPS supports the evidence
275  from overlap that they are real associations.

276

277  Table 4. SNPs returned in the EBIC selected model in two or more grow-outs.

Chromosome | Base Pair Environment | Trait logP Model Overlap Type
9 4612586 | 99S Cd 10.06 | EBIC Same Element, Different Location
9 4612586 | 04U Cd 5.39 | EBIC Same Element, Different Location
9 4991159 | 00U Cd 18.68 | EBIC Same Element, Different Location
9 4991159 | 02U Cd 18.95 | EBIC Same Element, Different Location
9 4991159 | 03U Cd 11.88 | EBIC Same Element, Different Location
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9 4991159 | 06U Cd 6.77 | EBIC Same Element, Different Location

10 5863544 | 04S Ca 6.20 | EBIC Different Element, Same Location

10 5863544 | 04S Sr 7.68 | EBIC Different Element, Same Location
46468030 | 03U Seed Weight 11.73 | EBIC Different Element, Different Location
46468030 | 05U Se 29.18 | EBIC Different Element, Different Location
41315343 | 06S Mg 4.82 | EBIC Different Element, Different Location
41315343 | 09U Mo 4.58 | EBIC Different Element, Different Location
10 5179735 | 05U S 5.73 | EBIC Different Element, Different Location
10 5179735 | 06S Ni 7.36 | EBIC Different Element, Different Location
13 | 19554349 | 07U Ni 6.66 | EBIC Different Element, Different Location
13 | 19554349 | 09U Ca 18.06 | EBIC Different Element, Different Location
13 | 22047323 | 02U Cd 14.82 | EBIC Different Element, Different Location
13 | 22047323 | 06S K 5.59 | EBIC Different Element, Different Location
13 | 26504428 | 00U Cd 6.30 | EBIC Different Element, Different Location
13 | 26504428 | 03U Seed Weight 10.48 | EBIC Different Element, Different Location
19 84371 | 08U Cu 16.51 | EBIC Different Element, Different Location
19 84371 | 09U Fe 51.76 | EBIC Different Element, Different Location

14
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278

Table 5. Returned SNPs overlapping candidate or already characterized genes. Bold font indicates lines returned in the more conservative EBIC model

279 for at least one growout. SNP basepairs are mapped to soybean reference genome build Glyma1.1.
280 Base Pair (of most -logP (Of most
Chromosome significant SNP) Environment(s) | Trait(s) significant SNP) | Candidate Gene
00U; 02U; 03U;
9 4991159 | 06U Cd 18.95 | HMA13; Glyma.09g055600 (Benitez et al., 2012); (Fang et al., 2016)
Glyma.02g215700 is similar to At2-MMP which is induced during cadmium stress to leaves (Golldack et al.,
2 43023030 | 99S;CR Cd 20.67 | 2002)
3 40883820 | 02U; 99S Se 21.15 | NRAMP metal transporter (Glyma.03g181400); Aluminum Sensitive 3 (ALS3; Glyma.03g175800)
Multidrug resistance-associated protein 3 (MRP3, Glyma.05g145000); AtMRP5 implicated in Calcium
5 33737561 | CR; 09U Ca 36.24 | homeostasis in Arabidopsis (Gaillard et al., 2008)
14 47003645 | 06S; 03U Co 17.91 | ZIP metal ion transporter (Glyma.14g196200); Overlaps with a Zn and Rubidium (in all cofactor)
CAX2 (Glyma.15g001600), implicated in Mn transport (Shigaki et al., 2002); NRAMP6 (Glyma.15g003500),
15 410656 | 04S; 07U Mn 7.11 | Mn transport; MGT2 (Glyma.15g002700) and MGT4 (Glyma.15g005200), magnesium transport
Fe; Zn; P;
2 5555909 | 07U Cu 6.91 | ATOX1 (Glyma.02g068700), Copper transport
01U; CR; 00U; Al; Rb; Mo; ALMT (Glyma.01g223300), Aluminum activated malate transport, malate is a chelator for aluminum and
1 54551283 | 04U Co; K 7.64 | critical in detoxification
Heavy metal transport/detoxification (Glyma.02g222600, Glyma.02g222700);Potassium transporter 1
2 44460357 | 09U; 02U Co; Ca 10.96 | (Glyma.02g228500); Phosphate transporter 4;3 (Glyma.02g224200)
3 5165511 | 09U; 06U Fe; Mn 36.05 | YSL6 (Glyma.03g040200); FPN1 ferroportin (Glyma.03g042500)
7 5480577 | 06S; 06U As; Ni 22.46 | Heavy metal transport/detoxification (Glyma.07g065800); NRAMP2 (Glyma.07g058900)
11 17367460 | 04U; 06U Fe; Se 21.13 | ABC Transporter (Glyma.11g194700, Glyma.11g196100)
19 84371 | 08U; 09U Cu; Fe 51.76 | ATOX1 (Glyma.19g001000), Copper transport
3 5455217 | 00U; 04U Mg; Co 7.45 | iron regulated 1 (Glyma.03g042500); iron regulated 2 (Glyma.03g042400); YSL6 (Glyma.03g040200)
Sulphate Transporter (Glyma.15g014000) (El Kassis et al., 2007; Cabannes et al., 2011); Sulfite Transporter
15 1222084 | 05U Se 29.64 | (Glyma.15g015600)
9 4799335 | 06S K 4.31 | Potassium Transporter (Glyma.09g052700)
Overlap with IDC for FRO2 (Mamidi et al. 2014); Glyma.07g067700; Also Glyma.07g065800 a heavy metal
7 5900018 | 06U Fe 5.07 | detox
9 4518093 | 09U Mo 17.96 | Molybdenum Cofactor sulfurase (Glyma.09g050100)
9 3807440 | 09U S 31.98 | Glyma.09g045200 Heavy Metal Transport; Close to all cofactor selenium
5 8074553 | 00U; 06S Fe 7.06 | Stabilizer of iron transporter (AGO10, PNH, ZLL; Glyma.05g011300), in IDC datset (Mamidi et al. 2014)
3 45338714 | 03U Fe 8.30 | NAS3; Glyma.03g231200; Overlaps IDC (Mamidi et al. 2014)
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281  Verification of High and Low Sulfur and Phosphorus accumulating lines
282
283  To test whether the elemental accumulation of ionomic traits in the lines in our panel are
284 intrinsic to the genetics of the lines or an artifact of the environmental and field conditions, we
285 performed two experiments in which we selected the highest and lowest accumulating lines for
286  sulfur and phosphorus and regrew the seeds in controlled field and greenhouse conditions.
287  Eight lines, four with a high phosphorus phenotype and four with a low phosphorus phenotype
288  were selected for regrowth in a field in Columbia, MO. Three of the four high phosphorus lines
289  exhibited a high phosphorus phenotype in the regrow experiment, while the low phosphorus
290 lines had phenotypes closer to the control line level (Figure 5 and Table 6). Broad-sense
291 heritability for phosphorus between the GRIN growout concentrations and this experiment was
292  0.65 (Supplemental Table 5).
293
294 Table 6. Accessions chosen for validation of phosphorus accumulation. High and low phosphorus
295 accumulating lines were chosen to regrow to test the reproducibility of ionomic traits. Values listed in the
296  table are mg Phosphorus/kg tissue.
Regrow Regrow Collection

Regrow Phosphorus | Number of Phosphorus | Collection

Phosphorus | Standard Seeds Collection Standard Number of Phosphorus
Accession (mg/kg) Error Tested Phosphorus | Error seeds tested | Level
PI081042-1 5464.77 127.08 12 4149.66 109.15 5| Low
P1424159B 5965.40 160.35 12 4305.02 168.68 5| Low
P1475822B 5830.14 179.63 11 5819.22 335.34 6 | Low
PI567691 6121.47 186.62 11 6001.76 372.65 6 | Low
P1086081 6665.44 123.66 12 8280.90 123.01 6 | High
P1423813 7100.48 198.13 14 8421.17 481.09 6 | High
P1089772 6432.51 130.76 12 8785.44 300.08 6 | High
PI567721 5622.10 193.65 12 9602.50 504.11 5 | High
297
298
299 In a separate experiment, 10 lines total, four low sulfur accumulating lines and six high sulfur
300 accumulating lines were selected and regrown in both a field and greenhouse trial. In both the
301 field and greenhouse experiment, all of the six high sulfur lines had a higher sulfur accumulation
302 than the four low accumulating lines. Interestingly, the field grown varieties had a larger
303 difference in sulfur accumulation between the high and low varieties (Figure 5 and Table 7).
304  Although not selected for accumulation of other elements, there was also a correlation between
305 measured values in the germplasm collection and the regrow set for many other elemental
306  phenotypes tested (Supplemental Figures 5 and 6). Broad-sense heritability for sulfur between
307 the GRIN growout concentrations, the greenhouse, and the field growouts was 0.64
308 (Supplemental Table 5).
309
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310

Table 7. Accessions chosen for validation of sulfur accumulation. High and low sulfur accumulating lines were chosen to regrow to test the reproducibility

311 of ionomic traits. Values listed in the table are mg sulfur/kg tissue.
312
Regrow Regrow
Regrow Regrow Field Regrow Regrow Greenhouse Collection | Collection
Field Field Number of | Greenhouse | Greenhouse | Number of | Collection | Sulfur Number of
Sulfur Standard Seeds Sulfur Standard Seeds Sulfur Standard seeds Sulfur
Accession | (mg/kg) Error Tested (mg/kg) Error Tested (mg/kg) Error tested Level
P1096322 3674.77 82.01 6 3303.99 86.76 6 2694.52 75.46 7 | Low
P1229327 3183.07 69.30 6 | NA NA NA 2764.57 62.35 7 | Low
PI507411 3190.73 26.38 4 3126.35 84.73 6 2797.00 67.14 8 | Low
PI603599A 3584.44 48.23 6 3075.94 114.71 8 2874.06 64.85 8 | Low
P1603162 4336.25 45.05 6 3703.22 70.82 6 3771.84 71.02 8 | High
PI339734 4856.20 158.22 6 4875.50 68.81 4 3774.48 21.99 2 | High
P1437377 4728.93 112.23 6 3413.30 82.30 6 3847.54 82.38 7 | High
P1603910B 4301.96 64.81 5 4074.24 80.70 5 3925.33 71.42 8 | High
P1082278 4703.29 51.39 5 4265.62 99.98 6 3929.56 117.16 7 | High
P1424078 NA NA NA 4791.33 187.03 5 4245.06 78.57 5 | High
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Phosphorus concentration in lines selected
for high and low phosphorus accumulation in germplasm collection seeds
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Figure 5. Confirmation grow out of high and low sulfur and phosphorus
accumulating lines. A, Regrow versus original concentration of 8 lines
selected for high and low phosphorus accumulation. Correlation
between GRIN concentration and regrow was 0.24. B, Regrow versus
original concentration of 10 lines selected for high and low sulfur
accumulation, regrown in both greenhouse and field environments.
Error bars indicate the standard error of the replicate seeds. Correlation
(rz) between GRIN seed concentrations and the regrown high and low
varieties grown in the greenhouse and in the fields were 0.61 and 0.84,
respectively.
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314 Discussion

315

316  Analysis of ionomic traits has led to a deeper understanding of the complex regulatory system
317  organisms use to maintain homeostasis of essential elements (Baxter et al. 2008; Baxter 2010;
318  Atwell et al. 2010; Yu et al. 2012). To broaden our understanding of how genetic and

319  environmental components affect the ionome, we have developed a high-throughput ionomic
320 phenotyping system that can rapidly measure 20 ionomic traits and seed weight in

321 agronomically important crops, such as soybean, maize, sorghum and cotton. To assess the
322  utility of our phenotyping system for genome wide association studies in soybean, we measured
323  the ionome of a diverse set of more than 1300 soybean lines, divided into 14 independent

324  populations grown in three locations over the course of a decade. Coupled with a high-

325 resolution genetic map (Song et al. 2013), we performed a genome wide association study

326  using a multi-locus mixed model procedure (Segura et al. 2012). We were also able to show
327 thatlines selected from these experiments for extreme phenotypes of elemental accumulation
328  were likely to display similar phenotypes in follow up experiments.

329

330 In spite of the limited number of lines in each grow-out, one of the strengths of this study is the
331 number of distinct field replications. Although there was no overlap between lines for any of the
332 14 grow-outs, we found many genetic interactions that were robust across environments and
333  genotypes. We report several different sets of SNPs corresponding to different levels of

334  stringency in the individual experiments and the way we compared results between the

335 experiments. These range from the 1756 SNPs from the full models, which likely contain several
336 false positive associations, to the two SNPs that were returned in multiple experiments for the
337  same element. Hundreds of SNPs in the total dataset are likely to be real due to their inclusion
338 in a more conservative model or due to being found in several locations once LD is taken into
339 account. Several of these mapped directly to what could be considered a priori candidate

340 genes that have either already been characterized in soybean or are close orthologs of metal
341 homeostasis proteins in A. thaliana and other species (Table 5). The discovery of orthologs of
342  known Arabidopsis genes in soybean experiments highlights the value of studies in model

343  organisms, where the genetics and growth habits are more amenable to large scale studies.
344  Many more overlaps between different phenotypes found in different locations suggests genetic
345 by environmental effect on which phenotype is affected by a causal locus. Many of the SNPs
346  which overlap across environments are novel associations with no obvious gene candidates and
347  are strong candidates for follow-up studies to determine their relationship to plant nutrient

348  homeostasis.

349

350  The strongest element-loci association in our study was for the cadmium phenotype which is
351  associated with a gene that codes for HMA13, a P4g-ATPase (HMA13; Glyma.09g055600)

352  previously implicated in seed cadmium concentration in soybean (Benitez et al. 2012). A

353  previous GWAS study on iron deficiency chlorosis found seven loci strongly associated with the
354  disease phenotype (Mamidi et al. 2014). Our analysis returned 3 of the seven loci found in that
355  study, all associated with seed Fe, including the two strongest associations from the IDC panel:
356  alocus associated with nicotianamine synthase 3 (NAS3; Glyma.03g231200) and a locus

357  associated with a stabilizer of iron transporter (AGO10; Glyma.05g011300). If gene discovery of
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358 small to medium effect loci is the goal of a study, using samples from germplasm banks may not
359  be appropriate, but even with all the caveats about statistical power and gene by environment
360 interactions, we found loci that had strong candidates for some elements. These results could
361 be used to prioritize genes and lines for further characterization experiments.

362

363

364  Conclusion

365  Using state-of-the-art association mapping techniques we were able to use the data we

366  collected using our high-throughput ionomic phenotyping pipeline to identify both lines with

367  extreme phenotypes and loci associated with elemental traits. Many of these associations were
368  strong enough to occur across a diverse set of environmental conditions, while others were
369 found in only one of the environments tested. While there are likely many more associations in
370  our GWAS dataset that we haven't yet explored, this experiment serves as a proof of concept of
371 using stored seed to perform GWAS on ionomic traits. While our efforts were focused on the
372  identification of markers associated with elemental traits, the SNPs identified were associated
373  with many a priori candidate genes. The use of seeds as the phenotyped tissue allows for the
374  direct association of the consequences of allelic difference of SNPs and associated candidate
375  genes with traits that affect the tissue with the most agronomic importance in soybeans. While
376  planned experiments with more replication and higher numbers of lines will always have more
377  power to identify genetic and environmental factors driving elemental accumulation in the seed,
378 this study demonstrates the utility of leveraging available samples to screen germplasm.

379

380 Materials and Methods

381

382 Germplasm

383

384 A diverse panel of 1653 soybean accessions was selected from the core soybean collection of
385 the USDA Soybean Germplasm Collection, as described in the results. Because the mission of
386 NPGS is to maintain a viable collection of plant germplasm, the collections are periodically

387  regrown to maintain viable seed. The size of the soybean germplasm collection necessitates
388 that only a subset of the complete germplasm collection is grown-out each year. Furthermore,
389 the diverse panel of accessions belongs to a variety of maturity groups and was grown-out in
390 three separate locations: Stoneville, MS, Urbana, IL, and Upala, Costa Rica. The 1653 lines in
391  the panel are, thus, broken into 13 distinct year and location sets, with no overlap of lines

392  between years or locations (Table 1). The Costa Rica dataset had no individual years with

393  enough lines (>50) to perform a successful association analysis. However, by creating three
394  additional datasets by combining data from each location, regardless of year, we were able to
395  analyze data from the Costa Rica grow-outs.

396

397  Confirmation Growouts

398

399  Small plots of four low sulfur accumulating lines and six high sulfur accumulating lines were
400 grown in Mexico silt loam soil at Bradford Research and Extension Center, Columbia, Missouri.
401 Cultural practices were typical of those utilized for soybean production in the Midwest US. The
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402 same set of plants were also grown in environmentally controlled greenhouse in 6 liter pots

403  containing PRO-MIX (Premier Horticulture, Quebec, Canada) medium amended with Osmocote
404  Classic controlled release fertilizer (Scotts, OH). Greenhouse settings were 16 h day length with
405  30/18°C day/night temperatures.

406

407  Small plots of differential phosphorus lines were grown out in 2012 at South Farm Agricultural
408 Research Center (Columbia, MO, Latitude 38.908189, Longitude -92.278693, Mexico silt loam
409 soil) as single plots of 5 feet long with a 3 foot gap between rows and 30 inches between rows.
410 Field conditions were typical of soybean production in the Midwest US, with NPK Fertilizer

411 applied at rates appropriate according to soil analyses (10.6/50/75) and two pre-emergent

412  herbicides were applied before planting: Authority First (Authority First Corp, Philadelphia, PA)
413  applied at 6.45 oz/acre; and Stealth applied at 1 qt/ac (Loveland Products, Loveland, CO, USA).
414  Post-emergent herbicides were also used: Ultra Blazer (UPI, King of Prussia, PA, USA) applied
415  at 1.5pt/acre; Basagran (Arysta LifeScience North America, LLC, Cary, NC, USA) applied at
416  1.5pt/acre and Select Max (Valent Biosciences Corp., Libertyville, IL, USA) applied at 24

417  oz/acre. At maturity, plots were bulk harvested and threshed and a subsample was used for
418  ICP-MS analysis.

419

420 lonomic Phenotyping by ICP-MS

421

422  Samples were phenotyped on two separate occasions for the elemental concentrations for B,
423 Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Mo, and Cd following the analytical
424  methods described in Ziegler et al. (2013). Seed weight is also recorded for each sample

425 analyzed, so it was also included as a phenotype in our study.

426

427 A simple weight normalization procedure to correct measured sample concentrations for seed
428  size was found to introduce artifacts, especially for elements whose concentration is at or near
429 the method detection limit. This could either be due to a systematic over or under reporting of
430 elemental concentrations by the ICP-MS procedure or a violation of the assumption that all

431 elemental concentrations scale linearly with weight. We used an alternative method to normalize
432  for seed weight following the method recently reported in Shakoor et al. (2016). A linear model
433  was developed modeling unnormalized seed concentrations against seed weight and the

434  analytical experiment the seed was run in. The residuals from this linear model were then

435 extracted and used as the elemental phenotype. For each element, the phenotypic

436 measurement was taken as the median of the elemental concentrations from the 2 or 8 seeds
437  measured from each line (after outlier removal of measurements with a median absolute

438  deviation of >10 where we had enough samples). To meet the normality assumptions required
439 for GWAS, an analysis using the Box-Cox algorithm was used to determine an appropriate

440 transformation for each trait (Box and Cox 1964). Since each grow-out has a distinct set of lines,
441  which may result in different phenotypic distributions, transformations were performed

442  separately for each element in each dataset listed in Table 1. Transformations were selected
443  based upon the 95% confidence interval returned by the Box-Cox function implemented in the R
444  package MASS (Box and Cox 1964; Venables et al. 2002).

445
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446 GWAS

447

448  All of the lines included in this analysis (and all of the annual accessions in the Soybean

449  Germplasm Collection in 2010) have been genotyped using the SoySNP50K beadchip and are
450 available at soybase.org (Song et al. 2013). Separate genotype files were generated for each
451 grow-out that contain only the lines present in that grow-out. The genotype files were each

452  filtered to remove SNPs with a minor allele frequency less than 0.05 and missing SNPs were
453  imputed as the average allele for that SNP. The number of SNPs for each grow-out varied

454  between 31,479 and 36,340. The final number of SNPs used for association mapping of each
455  grow-out are listed in Table 1. SNPs were called using the Glyma1.1 reference genome. All
456  SNP base pair locations reported are from a map to Glyma1.1.

457

458  Both kinship and structural components were included in the mixed model and were calculated
459  using the filtered genotype matrix containing all 1391 lines found across all 13 grow-outs. The
460  kinship matrix was calculated using the VanRaden method as implemented in GAPIT

461 (VanRaden 2008; Lipka et al. 2012). To correct for population stratification a principal

462  component analysis was performed. The first ten principal components were used as fixed

463 effects in the mixed model.

464

465  Association mapping was performed using a multilocus mixed model (MLMM) approach that
466  performs a stepwise mixed-model regression with forward inclusion and backward elimination of
467  genotypic markers included as fixed effects (Segura et al. 2012). In this model forward steps are
468  performed until the heritable variance estimate reaches 0 (indicating the current model includes
469 covariates that explain all of the heritable phenotypic variance) or a maximum number of

470 forward-inclusion steps have been performed, which we set at 40.

471

472  MLMM implements two model selection methods to determine the optimal mixed model from the
473  set of step-wise models calculated: the extended Bayesian information criterion (EBIC, Chen
474  and Chen 2008) and the multiple-Bonferroni criterion (mbonf, Segura et al. 2012). The EBIC
475 model uses the Bayesian information criteria to select a model taking into account both number
476  of SNPs in the analysis as well as number of cofactors in the model. In our analysis, the EBIC
477  was usually less conservative (eg. selected larger models). A larger model likely increases the
478 number of type 1 errors, but it is less likely to miss true associations. Because we are

479  performing a further selection step comparing results across independent experiments, we used
480 the EBIC models for further analysis. Additionally, we also analyzed the cofactors returned by
481  the final forward inclusion model (maximum model), which includes either the maximum 40

482  cofactors or the total number of cofactors needed to explain the estimated heritability.

483

484  SNPs included as cofactors in either the EBIC model or the maximum model were compared
485 across GWAS experiments. SNPs were determined to overlap with a neighboring SNP if it had
486 anr’LD of >0.2.

487

488  Calculation of Linkage Disequilibrium

489
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490 Linkage disequilibrium, expressed as a correlation coefficient between markers (r2), was

491 calculated using the filtered SNP data set containing all 1391 lines from the experiment and the
492 LD function of the ‘genetics’ R package (Warnes et al. 2013).

493

494  Germplasm and Data Availability

495

496 Lines used can be found at the USDA Soybean Germplasm Center. All scripts and data used
497  can be found at www.ionomicshub.org and https://github.com/baxterlab/SoylonomicsGWAS.
498

499 Figure/Table Legends

500

501 Supplemental Figure 1. Principal component analysis of the genotypes of 1391 soybean
502 lines. Colored by GRIN growout.

503

504  Supplemental Figure 2. Elemental accumulation in soybean seeds across experimental
505 grow-outs.

506

507 Supplemental Figure 3. Distribution of all elemental phenotypes in all grow-outs. Lines
508 are ordered by the median of between 2 and 8 seed replicates.

509

510 Supplemental Figure 4. QQ-plots for all GWAS experiments performed.

511

512  Supplemental Figure 5. Regrow versus original concentration for all phenotypes in the
513 phosphorus selection experiment.

514

515  Supplemental Figure 6. Regrow versus original concentration for all phenotypes in the
516  sulfur selection experiment.

517

518 Supplemental Table 1. Raw ionomics data and phenotypes after transformation for
519 GWAS for all lines in the experiment.

520

521  Supplemental Table 2. Box-Cox suggested transformations for ionomics phenotypes.
522

523  Supplemental Table 3. All SNPs returned in either ‘All Cofactor’, ‘EBIC’, or ‘Multiple
524  Bonferroni’ models for all GWAS experiments.

525

526  Supplemental Table 4. SNPs returned in two or more grow-outs based on Linkage

527 Disequilibrium calculation.

528

529 Supplemental Table 5. Broad-sense heritabilities calculated for ionomic traits in the
530 sulfur and phosphorus confirmation experiments.
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