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Abstract (250 words)

Various models describe asexual evolution by mutation, selection and drift. Some focus directly on
fitness, typically modelling drift but ignoring or simplifying both epistasis and the distribution of
mutation effects (travelling wave models). Others follow the dynamics of quantitative traits determining
fitness (Fisher’s geometrical model), imposing a complex but fixed form of mutation effects and
epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation
rate limits and for long-term stationary regimes, thus loosing information on transient behaviors and the
effect of initial conditions. Here, we connect fitness-based and trait-based models into a single
framework, and seek explicit solutions even away from stationarity. The expected fitness distribution is
followed over time via its cumulant generating function, using a deterministic approximation that
neglects drift. In several cases, explicit trajectories for the full fitness distribution are obtained, for
arbitrary mutation rates and standing variance. For non-epistatic mutation, especially with beneficial
mutations, this approximation fails over the long term but captures the early dynamics, thus
complementing stationary stochastic predictions. The approximation also handles several diminishing
return epistasis models (e.g. with an optimal genotype): it can then apply at and away from equilibrium.
General results arise at equilibrium, where fitness distributions display a ‘phase transition” with mutation
rate. Beyond this phase transition, in Fisher’s geometrical model, the full trajectory of fitness and trait
distributions takes simple form, robust to details of the mutant phenotype distribution. Analytical
arguments are explored for why and when the deterministic approximation applies.

Significance statement: How fast do asexuals evolve in new environments? Asexual fitness dynamics are
well documented empirically. Various corresponding theories exist, to which they may be compared, but
most typically describe stationary regimes, thus losing information on the shorter timescale of
experiments, and on the impact of the initial conditions set by the experimenter. Here, a general
deterministic approximation is proposed that encompasses many previous models as subcases, and
shows surprising accuracy when compared to stochastic simulations. It can yield predictions over both
short and long timescales, hopefully fostering the quantitative test of alternative models, using data
from experimental evolution in asexuals.
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Introduction

Empirical dynamics of fitness in simple environments are still not quantitatively predicted by
evolutionary biology, in spite of a wealth of theoretical progress and an ever-growing corpus of data
produced by experimental evolution. To our knowledge, no model exists that was parameterized from
independent data, and then has proved to predict observed fitness trajectories; in either sexual or
asexual organisms, from de novo mutations or preexisting standing variance. Patterns of fitness
trajectories in microbes (de novo mutations in asexuals) have been confronted to and fitted with various
theoretical predictions, showing qualitative agreement with models of clonal interference (TSIMRING et al.
1996; MIRALLES et al. 2000; GERRISH 2001; DesAl et al. 2007), and suggesting pervasive diminishing return
epistasis among beneficial mutations (CHou et al. 2011; KHAN et al. 2011). However, fitting is not
predicting: several alternative models can be qualitatively consistent with the same dataset (FRANK
2014). Regarding fitness dynamics during adaptation from standing variance, both theory and data are
relatively scarce, at least in asexuals; this limits our knowledge of the transient effects of standing

variance, while these can be critical for short-term adaptive responses to environmental challenges.

Important progress has been made, over several decades, with a rich variety of models predicting fitness
dynamics. These models critically depend on (i) a mutation rate and (ii) a distribution of fitness effects of
mutations (DFE), which is either independent of the background genotype (no epistasis for fitness), or
depends on it, minimally on its fitness. They differ in the genotype-fitness landscape considered and the
regimes assumed to derive the evolutionary dynamics. Models of mutation and selection in asexuals
roughly fall into two (seemingly disconnected) classes: DFE-based models that directly track the
distribution of fitness and trait-based models that follow the distribution of underlying quantitative
traits, which determine fitness. The aim of this work is to handle this variety of models into a single
analytical framework (in terms of partial differential equations, or PDE), and to use it to derive new
results for these models, regarding non-stationary dynamics or equilibria. We start by briefly

summarizing these existing approaches, in a necessarily far from exhaustive manner.

Fitness-based models directly follow the dynamics of fitness distributions, typically with a constant
mutation rate and DFE over time (no epistasis). Initially based on deterministic equations and diffusive
mutation effects (TSIMRING et al. 1996), they were then refined to include stochasticity and more general
DFEs of purely beneficial mutations (GERRISH and LENSKI 1998; ROUZINE et al. 2003; DwYER 2012; GooD et

al. 2012). More recently, the interplay of a distribution of deleterious and beneficial mutations has been
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studied in this context, in either low (e.g. Goob and DesAl 2014) or high (e.g. NEHER and HALLATSCHEK 2013)
mutation rate limits. As beneficial mutation influx becomes large in asexuals, co-segregating lineages
compete for fixation and slow down adaptation, a process further affected by the deleterious mutations
that accumulate on each lineage. These ‘clonal interference’ dynamics, in the presence of stochastic
fluctuations, are difficult to analyze and often yield complex or non-explicit formulae, but several models
have provided important insight into this process. They have been handled through alternative
modelling approaches, accurate in different regimes: low to intermediate mutation rate for the original
clonal interference models (GERRISH and LENSkI 1998; GERRISH 2001), or higher mutation rate for the more
recent ‘travelling wave’ models (ROUzINE et al. 2003; GooD et al. 2012; NEHER and HALLATSCHEK 2013).
Note that in the limit of very large populations, high mutation rates and weak mutation effects, a simple
and explicit Gaussian travelling wave is retrieved for the expected fitness distribution (NEHER and

HALLATSCHEK 2013).

This rich literature, reviewed elsewhere (e.g. ROUZINE et al. 2003; DEsAI and FISHER 2007; SNIEGOWSKI and
GERRISH 2010; DEesAl 2013), has a common feature: it describes the stationary regime of a stochastic
process. This implies that a full trajectory from given initial conditions (possibly with standing variance) is
not available, only the ultimate average rate of steady fitness change. Furthermore, as time goes on, the
envelope around this mean fitness prediction typically explodes so that individual populations may lie far
from the predicted mean at any time. This limits the comparison to empirical trajectories, which typically
start away from stationary regime, and contain a few replicates. Note however, that this assumption of
steady increase in fitness is often envisioned as reflecting a constant struggle between a steadily
changing environment and an adapting population (NEHER and HALLATSCHEK 2013). It is possible that in

such regime the envelope may remain narrow and steady-state may be reached faster.

Another aspect of the approach is that epistasis must be ignored here; otherwise mutation rates and
effects may change over time (as the dominant backgrounds change), impeding the setting of a
stationary regime. Recent extensions do include some form of epistasis or deleterious mutations
(KRYAZHIMSKIY et al. 2009; DWYER 2012; Goob and DEesAl 2015). However, analytical progress is then
difficult beyond the master equation: relatively simple exemplary cases were analyzed in depth but
always in regimes where clonal interference is negligible. Note also that other DFE-based models were
devoted to describe mutation-selection balance (another stationarity assumption), ignoring drift and
epistasis. General insight into equilibrium fitness distributions has been gained from quasi-species theory

(EIGEN 1971) or asexual mutation-selection-balance models (JOHNSON 1999). This literature will not be
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reviewed here either (see WILKE 2005), but in general analytical progress has often proved difficult unless

simplified forms of DFE are assumed (discussed in MARTIN and GANDON 2010).

Trait-based models form an equally central body of literature that deals with adaptation affecting a trait
or set of traits under selection for an optimum (via some concave phenotype-fitness function). These
single peak trait-based models date back to Fisher’s (FISHER 1930) geometrical model (FGM), and also
produced a rich literature connected to evolutionary quantitative genetics (LANDE 1979). This approach is
constrained into a particular form of DFE, but one that does include (i) pervasive epistasis and
dominance, and (ii) both beneficial and deleterious mutations. Several patterns of mutant fitness
expected in the FGM have been tested on fitness data from mutant lines (MARTIN et al. 2007; TRINDADE et
al. 2010; MANNA et al. 2011; SousA et al. 2011; TRINDADE et al. 2012; HIETPAS et al. 2013), showing
promising overall agreement. The FGM also emerges as the limit of a broader class of genotype-
phenotype-fitness landscapes involving highly integrated “small-world” phenotypic networks (MARTIN
2014). Overall, the FGM seems a reasonable null model for evolutionary predictions (reviewed in
TENAILLON 2014). The population genetics of adaptation by mutation and selection, in such trait-based
models, has also seen many developments, reviewed extensively elsewhere (e.g. BURGER 2000; ORR
2005). It provides a well-studied theory for equilibrium states in various situations (detailed in Roze and
BLANCKAERT 2014); several qualitative properties of equilibria have even been obtained for more general
trait-fitness relationships, at least with a single trait (detailed in BURGER 1998; BURGER 2000). The effect of
standing genetic variance has also been treated extensively (from its quantitative genetics heritage),
making the FGM an interesting complement to DFE-based models. Furthermore, predictions on trait
distributions can be transformed into predictions on measurable fitness distributions under the model
(e.g. MARTIN and GANDON 2010). Yet, in spite of interest in its potential (BARTON 1998; GORDO and CAMPOS
2012), analytic progress in situations relevant for experimental evolution (notably asexuals), has proven
equally difficult to obtain. Even equilibrium states are not fully resolved in the FGM. Alternative analytic
approximations only exist at each extreme of the mutation rate spectrum: House of Cards for a single
trait (TURELLI 1984) vs. Gaussian for arbitrarily many traits (KIMURA 1965; LANDE 1980), respectively, in the
low vs. large mutation rate limits. When dealing with the dynamics of adaptation, the classic approach
(LANDE 1979) focuses on large highly polymorphic sexual populations, where the genetic variance of the
traits is transiently approximately constant: another stationarity assumption, valid this time over finite
timescales. However, this option breaks down with asexuals, in general. Alternatively, stochastic models
of mutation-selection-drift dynamics have been implemented under the FGM for adaptation trajectories

(ORR 2000), or mutation-selection-drift balance (TENAILLON et al. 2007). However, they apply in a weak

4


https://doi.org/10.1101/079368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079368; this version posted October 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

mutation strong selection limit (or with unlinked non-epistatic loci in sexuals) where clonal interference
is negligible. Finally, it is noteworthy that treatments of trait-based models with high mutational input
(Gaussian theories) put less emphasis on drift (often neglected), than their fitness-based counterparts.
They do involve multiple co-segregating mutants (clonal interference), but the deterministic predictions
prove fairly accurate in this case, suggesting that some difference in the assumptions makes the

interplay of drift and other forces less critical.

Aim of this work: Overall, we enjoy a wealth of alternative, complementary approaches of adaptive (or
maladaptive) fitness dynamics in the presence of mutation, selection and possibly drift. Yet, they are not
easily connected together. They do not provide a readily testable prediction, in terms of trajectories of
fitness distributions over time, from known initial conditions, in the large asexual populations typical of
evolution experiments. To derive such predictions, we extend an approach initially proposed by R.
Birger (1991), who studied trait-based models via the dynamics of the cumulants of the trait
distribution, under selection and non-epistatic mutation. We apply this framework to fitness itself.
Deterministic dynamics of fitness cumulants/moments have been used previously in non-epistatic
fitness-based models: either neglecting drift (JOHNSON 1999; DEesAl and FISHER 2011; GERRISH and
SNIEGOWSKI 2012) or including a stochastic diffusion component and considering the expected cumulants
over replicates (RATTRAY and SHAPIRO 2001; Goob and DEesal 2013). Following Birger’s (1991) strategy,
these studies solved a finite set of cumulant equations numerically, but the system could not be closed,
as cumulants/moments influence each other in cascade. Here, we focus on the moment and cumulant
generating function (MGF and CGF, respectively) of the fitness distribution, which handles all moments
(resp. cumulants) in a single function. In a variety of models, this allows to ‘close the system’ into a single
partial differential equation (PDE) describing the dynamics of the expectation of the fitness distribution,
among stochastic replicates, by ignoring the effect of drift. We further include mutational epistasis by
considering DFEs that broadly depend on background fitness. Overall, several processes are jointly
handled by the PDE (Fig. 1): starting from an arbitrary initial fitness distribution, new mutations
accumulate on each lineage (with lineage-dependent DFE), which co-segregate under selection (clonal
interference). In several classes of models, explicit solutions can be found for the PDE, providing a fully
analytic theory in terms of mutational parameters and standing variance. We check the predictions

against stochastic individual based simulations of various subcases.
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7 DFE :
DFE: /(s|my) f (slmy)
) @ fitness m
my m;

Background 1 Background 2

Fig. 1. The standing fitness distribution ( p,(m), blue curve) travels to the right by selection. Each
genetic background under this distribution (e.g. m; and m, here) mutates to new genotypes with
fitness m; + s where s has the density f(s|m;) depending on background fitness (red and brown curves
for m; and m,, respectively).

Heuristic statements: Before describing the model in more mathematical detail, we first tackle some
qualitative aspects of fitness dynamics in the different models above. Let us start by a somewhat
technical remark that justifies the use of generating functions here. With any model where the DFE only
depends on parental fitness and in an asexual (no recombination/segregation), fitness is the only ‘trait’
which distribution fully determines its own evolution. We can thus follow this distribution alone, ignoring
the genetic or phenotypic details underlying its variation, namely the number and effects of the
mutations carried by different genotypes, over their entire genome. This does not preclude the
complications described above: multiple mutations accumulate on each lineage, multiple lineages co-
segregate and compete for ultimate fixation and each lineage may have its own background-dependent
DFE (epistasis), as long as this dependence is entirely mediated by the background fitness. Generating
functions handle sums of independent variables in a convenient manner, which helps study the
cumulative effect of multiple mutations accumulating in lineages. It is also known that the effect of
selection on fitness distributions takes simple form in terms of generating functions (HANSEN 1992;

MANNA et al. 2012).
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Second, let us consider why and when drift may be ignored in a given finite population, or among
replicate finite populations, to describe the average fitness trajectory. The primary impact of drift
identified in stochastic fitness-based models lies in its impact on the very fittest edge of the fitness
distribution. When this edge represents a small absolute number of individuals, stochastic fluctuations in
this subpopulation indirectly bias the future mean fitness dynamics of the whole population, over longer
times. This effect does not average out if we consider the average mean fitness of replicate populations.
However, over a substantial initial period, this fitter edge has little influence on the mean fitness
dynamics (discussed in GERRISH and SNIEGOwsKI 2012), for two reasons. First, in a large polymorphic
population, the short term mean fitness dynamics are driven by selection and mutation in the bulk of the
population, which behaves roughly deterministically. Second, even in a smaller population, drift, of itself,
only slightly alters the average frequency dynamics of genotypes: roughly by an order —s (p?)/N
where N is population size and p and s are the allele’s frequency and fitness effect, respectively (see,
e.g. OTT0 and BARTON 2001). Therefore, any quantity that is linear in genotype frequencies, such as mean
fitness or the moment generating function of the fitness distribution, is only slightly affected by drift
over this timescale. It is only once new mutants establish (or not) that the future of the fitness dynamics
is inaccurately predicted by a deterministic model: ignoring the stochastic loss of these fitter genotypes
leads to overestimate mean fitness over longer timescales. Finally, even over longer timescales, the bias
induced by drift is only visible if it accumulates over time, as the fittest edge stochastically moves
towards fitter classes (at a speed overestimated by the deterministic model). If the set of all possible
fitnesses is bounded by some maximal value, stochastic fluctuations should become less important, as
the edge cannot spread forward forever: the delay between the edge and the bulk is bounded, and tends
to decay over time (as the bulk adapts). Most trait-based models consider adaptation towards a
phenotypic optimum, implying a form of diminishing returns epistasis, where fitness is bounded on the
right by the fitness of this optimum. This may explain why the mean fitness dynamics in these models
has been accurately captured by deterministic theories. The same applies for purely deleterious models,
where fitness cannot travel beyond the unloaded fitness class. In this case, however, loss of the fitter
class also happens and affects the long-term dynamics (Muller’s ratchet 1932). Yet, this happens over
much longer timescales, as the edge is a large subpopulation and as each ‘click’ of the ratchet has a small
impact (especially with continuous DFEs, where the new fittest class typically lies close to the previous
one). This argument suggests that, in the presence of a fitness upper bound, it may be possible to
accurately capture fitness dynamics by a mere deterministic model, even if clonal interference is

involved and even over long timescales. It also suggests that non-epistatic models with beneficial
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mutations (where deterministic models fail in the long run) could still show transient fitness dynamics
which average (over replicates) is captured by a deterministic model. Deriving such predictions (and
justifying the above heuristic), as well as testing their accuracy with stochastic simulations is the central

aim of this article.

Model

General setting: We assume finite haploid asexual populations and follow the expected fitness
distribution among replicates, started from the same initial fitness distribution. We consider a
continuous time model (overlapping generations), measured in arbitrary units (hours, days etc.). This
setting can also approximate a discrete time model (non-overlapping generations) when effects are small
per generations, the time t is then measured in generations: this will actually be our simulation scheme.
We follow the dynamics of the distribution of the Malthusian fitness m (hereafter ‘fitness’). In
continuous time, this is the expected exponential growth rate of a given genotype. In a discrete time
approximation, mis the log of the Darwinian fitness (m = logW), namely the log of the expected
geometric growth rate of a genotype. We define fitness relative to a reference, set at m = 0, without
loss of generality. This reference is arbitrary as we consider evolutionary dynamics (relative fitness)
without coupling to demography. In those models that include some fitness upper bound (e.g. single
peak landscape models or models with only deleterious mutations), we set the optimal genotype (with
fitness equal to this maximum) to be the reference m = 0 for convenience (so that all m < 0). In other
models (e.g. models with context-independent beneficial mutations), the reference is just an arbitrary
point in fitness space. At any time t, an arbitrary set of K, genotypes, with constant
fitnesses {m;}; e [1,k,], coexist in relative frequencies p.(m;), satisfying Zf;lpt(mi) = 1. The approach
can describe discrete classes (K; finite) or infinite countable classes in the limit K; = oo (with
convergence to a continuous distribution of fitness). Genotypes compete by frequency-independent
selection, and mutate according to a Poisson process with fixed rate U per capita per unit time. The
fitness of a mutant which parent has fitness mism + s, where s is the selection coefficient of the
mutation relative to the parent, and is drawn from an arbitrary distribution with probability distribution
function f(s|m) (pdf; a probability density function if the distribution is continuous) depending on the

parent fitness m.
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Notations: We must define various expectations and means. We use an overbar X to describe any

variable X(m), averaged over the current distribution of genotypes within a focal population: X =

Zf;lpt(mi) X(m;). We define the expectation E(Y|m) of any variable Y (s) over the DFE in background

m: E(Y|m) = [ Y(s)f(s|m)ds,and we denote by g = E(s) the mean DFE whenever it does not

depend on m.

Generating functions: The distribution of m at time t can be characterized by its moment generating

function (MGF): M;(z) = e™? =Zf=tlpt(mi) e™i?, For any finite population (K finite) this MGF is
always defined over the full line z € R, but we may study it on a compact subset spanning 0 (here, z €
R*), without loss of generality: this helps handle several continuous class limits (when K; — ). This
generating function provides essential information on the distribution at time t: its derivatives atz = 0
are the raw moments of the fitness distribution, notably the mean fitness m, = M{(0) (the prime refers
to differentiation with respect to z). For mathematical convenience, we mostly focus on the natural
logarithm of the moment generating function, which is the cumulant generating function (CGF): C;(z) =
log M, (z). Its derivatives at z = 0 are the cumulants of the distribution: in particular, the first three
derivatives are the mean m; = C{(0), variance V; = C{'(0) and third central moment (related to
skewness) k3 = C{"'(0). Additionally, the maximum of the distribution is given by C{(c) and the weight
of the classm = 0 is given by p; = eCt(®); we say that the distribution has a spike atm = 0 when this
quantity p; is strictly positive. It should also be noted that the full distribution of m at time t can be

retrieved by applying an inverse Laplace transform to M, = e‘t.

Because each replicate population has its own trajectory of genotypic frequencies, the generating
functions M;(.) and C;(.) are stochastic functions of z over time. We seek to predict the behavior of the
expectation of such variables over stochastic replicates, so we use (X) to denote any such expectation
of X. In particular (M;(z)) and (C;(z)) are the expected MGF and CGF, which are deterministic functions
of z and t, while (m;) and (V) are the expected mean fitness and variance in fitness within populations.

These are deterministic functions of time.

Organization of the article: In Appendix A, we derive exact dynamics for the expected generating
functions, which do not close. Then we describe approximate closed dynamics for these quantities under
a deterministic approximation ignoring drift. In Appendix B, we derive general properties of the
approximate dynamics, and Appendices C,D,E provide detailed applications to particular classes of

mutational models. In the ‘Model’ section below, we summarize our results on the expected CGF
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(C:(2)), and its approximate deterministic counterpart, denoted C;(z) = (C;(2)) (the = sign is a

reminder that the result is approximate). The ‘Application’ section then illustrates applications to several

classes of mutation models, evaluating the accuracy of the approximation on stochastic simulations. A

last section summarizes some analytic results on the error involved by the approximation, and hints on

why and when it applies. All notations are summarized in Table 1.

Notation Description Formula
m Malthusian fitness
{m}ic1k, Fitness classes within a population
p:(m;) Frequency of the fitness class m; at time t
N,N, Population size, effective size
K, Number of fitness classes at time t
m, Mean fitness at time ¢ K
izlpc(mi) m;
. . . . K
vV, Variance in fitness at time t | ¢ ) —
i=1
Pt Weight of the classm = 0 p:(m; = 0)
o ; X,
X (I;/ilseta:?bn:il;s ::))]1: any variable 'X(.m), average.d over the current Z o)
genotypes within a population sl
() ‘Ensemble expectation’ of any random variable, averaged over
replicate (finite) populations.
M, (z) ‘Empirical’ moment generating function (MGF) of m in a given e "z
population, at time ¢ izlpt(mi) e
C.(2) ‘Empirical’ cumulant generating function (CGF) of min a given  log M,(z)
population, at time t
M. (2) Expected MGF under the deterministic approximation M (2) = (M (z))
C.(2) Expected CGF under the deterministic approximation Ci(2) = (C(2))
DFE Distribution of fitness effects of mutations
s Selection coefficient of the mutation relative to the parent
f(sm) Probability distribution function of s in background m
E(Y|m) Expectation of any variable Y (s) over the DFE in background
m fna Y(s)f(slm)ds,
Hs Mean effect of mutations on fitness in the background with
fitness m = 0 (or any background in non-epistatic models) fn& s f(slm = 0)ds
M5(z,m) MGF of the DFE
J f(slm)es%ds
R
M, (2) MGF of the DFE in the background with fitness m = 0 M3(z,0)
w(2) Linear effect of m on the CGF of the DFE Omlog M5(z,m) |y =0
Sy Harmonic mean in absolute value of the DFE in the 1/E(1/|s])
background m = 0.
U Genomic mutation rate
L Mutation load (with an optimal fitness class at m = 0) L =—(My)
FGM Fisher’s geometrical model
n Dimension of the phenotypic space
A Mutational variance at each trait

Table 1. Main notations used throughout the article.
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Dynamics of the expected CGF under selection, drift and mutation: Using a multi-type Wright-Fisher
diffusion approximation to genotype frequency dynamics (Section Il in Appendix A), it can be shown that

the change by selection and drift (‘SD’), over At, in the expected CGF (C;(2)) satisfies

SAD<Ct(Z)) , )
T = {G@) = (G (0) + 6:(2),
1 — (eC:2D-2C(2) [1]
6¢(2) = N :

Here, 6;(2) is the contribution generated by drift (it vanishes if N, — o), essentially the same as given in
Good & Desai’s (2013) eq. (D.4). This dynamic term does not allow to close the system as §;(z) does not
depend directly on (C;(2)). We thus rely on a deterministic approximation (that we will use all along),
which simply ignores §;(2) in the dynamics, yielding an approximate expected CGF (C;(2) = (C:(2))),
with closed dynamicss%(,’t(z)/At = C{(z) — ¢[(0).

Mutation (see the General setting section above) generates a distribution of fitness effects (DFE) which

MGF is denoted M5(z,m) = fR f(s|m)es2ds. It is assumed to have known analytical form, over some
positive domain z € [0, Z;,qx] € R*, determined by the model considered. This may include continuous
or discrete distributions, but it does require that the DFE have finite higher moments (so that an MGF
can be analytically defined). The change in (C;(2)) (and C;(z)) by mutation (‘mut’), over At, takes the

general form (Section Ill.1 in Appendix A):

A (CG(2) A Ci(2) emZMS(z,m)

emz

where we recall that (. ) is the expectation over replicate populations, while the overbar refers to the
averaging with respect tom, within a given population, at current timet. The limit, as At —» 0, of

(SADCt(Z) + AtC’t(z))/At from Egs. [1] and [2], yields the continuous time dynamics of the expected
mu

CGF, under the deterministic approximation:
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0:(C(2)) = 8,C,(2) = C{(2) — €}(0) + U (2™ 1), [3]

emz

This is our central result, from which all following dynamics are derived. In general, the mutation kernel
in Eq. [3] does not generate a closed system, even under the deterministic approximation, as the
mutational term cannot be expressed in terms of C.(.). Fortunately, this term simplifies in several
general classes of models, which we detail below, summarize in Table 2 and implement in

Supplementary material 2 (see below).

model Background- Timescale of w(z)ora(z) M., (z)
dependence applicability
Non-epistatic deleterious none t<T~N,e Ulsu 0 arbitrary <1
Non-epistatic delet. + benef. none t<T=~100-1000® 0 arbitrary
House Of Cards log-linear t e R* A arbitrary
Binary Model 2 linear teR* — 2sinh(8 z)/(A 8) e 0z
Gaussian FGM log-linear teR" —Az%/(1+2z) (A+A1z)™™2
Generalized FGM =~ linear (U » U,) t e R* ~ —2|uglz%/n ~1—z |y
diminishing return = linear At equilibrium € [z 0] arbitrary < 1

(near equilibrium)

Table 2: Various mutational models handled by the proposed framework. These models only apply
when N, U|ug| > 1. For each model, each column gives (i) the model type, (ii) the type of background
dependence, (iii) the timescale (sometimes approximate) over which the prediction applies (in that it is
expected to be reasonably to very accurate), (iv) the background dependence function (w(z) for log-
linear background-dependence or a(z) for linear background-dependence), and (v) the MGF M, (2) of
the DFE in the background with fitness m = 0 (fittest background in models with a maximum fitness). In
some models the ' = ' notifies that this is an approximate result or a conjecture; 'T ~ N, e U/SH' means
that the two quantities have the same order of magnitude. : conjecture and timescale based on
observations in our simulations. ?: simplified version of Rouzine et al.’s (2003) model, detailed in
Appendix A 111.2. Here, A is the number of sites ('L in the original paper) and & is the constant deleterious
effect of ‘mutant’ alleles ('s’ in the original paper).

Linear background-dependence: A first important situation is when the MGF of the DFE can be (exactly
or approximately) written as a linear function of m: MS(z,m) = a(z)m + M,(z), with some function a

and with M,(z) = M5(z,0) being the MGF of the DFE in the background with fitnessm = 0. As an

12
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MGF, M, is continuous on a domain including 0 and must satisfy M,(0) =1 and M, (z) = 0. The
function a must satisfy a(0) = 0 and either a”’ (z) < 0 over z € R*, if fitnesses are bounded on the
right so that allm < 0, ora’’(z) = 0 if fitnesses are unbounded on the right. This is required for M5 to
satisfy the basic MGF properties MS(0,m) = 1 (conservation of probability) and MSH(Z,m) >0
(convexity for all m and z). Linear background-dependence (see Section IIl.2 in Appendix A), implies a

mutation kernel (Eq. [2]) of the form AtCt(Z)/(UAt) =M,(z) — 1+ a(2)Ci{(z). The (approximate)
mu

expected CGF C;(.) then satisfies a 1** order linear nonlocal PDE:

0:Ce(z) = a(2)C¢(2) — C(0) + B(2), [4]

where the functional coefficient are a(z) =1+ U a(z) and B(z) = UM,(z) — 1), with a(0) =1
and $(0) = 0. This PDE has the boundary condition C;(0) = 0, and initial condition Cy(z) = Cy(2)
(initial fitness distribution); it can be solved analytically (Section 1.1 in Appendix B). Define the

function y, solution of the ODE y'(z) = a(y(z)) with initial condition y(0) = 0 and its functional
inverse y~1(2) = foz 1/a(v)dv, such thaty(y~1(z)) = z, defined on [0,z,), where z; is the first

positive root of @. The unique solution of Eq. [4] from initial condition Cy(2) is

t
Ce(2) = O (@) + ) - Gy©®) + fo BOO™H(2) +v)) — BOW))dv. [5]

The corresponding trajectory of the expected mean fitness is (under the deterministic approximation)

() = €((0) = a(y(®©)) G (y®) + By (D), [6]

for allt = 0. A similar explicit expression is given in Appendix B (Eq. B31) for the trajectory of the
expected variance (V;) = C{'(0). More generally, Eq. [5] gives the trajectory of the whole fitness

distribution, for several classes of models described in the Application section.
Examples of linear background-dependence models.

Non-epistatic models: An obvious case of linear background-dependence is for any non-epistatic model

(which DFE has finite moments, so that its MGF exists). In these, we have M5(z,m) = M, (z) for all

backgrounds, so that a(z) = 0 and a(z) = 1.
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Simplified version of Rouzine et al.’s (2003) ‘Binary model’: In this model (detailed in Appendix A I1.2),

genotypes consist of A bins representing sites (we use notations different from the original article to
avoid confusions with other quantities in this article). Each bin codes for a wild-type (‘0’) or mutant (‘1’)
allele (with constant deleterious effect —§ < 0). Mutation, at rate u per site (genomic rate U = u A),
randomly creates shifts between allele states and allelic effects add-up across the genome. This model
shows mutational epistasis (the DFE depends on the background m), although fitness is still a sum of
allelic effects over the genome. It also implies an upper bound m = 0 to all possible fitnesses (i.e. the
unloaded wild-type with only ‘0’ bins) and has linear background-dependence (see Eq. (A10), Appendix A
and Table 2). It can be checked that a(0) = 0 and a’’(z) < 0 over R*. We do not explore this model

further here, except in Supplementary material 2 (see below).

Log-linear background-dependence: Alternatively, the MGF of the DFE may be log-linear
inm: MS (z,m) = M,(2)e“®@ ™ Here again, M,(z) = M%(z,0) is convex and satisfies M, (0) = 1, while
w must be concave (with bounded fitness setm < 0) and w(0) = 0. Plugging this form into the
mutational kernel in Eq. [2] yields another nonlocal 1** order PDE for the (approximate) expected CGF,

but this time it is nonlinear (Section II.4 in Appendix A):

0,Ce(2) = C{(2) = C{(0) + U(M.(2) eCelrte)-a® 1), [7]

for t >0 and z >0, with the boundary condition C;(0) = (C;(0)) =0. The second term
U(M*(Z) eCt(zto@)-C(2) _ 1)in Eq. [7] describes the effect of mutations accumulating on each
background, with a dependence on the standing distribution of background fitnesses (on C;) mediated
by w(z). Note that this time, this term is only approximate, under similar conditions as the deterministic

approximation used all along (detailed in 111.3 of Appendix A).

The well-posedness of Eq. [7] requires that 0 < z 4+ w(z) so that the nonlocal term remains within the
domain under study. It is the case for any epistatic model (w # 0) showing log-linear background-
dependence, with a fitness optimum at m = 0 (see Section 1.1 in Appendix B). Although we were not

able to get an explicit solution of Eq. [7], which is a nonstandard PDE problem due to the two nonlocal

terms C;(0) and eCt(z+0@) \ve were able to get some insight into the behavior of the solution. First,
C{(o0) = 0 for all positive times (Section 1.2 in Appendix B), with epistatic model (w # 0). This means

that the support of the fitness distribution instantaneously reaches the optimum m = 0, whatever the
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initial fitness distribution. It implies a memoryless property in the sense that the long-time behavior of
the solution is not impacted by the initial fitness distribution, which is not obtained in non-epistatic
models (w = 0). Second, analytical expressions are derived (Section 1.3 of Appendix B) for the k'
cumulants of the equilibrium distribution (k = 0) and a dichotomy for the value of the equilibrium mean
fitness; namely, either (M) = —U or (M) = —U(1 — B), for some positive constant B. Third, the
existence of a spike implies that (i) = —U (Section 1.4 of Appendix B). These results were obtained
under any of the two general properties (Section 1.2 in Appendix B): (H) any background can mutate to
the optimal background; or (H') any background can at best mutate to some fitter but suboptimal class.

Biologically, this simply means that some form of compensation of deleterious mutations exist.

Examples of log-linear background dependent models: As an example, we describe two classic models

of context-dependent DFEs where log-linear background dependence applies (see also Table 2).

Fisher’s (1930) geometrical model (FGM): This model assumes that each genotype is characterized by a

(breeding value for) phenotype at n traits (g € R™) (possibly with some environmental variance effects).
An optimal phenotype corresponds to maximal fitness and sets the origin of phenotype space (g = 0).
Fitness decreases away from this optimum, and mutation creates random iid variation dg around the
parent, for each trait. In all our examples, we will consider a quadratic fitness function: in continuous
time models, Malthusian fitness is a quadratic function of the breeding value (m(g) = —||g||?/2), and in
discrete time versions, Darwinian fitness is a Gaussian function of g (W (g) = e™® = exp(— ||gl|?/2)).
A classic version of this model is the ‘Gaussian FGM’, where mutation phenotypic effects are multivariate
normal: dg~N (0, AL,,), where 2 > 0 is the mutational variance at each trait, and I, is the identity matrix
in n dimensions. This ‘Gaussian FGM’ is also the standard model of evolutionary quantitative genetics,
dating back to Kimura’s (1965) and Lande’s (1980) work on mutation and selection on traits with a
complex genetic basis (infinitely many possible alleles). The Gaussian FGM shows exact log-linear
context-dependence (MARTIN 2014): MS(z,m) = M,(2)e™“@ with M,(z) = (1 + 12) ™2 and w(z) =

—12z%/(1+ A z). We study this model in depth in the Application section.

Kingman’s (1978) House of Cards (HOC) model: this model assumes that mutants have absolute fitness

that follows a unique distribution, independently of the background in which they arise. This model is
epistatic in that the DFE depends on the background: f(s|m) = g(s + m) so that mutant absolute
fitnesses X have a given fixed fitness distribution with pdf g(x). Versions of the HOC were used e.g. in

(KRYAZHIMSKIY et al. 2009) and (MCCANDLISH et al. 2014), respectively with an exponential or Gaussian
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distribution g, and focusing on a regime of low NU where substitutions occur sequentially (no clonal
interference). In this model, the MGF of the DFE is MS(z,m) = E(e$?|m) = My(z)e 2™
where My (z) = [ e*?g(x)dx is the MGF of the chosen distribution of X with pdf g. Thus this model, in
its general version, implies log-linear background dependence with M, = My and w(z) = —z. We do not

explore this model further here, except in Supplementary material 2 (see below).

Individual based simulations: Individual based, discrete time simulations were used to check the validity
of the approximations in finite populations, for various mutational models. Individuals were sampled
every generation according to their fitness W = e™ (Wright Fisher model of genetic drift and selection).
Mutation was simulated every generation in each individual by randomly drawing a Poisson number of
mutations, each with effects drawn into a given DFE, and summing their effects to produce the mutant
offspring. When considering trait-based models, genotypes where characterized by their breeding value
in n dimensions g € R™. Mutation effects on traits were drawn into a given multivariate distribution and
the fitness was computed as m(g) = —||g||?/2 (quadratic landscape models, or ‘generalized FGM’, see

Application section).

Numerical solver: A numerical solver of Eq. [7], applied to the FGM, is provided as a Matlab® source
code in Supplementary material 1, together with a Matlab® graphical user interface and code for
individual based simulation. The solver is based on a finite difference method with variable step sizes in z
(smaller steps near z = 0, to get accurate values of the derivatives C{(0), C{'(0)) and an implicit scheme
in time. Because of the transport term C/(z), which tends to translate the solution towards the left with
speed 1, the solution was computed on a finite interval z € [0, t,;,4,] Where t,,4, is the duration of the
simulation. See Section V in Appendix D for more details. A Mathematica® notebook is also available as
Supplementary material 2: it provides a versatile (but less robust) solver (method of lines) of Eq. [7] and
a code for individual based simulations, for four classes of models: non-epistatic models, Gaussian
Fisher's geometrical model (FGM), House of Cards and a simplified version of Rouzine et al.’s (2003)

binary model.

Application

Here we study various models for which the PDEs in Egs. [4] and/or [7] apply. We distinguish three main

applications: A) non-epistatic models of general form, B) epistatic models of general form, nearing an
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equilibrium, and C) epistatic models generated by quadratic fitness functions of phenotypes (FGM). All
along we use the deterministic approximation, so we write = to recall the approximate nature of our

results.
A. Non-epistatic models

Before tackling epistatic models, we first focus on context-independent mutation models, mostly to
check that we retrieve previously known properties and to provide some new results. Because several
results on non-epistatic models are already known, we put most of the results on this section in a
dedicated Appendix C, and focused on new insights. As we have seen, any non-epistatic model is a trivial

subcase of Eq. [4] with a(2) = 1 (y(2) = y~1(2) = z) and B(2) = UM, (z) — 1): Eq. [5] yields

C.(2) = Co(z+ 1) — Co(t) + U J:M*(z +v) — M. (v)dv,

(M) = (C{(0)) = C{(0) = Co(t) + U (M.(t) — 1),
(Ve) = (C¢'(0)) = C¢'(0) = Co' (&) + U (Mi(8) — ),

where we recall that ug = E(s). This result essentially retrieves an alternative formulation of eq. (10) of

[8]

(Desal and FISHER 2011), itself a continuous time version of Johnson’s (1999) eq. (13). These previous
results both assumed purely deleterious mutations, which proves unnecessary in the derivation of Eq.
[8]. Eq. [8] further allows for arbitrary standing variance in fitness via the additional term Cy(z + t) —
Coy(t), previously obtained for an infinite asexual population without mutation (HANSEN 1992; MANNA et
al. 2012). As such, results in terms of CGFs or MGFs provide valuable information on the trajectory of
moments, but are not so easy to fit on observed empirical distributions, which requires an explicit
distribution function. In Appendix C I, we derive the stochastic representation of fitness from Eq. [8], to
help derive such functions. Supplementary Movies 1A and 1B illustrate the dynamics of the full fitness
distribution for a negative gamma DFE and a constant DFE, respectively. In the parameter range chosen,
the prediction from Eq. [8] accurately fits the observed distribution from the simulation of a single finite

population of size N = 10°. Other illustrative examples are given in Appendix C.

Retrieving previous results: Several key known results on non-epistatic deleterious mutation models are
readily obtained from Eq. [8] (detailed in Appendix C), such as properties of non-epistatic mutation-
selection balance with arbitrary DFEs. In particular, Johnson’s (1999) result for discrete fitness classes
straightforwardly extends to continuous DFEs: the equilibrium fitness distribution is a negative
compound Poisson, with Poisson parameter U/sy where sy = 1/E(1/|s]|) is the harmonic mean of the

DFE in absolute value. Note that allowing for continuous distributions implies that the harmonic mean
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may be zero (E(1/|s|) = ), in which case the spike of fittest genotypes (with weight e~U/5H) is de
facto absent and the fitness distribution converges to a Gaussian (Eg. (C10) in Appendix C). Eq. [8] also
implies that with arbitrary deleterious DFE and mutation rate U, the mutation load is L = — (M) = U,
and the equilibrium variance in fitness is (V,,) = U |ug|. This extends a result previously derived as a low

mutation rate limit (BURGER and HOFBAUER 1994) to the full mutation rate spectrum.

Timescales of load build-up vs. loss of accuracy with purely deleterious mutations: Eq. [8] allows to
derive the ‘characteristic time’ t, that it takes to reach some proportion q of the ultimate equilibrium
((‘rTltq) = —q U). Neglecting standing variance, this time, t, is the solution of M*(tq) = 1 — q: notably, it
is independent of the mutation rate. This time can be computed for any given DFE, and admits simple
bounds in the general case (see Appendix C lll). For example, 3/|us| < tgos < 8/sy, it takes between 3/
|us| and 8/sy generations to reach 95% of the load. We recall that |us| and sy are the arithmetic and

harmonic means of the DFE in absolute value, respectively.

Non-epistatic models with beneficial mutations: When the kernel includes a portion of beneficial
mutations (M, () = o), mean fitness increases indefinitely ((m;) — o in Eq. [8]) and our approach
overestimates this increase, after some time (see 3" section). For any non-epistatic model, the long-term
fitness dynamics are best described by stochastic origin-fixation models (with or without clonal
interference), once a stationary regime of fitness change has set. However, we propose that Eq. [8] can
provide some connection between the transient and stationary regime and predict the fitness trajectory
before stationarity (Section Il in Appendix C). Assume a given rate v of fitness change is predicted at
stochastic stationary regime. If we assume a sharp transition from deterministic to stochastic stationary
regime, this transition must then occur when the deterministic and stochastic models have equal rates of
mean fitness change, namely at some time t = 7 such that d,(m;) = v = U M/(7) (Eq. [8] ignoring the
contribution from standing variance). Up to this time, mean fitness is assumed to be given by the
deterministic theory ((m;) = U M,(t)) while it increases steadily at rate v afterwards. This conjecture
proves reasonable, as illustrated in Fig. 2. In Fig. 2A the DFE consists of purely beneficial, exponentially
distributed, mutation effects (s~Exp(1/us), with us > 0) and v is given by clonal interference theory
(eq. (16) in (GoobD et al. 2012)). In Fig. 2B, a shifted gamma DFE is considered: s ~ s¢ + x, with s > 0
and x ~ —TI'(a, b) and the stationary rate v is computed empirically, based on the adaptation rate that is
observed at large times in the individual based simulations. Using only this rate v as input, the transition
time 1 is computed and the full trajectory of expected mean fitness is predicted (see also Figs. C2-C5 in

Appendix C for other parameter values and another DFEs). By construction, theory (lines) and average
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from simulations (circles) should have the same slope v in the late linear increase phase. However, they
need not be superposed, especially over the full timescale studied. Coarse grain observation indeed
suggests that the whole trajectory is surprisingly well captured by this simple heuristic. However, a
transiently oscillating behavior (of the average trajectories) arises around the inferred transition time T
in all our simulations. This shows that the actual behavior is more complex than a simple transition from

nonstationary/deterministic to stationary/stochastic (discussed in DESAI and FISHER 2007).

-4

0.01 310 x 10
DFE /
0.008} 0.8 {24
0 0.005 o
0.006 1.8
s N

0.004 {12
0.002} 0.6

( -1 n " " " 0

0 0 1000 2000 3000 4000 5000

Aa) ¢ (B)

Fig. 2. Mean fitness m; and variance V; trajectories in non-epistatic models including beneficial
mutations. (A) Exponential DFE: s ~ Exp(1/us) with mean effect u; = 0.001. (B) Shifted gamma DFE:
s ~5sy+x, withsg >0andx ~—TI'(a,b), witha=2,b=5-10"2and s, =a-b/5. In both cases,
U = 1073, Plain lines: fort < 7, the expected trajectories (m,) and(V;) are given by our analytical
theory (Eq. [8]); for t = 1, the slope v = (d,m;) and the variance (V;) are kept constant. In panel A, the
transition time T (= 770) is such that v equals the theoretical asymptotic slope given by eq. (16) in (GooD
et al. 2012); in panel B, the transition time 7 (= 2650) is such that v equals the empirical slope observed
in the individual based simulations during the interval t € (4000,6000). Circles: empirical mean fitness
and variance given by individual based simulations, averaged over 103 populations (panel A) or 102
populations (panel B), with N = N, = 10°; shaded regions: 99% confidence intervals for the mean
fitness (in red) and the variance (in gray). We assumed initially clonal populations with my = 0.

In any case, the simulations in Fig. 2 and Figs. C2-C5 (Appendix C) show that the simple deterministic
approximation does capture the dynamics over possibly several hundred (Fig. 2A) or thousand (Fig. 2B)

generations (all the more as the proportion of beneficial mutations is small, apparently).

Furthermore, recall that this treatment only applies to thin-tailed DFEs (that fall off faster or as an

exponential), otherwise the MGF is not analytic and 7 — 0. The limiting case is an exponential tail, for
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which T becomes smaller as the tail falls slower (larger mean). Yet, the simple heuristic did show good

accuracy when simulating exponential DFEs with ug = 0.01 or 0.001 (Fig. 2 and C2-C3).

Finally, the Figs. 2 and C2-C5 in Appendix C also illustrate that variation around the expected mean
fitness explodes over time (red envelopes), especially after the transition to stationarity (late linear
phase). Therefore, the empirical insight gained from the sole prediction of the expected mean fitness

dynamics (without its envelope) can be de facto limited in this regime.

B. Equilibrium in the presence of diminishing returns epistasis.

Now consider an epistatic model (M*(z, m) # M,(z)), where beneficial mutations become less frequent
and of smaller effect, as the population adapts, corresponding to a form of ‘diminishing returns’
epistasis. More precisely, we assume that (i) fithesses are bounded on the right (the maximum fitness is
then set atm = 0) and (ii) there is compensation (suboptimal backgrounds produce a portion of
beneficial mutations). In this case, near equilibrium, the fitness distribution shrinks towards the
maximum, and a 1% order Taylor series of C;(z,m) = logM?®(z,m) in small m yields MS(z,m) =
M. (2)e*@™(1 + 0(m?)). Here w(z) = 8,,C5(z, M)|m=o is the slope of the change with m of the CGF
of the DFE, in the vicinity of m = 0, while M,(z) = M5(z,0) is the MGF of the DFE in the optimal
background. Arbitrary models with diminishing returns epistasis (and a fitness upper bound), converge to
log-linear background dependence near equilibrium. Then, by the memoryless property of log-linear
background dependent models (see Eq. (B3) in Appendix B I), the CGF converges ast — oo to a unique
equilibrium, independently of the initial CGF (the equilibrium cumulants are detailed in Appendix B I).
Overall, mutation-selection balance is therefore a local attractor for this class of models and a global

attractor for models with exact background dependence (such as the FGM).

In order to get further insight into the equilibrium fitness distribution, we now use a linear
approximation to the MGF with small m, yielding MS(z,m) = a(z)m + B(z) + 0(m?), where (z) =
UM,(z) —1Danda(z) =1+ UM,(z2)w(z). The asymptotic properties of Eq. [5] as t — oo (Section 11.2
and 1.3 in Appendix B) then yield a general theory for mutation-selection balance in the presence of

diminishing return epistasis.

Mutation load: In particular, mean fitness stabilizes to (M) = f(z1), where z; is the smallest positive

root of @. Therefore, the mutation load isL = 0 — (M) = —B(z1) = U(l — M*(zl)). Two situations
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can occur: either @ has no such root (z; = o) in which case L = U, or it has a root 0 < z; < o in which
case L = U(l - M*(zl)) =U+1/w(z;). As 0 < M,(z;) <1, the load is then smaller than the
mutation rate 0 < L < U. The first situation (L = U) always arises as U — 0. We thus have some form of

‘phase transition’ in the dependence of the load on mutation rate, as U increases.

Equilibrium fitness variance: We have (V,,) = UL w'(0) + U |us|, where u;, = M;(0), as above. Note
that the term w’(0) = 0,,E (s|m)|m=0 is the slope of the change in the mean of the DFE with m in the
vicinity of m = 0. It seems likely that in most models, this slope is of same order as the mean
itself: w'(0) = O(Jus|). We thus have, a priori, (V) = U |us] (1 + O(L)) where we have seen that L <
U; therefore, the fitness variance is close to U |ug| at equilibrium, in a vast variety of models (epistatic or
not), as long asU K 1. It is easily checked that the equilibrium for a non-epistatic model with
deleterious mutations (see above) is retrieved as a subcase: w(z) = 0 (a(z) = 1,z; = ) sothatL = U

and (Vo) = U |5 ] -

Spike of optimal genotypes: a spike may exist (Section 1.4 in Appendix B), but only provided the load
isL=U andif w'(0) = 0, namely when maladaptation at most aggravates the mean deleterious effect
of mutations (they become more or equally deleterious as the background gets suboptimal). The spike
converges as U — 0, to that of the corresponding non-epistatic model with the same M,(.). We

o0
“UJy M.du — o=U/su \yhere Sy, as previously, is the harmonic mean (in absolute

have (p,) — €
value) of the DFE in the optimal background atm = 0. Furthermore, whenever sy = 0, the spike is
vanishing at equilibrium, for any U. Finally, when w'(0) = 0 (as in the FGM), the weak mutation limit is

also the upper bound {p.,) < e~U/5H for any U.

Some of the qualitative results above are reminiscent of Burger’s (2000) propositions 2.1 p.127 and 5.1
p.145, proven for a single continuous trait, by a very different approach. It states that, independently of
the trait mutational kernel or the trait-to-fitness function, the load (i) convergesto L = U as U — 0, (ii) is
exactly equal to U whenever a spike exists at the optimum, and (iii) is always less or equal to this limit
(L < U,U € R*). This section thus extends this result by providing a general approach to analytically

compute these mutation loads, spike heights and higher moments, for all U.
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C. Fisher’s geometrical model.

Let us now consider a classic model with diminishing returns epistasis: Fisher’s (1930) geometrical model

(FGM), described in the Model section, as an example of log-linear background dependence.

Gaussian FGM: Recall that we denote Gaussian FGM the classic version with a multivariate normal
distribution for mutation phenotypic effects, which shows exact log-linear context-dependence (Table 2)

so that Eq. [7] applies.

Trajectories: The fitness mean and variance trajectories over time (predicted by numerically solving Eq.
[7]) are illustrated for a small mutation rate in Fig. 3A (U < U,, see below for the definition of the critical
value U.) and a high mutation rate (U > U,) in Fig. 3B. They are compared with the average fitness
mean and variance in simulations (population size N = 10°). Smaller and larger population sizes and
other mutation rates are illustrated in Figs D2 and D3 (Appendix D). The deterministic approximation is
here accurate across the mutation rate spectrum (roughly as long as NU|u| > 1). Note that, while the
two first derivatives at z = 0 (expected mean (m;) = C,'(0) and variance (V;) = C{'(0)) are accurately
retrieved from the numerical solution of Eq. [7], the third order derivative is more problematic to obtain

(due to limited machine epsilon) and would require to solve the PDE satisfied by C/(z), together with Eq.

[71.

Equilibrium: The equilibrium for the Gaussian FGM is a global attractor (by the memoryless property of
log-linear background dependence models, Appendix B). Its properties are readily derived from the
framework in Section B. (detailed in Appendix D), and summarized in Table 3 (approximate results
forn > 3 are derived in Appendix E). Three qualitatively distinct situations arise according to the
dimensionality n and mutation rate U, which determine the existence of a finite positive root to a.
Consistent with the general results in B., a ‘phase transition’ can occur (if n = 3) at a critical mutation
rate U., which depends on dimension and scale (explicit formulae in Appendix D, section Il and Table 3).
The results are consistent with Waxman and Peck’s (1998) conclusions: a spike of optimal genotypes only
exists at low enough mutation rate (U < U.) and inn = 3 dimensions. Here an exact expression is
obtained for the critical mutation rate where the spike vanishes, for the spike height below this
threshold and for the mutation load over the full range of U. Note that explicit expressions for the spike
height in n = 3 dimensions were also obtained (for a non-Gaussian FGM) in (WAXMAN and PEck 2006), by

a different approach.
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-0.05

Fig. 3. Mean fitness m; and variance V, trajectories in a Gaussian Fisher’s geometrical model. (A) U =
0.02 < U, (B)U =0.1>U.. Plain lines: expected trajectories (m;) and (V/;) given by the numerical
solution of Eq. [7], with M,(2) = (1 + 12)"™? and w(z) = —1 z%/(1 + A z). Dotted lines: equilibria
(M) =—L=-U4+U1+212)™2% and (V,,) = U |us| = Un 1/2 given by the analytical theory.
Dashed lines (panel B): expected trajectories from the weak selection strong mutation (WSSM)
approximation (Eq. [12] for (m;) and (B31) for (I/;)). Circles: empirical mean fitness and variance given by
individual based simulations, averaged over 103 populations (N = N, = 10°); shaded regions: 99%
confidence intervals for the mean fitness (in red) and the variance (in gray). The parameter values are
n = 6 traits and 1 =1/300 (|us| = 0.01), leading to a critical mutation rate U, = 164 = 0.05. We
assumed initially clonal populations with my = —20|us| = —0.2.

A simple approximation emerges for the equilibrium fitness distribution when U < U, in terms of a
mixture of a probability mass of optimal genotypes and a negative gamma distribution of suboptimal

genotypes, corresponding to a Gaussian FGM inn — 2 dimensions (withn > 3):

m =0, with probability (p.) = e ~U/*H,

n—2'/1>’ . [9]

ifuU<U,:
¢ > with probability 1 — (pe)

m~—F(

Strikingly, the weight of the spike is exactly the same as that in the corresponding non-epistatic model
here (gamma DFE), whereas our heuristic analysis (Application B.) only suggests such convergence in the
low mutation rates, in general. The full fitness distribution in Eq. [9] is exactly that expected in the
absence of epistasis, in the small U/s approximation described in Appendix C Il (Eq. C9). A simple pattern
thus emerges: for any U < U,, the equilibrium fitness distribution in the FGM is approximately ‘blind’ to

the presence of epistasis, and behaves as the equivalent non-epistatic model with DFE given by that of
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the optimal genotype. We thus retrieve essentially a House of Cards approximation (TURELLI 1984) on

fitness itself.

On the other hand, when U > U, a weak selection strong mutation (WSSM) limit (detailed below and in

Appendix E) yields a complementary approximation for the fitness distribution at high mutation rates.

n
ifU > UC:m~—F(§,\/U/1). [10]

Finally, note that the equilibrium higher moments of Eq. [7] (exact for the Gaussian FGM) can be studied
analytically (Appendix B) and are very close to the general expressions derived from the linearization in

Application section B..

n U, VA load V(m) Spike height
1 0 < oo <U U |usl 0
) a 00, U<U, U, U<U, Ul 0
1/NUI-2), U=U, VUL,  U>U, Hs
- n21 00, U<U, U, U<U, Ul {e—u/sy, U<U,
=2 2 ~1NUL,  UU, ~n/2 UL, UzU, Hs 0, U=U,

Table 3: Mutation-selection balance properties in the Gaussian FGM. Here u; = E(s|m) = E(s|0) =
— n A/2 arithmetic mean of the DFE and sy = 1/|E(1/s|0)| = 1/(A(n/2 — 1)), harmonic mean of the
DFE.’ ~ ' notifies that this is an approximate result (Appendix E).

Generalized FGM: Fisher’s original formulation did not specify the shape of the fitness function (linear,
quadratic etc.) or the distribution of mutation effects on g (normal, uniform etc.), except that it must be
spherically symmetric (effects are iid across traits), and centered on the parental phenotype. Keeping the
guadratic fitness function, we study a ‘generalized FGM’ (see Appendix E) with arbitrary spherically
symmetric distributions of mutation phenotypic effects (dg~D). A given distribution D determines a
given DFE in the optimal background (a given M,(z)). The function w is then w(z) = 2 z2M/(z)/
(nM,(z)), thus allowing the study of equilibria for any choice of D (Appendix E I). As an example
(Appendix E Il), we derive the equilibrium properties of a model with arbitrary dimension n and negative
exponential DFE at the optimum: s ~ — Exp(1/|ug|). In particular, the load is L = min(U,n\/Iﬁ/Z),

where 4 = 2|u|/n is the mutational variance on each trait (for consistency with the Gaussian FGM).
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Weak selection strong mutation (WSSM) approximation. More general and simple results (Appendix E
Il) are obtained from a WSSM approximation, more precisely whenever U > U, = n?1/4 where 1 =
2|ug|/n is the mutational variance on each trait. Note that U, ~ U, (for substantial n): it is roughly at the
same mutation rate threshold that equilibria (U.;) and transient dynamics (ﬁc) show a qualitative
transition. In the WSSM regime, the mutational kernel is approximately linear in m, so that Eq. [4]

captures the CGF dynamics, even away from equilibrium. The coefficients are a(z) =1 — U A z2

andf(z) = -UAn/2z.

——l=0.01
I1=0.1

——IJ=0.014
1H=0.1

0.001 0.01 0.1 | 5 0.001 0.01 0.1 1 5

Fig. 4. Mutation load L (A) and spike p, (B) as a function of mutation rate U: with two values of ||
(see legend) and with the standard Gaussian Fisher’s geometrical model (Gaussian FGM) or an FGM with
Inverse Gaussian DFE at the optimum (IG FGM). Plain red and blue lines: numerical values obtained with
the Eq. [7] for the Gaussian FGM (estimated at a large time T = 103); the load (panel A) was computed
as —C7(0) and the expected spike (panel B) as e’T(®0)  panel A, black dashed lines: analytic
approximations L = min(U, n/2 m) (Eq.[11], panel A). Panel B, black dashed or dotted lines: (p) =
e~U/sH, where sy is the harmonic mean of the DFE (in absolute value) at the optimum (Gaussian or IG
FGM respectively, Eq. (D8)). Circles (Gaussian FGM) and crosses (IG FGM): simulated values of the
mutation load and of spike at time T = 103 given by individual based simulations of a single population
(N = N, = 10°). The parameter values are n = 6 traits and |ug| = 0.01 or 0.1. The inverse Gaussian
distribution has mean |ug| and shape parameter 0.05.

Equilibrium: As was already stated above (Eq. [10]) the corresponding equilibrium fitness distribution is a

negative gamma: m ~ — I'(n/2,VUA). Connecting this approximation with the known value of the load

at lower mutation rates L = U provides a simple expression covering all the range of U:

L~ min(U, n/2 \/W), [11]

with a ‘phase transition’ at U = U, = n?1/4. The accuracy of this simple result is illustrated in Fig. 4A,

where the load is shown for single replicate simulations over a range of U. We simulated two alternative
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models (Gaussian FGM with a gamma DFE and an Inverse Gaussian DFE), scaled to the same value of ||
and with the same dimensionality n. Both models yield the same results, accurately captured by Eq.
[11]. The spike of optimal genotypes is shown in Fig. 4B for the same simulations: here, all genotypes
pertaining to an effectively neutral fitness class relative to the optimum (—1/N < m < 0) were counted
as ‘under the spike’. As expected by theory, the spike weight is approximately e “U/sH | where s} differs

between the two models (Gaussian or Inverse Gaussian).

Trajectories: The analytic solution (Eq. [5]) applied to the WSSM approximation can be equated, at all
times, to a known explicit distribution, depending on the initial condition. The corresponding distribution
of the underlying phenotype is also explicit, and happens, in all cases, to be multivariate Gaussian (with
time-varying variances and means). Therefore, the WSSM approximation exactly matches Kimura’s
(1965) and Lande’s (1980) Gaussian approximation for traits at equilibrium, and extends it away from
equilibrium. Indeed, although obtained in very different manners, these two approaches rely on
qualitatively the same WSSM assumption. Lande already conjectured that this approximation was mostly
independent of the underlying distribution of mutation effects on phenotype, and should be valid away
from equilibrium, as the dynamics of phenotypic variance are then independent of the mean (eq. (19) in
LANDE 1980). Here, the result arises explicitly as a WSSM limit of a generalized FGM. The present
approach extends these former results to fitness (and trait) dynamics where the phenotypic variance is
not constant, and provides an explicit threshold (U > U. = n?1/4), beyond which it is accurate. All

results are given in Appendix E, we here only detail the mean fitness trajectories.

Adaptation from a clone: For a population started with a clone at given fitness my < 0, the mean fitness

trajectory, given by Eq. [6], is

(M) = CL(0) ~ —thanh( t VU 1) + sech(t \/W)Z my. [12]

This WSSM approximation was illustrated in Fig. 3B (dashed lines) and proves fairly accurate even when
Uis only mildly superior to U. (U = 2 U, in this example). The corresponding trajectory of the full
fitness and phenotype distributions are illustrated in supplementary movie files (Movie 2A and 2B
respectively), showing the agreement between simulations and theory, for a single replicate. The

characteristic time of this fitness trajectory is the time t; 99 taken to fulfill 99% of the trajectory.

Strikingly, it is independent of the details of the model: ty 99 = 3/VUA. In particular, it is independent of
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the distance to the optimum (my): it takes roughly the same time to reach equilibrium from an optimal

or a highly suboptimal clone, in the WSSM regime.

Adaptation from an equilibrium population: In a similar manner, we may consider a population starting

at equilibrium, undergoing a sudden shift in the optimum and responding to this new environment, this
time with standing variance available. Here too, the whole fitness and phenotype distributions are
explicit over time, including with a change in U or A between the former and new environments. If the

shift only affects the optimum (not U or 1) and is such that the mean phenotype shows a fitness lag m,

(mean fitness is then my; = my — VUA n/2), then

(i) = CL(0) ~ mg e 2VUA — U An/2. [13]

The trajectory of the fitness and phenotype distributions are illustrated in supplementary movie files
(Movie 3A and 3B respectively), with an additional doubling of the mutation rate in the new
environment. Here too, the characteristic time is independent of the distance to the optimum tj 99 =
2.3/+/UA, and it is only mildly shorter than the characteristic time in the absence of standing variance. In
all cases the characteristic times scale with 1/+/UA, showing that the ‘cost of complexity’ well known in
the FGM (ORR 2000) is only mediated bym = \W in this regime. When comparing different
dimensionalities n, if we scale A to the same |ug|, complexity slows down adaptation as 1/y/n.
Otherwise, simply adding traits with the same variance A does not affect the characteristic time, it simply

increases the mutation load as L = n/2 VU A.

Convergence to the deterministic approximation

Our simulations, which included full stochasticity (individual based model) showed good agreement with
the theory in Eq. [3], that ignores drift. This seems to hold over either effectively infinite timescales (e.g.
FGM, Figs. 3-4, and other models illustrated in Supplementary material 2), over very long timescales
(non-epistatic models with purely deleterious mutations, Fig. C1), or over only a few hundred/thousand
generations (non-epistatic models with beneficial mutations, Figs. C2-C5). Accuracy also seems to
increase as NU gets larger for the models and parameters we explored. It has indeed long been observed

that deleterious mutation models or models with an optimum could be handled reasonably well by
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deterministic population genetics. This then raises the question of why the deterministic approximation
ultimately breaks down with non-epistatic models, whereas it does not seem to do so with diminishing

returns epistasis.

This can obviously be tackled by individual based simulations for any given model. In the case of non-
epistatic models, analytical studies have also pointed to a complex interplay of drift and other forces in
the mid to long term behavior of asexual models (e.g. DESAI and FISHER 2007): the importance of the
“stochastic edge” of the fitness distribution (BRUNET et al. 2008) depends on whether this edge is
stochastic or not (highly populated or not). The present treatment provides some hint on the issue, by
looking at the term neglected in the deterministic dynamics: §;(z) in Eq. [1]. This ‘stochastic source
term’ is negative, vanishes at z = 0 but increases with z (see Appendix B IlI). That §;(z) < 0 means that
the deterministic prediction overestimates the cumulants (for ex., the expected mean fitness is actually
bellow the deterministic prediction). That §;(z) is small about z = 0, means that the current error on
the bulk of the distribution (the first derivatives of §;(.) at z = 0) is limited. On the other hand, because
of the transport term C/(z) in Eq. [3], the larger error |5:(z)| for large z progressively affects the
accuracy of the deterministic approximation around z = 0 (hence the bulk itself) at later times.
Intuitively, this reflects the fact that sampling (drift) induces relatively more stochastic variation in the
extrema than in the mean and variance of a distribution: the maximum can be very important for the
long term rate of adaptation (“stochastic edge” BRUNET et al. 2008), while the mean and variance

influence the short term “bulk” dynamics.

Whether and when a substantial deviation will accumulate depends on the details of the model, and can
be difficult to quantify. However, in the case of linear background-dependence (Eq. [4]) some general
insight can be obtained, focusing on mean fitness trajectories. The relative deviation between the ‘exact’
expected mean fitness (m;) = (C¢(0)) and that predicted by the deterministic approximation C/(0), has

an explicit upper bound at all times:

clO - my 1 [ |
ol - |<mt>|j0 R T—

ydv. [14]
Here w;(v) = a(y(t - v)) = y'(t — v) is a weight which depends on the form of epistasis (via y), see

Eq. [4] and the paragraph below. Roughly, if |/,,| and |m;| are of comparable order, the relative error is

proportional to (i) t/N, and (ii) to a weighted mean over the period (0,t) of the expected inverse
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frequency (across replicates) of the fittest class. Eq. [14] provides some intuition on how and why

different mutation models deviate from the deterministic prediction. We treat each in turn.

Non-epistatic models: The weights are then w,(v) = a(y(t — v)) = 1, so the error must accumulate

over time. With purely deleterious mutation models, P4, (t) remains large for a long time (Pyax(t) =
e~U/sH in the deterministic approximation), and it can be shown (Appendix C IIl.) that the relative error
in Eq.[14] remains < 1 for some ‘time to loss of accuracy’ of order N, e V/H (see Table 2). The
‘characteristic time’ to reach 95% of equilibrium (t; 95 < 8/sy, see section A.) is therefore often much
less than the timescale over which the deterministic approximation breaks down and Muller’s ratchet

starts to ‘click’ (of order N, e~ Y/H, Table 2).

With beneficial mutations however, the fittest class consists of a small number of fit mutants so the error
accumulates much faster. Furthermore, as the error depends on inverse frequencies of the fittest class,
the fluctuations of this ‘stochastic edge’ (across replicates and times), especially through smaller values,

are important, a fact already pointed out for these models (HALLATSCHEK 2011).

Diminishing returns epistatic models: With diminishing returns, two effects alleviate the deviation. First,

mere intuition suggests that, as there is a reachable fitness upper bound, this fitness edge should
ultimately become highly populated (p,qax(t) > 1/N), after sufficient time. This remains a verbal
argument. Second, beyond the critical mutation rate threshold (whenever a(.) has a finite root), the
weights w;(v) in Eq.[14] vanish as t — oo. This implies that the error ultimately becomes independent of
the earlier dynamics of p,,4, (v) and remains bounded by a constant independent of t (see Appendix B,
part 1Il.2). This explains why these models are always accurately captured by the deterministic
approximation at large times (see Fig. 4 on equilibrium states), even when a substantial deviation from
the deterministic trajectory builds up transiently (as observed e.g. in Fig. D2 with U = 0.0002, NU = 2).
Intuitively (without formal proof) we expect the transient error to be larger with smaller NU and when

starting from a strongly maladapted population, as the fittest class may be small for a long time.

Qualitatively, this absence of accumulation of deviation over large times is a key difference introduced
by epistasis. The result is reminiscent of Poon and Otto’s (2000), who showed that even a minimal
amount of compensating mutations can stop Muller’s ratchet. A substantial transient deviation may arise

at intermediate times, , but it ultimately shrinks again.
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Discussion

The proposed approach models the dynamics of fitness distributions in the presence of selection and
mutation (neglecting drift), in large asexual populations, with a variety of distributions of mutation
fitness effects (DFE). A deterministic PDE arises as an approximation to the dynamics of the expectation
(over stochastic replicates) of the cumulant generating function (CGF) of the fitness distribution. This
allows to easily handle clonal interference between co-segregating mutants (drawn from various classes

of mutation models), and the contribution from standing variance, at or away from stationary regimes.

Main results and possible empirical tests. When considering only the contribution from standing
variance (negligible contribution from de novo mutation), Eq. [8] with U = 0 predicts the full fitness
distribution over time from arbitrary initial condition. This provides a versatile model for the response to
selection of large polymorphic asexual populations, over short timescales, i.e. before new mutations
contribute to adaptation. The predicted trajectories are highly testable in experimental evolution: it only
requires a measurement of the initial fitness distribution. We hope it may foster empirical tests of
adaptive dynamics from standing variance in model asexual organisms, with a potential for faster

observable responses than when a single clone adapts by new mutations.

The use of CGFs also simplifies the treatment of non-epistatic models with fairly general DFEs (Figs. 2,C1-
C5). For non-epistatic deleterious mutation, most previous results are retrieved as a subcase (see
Application A.). We further find that the fitness distribution admits explicit (testable) form over time
(Appendix C, Fig. C1, Movies 1A & 1B), that the timescale to reach equilibrium from an optimal clone is
independent of the mutation rate U (and of order 1/|ug|), which is easily smaller than that over which

the deterministic approximation breaks down.

When non-epistatic beneficial mutations are added, the approach breaks down over shorter timescales
(detailed in Model section and Application section A., Table 2). In general, the deterministic
approximation breaks (after some time) when the fittest class is only represented by a few copies (see
Appendix B lll), forming a “stochastic edge” (BRUNET et al. 2008). However in this case, we observe by
simulation that Eq. [8] still provides a rough connection (Fig. 2) between the early regime of adaptation
(deterministic), and the ultimate stationary regime (stochastic). Because Eq. [8] easily handles a wide
variety of DFEs (e.g. including beneficial and deleterious mutations) which are not easily treated in the
stationary stochastic regime, it may also be used as a more general null model over shorter empirical

timescales (albeit still ignoring epistasis).
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The same framework can be applied to mutation kernels showing diminishing returns epistasis
(Application B. and C.). In that case, the discrepancy with the deterministic approximation remains
bounded (sometimes very small) at all times (Figs. 3 and 4 and Supplementary material 2), because the
fittest class is rapidly filled with a substantial number of selected mutants. The fitness distribution and
the proportion of optimal genotypes at equilibrium then take testable explicit forms (Application B. and
Fig. 4) in a variety of diminishing returns epistasis models where beneficial mutations compensate
suboptimal genotypes. Overall, our most robust prediction (both with and without epistasis), at
equilibrium, is that fitness variance should be close to (V,,) = U |us| + o(U), whenever U « 1. This is
also testable (given a large population at equilibrium), as the product U |us| can be directly estimated
from mutation-accumulation experiments (reviewed e.g. in KEIGHTLEY and EYRE-WALKER 1999). It is also
easier to estimate the fitness variance (and possibly skewness etc.) than the mutation load, as the latter
requires an estimate of the maximal fitness. Such estimate would only be possible if optimal genotypes
were frequent (not always the case), or given a particular model for the equilibrium fitness distribution

(e.g. Egs. [9]-[10]), which depends on the assumed DFE at the optimum.

The approach via CGFs is also particularly well suited for the Gaussian FGM with normally distributed
mutant phenotypes. This model has recently served as a landmark null model of context-dependent DFE
(background and/or environment dependence, TENAILLON 2014). It has also long been a landmark tool in
evolutionary ecology and quantitative genetics: most treatments of the adaptive and demographic
responses to environmental challenges, or of the distribution of phenotypes under stabilizing selection
are based on its assumptions (TENAILLON 2014). Under this Gaussian FGM, the fitness dynamics (averaged
over replicates) are fully captured by a single PDE (Eq. [7], Fig. 3) covering the full mutation rate
spectrum. Known analytical treatments of this model mostly described equilibria under two extreme
regimes: in the limit U < |ug| with n = 1 dimension (TURELLI 1984) or in the limit U > |ug| with
arbitrary n (LANDE 1980). Here, the full fitness distribution, at or before equilibrium, is predicted
(analytically or numerically by solving Eq.[7]), for all U and arbitrary n (Appendix D, Fig. 3 and 4, Movies
2 and 3). This yields a fully testable pattern to fit to observed fitness distribution or mean fitness

dynamics.

Finally, the results extend to arbitrary (spherically symmetric) distributions of mutant phenotypes, in a
weak selection strong mutation (WSSM) limit (U > U, =~ n?1/4). In this limit, both traits and fitness, at
all times, converge to simple analytic distributions, independently of the details of mutational effects.

This limit (Fig. 3B and Appendix E) arises here as a diffusion approximation in fitness space, and
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corresponds to normally distributed phenotypes (with time-varying mean and variance), consistent with
M. Kimura’s derivation at equilibrium in one dimension (1965), and R. Lande’s conjecture for multiple
dimensions (LANDE 1980). The approach extends these theories away from equilibrium and clarifies the
threshold mutation rate (U.) where they apply. These trajectories are also highly testable. Indeed, (i) the
full distribution is analytic at all times from known initial condition (it may be applied on short
experimental timescales) and (ii) the FGM can be parameterized (MARTIN and LENORMAND 2006) from
data on deleterious mutation effects (|ug| and n) and rates (U), which are more readily available to the

experimenter than beneficial mutation kernels and rates.

The evolutionary process inherent in the FGM is complex in large asexual populations and at high
mutation rates: it includes clonal interference, both deleterious and beneficial mutations and pervasive
epistasis. Yet, the resulting fitness trajectories in the WSSM limit (Egs. [12]-[13]) display surprisingly
simple and robust patterns, independently of the details of the underlying mutational process. In

particular, the mean fitness (at any time away from equilibrium), scales simply with the initial

maladaptation: (m;) = m, sech( N7 t)z, Eq. [12]. This latter pattern is, at least qualitatively, in
agreement with the observation that the cumulative mean fitness increase (over stochastic replicates
and between distant generations) scales almost linearly with initial maladaptation ({(/;) < m,). Couce
and Tenaillon {, 2015 #3227} recently showed this empirical pattern to be hold across several species and
datasets, and suggested that the FGM may be one among several models yielding such linearity. The
present analytic treatment might allow to go beyond qualitative analyses and perform quantitative tests
based on known parameters. A test of the FGM and other models would (ideally) require confronting full
observed trajectories with (independently parameterized) predictions. We hope that the proposed
approach may help such quantitative testing. Deriving (approximate or exact) analytic solutions to Eq. [7]

away from the WSSM limit would also be useful in this regard, but requires further effort.

Finally, and although not detailed here, other epistatic models can be predicted analytically (Eq. [4]) or
numerically (Eq. [7]) through the proposed framework. Two such examples are summarized in Table 2:
Kingman’s (1978) House of Cards model (Eq. [7]) and a simplified version of Rouzine et al.’s (2003) binary
model (Eq. [4]). Evaluating how accurate the predictions are, depending on the models and parameters,
requires extensive simulation work beyond the scope of this article, but the necessary tools (and

illustrations of the accuracy) are provided in Supplementary material 2.
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Limits. The model has several limits obviously; first of all, not all equations proposed here can be solved
analytically (Eq. [7]) and we must then rely on numerical solutions. But more fundamental issues can be

raised about the approach itself. We detail them below and discuss how to improve these aspects.

Genetic drift and clonal interference: Drift is explicitly modelled in Appendix A, but only to determine the
error implied by neglecting it (Eq.[14]). Our results suggest that if the fittest class of genotypes quickly
reaches (and remains at) substantial frequency, the deterministic approximation is accurate, even over
the long term (see the section on ‘Convergence’.). This is typically what occurs with diminishing returns
epistatic models (where fitness is bounded from above), which also prove to have a memoryless

property that makes them less prone to accumulate stochastic deviations.

During adaptation over a single peak landscape, clonal interference is pervasive (multiple asexual
lineages compete for fixation); yet, modelling the stochastic fate of each mutant does not prove critical
in this model. Conversely, in similar conditions, it proves critical to do so with non-epistatic models of
beneficial mutation, at least over long timescales. Overall, clonal interference need not always be
described in the presence of drift: non-epistatic models with beneficial mutations, most studied in this
context (SNIEGOWSKI and GERRISH 2010), happen to be a case where it is particularly important to do so.
From an empirical perspective, it is simpler to avoid a theory that requires details of the genetic drift
process, as the relevant parameters are notoriously difficult to measure (N, the stochastic reproductive
variance which may vary between genotypes etc.). However, a proper treatment of effect of stochastic
forces (drift and mutations) would still be useful even in models where the expected trajectory is robust
to their effect: it would provide envelopes around the deterministic expectation. Models of stochastic
fronts and cutoffs may be used once translated into CGF dynamics, or stochastic PDEs using the results of

Appendix A.

Segregation and recombination: Asexuals are our focus here, because they form the vast majority of
model organisms in experimental evolution, for which this work is intended. However, sex is the norm in
natura and will also likely become increasingly more studied empirically. The approach by CGFs was
originally designed to handle recombinant genomes (BURGER 1991), as the CGF from independent loci
add up, providing simple extensions. Indeed, some of our results naturally extend to sexuals in simplified
situations (not detailed here). However, fitness is typically non-additive across loci, so that simple

additive theory may prove inaccurate in more realistic models.
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Substitution data: The present model directly follows fitness dynamics, without explicitly modeling
substitutions at the molecular level. They do occur (an allele becomes dominant, then another takes over
etc.), but their dynamics may be complex (co-segregating alleles). By not requiring an explicit description
of these dynamics, fitness trajectories in non-stationary regimes, with complex epistatic models can be
handled. Yet, this is at the cost of providing no information on the underlying genetic basis of adaptation
(which are now partly available empirically). For some important models, possibly epistatic but with low
polymorphism, these underlying dynamics may be inferred from backward modeling. However, regimes
with high polymorphism might show more complex molecular signatures, especially away from
stationary regimes. The proposed framework may generate alternative coalescent models suited for
epistatic, non-stationary models, just as travelling wave models have been successfully used (Goob et al.

2014), for non-epistatic models at stationary regime.

More complex environments and landscapes: The models considered here mostly assumed a fixed
environment in which adaptation occurs, as is typical in most theories of adaptation (ORR 2005), and as is
relevant to many experimental evolution settings. However, more complex situations are of interest:
multiple environments connected by migration, a continuously changing environment with a moving
optimum, trade-off in life history traits. In some cases, these can be expressed as an adaptive process on
multiple fitness components, and may then be handled by considering the dynamics of a multivariate
CGF, describing the joint distribution of these components. Also, trait-based landscapes where traits are
not equivalent for selection and/or mutation (e.g. anisotropic FGM) are not handled by the model as
such. Indeed, the DFE is then not only dependent on the background fitness alone (distance to the
optimum), but also on additional details (direction to the optimum). These can also be handled by
introducing multivariate CGFs, describing the joint fitness contributions from each phenotypic
dimension. We believe PDEs for such multivariate CGF dynamics can be written for many important
classes of models where multiple fitness components interact. The open question will more likely be

whether they can yield analytical insight.

Conclusion: We believe theoretical tools are now available that provide “null” adaptation models, which
may be quantitatively confronted to experimental evolution data (including with standing variance,
rarely studied in these experiments). Such tests of basic process predictions are necessary if we are ever

to apply our theories quantitatively, into the wild or into the human body.
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Appendix A: Derivation of the general PDEs for the evolution of the fitness distribution
I. Notations and general setting

We call t the ‘time’ variable and z the real-valued argument of the moment generating functions (MGFs)
and cumulant generating functions (CGFs) that we define below. We express the reference to time t by
an index for compactness: X;(z) is the value of the function X(t,z). We denote 3;X;(z) the 1%
derivative of function X(t, z) with respect to time t and X;'(z,) and X;"'(z,) the 1°t and 2" derivatives,
respectively, with respect to z, taken at z = z,. All integrals involving the probability density function
(PDF) of a distribution are implicitly taken over the domain of this distribution. Expectations indicated
as (-) are taken over replicate populations (‘ensemble expectation’), while the overbar sign refers to the
weighted average within a population at time t.

We consider a population of N asexual haploids, in continuous time (overlapping generations), measured
in arbitrary units (hours, days etc.). This setting can also approximate a discrete time model (non-
overlapping generations) when effects are small per generations, the time tis then measured in
generations. We follow the dynamics of the distribution of the Malthusian fitness m (growth rate of a
given genotypic class, hereafter ’fitness’) under selection and mutation. At any time t, an arbitrary set
of K, genotypes, indexed by i€[1,K;], with constant fitnesses m; , coexist in relative

frequencies p;(m;), satisfying Zﬁlpt(mi) = 1. The approach can describe discrete classes (K; finite) or
infinite countable classes in the limit K; — oo. All co-segregating genotypes compete by frequency-
independent selection, and mutate according to a Poisson process with fixed rate U per capita per unit
time. The fitness of a mutant which parent has fitnessmism + s, where sis a random variable
corresponding to the selection coefficient of the mutation relative to the parent. We measure fitness
relative to a reference, set at m = 0 without loss of generality. Indeed, this reference is arbitrary
because we are not considering demographic dynamics but only adaptation trajectories, namely relative
fitness not absolute fitness. In those models that include some fitness optimum (e.g. single peak
landscape models or models with only deleterious mutations), we set this optimum genotype to be the
reference m = 0 for convenience (so that allm < 0). In other models (e.g. models with background-
independent beneficial mutations), the reference is just an arbitrary point in the fitness domain.

The distribution of m at time t can also be characterized by generating functions. We will consider the
moment generating function (MGF) for a given finite population: M;(z) = Zﬁlpt(mi) e™iZ  which for
a finite number of genotypic classes, is always defined over the full line z € R. We will also consider the
cumulant generating function (CGF): C;(z) = log M;(z). Note that, by definition of a probability
distribution M;(0) = 1 and C;(0) = 0. Furthermore, the two functions are convex and M;(z) is positive
on R*.

For compactness, we use simplified notations for some key quantities: m; = Zf;lpt(mi)mi, and V; =
m_f—ﬁlg are, respectively, the mean and variance of the Malthusian fitness at time t for a given
population (withm—g = Zf;lpt(mi)miz). At any time, replicate populations may differ in the number
(K¢), fitness (m;) and frequencies (p;(m;)) of co-segregating alleles. Averaging over these possible

trajectories among replicates yields ‘ensemble expectations’. For the mean and variance in fitness within
populations, the corresponding ‘ensemble expectations’ are the expected mean fitness (m;) and the

expected fitness variance within populations (V;) = (m—f — m?). We also use simplified notations for the
ensemble expectation of generating functions, under the deterministic approximation (see main text):
M (z) = (M(2)) and C:(2) = (C;(2)) = (log M;(z)) are the approximate expected MGF and CGF,
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respectively. We first describe exact dynamics for (M;(z)) and (C;(z)), then introduce the dynamics
of M;(z) and C;(z) under the deterministic approximation.

I1. Effect of drift and selection

Accounting for genetic drift, the CGF C;(z) and MGF M, (z) themselves are random variables, generated
by the random process governing the vector of frequencies of the K; different genotypes (p;(m;))
present at time t. For compactness, we note this vector p = {p;};¢[1,x) and K = K;. When population is
large enough, this random K dimensional vector is approximately described by a K-type Wright-Fisher
diffusion with selection and drift, characterized by a given variance effective size N,. The infinitesimal
generator D of this diffusion (eq. 4.83 p. 154 of EWENS 2004) can be expressed as follows, for any twice
differentiable function ¢: RX — R of the vector p

9¢(p)
op;

1 2?9
+2—Ne< Lini(1—p) apfp -

Do(p) = Xi<, pi(m; — my)

IyK yK 3<P(p)),
21—12]—L+1plp] 6piapj

(A1)

where m, = YK | p;m; is the population mean fitness at time t. This infinitesimal generator formally
describes the expected change of the arbitrary function ¢ of the random process p; over some
infinitesimal time interval dt: (d@|p) = (@(Pt+ac)|Pt) — ©(P:) = Do(p.)dt. Recall that the
expectation (. ) is taken over replicate populations. We wish to follow the dynamics of the unconditional
expectation @; = (@(p;)) of the function ¢(.), over time, over replicate populations with similar initial
conditions @ (pyg)-

Rattray and Shapiro (RATTRAY and SHAPIRO 2001) used a somewhat similar Wright-Fisher generator-based
approach in the study of fitness cumulants, in a model of sexuals with constant effect mutation. The
fitness distribution under study could thus be simplified to that of the number of mutations carried by
each individual, assuming linkage equilibrium. Rattray and Shapiro’s model was not framed in terms of
PDEs as here but rather as an infinite set of ODEs, solved numerically for some threshold level, (BURGER
1991; GERRISH and SNIEGOWSKI 2012).

Good & Desai (2013) also obtained a similar result (see their Appendix D), in terms of the dynamics of
the expected CGF, using It6 calculus. They worked on absolute numbers of lineages (while we consider
diffusion on frequencies), assuming a constant effect of mutations (while we consider arbitrary DFE), but
they obtained essentially the same results on CGF dynamics. Here we use an alternative method, via the
Feynman-Kac theorem (theorem 8.1.1 in @kSENDAL 2003) and derive the dynamics of both the expected
MGF and CGF.

1.1 Dynamics of the expected MGF. The MGF is a particular function of genotypic frequencies (¢(p) =
M, (z) = ﬁlpiemiz), for which 9, ¢(p) = e™” and api,quy(p) = 0. Eq. (Al) applied to this function
can be written in terms of derivatives of M;(z) with respect to z: DM.;(z) = M;(z) — M{(0)M,(2)
where we used the fact that m; = M{(0). This only reflects the effect of selection on multiple
gentoypes: drift induces no bias on the MGF as it is a linear function of allele frequencies, themselves
unchanged, on average, by drift. Taking expectation over replicate populations starting from the same
initial distribution p,, we can derive the dynamics of the expected MGF (M;(z)). Using the Feynman-Kac
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formula, the expected MGF satisfies 0,(M;(z)) = (D M.(z)) = D{M,(z)), with initial condition M,(z),
leading to the PDE:

0:{M¢(2)) = (D M (2) ) = (M{(2)) — (M{(0)NM(2)) — cov(iTi, My (2)). (A2)

This equation is not closed as such, as it is affected by the covariance, across populations, of the mean
fitness with the MGF: cov(r?tt, Mt(z)), which itself will depend on higher order covariances.

1.2 Dynamics of the expected CGF. Consider now the CGF (¢(p) = log M, (z) = log Y&, p;e™i?), so
that dp,¢(p) = e™?/M;(z) and 8pi’pj<p(p) = —e(mi+m1')z/Mt(z)2. Eq. (A1) applied to this function can
be written (recalling that C{(2) = M,'(z)/M.(z) and C{(0) = M{(0) = m,): DC,(z) = C{(z) — C{(0) +
(1 — eCt(22)=2C(2)) /(2N,). Starting from the distribution p,, and considering the expected CGF (C,(2)),
the Feynman-Kac formula leads to

1 — (eCt(22)-2C(2))

0:(C(2)) = (D C()) = (C(@) ~ (CH(O) + ——

(A3)

Note that the term introduced by drift, §,(z) = (1 — eCt22-2C(@) /(2N,), is the same as in Good &
Desai’s (2013) eq. (D.4). Here again the equation cannot be solved unless we ignore this term, which is
the deterministic approximation described in the next section.

1.3 Neglecting the bias induced by drift. For the rest of the article, we neglect the impact of drift on
expected cumulants and moments, which boils down to neglecting cov(m;, M¢(z)) in (A2) and
(1 —eCt22)-2C2)) /(2N,) in (A3). We call this the “deterministic approximation”, and we
define M;(z) = (M;(2)) and C;(z) = (C;(z)) the expected MGF and CGF (respectively) under this
approximation. Noting that ensemble expectation and derivation with respect to both z and t are
exchangeable (linear operators), this yields a closed system for the dynamics of the approximate
expected MGF and CGF:

0 M (2) = M¢(2) — M{(0)M(2),

0:C(z) = C{(z) — ¢{(0). (A4)

We then observe that C;(z) and log M;(2) satisfy the same equation. The uniqueness of the solution of
this equation (see Appendix B, I.1) thus implies that C;(z) = logM;(z); in other words, the
deterministic approximation equates C;(z) = (C:(2)) = (log M;(z)) = log(M;(z)) = log M;(z).

This amounts to ignoring variation in C;(z) among replicates, relative to its expectation. Indeed, let the
random deviation of M;(z) from its expectation be { = M;(z) — (M;(2)), in any population. Then ({) =
0 and (%) = V(Mt(z)), the variance in M;(z) among populations. To leading order in{ : (C:(2)) —
log(M,(2)) = —1/2 ({?)/M(2)?, while V(C(2)) = (C;(2)*) — (C(2))* = ({*)/M(2)*. Overall, to
leading order we have: (C;(2)) = log(M;(z)) — V(Ct(z))/z, so the deterministic approximation (which
equates (C;(2)) = log(M;(z))) is consistent when V(Ct(z)) K log(M:(2)) = (C:(2)). We discuss the
timescale over which this approximation may be accurate, depending on the models considered, in
Appendix B Il (i.e. including in the presence of mutation).
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Ill. Background-dependent mutation

IIl.1 General expression. We allow the distribution of mutation fitness effects (DFE) to depend on the
fitness m of the background on which they appear, and denote f(s|m) the probability distribution
function (PDF, probability density function if the random variable s is continuous) of this conditional
distribution. This conditional DFE remains constant over time, for each given background fitness class m,
but the overall distribution of mutation effects spawned by the population may change over time,
through the change in background distribution. We define the MGF of the conditional DFE
as M5(z,m) = [ eS%f(s|m)ds, and the corresponding CGF C*(z,m) = logM*(z, m). We assume that
these quantities are well-defined and finite for any m attainable in the model, and over some
interval z € [0, Z;, 4] : this means the DFE has finite moments in all backgrounds.

A single mutation occurs within a small enough time interval Atwith probability N U At(Poisson

process). Given the effect s of the mutation and the background m where the mutation occurs, the

conditional change in M.(z) is AtMt(z|s, m) = NU At(e(s+m)z - emz)/N =UAte™?(e5?—1).
mu

Taking the expectation over the DFE s in background m vyields:

A M.(z|m) = f A M.(z|s,m)f(s|m)ds = U At e™?(M*(z,m) — 1).
mut mut (A5)

Then taking expectations over the background distribution m yields

K¢ K
AM@ =) pm) A M(zim) = U at (Zizlpt(mi) em (M (z,m;) 1))1

=U At (em?MS(z,m) —e™7? ) (A6)

where the overbar refers to the weighted average within a population at time t. The corresponding
change in CGF C;(2) = log M.(z), with M;(z) = e™Z is obtained by noting that, with infinitesimal
change in the continuous time limit (as At — 0) AtCt(z) = AtMt(z)/Mt(z)

mu mu

emZMS(z, m)
AtCt(Z) =UAt — = 1],
mu e
(A7)

Taking ensemble expectation, over the stochastic trajectories of C;(z) among replicate populations,
yields an exact expression for the mutational contribution At(Ct(z))to the expected CGF C;(z) =
mu

(Ce(2)):
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A (C:(2)) A Ci(2) SMZNS (7 )
mut ¢ _ mut t =U((e M (Z’m)>_1>.

A8
At At (A8)

emz

As such, the effect of mutation on C; cannot be expressed in terms of C; for general DFEs: further
assumptions on the DFE are thus required to close the system.

1.2 Linear background-dependence. Situations may arise where the MGF of the DFE is linear inm :
M?3(z,m) = a(z)m + M, (z), for some functions a(.) and M,(z) = M*(z,0), which is again the MGF in
the background with fitness m = 0. This linearity may be exact or approximate, depending on the
models and regimes. By definition of an MGF, M, (0) = 1 and M;'(z) > 0, and a(.) must satisfy a(0) =
0. Also we have a'’(z) < 0 for all z, whenever the fitness set is bounded (so thatm < 0 with our
convention). The MGF M3(.,.) then satisfies the required properties M*(0,m) = 1 (conservation of
total probability for allm) and M*" (z,m) = 0 (convexity for allm withm < 0). Note that when m is
unbounded on the right (so that m € R instead of R™), then convexity (M5"'(z,m) = 0 for all m and z)
implies that a”’(z) = 0 for all z. In this case, linear background-dependence can only be consistent with a
function of the form a(z) = a’(0) z, namely a DFE that is background independent, except for its
mean: E(s|m) = MS'(0,m) = a'(0)m + M.(0).

Replacing M®(z,m) by a(z)m + M,(z) in the mutational term in Eq. (A8) yields e™ZM5(z,m) =

a(z)yme™Z + M,(z) e™%. We then note that m e™? = M{(z), so thatme™? /e™mZ = M{(z)/M(z) =

C{(z), so that the mutational contribution in Eq. (A8) can be written: AtC’t(z)/At =a(z) Ci(2) +
mu

M, (z). Taking a continuous time limit (At = 0), the full dynamics of the expected CGF under the
deterministic approximation is a nonlocal linear 1** order PDE:

0¢(Ce(2)) = 0,C¢(2) = a(2)C((2) — C{(0) + B(2), (A9)

with a(z) =1+ U a(z) and B(z) = U (M,(z) —1). This PDE is studied and solved analytically in
Appendix B.

Application: binary model (BM). One example of mutation model that has linear background
dependence is simplified version of Rouzine et al.’s model of asexual sequence evolution. In this model,
genotypes are composed of A bins representing sites (L in the original paper, but we use other notation
to avoid confusion with mutation load here). We thus denote this model ‘binary model’. Each bin is O for
wild-type allele or 1 for mutant allele at the site and a given genotype i is a vector x; € {0,1}*. Each
mutant allele incurs a deleterious effect — § < 0 on Malthusian fitness (‘s’ in the original paper: again
notation is changed to avoid confusion with the random variable s describing selection coefficients in the
present paper). Fitness is additive across sites so that m(x;) = —3& k for a genotype carrying k € [0, A]
mutant alleles. Mutation is symmetric at each site with rate u per capita per generation per site: mutant
alleles mutate back to wild type (effect + &) and wild type alleles mutate forward to a deleterious
mutant (effect — §). The net genomic mutation rate is U = u A per generation per capita. Conditional on
a mutation occurring, it hits a site at random and has an effect +6 if it hit a mutant allele (probability k/
A) or =6 if it hit a wild type allele (probability 1 —k/A). This DFE has stochastic
representation dm ~ 2§ (B — 1) where B ~ Bernoulli(k/A). Recalling that k = —m/§, we can write
the MGF of this DFE as a function of the background fitness m:
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M3(z,m) = a(z)m + M,(2),
sinh(é z)
AS

(A10)

a(z) = -2 and M,(z) = e~ %%

Which is a linear background-dependent model. This is a simplification of the original model in (RouzINE
et al. 2003) in that they introduced an extra parameter g which is a proportion of sites that may
compensate for a deleterious mutation at a given site. In the present ‘binary model’, g = k/Ais by
construction the current proportion of sites that are in ‘mutant’ state.

Application: Background — independent models.

Burger’s (1991) model: another instance where Eq. (A9) applies is for arbitrary background-independent
models where M5(z,m) = M,(z) (or a(z) =0), a given M,(z) characterizing the background-
independent DFE. Logically, Eq. (A9) is then consistent with the CGF dynamics derived by R. Birger (eq.
4.2 in (BURGER 1991), for discrete time, when applied to a trait (fitness itself) with “exponential selection
scheme”. Indeed here, Darwinian fitness (W, fitness for the discrete time model) is an exponential
function of the trait z = m (here Malthusian fitness): W (z) = e“.

Diffusion in fitness space: A simple form of background-independent model is one where mutation
effects are modeled as a diffusion term in fitness space (TSIMRING et al. 1996), yielding the so-called
‘replicator-mutator equation’ (ALFARO and CARLES 2014). In this model, the mutational contribution on
the dynamics of genotypic frequencies (on d;p;(m)) are described by a Laplace diffusion
operator: U 0202 p,(m), where o2 is the mutational variance in fitness per generation. Multiplying this
quantity by e™Z and integrating by parts with respect tom, it can be shown that the corresponding
mutational input Eq. (A8) is mAutCt = mAutMt(Z)/Mt(Z) = UAt 6222 /2, a quadratic function of z. In this

model, drift is ignored so the deterministic approximation applies directly (C; = C;).

Alternatively, this polynomial form of the mutational contribution arises as a weak selection limit of the
background-independent kernel. Consider an arbitrary DFE with some MGF M, (z) = [ f(s)e®?dz, with
mean u; = M/(0) = [ s f(s)dzand variance V(s) = M. (0) — M/(0)?> = 62 « 1. Consider the scaled
variable X = s/a, with MGF My(z): by definition, we have M, (z) = My (o z), Mx(0) = 1, Mx(0) =
us/o and My (0) = 1 + u2/0?. A Taylor series of the mutational kernel A C,/(UAt) = My(o z) — 1,

to leading order in g, yields AtCt/(UAt) =usz+ (6% + us?)z%/2 + 0(0%z%), again a 2™ order
mu

polynomial in z. Setting a symmetric DFE (us = 0) yields the exact same contribution as above (6C; =
U At 6222 /2): the diffusion kernel can be equated to a small variance limit of an arbitrary mutational
kernel with zero mean, consistent with the rationale behind the diffusion approximation. This diffusion
limit extends to include non-zero mean, but it can only be defined if the initial distribution has an
analytical MGF, which amounts to the same condition as found in (ALFARO and CARLES 2014): the initial
distribution must fall off exponentially or faster, or put differently, it must have finite moments.

Note that such diffusion in fitness space can also be used with a context-dependent mutation kernel,
from the background dependent mean and variance in fitness (see e.g. Appendix E for the FGM).

111.3 Log-linear background-dependence.
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Another possibility is that the dependence of the CGF of the DFE on the background fitness m is linear
(so the MGF is log-linear):

C5(z,m) =C,(2) + w(z) m,

MS(z,m) = e*@ ™M, (2). (ALL)

The function w(z) describes how the DFE is affected by background fitness. By definition, M,(z) =
M?3(z,0) is the MGF of the DFE in the ‘reference’ background with fitness m = 0. Thus w =0
corresponds to background-independent mutations. In the case of background-dependent mutations
w % 0 and we further assume that there is a fitness optimum at m = 0, so that m < 0. The properties
of M, and w are further detailed in Appendix B where this model is analyzed in detail.

Plugging Eq.(All) into Eq. (A8) vyields e™ZMS(z,m) = M,(z) e™ @+@(@) and thus the mutational
contribution on the expected CGF has exact form AtC’t(z)/At = U((eCt(Z+‘”(Z))_Cf(Z)) — 1). We have
mu

seen that the deterministic approximation amounts to equate C;(z) = (C;(2)) = log(M,(z)) which
implies V(C,(2)) < (C,(2)). At roughly the same level of approximation, (eCt(z+0@)-Ce(@)) &
eCt(z+0@)~Ce(@ | and the system can be closed. Taking the continuous time limit (At — 0), the full

dynamics of the expected CGF under the deterministic approximation is then a 1°* order nonlinear
nonlocal PDE:

0:(Ce(2)) = 8,C(2) = C{(2) — C{(0) + U(M,(2)eCe(z+o@)=C@ _ 1), (A12)

Application: Fisher’s (1930) geometrical model (FGM). Our landmark example of background-
dependent mutation is a particular version of Fisher’s geometric model (FGM), which we call ‘Gaussian
FGM’. With n dimensions, the FGM generally assumes that fitness is a quadratic function of some n-
dimensional vector of breeding values for phenotype g (m(g) = — ||g||?/2), while mutations create a
perturbation dg on this vector, that is unbiased and follows an isotropic multivariate distribution. In a
particular version, the ‘Gaussian FGM’, this distribution is multivariate Gaussian:dg~N(0,AlL,),
where I, is the identity matrix in n dimensions. The reference is the optimal phenotype (g = 0) with
fitness m = 0, and the conditional DFE, for the background with breeding value g and fitness m = m(g)
has stochastic representation (MARTIN 2014): s|m ~—m — A/2 xy2(—2m/2), where y2(v)is a non-
central chi-square deviate with n degrees of freedom and non-centrality parameter v (MARTIN 2014). The
CGF of this DFE is exactly log-linear in background fitness:

MS(z,m) = M,(2)e™ @,

2 and M.(2) = (1+12)/2 (AL3)
1+Azan L(2) = z )

w(z) =—

Eq. (Al12) thus applies directly to this model. In appendix E, we show that a generalized version of this
model with arbitrary, isotropic distribution of mutation effects on phenotypes, can be equated to a log-
linear background dependent model when mutation effects are small relative to mutation rate.

Application: Kingman’s (1978) House of Cards model (HOC). Under this model, mutants have a given
fixed absolute fitness distribution X, which means that the relative fitness effects of mutations are
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background dependent (s = X —m, so thatm + s = X). If My(z) = E(e*?) is the MGF of the fixed
absolute fitness distribution, then the MGF of the DFE shows log-linear background dependence

MS(z,m) = M. (2)e™ ),

w(z) = —zand M,(z) = My (2). (Al4)
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Appendix B: formal properties and solutions of the general PDEs
used in the article

This appendix is divided into two sections. In Section |, we study the mathematical properties of the
nonlocal nonlinear equation [7] (main text), for C;(z) corresponding to log-linear background-
dependence. In Section Il, we solve the linear nonlocal equation [4] (main text) corresponding to linear
background-dependence, and which can also be seen as an approximation of the nonlocal nonlinear
equation [7] obtained by linearizing the MGF of the DFE, MS(z, m) around m = 0. We use results from
Section | to justify that the equilibrium of Eq. [4] is memoryless (independent of the initial fitness
distribution) in the presence of epistasis. We also show that the two equations lead to consistent results
at equilibrium (when such equilibrium exists). In the following, we consider only non-neutral mutation
(the mutation rate U considered is a rate of mutation to non-neutral effects (s # 0)), so that the DFE has
no Dirac mass at 0.

I. Nonlinear nonlocal PDE for log-linear background-dependence.
We investigate some a priori properties of the solutions of the nonlocal equation:
0:C¢(2) = C{(2) — C{(0) + U(eCel+@EN =DM, (2) — 1), (B1)

fort > 0, z > 0 and with the boundary condition C;(0) = 0.

Below, we first detail (Section 1.1) the properties of M, and w that may be compatible with log-linear
background dependence. Then (Section 1.2) we show that the support of the fitness distribution
instantaneously reaches the optimum m = 0 (or equivalently that /(o) = 0, forall t > 0). Then we
use this property to study the properties of the CGF as t — co: in particular the first cumulants (Section
I.3) and the existence of a spike in the distribution (discrete probability mass) at the optimal genotype
(Section 1.4).

1.1 Properties of w and M. The function M, is the MGF of the DFE for the genotype with fitness m = 0;
it satisfies MGF properties M,(0) = 1 and M, (z) = 0. Furthermore, we consider only epistatic models
that have an upper bound for fitness; whenever w # 0, we thus set this maximum to max(m) = 0
without loss of generality. This implies that 0 < M, (z) < 1 whenever w # 0; we do not require M, (z) <
1 in the non-epistatic models (w = 0).

For the well-posedness of Eq. (B1) we need that z + w(z) = 0 for all positive z. In order to establish this
inequality, we recall that the optimal fitness was set at m = 0. Thus, the DFE is such that f(s|m) = 0 for
all s = —m, otherwise a mutant could overshoot m = 0. This implies that MS(z,m) = E(eS%|m) <

e—mz

. Using the log-linearity assumptionlog M*(z,m) = C°(z,m) = C.(z) + w(z) m, we get C,(z) +
w(z)m < —mz,for allm < 0 and z > 0. Dividing this last inequality by m < 0 and passing to the limit
m — —oo,we get: z+ w(z) = 0forallz > 0.

Furthermore, the convexity of CGFs implies that C5"'(z,m) = C!'(2) + w"'(z) m = 0 for all m < 0. This
implies that w’(z) <0 for all z> 0, in other words w is concave over R*. This in turn implies
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that w'(z) < w'(0) and, as w(0) = 0, that w(z) = foza)’(u)du < w'(0) z. The inequality z + w(z) = 0
for all z > 0 and the concavity of w also implies that w’(z) = —1 for all z = 0. Then two cases may arise
depending on w’(0). Note that C5'(0,m) = E(s|m) = C.(0) — w'(0)|m| so that —«’(0) describes how
the mean effect of mutations on fitness changes with increased maladaptation [m].

Case 1, w'(0) < 0:in this case, the mean effect of mutations on fitness is unchanged or less deleterious
as |m| increases: maladaptation alleviates mutation effects. Then w is negative over R* and 0 < z +
w(z) < z(1+ w'(0)) < z. The nonlocal term C,(z + w(z)) in Eq. (B1) applies to a value that always
remains within the domain [0, z].

Case 2, w'(0) > 0: in this case, the mean effect of mutations on fitness is more deleterious as |m|
increases: maladaptation aggravates mutation effects. Then w(z) may change sign over z € R* (and
starts at positive values for small z).

Finally, we note that since the optimal fitness was set atm = 0, E(e™%) < 1 for all positive z, which
implies that

c.(z) < 0. (B2)

1.2 Flatness at infinity. As a key preliminary result, we show that, even if Cj(+0) < 0, instantaneously
any solution C;(z) of (B1) becomes flat at infinity. More precisely:

Ci(z) > 0asz - +oo,forallt > 0. (B3)

Intuitively, property (B3) arises because (i) we allow for beneficial mutations, (ii) the maximum fitness is
set atm = 0, (iii) we ignore the stochastic loss of rare mutants and (iv) we consider continuous time.
Therefore, even at very low mutation rates and after a very small period of time, a proportion of the
fitness distribution (albeit initially infinitesimal) reaches the optimum. More rigorously, this result is
achieved under any of the following biological/mathematical assumption:

Assumption H: any background can mutate to the optimal background. This means that max{s,
such that f(s|m) > 0} = —m, thus C5'(c0,m) = C/() + w'(0) m = —m for allm < 0. This implies
that C(c0) = M,'()/M,(0) = 0 and w'() = —1.

or

Assumption H’: any background can mutate to some fitter but suboptimal class. Here, sup{s,
such that f(s|m) > 0} = —-m(1 —¢,,), for some €, € (0,1) and for all m < 0. In this case,
CS'(0,m) = C/(0) + w'(0)m = —m(1 — €,,) for all m <0, which implies that C;() = M,'(®)/
M,(0) =0 and —1 < w'(®) < 0, thusz + w(z) » w0 as z —> oo.

H or H’ imply that there is compensation, i.e., all suboptimal backgrounds (m < 0) produce at least some
beneficial mutations. Thus, it also implies that, for allm < 0,

M,(2)e®@™m = MS(z,m) = E(eS%|m) — o,asz - . (B4)
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Proof of the property (B3). Let us set W;(z) = C;(z + w(z)) — C;(2). Using the convexity of the CGFs,
we have C/'(z) = 0; the function C/(z) is therefore increasing (nondecreasing) in z. Thus, since C; < 0
(Eq. (B2)), C{ cannot reach positive values, otherwise it would remain positive at all larger z and C;(2)
would converge to o asz — o, contradicting (B2). Thus, for each timet > 0, C/(z) admits a limit
C¢(0) < 0asz — +oo. The function C{ also satisfies the following equation:

0:C{(2) = C{'(2) + UM, (2)(M.(2)/M.(2) + W,/ (2))e"®. (B5)
Assume by contradiction that:
there exists a time t, > 0 such that C{ (o) < 0. (B6)

First, we compute W{ (z) = (1 + a)’(z))(,’t’o(z + w(z)) — C{,(2). Using Assumption H (w'() = —1),
we get that W/ (o) = —C{ (%) > 0. If we replace Assumption H by H' (z + w(z) - =), we obtain:
Wi, () = C{ (0)w'(e) > 0. Thus, in all cases, for some constant § > 0 and large z, we have:

W (z) > —6C{ () > 0. (87)

We know that C{'(z) = 0and, from Assumption H or H' (M,'()/M, () = 0), M(2) is negligible
compared to M, (z) for large z. Equation (B5) together with (B7) and with U > 0 imply that atC’{O (z2)>0
for large z.
Assume that there exists t; € (0,tp) such that C; (o) = 0 and /(o) < 0 for allt € (t,t). Again,
0:C{(z) > 0 for allt € (t;,ty) and large z. As a consequence, the limit C{()is a nondecreasing
function of t € (t1,ty) which implies that 0 = C{ (%) < ¢/ (%) < 0 and leads to a contradiction. As a
consequence, Property (B6) implies that C/() < 0 forallt € (0, t,].
The same arguments as above imply that for each t € (0, ty), W/ (z) > —8C/{(e) > 0 for z large enough
and that 0,C{(z) > 0 for all t € (t;,t,). Therefore, C{() is nondecreasing fort € (0, t,), and

W{(z) > —6C{() = —5C{ () > 0, (B8)
forallt € (0,t,) and large z.

Second, note that W;(z) can be bounded from below, for all t € (0,t;). From Assumption H or H', we

know that w(z) < 0 for large z. Then, we can write, for large z:
z

Wi (z) = — fz+w(z) Ci(s)ds = Ci(2)w(z) = Ci(o)w(2) = Cf (@)w(z), since C{(z) is nondecreasing in

z and C{(o0) is nondecreasing in t. Using this lower bound, together with the formulas (B5) and (B8), we
get:

0,CL(2) = UM, (2) (M,: (2)/M.(2) — 5cgo(oo)) eCio(@)0@) (B9)

Let t, € (0, tp); integrating the inequality (B9) between t, and ¢t,, we get:
Ct,(2) = C[(2) + (to — t)UM.(2) (M;(z)/M*(z) — 8C4, (00)) eCto(@  for all z large enough.

Using Assumption H or H' (M (o)/M, (o) = 0) and Property (B4) which is a consequence of both H and
H', we conclude that C’t’o (z) - o as z - oo. This contradicts the inequality C{ < 0. Finally, since Property
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(B6) leads to a contradiction, we conclude that C/(z) - C;{(0) =0 asz — oo, for allt > 0. This
concludes the proof of Property (B3).

1.3 Stationary solution. Using the preliminary result of Section 1.1, we are able to derive some properties
of the long-time behavior of the solutions of Eq. (B1).

First cumulant (load). By definition, a stationary solution of the nonlocal equation (B1) does not depend
of time; it is a solution C(z) of:

C'(2) — €'(0) + U(eClzto@)=C@D M () —1) = 0, forz >0, (B10)

with the boundary condition C(0) = 0. This equilibrium solution describes the fitness distribution at
mutation-selection balance.

It is easily seen that the solution of (B10) is not unique. However, if the stationary solution is obtained as
the limit of the solution C;(z) of Eq. (B1), using the result (B3) of Section I.1, and passing to the limit t -
o0, we observe that €' (o) = 0. As a consequence, for any model where context-dependence affects the
system (w(z) # 0) in a way that satisfies the Assumptions H or H', we must have:

(i) = €'(0) = lim —U (1 - eCE+0@)C@M,(2)).
Z—+0o
Then, two situations are possible, depending on U, w(z) and M, (2).
First case: e€(z+@(@)=C@ M (7) 0 as z - +oo. In that case, C'(0) = —U.

Second case: ec(z*'“’(z))‘c(z)M*(z) — B > 0asz— +oo, for some positive constant B. In that case,
C'(0)=—-U(1—-B)>—-U(asB > 0).

This provides a general result on the mutation load, namely the difference between the maximal fitness
possible (m = 0) and the mean fitness at mutation-selection balance: L = —(m.) = —C'(0). As the
optimal DFE corresponds to a probability distribution function f,(s) = f(s|m = 0) supported in R_ and
with no "Dirac mass" at 0, M, (o) = 0: indeed, for any € > 0 small enough andz > 0,0 < M,(2) <

e ¢ f__;ﬁ(s)dﬁf_oeﬂ(s)ds, which shows that 0 < M, (c0) < f_oef*(s)ds for all € small enough and

therefore
M, (o) = 0. (B11)

Higher cumulants. Differentiating the solution of Eq. (B1) with respect to z, and looking for stationary
solutions, we can easily compute the cumulants ¢''(0) and ¢’ (0) in terms of the functions w(z) and
M, (z) and of the load L = —(M) = —C'(0) (recall that the maximal fitness is at m = 0):
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{(V(moo)) ~ C"(0) = -UM;(0) + Uw'(0)L, (812)

(c3(Myy)) = C""(0) = —UM" (0) + Uaw" (0)L.

This provides an exact theory for the variance and skewness in fitness at equilibrium for models
satisfying log-linear context dependence (such as Fisher’s geometrical model for example), but only given
some explicit result regarding the load L.

1.4 Weight of the optimal genotype. Without loss of generality, we can write M;(z) = (p;) +
(Zﬁz p:(m;) e™i?), where p; is the weight of the optimal genotype (with fitness m; = 0) andm; < 0
foralli > 2 and t = 0. Passing to the limit z = oo, we get:

eCt(®) = M () = (py). (B13)

Thus, the limit of the MGF M (z) as z — oo describes the expected weight of the optimal genotype m =
0 in the distribution PDF p,(m). This weight is positive if and only if C;(z) converges to some finite limit

as z > oo,

Consider now an equilibrium C(z) obtained as the large time limit of C;(2). If the expected weight of the
optimal genotype at equilibrium satisfies (p,) > 0, then C(o0) = log(pe,) > —0. As M,() = 0 (Eq.
(B11)), it follows that eClzto@)-c@) (z) » 0 as z — oo. It then follows from the analysis in Section 1.2
(first case) that C'(0) = —U. We thus have the following implication

if (Do) > 0, then L =U. (B14)

By contraposition, we obtain that if C'(0) > —U, then ec(”‘”(z))_e(z)M*(z) — B > 0 (second case in
Section 1.2), which, as M, (o) = 0, yields the following alternative implication

L < U implies that (p,) = 0. (B15)

The above analysis (Section 1.2) shows that necessarily the mutation load L at equilibrium satisfies L <
U. Furthermore, either L = U and there can be a spike at 0, or L < U and no spike can exist.

Il. Exactly soluble PDE for linear background-dependence
We consider the general linear transport equation with nonlocal term C/(0):
0:Ct(2) = a(2)C;(2) —C{(0) +p(2), t=0, z=0, (B16)

with the boundary condition C;(0) = 0, and where a is bounded from above and globally Lipschitz-
continuous in [0, +00), B is continuous and C, is continuously differentiable. We assume that ¢(0) = 1
and 8(0) = 0.

To the best our knowledge, there is no general theory for solving this type of nonlocal PDEs. Here, we
construct an explicit solution of this equation in terms of the solution of a simple ordinary differential
equation (ODE).
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1.1 General time-dependent solution: an explicit formula. First, we consider the solution y(z) of the
ODE:

y'(2) = a(y(z)),z € R, y(0) = 0. (B17)

With our assumptions on «, the Cauchy-Lipschitz theorem implies that the solution y of the ODE (B17)
exists and is unique. We then make the following change of variable:

C(2) = C(y(2)). (B18)

Since @(0) = 1, we observe that C satisfies the following equation:

0:C(2) = Ci(2) — CL(0) + By (2)),
Co(2) = Co(¥(2)), (B19)
ét(o) =0,

fort = 0and z = 0. In order to get rid of the transport term and of the nonlocal term in this equation,
we set, for some arbitrary constant R > 0:

W, (2)=C,(z+R—t)—C,(R—1t), forte[0,R],z>t—R. (B20)

The definition of W; implies that:
Wi (2) =0,C,(z+R—t)—Ci(z+R—1t)— 3,Ce(R—t) + C/(R —1). (B21)

Coming back to (B19), we get that the function W; satisfies:

U =pOG 4 E-0) - BOR-0)  LEORLzzt-R, 522

Wy (2) = Co(y(z + R)) — Co(¥(R)), z=2t—R,

with the boundary condition W;(0) = 0. Integrating the above expression between 0 and t, we get:

t
Wi (z) = Co(y(z + R)) — Co(y(R)) + f B(y(z+R—-v)) —B(y(R—v))dv. (B23)
0

Using the definition (B20) of W,, we get C.(z) = W,(z — R + t) — W,(t — R), which leads to:

t
(@) = Coy +0) = QoY) + | BOG+v) = PO, (524)
0
for all t € [0,R] and z > 0. Since R was chosen arbitrarily, the function C; satisfies (B24) for all t > 0.
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Now, define z; as the smallest positive root of a:
z; = sup{z > 0, suchthata > 0in (0,2)}. (B25)

Either @ > 0in (0, +0); in that case z; = o, or otherwise z; > 0 is finite. In all cases, the function y,
defined by (B17) is a one to one and onto function from [0, +o0) to [0, z;). Then, using (B18), we can
write:

Ce(2) =Co(y(r™ (@) + 1) — Co(y(@®) + fo By (2 +v)) - By(w))dv, (B26)

fort = 0and all z € [0, z,). It is immediate to check that this is a solution of the problem (B16), and by
1

construction, it is the only solution of this equation. Note that y~1(z) = fOZ sy

dv for z € [0, zy).

Note that, when a and 8 are defined only in a finite interval [0, z,) Eq. (B18) can still be solved explicitly,
but only for a finite range of values of z and t: the formula (B31) remains true whenever y(y~1(z) +

Ldv.

t) < zy, or equivalently when t < fZZO =)

Cumulants. Our objective here is to compute C/(0) and G/’ (0). Differentiating the expression (B18) with
respect to z, we obtain:

{C;(z) = a(y(2)) ci(y(2)), (B27)

Cl'(2) = a?(y(@) ¢! (@) + a(v(2)) a’' (¥(2)) Ci(y(2)).

Computing these expressions at z = 0, we get:

{ C1(0) = ¢/(0), (B28)

' (0) = ¢/'(0) + a'(0) ¢{(0).
Differentiating the expression (B24) with respect to z, and computing it at z = 0, we get:
¢1(0) = C{(0) = a(y(®)Cs (y(®)) + BO(LD). (B29)

Differentiating two times the expression (B24) leads to the following expression for C}’(0):

C'(0) = a(y(®)a’ (y(O)Cs(y(D) + a*(y(®) €' (y(®) + a(y ()’ (1) (B30)
= B'(0).

Using the expressions (B28) and (B29), we finally obtain:
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c'(0) = a(y(®) (¢ (¥(®) - &'(0)) C5((®) + 2 (y(®)) €5 (¥(©))

(B31)
+a(y®)B' (y(®) - B'(0) — ' (0)B(y(1)).

11.2 Stationary states and large time behavior. The stationary states of (B16) are the solutions of the
following nonlocal ODE:

a(z)C'(z) =C'(0) — B(2), z>0, (B32)
with the boundary condition C(0) = 0.

Let z; be defined by (B25). By definition, for all z € (0,z;),a(z) > 0. For all z € (0,z;) we can divide
(B32) by a(z) and integrate between 0 and z:

[P,

@) V. (B33)

21
C(2) = C’(O)f —dv
o a(v)
This gives an explicit expression for the stationary states of (B16). Unfortunately, the stationary states
are not unique since C'(0) is an arbitrary constant in this expression. Thus, C’'(0) cannot be directly

determined from (B33). However, if the stationary state is obtained as the large time limit of the solution
of (B16), the expression (B29) implies that:

C'(0) = a(z1)Cy(21) + B(z1). (B34)

Then, three situations may occur.
Case 1: z, is finite. In this case a(z;) = 0 and Eq. (B34) implies that C'(0) = B(z,).

Case 2: z; = o and Cy(z) coincides with the solution of the nonlinear model (B1) under the Assumption
H or H'. If the linear equation (B16) was intended to be an approximation of the nonlinear model (B1),
the assumption Cj(+o) = 0 arises naturally from property (B3) of Section I.1: /() - 0 as z - +o,
for any arbitrarily small time t > 0. Since a is bounded, we again obtain C'(0) = B(z,) = B(+).

Finally, in both cases, we obtain:

z 1 z
C(z) = ,B’(Zl)fo mdv - . %dv,for allz € [0, zy). (B35)

Thus, in spite of the dependence of C;(z) with respect to the initial condition C; (see Eq. (B26)) we note
that the reached stationary state C(z) does not depend on C,, at least when context-dependence is
present and of a form satisfying Assumption H or H'.

Differentiating two times the expression (B35) with respect to z and computing the resulting expression
atz = 0, we get:
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C"(0) = —B(z1)a’(0) — B'(0). (B36)

Case 3: general case z; = oo. In that situation, we cannot draw general a priori conclusions but we can
solve the problem for an important particular case: any non-epistatic model. Indeed, these models are
characterized by w(z) = 0 in the fully nonlocal equation (B1), which then reduces exactly to the linear
PDE (B16), with a(z) = 1.In such cases, z; = o but the Assumptions H or H’ are not satisfied
(since w’ (o) = 0) so they do not pertain to Case 2 above. This case is fully treated in Appendix C.

1.3 Computation of the approached equilibrium cumulants. In order to compare the solution of the
linearized model (B16) with the solution of the fully nonlocal and nonlinear equation (B1), we apply the
previous results to the particular case:

a(z) =1+ Uw(z)M,(2) and B(z) = UM, (z) — 1). (B37)

Eg. (B16) with these coefficients corresponds to the linearization of an arbitrary epistatic model
whenm — 0, they should thus be consistent with the results of (B1), which is a particular form of
epistatic model with log-linear context-dependence. Under this interpretation (see main text), w(z) =
Om log M®(z, m) | ;=0 is the slope of the change in the CGF of the DFE with m, as m approachesm = 0
(for backgrounds close to the optimal genotype), while M, (z) is still the MGF of the DFE in the optimal
background.

Case 1: zq is finite. In this case, the expression C'(0) = S(z;) implies that the mutation load is:

L=-¢'(0)=U(1-M.(z))=U~—

: (B38)
w(z1)
Case 2: z; = oo and Cy(z) coincides with the solution of the nonlinear model (B1) under the Assumption
H or H'. As the DFE has no mass at 0, M, (o) = 0 (see Eq. (B11)). The expression C'(0) = B(z,) thus

implies that the load is
L=-C'(0)=U.

Overall, the results are consistent with the results obtained for the fully nonlocal and nonlinear equation
(B1) (see Section 1.3 above). Similarly, in both cases 1 and 2, formula (B36) leads to:

{C”(O) = —UM.(0) + U L '(0),

"(0) = —UM!'(0) + Uw" (0) L, (839)

which is fully consistent with the result (B12) obtained while studying Eq. (B1).
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Case 3:z; = o, and w = 0 (context-independent models). As already observed, the fully nonlocal
equation (B1) reduces exactly to the linear PDE (B16). In this case, with M,(o) = 0, and, as shown in
Appendix C:

C'(0) = =U + Cy(+),

C'"(0) = -UM](0), (B40)

c'""(0) = -UuM; (0).

Dependence to the initial condition (Cg(+0)) arises because the model contains no beneficial mutation
here (otherwise M, (o) = +0), so the upper bound of the ultimate fitness distribution is the maximum
of the initial one.

11.4 Spike of optimal genotypes at equilibrium. In model (B1), a spike can only exist if C'(0) = —U at
equilibrium (Section 1.4). Here, we focus on this situation and we derive an explicit formula for the
weight of the spike by assuming that C'(0) = —U at equilibrium in the linearized equation (B16)
corresponding to an epistatic model: a(z) = 1 + Uw(2)M.(2), B(z) = UM,.(z) — 1).

From the analysis in Section 1.3, ’(0) = —U implies that a(z) has no root over R*: z; = o. At this
point, we recall that w and M, here have the same interpretation as for Eq. (B1), so their properties
should still apply. Therefore, we should have w(z) < w'(0)z over z€ R, e, a(z) <1+
Uz M,(z) w'(0) . Since a(z) has no root over R*, one must assume that w’(0) = 0.

Using the formula (B35), we obtain that the equilibrium fitness distribution has CGF C(z) =

— fOZ (U + [)’(u))/a(u) du. A spike may then exist and its expected weight is

; M. () du). (B41)

o) — l () = —Uf
(P} = lim e ex"( o 1+ U w@M,@

Asa(u) =1+ U w(u)M,(u) has no root over R and a(0) =1, up to a slight change in Uin the
pathological case w()M, (o) = —1/U, we know that a(.) has a strictly positive lower bound over z €
R*: a(2) = apmin(U) > 0, where ap,;,(U) =1+ Ur%{iJrn(wM*) — 1lasU - 0. Similarly, we define an

upper bound for a: @4, (U), which may be finite or not, depending on w and M,. Note that, when
w'(0) =0, as in Fisher’'s geometric model, @,,,(U) = 1. Finally, a lower and upper bound to the
spike's expected weight at equilibrium are then given by:

U/su

U/sy
amin(U) ) =1

< — 7
0 < exp( e ()

) < (po) < €Xp (— (B42)

where sy = 1/(f_0mf*(s)/|s| ds) is the harmonic mean (in absolute value) of the DFE at optimum. This
follows from the definition of M,(u) = f_ooof*(s)esuds, which implies that fooo M, (uw)du =
Iy U f(S)es ds)du = — [°, £.(s)/s ds = 1/sy.
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If the integral fOOOM*(u)du diverges (sy =0), then the spike vanishes (whatever the form

of W(.)): (pe) = 0. This is if &;q, (U) is finite, which depends on the form of w(.) (as 0 < M, (u) < 1),
but should be the case with many models.

If the integral fooo M, (u)du converges (sy > 0), then the spike is non-vanishing and its expected weight

can be approached as U = 0 (a5, (U), @pax(U) — 1) by

(Poo) ~ €xP (—UmeM*(u)du> = e Ulsu (B43)

which corresponds to the predicted spike weight in a non-epistatic model (w(z) = 0) with the same DFE
at the optimum (characterized by the MGF M, (.)). If w'(0) = 0, the mean of the DFE is unaffected by
maladaptation, as in Fisher’'s geometric model; then a,,,,(U) = 1 and the limit is also the upper

bound: (p) < e—UfowM*(u)du_
lll. Long-term accuracy of the deterministic approximation

The PDEs which describe the dynamics of the expected CGF (C:(z)) and of the deterministic
approximation C;(z) differ by a term:

5¢(2) = (1 — @@ D=2CD) /2N,),

see Appendix A, part Il (Egs. (A3-4)). With linear background dependence, this is indeed the exact
deviation between the dynamics derived from the diffusion generator (that account for drift) and from
the deterministic approximation (Eq. (A9)). With log-linear background dependence, however, the
mutational term is also approximated to obtain the closed system in Eq. (A12). Yet, this second
approximation is at the same order (it also assumes V(C;(2)) < (C¢(2))). Therefore, with this model
too, the above error term should correctly describe the deviations between the exact non soluble system
and the approximate PDE dynamics.

We derive here some properties of this error term §;(z) and we analyze its effect on the difference
between (C;(z)) and C;(z). We mostly focus on the error in the expected mean fitness, C/(0) — (m;),
with linear background-dependence (epistatic or non-epistatic models).

.1 Properties of the error term §,(z). By convexity of the CGFs and since C;(0) = 0, we have
C:(2z) —2Ci(z) = 0, which implies that §;(z) < 0. Thus, neglecting §;(z) leads to an overestimation
of (C¢(2)), and consequently of the mean fitness (m;). We can draw two broad qualitative conclusions
on the short term error.

First, we observe that §;(0) = §/(0) = 0 while §;'(0) = —(C{'(0))/N, and 6{""(0) = =3 (C{"'(0))/N,.
Therefore, when starting from the correct (C;(z)) at some given time t, the error made by using the
deterministic approximate dynamics to predict later times is small on the bulk of the distribution (the
first cumulants, mean, variance, third moment). This does not preclude this error from accumulating
over time, thus creating large deviations later, even on the bulk. More precisely, these errors must be
compared to the other source terms due to mutation and selection, which are implemented in the
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deterministic approximation. §; does not directly contribute any error on the mean fitness dynamics, but
for the variance and third moment, these source terms are of C{'(0) + U M.'(0) and 654)(0) +
U M;"(0), respectively (plus some potential extra terms due to linear background — dependence). For
example, over some short term at least, the error made in the variance dynamics (relative to the
deterministic prediction), remains limited if N, (U V(s) + u3(m))/V(m) > 1.

Second, we also note that 6,(z) decreases with z: consider h = 0, and compute §;(z + h) — 6;(2) =
(eCc2D)=2Ce(2) (1 — oCe2z42M)~Ce(22)=2 (Celz+M)~Ce(2))). By convexity of the CGFs, C,(2 z + 2h) —
C(22) =2 (C,(z+ h) — C,(2)). This implies that §,(z + h) — §,(z) < 0and the conclusion follows.
Thus |8:(2)| is bounded by |6;(0)]. If we define p,,,q,(t) the current frequency of the fittest class in a
given replicate, with fitness m,,,4, (t) = max(m(t))) we notice that:

K .
Mt(Z) = Zi=t1 p:(m;) eMi? ~ pmax(t)emmax(t) Z atlarge z.
Then, coming back to the definition of C;:

2Mpmax 2
Mt(zz) - Pmax€ ax and lim e(;t(z 2)-2Ci(2) — # (B44)

eCt(22)-2C(2) — .
Mt(z)z 250 (Dypgyemax z)2 Z— Pmax(t)

Finally, we thus get that

1y ( 1 V< 1 ) < N
B 2Ne pmax(t) 2Ne pmax(t) 2Ne

|6 (2)] (B45)

where the upper bound is obtained by noting that, at least, p,,,4x = 1/N. This upper bound is necessarily
small whenever N, Pyax(t) > 1, namely when the number of individuals in the fittest class is
sufficiently large, in all replicates.

Therefore, whenever a large absolute number of individuals lies at the maximum of the current
distribution, the error made at current time is also small. It will be the case with models that have an
upper fitness bound (epistatic with an optimum, non-epistatic with purely deleterious mutations), once
this bound is highly populated (of course the larger N, the milder the criterion is in terms of frequencies).
On the contrary, in non-epistatic models the deviation from the deterministic approximation can become
substantial when the fittest edge of the distribution is small and stochastic.

111.2 Cumulative error with linear background-dependence. To get a more quantitative characterization
of how discrepancies accumulate over time, let us define the deviation between the exact and
approximate CGF at time t: H;(2) = C;(z) — (C;(2)). We reduce our analysis here to linear background-
dependence (which includes all non epistatic and some epistatic models). We have shown in appendix A
that the deterministic and ‘exact’ stochastic dynamics (under the diffusion approximation, actually) are
given by:

0:Ce(2) = a(2)C¢(2) — C;(0) + B(2) and 0,(C;(2)) = a(2)(C{(2)) — (C{(0)) + B(2) + 6(2),

witha(z) =1+ U a(z) and B(z) =U (M,(z) — 1), and we assume here thata < 1. The deviation
H:(z) = C:(2) — (C:(2)) satisfies the PDE (with initial condition Hy(z) = 0):
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0cH(2) = a(2)H((z) — H{(0) — 6,(2).

Considering 6;(z) as an external forcing term, this equation can be solved exactly (Part 1.1 above),
yielding H,(z) = fot 8c—(y(1)) — 8—»(y(y 71 (2) + v))dv, where y is the solution of the ODE y’'(z) =
a(y(z)), with y(0) = 0. As expected, this shows that H,(z) = 0 since §; is a decreasing function of z

and y(v) is increasing in v. The deterministic approximation overestimates the mean fitness trajectory
over time. Computing H,(y(z)), we get:

t
0 < H(y(2) = f 8eeo(Y®)) = 81o(¥(z + v))dv.
0

Dividing this expression by z and passing to the limit z — 0, (recall that y'(0) = a(y(O)) =a(0)=1)
we obtain

0 < y'(0)H{(0) = H{(0) = €/(0) — () = f, =y W)&}-,(y(¥))dv,

t
0= HI(0) = 1 [ Y ON(E0 2 Y(0) = CLy ()t D2 sy,
eJo0

With a relevant choice of reference for relative fitness, the fitness of the fittest class is non-positive up to
any given time (max(m) <0). Thus, C;_,(2y(v)) <0 and as already observed in part IIl.1,
eCrv@y(M)-2Cer(Y(¥) < p=1 (t — ). Moreover, 0 < —Ci_,(y(v)) < —Ci_,(0) = |,y by
convexity of C;(z) with respect to z. Overall, this shows that:

0 < H/(0) = ¢/(0) — (rﬁt)

y(t—v)( il

t
Pmax (v ))d E(‘fo “(Y(t—v))<pmax() v>. (B46)

If (|| Py (t)) remains bounded by some positive constant ¢ after a transient period of duration t*,
we get fort > t*:

N

1 t*
0 < H{(0) = €(0) = () < 7 f a(y(t - v))< ( )>dv + —(y(t) y(t)).  (B47)

e

If @(z) admits a finite positive root z;, as in the generalized FGM under the WSSM approximation
(Appendix E) or in Rouzine et al.’s binary model, we have the upper bound y(t) < z; for all z, and
a(y(t — v)) — 0ast — oo, forall v € (0,t*), which means that the error term

—f a(y(t—v))< ()

converges to 0 ast — oo and therefore transient error has no effect on the ultimate deviation. In
particular, at large times,

0 < H(0) = CL(0) — () < =2,
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which shows that the error C/(0) — (m;) remains bounded by some constant which is independent of t
and independent of the values taken by (|| Pk, (t)) during the transient period (0,t*). The error on
the long term behavior has no memory of the error in the past (error does not accumulate).

For log-linear background dependence, below the threshold for U where a has a finite root, we cannot
state the order of the error and must rely only on simulations to check the accuracy of the deterministic
approximation.
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Appendix C: Application to non - epistatic models

The results provided in Appendix B are of general form: here we first apply them to general context-
independent mutation kernels (no epistasis), and look for analytical solutions over time in these cases.
This serves first as a check that the model is consistent with results obtained previously, and allows to
derive some new insights. We study the trajectory of the fitness distribution during a bout of adaptation
from given arbitrary starting conditions (standing variance in fitness), then describe the long term
stationary regimes of the fitness distribution (equilibrium or stationary travelling wave).

l. General analytic solution and properties

Solution over time: All non-epistatic models assume that the DFE f(s|m) = f.(s) is independent of the
background in which mutations arise. This is characterized by M®(z, m) = M, (z) independent of m. We
thus retrieve a special case of ‘linear-background dependence’ with a(z) = 1and 8(z) = U (M,(z) —
1), which solution is given in appendix B. The solution to the ODE in Eq. (B17) (y' = a(y) = 1,y(0) =
0), is obviously y(z) = z and its inverse is y~1(z) = z. The general solution in (B26) yields the trajectory
of the CGF of the fitness distribution:

Ci(2) = Co(z+1t) — Cy(t) + UfotM*(z +v)—M,(v)dv. (C1)

This solution can be computed for any model with analytical MGF/CGF of the initial distribution and of
the DFE: be it discrete or continuous, including beneficial or deleterious mutations or both. We note the
consistency between the mutational term in (C1) and the discrete time version previously found in eq.
(13) of (JoHNSON 1999), and, after a slight rearrangement, that found for continuous time in eq. (10) of
(DesAl and FISHER 2011). This is expected, as these models also describe the Laplace transform of the
fitness distribution under non-epistatic mutation. The main difference with these previous results is that
Eqg. (C1) needs not be limited to a purely deleterious mutation model, and that it allows for arbitrary
initial standing variance. We now turn to some further general insight that may be gained by studying
the form of the CGF in Eq. (C1).

The form of C;(z) in (C1), as a sum of two CGF terms, implies that the fitness distribution at any time is
a sum (convolution) of two independent variables (contributions) generated by two processes. The first
contribution is the result of selection acting on pre-existing standing variance, yielding a random
component with CGF C;(z) = Cy(z + t) — Cy(t). The second contribution is generated by the interplay
of mutation and selection and yields a random component with CGF Ufot M.(z +v) — M,(v)dv. We

detail these contributions below.

Cumulant trajectory: The cumulant of order k at time t is obtained by taking the k™ derivative C’t(k)(O),
with respect to z, taken atz = 0, of the expression (Cl). This yields a general expression for the
expected cumulant ¢ (t) of arbitrary order k, at time t:
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(@) = 0 = P + v (M* V0 - M D ©) (©2)

The' = "is in fact’ ='for the first cumulants (as C/(0) = M/(0) = (M{(0)) = (m). The first term
Cék)(t) describes the dynamics of adaptation from selection on standing variance (with an arbitrary
initial fitness distribution). The second term, proportional to U, describes the contribution of new
mutations with an arbitrary non - epistatic DFE. The three first cumulants equal the three first central
moments of the distribution, e.g. the expectation of the mean fitness (m;) = (¢, (t)) = C{(0) and of the
fitness variance (V;) = (c,(t)) = C{'(0) have the following trajectories:

(me) = Co(t) + U (M.(8) — 1),
(C3)
(Vo) = Co' (£) + U (M.() — us).

Here us = M,(0) is the mean of the DFE. As expected, the mutational contributions are consistent with
Johnson’s (1999) results (eqs. 14-15): allowing for beneficial mutation does not affect the relationship
between mutational contribution and the MGF of the DFE.

Trajectories of fitness mean and variance are illustrated in Fig. C1 for a constant DFE (s = pg, < 0) and a
negative gamma DFE (s ~ —I'(a, |us|/a)). The simulated trajectories, averaged over replicates, are
accurately captured by the deterministic theory (C3), and replicates show limited variation around these
expectations. Note that all these predictions lose accuracy over much longer timescales (of the order
of N, time units), as Muller’s ratchet starts to play a role in finite populations, see Section Ill below.

-4 -4

o x 10 o x 10
DFE DFE
— ] 12 R | B A | B
-0.05 0 -0.01 0
-0.005 Il o000 -0.005
10.9 10.9
IS Ny IS ~
10.6 10.6
001 001
10.3 10.3
-0.015¢ 0 -0.015¢ 0
200 400 600 800 1000 200 400 600 800 1000
t t
(A) (B)

Fig. C1. Mean fitness m; and variance V, trajectories in non-epistatic models with deleterious mutations. (A)
gamma DFE s ~ — I'(a, |ug|/a), with shape parameter a = 2 and scale parameter |u;|/a = 5-1073; (B) constant
DFE s = ug = —0.01. Plain lines: trajectories given by the analytical theory (Eq. [8] in main text and Eq. (C3));
circles: empirical mean fitness and variance given by individual based simulations, averaged over 103 replicate
simulations (N = N, = 10°); shaded regions: 99% confidence intervals for the mean fitness (in red) and the
variance (in gray). We assumed initially clonal populations with m, = 0. Sup files Movie 1A and Movie 1B show the
dynamics of the corresponding full fitness distributions.
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Existence of an equilibrium: Equilibrium of the fitness distribution, here, corresponds to mutation-
selection balance; it is characterized by a finite limit (M), in Eq. (C3), ast — . The existence of such
equilibrium depends on qualitative properties (i) of the initial fitness distribution and (ii) of the DFE. The
mutational term M, (t) = fjooo eStf.(s)ds tends to a finite limit as t — oo if and only if all mutations are
deleterious, namely iff f,(s) = 0 for all s > 0. Otherwise the term U M,(t) “explodes” over time, as
expected if beneficial mutations allow adaptation to increase mean fitness indefinitely. We have also
seen that the term Cy(t) converges to the maximum of the initial fitness distribution: Cy() =
max(m,). Overall, a simple and intuitive rule applies: a mutation-selection sets in a non-epistatic model
whenever (i) there are no beneficial mutations (max(s) < 0) and (ii) the initial fitness distribution is
bounded on the right (max(m,) < o). We now consider this equilibrium in more detail.

Mutation load: We consider only deleterious mutations so that a mutation-selection balance may exist.
The maximum of the initial fitness distribution is C5(0) = max(my) = 0, without loss of generality, so
that (M) = Cy(0) + U(M, (o) — 1) (Eq. (C3)). Furthermore, with only deleterious mutations, the
MGF term is integrated over R™ (M, (t) = f_()we”f*(s)ds), so it vanishes at equilibrium (M, (o) = 0).
Note that this assumes that there is no discrete probability mass at s = 0. This would boil down to
neutral mutations, which are not included in the mutational process with rate U. Overall, the mutation
load L is always equal to the mutation rate:

L = max(mgy) — (My) = U. (C4)

This essentially the continuous time version of Kimura and Maruyama’s (1966) classic result (also known
as Haldane-Muller principle) for a discrete time, discrete DFE model: W = e~V ~ 1 — U with W}, = 1.
For continuous time models, Burger and Hofbauer (1994) already obtained Eq. (C4) for general non-
epistatic models, as a small U approximation. The result proves in fact exact for all U (under the
deterministic approximation).

1l Stochastic representation of the fitness distribution with arbitrary DFE

CGFs can be fitted directly to data (see KNIGHT and SATCHELL 1997), but to use the power of a maximum
likelihood framework requires knowing the distribution function. This function can be derived
numerically as the inverse Laplace transform of M, (z) = e, but this method is very sensitive to
inaccuracies in the computation of C;. Overall, it may prove useful to derive an explicit pdf, via a
‘stochastic representation’ of the fitness distribution at any time.

We now detail the dynamics of the fitness distribution in more detail by interpreting Eq. (C1) in terms of
its two contributions.
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Contribution from standing variance: The term Cy(z + t) — Cy(t) in Eq. (C1) describes the contribution
from standing variance. It implies that this is an ‘exponential tilting’, by a factor t, of the initial fitness
distribution (with CGF Cy(.)): the expected frequency of fitness class m at time t is (p,(m)) =
e™tpo(m)/My(t). Any starting distribution that is unchanged by exponential tilting (e.g. negative
gamma or Gaussian) will remain qualitatively the same over the course of adaptation from standing
variance. A Gaussian initial fitness distribution my ~N(ug,Vy) yields a Gaussian wave m ~ N(uy +
Vot, V), travelling at constant speed d,m; = V. Similarly, a negative gamma initial fitness distribution
(my ~—=T(ag, by)) yields a negative gamma wave m;~ — I'(aq, by/(1 + t by)) with decreasing speed
d:my = agby /(1 + byt).

As expected, this contribution ultimately converges to a Dirac at the fittest class of the preexisting
variants, ast — oo (this maximum class may be infinite, e.g. with a Gaussian wave). Indeed, the CGF
Co(z + t) — Cy(t) converges to Cy(®) z, the CGF of a dirac at m = Cy(o0), which is the maximum of the
distribution with CGF C(.).

Contribution from mutation: the term U fot M,(z +v) — M,(v)dv in Eq. (C1) describes the contribution
from new mutations. Below we detail its form for constant effects, then extend it to arbitrary DFEs and
derive simplified approximate forms to this contribution.

Constant effects: Consider first the simplest model: a constant effect of mutations s =s; < 0 (so
that M,(z) =e’d? ). The solution in (Cl) then vyields C;(z) = Uri(e** —1) where 1, =
(et¢ —1)/s; > 0. This CGF corresponds to a compound Poisson distribution with stochastic
representation: m = n;S;, where n; ~ Poisson(U r;), consistent with the classical result of (HAIGH
1978).

Arbitrary DFE: Let us now consider the generalization of this result. Assume now that the DFE is arbitrary,
with only deleterious effects s € R™ given by the PDF f.(s), and corresponding MGF: M,(z) =

f_oooe”f*(s)ds. As for all our treatments, this includes the subcase of k classes of discrete effects
_ _ Yk . .

{Sj}je[l,k] by defining f.(s) = Y=, f;j0(s — s;) where the f; are the weights of each class and §(.) is the

Dirac delta function. Because Equation (C1) is linear in M,(z), the solution C;(z) can be written as a

weighted sum of constant effects terms (6C;(z, s) below) contributed by each (potentially infinitesimal)
fitness class [s, s + ds]. More precisely, by swapping integrals on v and s, we can write

0

C:(2) =J 6Ce(z,5)

e . (C5)

6Ci(z,5) = Uf*(s)dsf (5 @) — oSV dy = U r,(s)(eS% — 1)
0

where 1:.(s) = (€5t — 1) /s f.(s)ds > 0. The infinitesimal contributions §C;(z,s) are the CGFs of
compound Poisson random variables of the form ém; = n;(s)s where n;(s) ~ Poisson(U r:(s)), so the
sum is the CGF of a sum of independent draws from these compound Poisson variables. As such sum is
also a compound Poisson distribution, this formulation yields an explicit stochastic representation for m
as a compound Poisson distribution m; = Z}ZOXN, where n; ~ Poisson(U r;) with
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n=| s = [ T D as= B <es—_1) (c6)

S

which is always positive ((e5¢ — 1)/s > 0 for all s € R). The increments Xj ¢ are distributed as a mixture
of all contributions, namely their probability density function is

1% (-1 (e -1 fu(x)
ety = - | 8- s = ) 2 - )
The MGF of the distribution of increments X; ; for time t is
0 1 es?
My (z,t) = j fx(x, t)e*?dx = r_ES (T (eSt— 1)> : (C8)
—o t

Where the expectation is taken over the DFE. Up to now we have not required mutations to be purely
deleterious, we now study the case of deleterious mutations in more detail.

Equilibrium fitness distribution with deleterious DFE: Letting time go to infinity, with purely deleterious
mutations (eS¢ — 0 for alls € R7) in (C6), the Poisson parameter tends to U 1, = U/sy, where sy =
1/E(—1/s) is the harmonic mean of the DFE, in absolute value. The increments X, are distributed as s
weighted by —1/s = 1/|s|. As should be, we thus retrieve the equilibrium results of T. Johnson (1999)
and H.A. Orr (2000), for a set of discrete effects.

Small U/s approximation: It may be difficult to explicitly write the pdf of a compound Poisson
distribution (multiple convolutions of the pdf in Eq. (C7)). However, whenever U 1; < 1, the rate of the
Poisson 1 remains small at all times, so that it suffices to consider only two fitness classes, the non-
loaded class (m = 0) with weight e~ U™t at time t, and the single mutation class (m = X,) with weight
1 — e~ Y™t and pdf given by Eq. (C7): the pdf of the fitness distribution is thus

(-1

f(x,t) = 8(x) e Unt 4+ (1 - e—Urt)T
t

fu(x), (C9)

Where 6(x) is the Dirac delta. This explicit distribution can always be computed with any DFE with
known pdf £, (x).

Gaussian approximation: On the other hand, the rate U r; may be large in two situations: with purely
deleterious mutations (0 <1 < 1/sy) provided U > sy, or with beneficial mutations in general
conditions after sufficient time has elapsed (asr; — oo then). In this case, the compound Poisson
converges to a normal distribution (by application of the central limit theorem), with mean and variance
equal to the moments derived in Eq. (C3):
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m~ N(U (M.(t) = 1),y/U (M(t) = E(5))). (C10)

This approximation should be particularly well suited to DFEs that include a substantial portion of
beneficial mutations, as the rate 1, then quickly becomes large. On the other hand, it will fail over long
timescales as the deterministic approximation fails in this case.

Negative Gamma DFE: An important subcase is to consider the gamma DFE (s ~ — ['(a, b)), which is
widely used to describe deleterious mutations, both theoretically and empirically. It is also of interest as
a point of comparison with the Gaussian FGM (see Results and Appendix D). The rate parameter of the
Poisson is then Ur, with . = (1 —(1+bt)17%) /(b (a— 1)), which diverges at infinite time
whenever a < 1 and convergestor, = 1/(b(a — 1)) whenevera > 1.

Whena > 1, Eq. (C8) at equilibrium yields My(z,©) = (1 + b z)*, namely X,, ~— I'(a —1,b) is
also a gamma distribution, with smaller shape. In general, the pdf of the resulting Poisson-Gamma
distribution can be computed analytically and fitted to empirical data, for any given value of a > 1.

The dynamics of the full fitness distribution under deleterious mutation and selection are illustrated in
Movies 1A (negative gamma DFE) and 1B (constant DFE), with the same parameters as in Fig. C1, but this
time comparing theory with results from a single stochastic simulation.

1. Characteristic timescales for purely deleterious DFEs
Timescale of load build-up: Ignoring standing variance, Eq. (C1) allows to derive the characteristic time
to reach mutation selection balance. The time ¢, to reach a high fraction ¢ — 1 of the equilibrium mean

fitness ( (Mo ) = —U) is the solution of (ﬁltq) = —q U, namely M*(tq) = 1 — q. This timescale is thus
independent of the mutation rate. Let u; = M;(0) be the mean of the DFE, then by Jensen’s
inequality: 1 —q = M*(tq) = E(e®ta) > efsta so that t, = —log(1 — q) /|us|- Additionally, 1 —q =
E(eSta) < E(—e™/(t4s) ) = e 1/(tysu), thust

loadis ty95 € (3/|us|,8/5H).

-1

q = —° __ For example, the time to reach 95% of the
(1-@)sy

Time to loss of accuracy: As we have seen (Appendix B, part 1ll.2), the error made by the deterministic

approximation on the mean fitness, C/(0) — (m;) = 0, can be bounded from above by 1/N, (fot(lrﬁvl/

pmax(v))dv). With purely deleterious mutations ., = E((eS¢ — 1)/s) is an increasing function of time,

so that the frequency p,,q, (W) of the fittest class remains above its equilibrium value e “Y/S# at all times
w (under the deterministic approximation itself). Additionally, {|m,,|) < U for allw > 0. Thus, the error
C/(0) — (m,) is bounded by t U eV/S# /N,. The prediction should remain accurate as long as this error is
smaller than the deterministic term (U (M,(t) — 1)) which is of order U. This implies that the
deterministic approximation should remain accurate as long as t U eY/5# /N, < U, namely at least while
t < N, e~U/sH for models that have a non-vanishing s.
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Iv. Connection to stochastic models in the presence of beneficial effects

Transition to stationary adaptation: Equation (C1) can in principle handle any form of DFE, including
ones with beneficial mutation effects, for which equilibrium is impossible. However, simulations and our
heuristic treatment of genetic drift show that the model is inaccurate over some timescale, whenever
non - epistatic beneficial mutations are present. This can be understood by considering the term that
was neglected in the expected MGF dynamics, —cov(r?tt, Mt(z)) (see Eq. (A2) in Appendix A), in
particular its contribution to mean fitness dynamics —cov(m,, M{(0)) = —V (i) (minus the variance in
mean fitness among replicate trajectories). For any non-epistatic model with beneficial mutations, mean
fitness can grow indefinitely and V(m;) scales with it, while the expected within population
variance (V;) reaches a constant level at stationary regime, so that mean fitness increases at constant
rate. Therefore, the between-population variance becomes large relative to the within-population
variance, after sufficient time, and our deterministic approach breaks down: it tends to overestimate the
fitness increase (as the neglected contribution is —V (m;) < 0).

A more intuitive explanation can be given as follows: in the deterministic PDE, beneficial mutants (even
vanishingly rare), create a tail in the fitness distribution that spreads over infinite values, in a vanishingly
small time interval due to the continuous time approximation. A wide portion of these mutants are in
fact lost by genetic drift, imposing a speed limit to adaptation (a constant rate d,(m;) = v), that is
neglected here.

This tail starts to impact the dynamics after some time, when de novo beneficial mutants start to become
dominant in the population, so the transient fitness dynamics are still well approximated by the
deterministic PDE. The stationary process that sets later is better handled by stochastic fixation models,
in the classic “clonal interference theories”. Yet, a heuristic approach suggests that the fitness dynamics
derived here provide a connection between the transient non-stationary dynamics and the ultimate
stationary regime of steady fitness increase.

Consider some stationary rate of adaptation v > 0, assumed known as a function of (N, N,, U, f.(s)). In
stationary regime, the expected mean fitness increases at constant rate d,(m;) =v = (V;) — U |us|
(where us = E(s) = M,(0)). As standing variance affects the system as an independent contribution, we
can ignore it in the present argument and study the transition to stationarity of the mutational
contribution in (Cl). A consistency argument implies that at the transition to stationarity, the
deterministic and stochastic rates of adaptation must be equal. From (C3), the deterministic dynamics of
the mutational term yields d,(m;) = U M, (t) so transition must occur at some time T satisfying

v =U M.(7). (C11)

This T can in principle be found (numerically or analytically) for any model with analytic M,(.) and
stationary rate of adaptation v. After this point, all higher cumulants must remain stable for the variance
to be stationary (a travelling wave solution). They are thus set to those predicted by the deterministic
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dynamics at time t. The CGF of the fitness distribution, after adding the independent component
generated by standing variance, should thus approximately be

min(t,7)
Ci(z)=Cy(z+t) —Co()+v(t—1)z0O(t—1) + Uf M,(z +u) — M,(u)du, (C12)
0

where 0(+) is the Heaviside theta function: @(x) = 0 forallx < 0 and ©(x) = 1 forall x > 0.

Exponential DFE: Let us apply this to a classic subcase: an exponential DFE of exclusively beneficial
mutations: s ~ Exp(1/us) with mean pg > 0, so that M, (z) = 1/(1 — usz) defined on z € [0,1/ug]. The
time of transition to stationarity is the first positive root of (C11):

1 U
T=—-—

) (C13)
Hs V Us

and the corresponding CGF of the fitness distribution, covering non stationary and stationary regimes is

Ci(z)=Co(z+t)—Co(t) +v(t—T1)z0O(t—1)
<(1 — us2)(1 — pomin(t, r))> (C14)

U
—1
T 08 1 — usz — ugmin(t, 1)

Us

defined over the finite positive domainz € [O,\/m). The stationary adaptation rate v used in
(C13) and (C14) depends on the mutation rate, the shape of the DFE (FOGLE et al. 2008) and the
demographic processes that determine the stochasticity of the model. For example, consider a discrete
generation model with a Wright-Fisher model of genetic drift (Poisson offspring distribution). With mild
mutation rates U, the stationary rate of adaptation is given by Gerrish and Lenski’s (GERRISH and LENSKI
1998) original “clonal interference” theory, which, applied to an exponential DFE, yields

o]

=2NU 2,=A(s)=s/us g
v /“S_L s‘e s (C15)

A(s) = 2NUlogN e™5/Bs(1 + pg/s).

With higher mutation rates (and a continuous time process of birth and death yielding probabilities of
establishment equivalent to the Wright-Fisher model), the stationary rate of adaptation is better
captured by Desai and Fisher’s “multiple mutation” theory (DesAI and FISHER 2007), which, applied to an
exponential DFE, (eqgs. 15 and 16 in Goob et al. 2012), yields

(5 1og(2NU log(us/U))?

" 210g(log@NUIns/ (Y loglus/ D) V)

2log(us/U) > log NU, (C16)
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and v =2 u?log(2NU log(NU)), forlarge NU. (C17)

In Fig. 2 (main text), and Figs. C2, C3 below, we illustrate this conjecture with various DFEs and
parameters. In each case, we check (i) whether the transient expected trajectories (fitness mean and
variance) are correctly described up to time T and (ii) whether the average v from existing analytic
theory (dashed lines) is sufficient or whether the agreement is improved by using v inferred from
simulation (plain lines).

0.01 1 0.01 10
DFE DFE A
0.008 . 132 0.008} o 708
0 0.005 0 0.005
0.006 124 0.006]
IS T IS
0.004 116 0.004}
0.002 B I 0.002}
J
( . 0 (
500 1000 1500 2000 2500 3000
!
(A)
n
0.03 >§IU 0.03 >§IU
DFE DFE
0.024 0.024} 124
o 0.005
~
0.018 0.018F 1.8
IS 1S nT
0.012 0.012F 1.2
0.006 0.006} 000000 10.6
; ; X . o N el : : , o
200 400 600 800 1000 200 400 600 800 1000

©

Fig. C2. Mean fitness m; and variance V; trajectories in non-epistatic models with beneficial mutations. The DFE
is given by an exponential distribution s ~ Exp(1/u) with mean E(s) = u; = 0.001 and panels correspond to
different mutation rates: (A): U = 107%; (B): U = 5107%; (C): U = 51073; (D): U = 1072. The transition time t =
1/us —JU/(v ug) (Egs. (C11), (C13)) is computed for a given stationary rate of adaptation v = (d,/m,) either
from stationary regime theory (dashed lines) or observed in simulations (plain lines, v averaged over replicates
from t = 2000 to t = 3000). For t < T the expected trajectories (m,) and (V,) are given by our analytical theory
(Eq.(C3)). From t > T, the slope v = {(d,Mm,;) and the variance (V;) are kept constant. Dashed lines: v equals the
slope given by the most suited theory (i.e., the theoretical slope which is closest to the empirical one: Eq. (C16) in
panels A and B; Eq. (C17) in panels C and D). Circles: empirical mean fitness and variance, averaged over 103
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individual based simulations (N = N, = 10°); shaded regions: 99% confidence intervals for the mean fitness (in
red) and the variance (in gray). We assumed initially clonal populations with m; = 0.
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L I I =il L L L I 0
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t 1

(D)

Fig. C3. Mean fitness m; and variance V, trajectories in non-epistatic models with beneficial mutations. Same as
Fig. C2, with a higher mean effect of mutation: E(s) = us = 0.01. The theoretical slopes v (dashed lines) are given
by Eq. (C15) in panel A, Eq. (C16) in panels B and C and Eq. (C17) in panel D.

Other DFEs: As a second example, we consider a DFE with constant effects, either deleterious or
beneficial: s = § > 0 with probability 1/2 and s = —§ with probability 1/2. In such case, M,(z) =
cosh(6 z), and given the stationary rate of adaptation v, the time of transition to stationarity isT =

Earcsmh%.The corresponding mean fitness and variance trajectories obtained by connecting the

analytical expressions of Eq. (C3) with the stationary adaptation regime are compared with individual-
based simulations in Fig. C4.

Lastly, Fig. C5 shows trajectories corresponding to a displaced gamma DFE, which is continuous and
includes both deleterious and beneficial mutations. Here, s ~ so — x, with sy > 0and x ~ I'(a, b) (in
this case, M, (z) = e%0(1 + b z)~%). The time of transition to stationarity is obtained numerically here,
for a given v.
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Fig. C4. Mean fitness m, and variance V; trajectories in non-epistatic models with beneficial and deleterious

mutations. Same as Figs. €2-C3, but with 102 replicate simulations and another DFE, consisting of symmetrical
constant effects: s = § > 0 with probability 1/2 and s = —§ with probability 1/2, and § = 0.01. (A): U = 107%;
(B): U = 1073. Transition to stationarity at T = arcsinh(v/(U §)) /&, with rate v inferred from simulations as a

measured stationary rate v = (0,m,) averaged over replicate simulations from t = 2000 to t = 3000

analytical expression available).
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Fig. C5. Mean fitness m, and variance V; trajectories in non-epistatic models with beneficial and deleterious
mutations. Same as in Fig. C4, with a shifted gamma DFE: s ~ s, + x, with sy > 0 and x ~ —I'(a, b), witha = 2,
b=5-10"3andsy =a-b/5.(A): U =10"*% (B): U = 1073, The time tis obtained by numerically solving Eq.

(C11) with a stationary rate v = (3,m,) inferred from simulations from t = 4000 to t = 6000.
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Appendix D: Equilibrium and numerical computations
for the ‘Gaussian Fisher’s geometrical model’

I. Definition of the “Gaussian FGM”: Fisher’s geometrical model (FGM) is our landmark example of
context-dependent DFEs. In all versions of FGM considered in this article, Darwinian fitness W (g) is a
Gaussian isotropic function in n dimensions, and/or Malthusian fitness is a quadratic isotropic
function: log W (g) =m(g) = —||gll?/2, g € R™. The particular version studied in this appendix arises
when the mutation effects on phenotype follow an isotropic multivariate Gaussian distribution
(dg ~ N(0,A1,,)) where I, is the identity matrix in n dimensions and A > 0 is a positive scaling constant.
We denote this particular model the ‘Gaussian FGM’. In the ‘Gaussian FGM’, the MGF of the DFE in a
background with arbitrary fitness m < 0 is (MARTIN 2014)

MS(z,m) = e©@ MM, (2),
w(z) =—-1z%/(1+12), (D1)

M, (2) = (14 212)"™2,
In this case the DFE from an optimal background is gamma distributed (s,~—T(n/2,1)) with
MGF M, (2). It is noteworthy that the MGF of s is log-linear with background fitness m in the Gaussian
FGM: the log-linear background-dependence assumption is satisfied and the PDE:

9:C(2) = C{(2) — C{(0) + U(eCtl+ =M (2) — 1), (D2)

corresponding to Eq. [7] in the main text and (B1) in Appendix B is exact in the Gaussian FGM. This PDE
can be solved numerically, see Paragraph "Numerical methods" at the end of this appendix, leading to
accurate description of fitness mean and variance trajectories (Figs. 3A and 3B in the main text). The
mathematical properties of this PDE have been analyzed in Appendix B (Section 1), under an assumption
which is readily satisfied in the Gaussian FGM:

Assumption H (appendix B) is obviously verified as any background can mutate to the optimum; it can
also be checked that the mathematical counterpart of H is verified: C/(z) = —n1/2(1+12) 1 >0
asz->owandw'(z) =(1+1z)2—-1->—1lasz - oo.

Some exact results regarding the equilibria (e.g. memoryless property) of this PDE are derived in
Appendix B (Sections 1.2 and 1.3). However, more general insight is gained via a simple approximation.
Near equilibrium (m — 0), log-linear background-dependence becomes approximately linear, so the
equilibrium solution of the PDE (D2) can be approached by the corresponding solution of the linear PDE:

0:C¢(2) = a(2)C¢(2) — C(0) + B(2), (D3)
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corresponding to Eq. [4] in the main text, with the coefficients:

U 722
(1 + z )1+n/2’ (D4)
B(z)=U((1+zA)™2-1).

a(z)=1-—

The general equilibrium properties of this linear PDE are detailed in Appendix B (Section Il); we apply
these results to the particular functional coefficients above to obtain the equilibrium fitness distribution
in Fisher’s model.

Il. Dynamics of the fitness distribution: Away from equilibrium, a general explicit solution to (D2) could
not be found. We thus rely either on (i) a numerical solution (detailed below) or (ii) an analytical weak
selection strong mutation approximation (detailed in Appendix E).

Ill. Mutation load and spike at the optimum: As seen in Appendix B, the key to derive the mutation-
selection balance and mutation load is the first positive root z; of . This root, when it exists, can be
computed numerically or analytically (at least whenn =1,2,4 or 6). A sign analysis of a over Rt
(Eqg. (D4)) shows the following rules for the existence of a finite positive root of @, depending on the
value of n, and on the value of the mutation rate U with respect to a critical threshold U,:

(i): n = 1: a(2) decreases monotonically from a(0) = 1to a(c0) = —oo and there is always a positive
root z; € R*. The exact load can be computed explicitly but has a complicated closed form. The results
of Appendix B imply that there is no spike at the optimum.

(ii): n = 2: a(z) decreases monotonically from a(0) = 1toa() =1 —-U/A; wheneverU > U, = 4,
there is a finite positive root z; = 1/(VUA—A) and the load is L =—B(z) =VUA<U,
otherwise z; = o and L = U. In the latter case, a spike may exist at the optimum in principle, but its

upper bound is {(pe,) < e~ Y Iy M.(5)ds — 0 as the integral fooo M, (s)ds does not converge withn = 2
(M, (2) =1 +z1)™).

(iii): n>3: a(z) reaches a minimum at z,;, =2/(A(n/2—-1)), equal to a(zny,)=1—-4U/
A(m/2 — 1)™M?71/(n/2 + 1)™?+1_ A finite positive root exists iff this minimum is below zero, namely
whenever

A (n/2 + 1)™/2+t

The root z; can then be computed numerically or analytically (e.g., z; = (\/ﬁ — 2V =AU -
4@)/(2/1\/1) in the case n = 6 presented in Figs. 3A and 3B). The results of Appendix B show that the
corresponding mutation load isL = —f(z;) = U(l — M*(zl)). Otherwise whenever U < U,: z; = o,
the load is L = U, and a spike of optimal genotypes exists in this case, with weight close to (and

below) {pe) ~ €U Jo> M (s)ds _ e—U/(A(n/2-1))
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Note that the general formulae for n = 3 handle in fact the case n = 2: simply taking the limit forn — 2
of U, in Eq. (D5) yields U, = A and {p,) — 0.

IV. Equilibrium fitness distribution. The CGF of the fithess distribution at equilibrium is obtained by
setting L = U(1 — M,(z;)) and 9,C;(z) =0 in Eq. (D3): C(z) = —UfOZ(M*(u) — M, (z1))/a(w)du,
where M, and a and are given by Egs. (D1) and (D4), respectively. This yields the general expression (for
n = 3):

(1+z )1™/2-1
(n/2—1)A +ZM*(ZI)>

(1 +z )2 — [ 222

U(l 4+ z)1Hn/2 < (D6)
C(z) =

Below the phase transition (U < U.) we know that z; = oo and M,(z;) = M,(0) =0, and the
equilibrium CGF simplifies to

Ul+zA)A+zA1—(1+z1)™?)

/2 —DA((Q+z)WY2—Uz22) " (D7)

C(2) =

From this expression, it can be shown (C(z) U/sy — 0, as z - o) that the estimation of the expected
spike weight which is derived for small U in Appendix B, Section 1.4, is in fact exact in the Gaussian FGM
forallU < U,:

(o) = €6(®) = g=U/sH, . (D8)
sy =An/2 —-1), U<Uu, n=3
The fitness distribution among suboptimal genotypes has MGF given by M_(z) = (ec(z) —(pe))/(1 —
(px)) Where C(z) is given by Eq. (D7) and p.. by Eq. (D8). Its expression is complex, but a leading order
in small U (relevant here as we are below the phase transition), yields M_(z) = (1 + Az)~®/2-D,
namely the MGF of a negative gamma distribution: m_ ~ — I'((n — 2)/2, A). This is exactly the result
expected, ast — oo, from the small U/s approximation in a non epistatic model (see Appendix C, Eq.
(C9)) with context-independent DFE given by that at the optimum (s ~ —I'(n/2,A)). Therefore, to
leading order in U (approximately for any U < U_.), the equilibrium fitness distribution in the FGM is
blind to the presence of epistasis and behaves as the equivalent non-epistatic model with gamma DFE.
Beyond the phase transition (U > U,.), an exact treatment is more involved as we do not have a
general expression for z;. A weak selection strong mutation treatment, detailed in Appendix E, proves
surprisingly accurate in this regime.

V. Numerical methods: The numerical computation of the solution of the nonlinear PDE (D2) was based
on a finite difference method with variable step sizes in z (smaller steps near z = 0, to get accurate
values of the derivatives C{(0), C{'(0)) and an implicit scheme in time. The nonlinearity was dealt with
using a Newton-Raphson algorithm. The values of the functions at the positions z + w(z), which
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generally do not belong to the finite difference mesh, were computed by linear interpolation with the
closest positions in the mesh.

Because of the transport term C{(z), which tends to translate the solution towards the left and with
speed 1, the solution was computed on a finite interval z € (0, Z;,qx) Where 4, = T, the final time of
the computations. The approximation of the solution of (D2) on R, by a solution on a bounded interval
was made possible thanks to the property 0 < z + w(z) < z, which ensures that all the positions where
C; has to be evaluated belong to the interval (0, z,,4,) as long as z belongs to this interval. Using the
property (B3) of Appendix B it was natural to impose the Neumann boundary condition C;(Zpq,) = O.
The Matlab® source code of the solver is available as supplementary material, together with a Matlab®
graphical user interface (Fig. D1). Examples of numerical computations are given in Figs. 3A, 3B (main
text) and Figs. D2 and D3 (below). Notice that in the top left panels discrepancies with the theory arise
for U = 0.0002: as expected, (see ‘Convergence to the deterministic approximation’, main text) these
correspond to situations where N, U |u| < 1.

Solver_FGM =] @
Mean fitness SaveFip
0 — Parameter:
Mutation rate U. 0.1
-0.05
Numer of traits (n): [
e -01 lambda: 11300
= Initial fitness (m0) 02
-0.15
- Fisher's stochastic model
-0.2 Number of trajectories: 4
Number of individuals () 1ed
0 100 200 300
Variance {
- Computation
Final time: 300
Max comput time: no

Launch computations

G. Martin & L. Roques 2015

Fig. D1. Snapshot of the graphical user interface of the Matlab® solver for the numerical computation of the solution of
the nonlinear PDE (D2) (Eq. [7] in the main text).
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Fig. D2. N = N, = 10* individuals. Mean fitness i, (top panels) and variance V, (bottom panels) trajectories in Gaussian

Fisher’s geometrical model with several values of the mutation rate. Plain lines: expected trajectories (m;) and (V;)
given by the numerical solution of the PDE (D2) (or [7] in the main text), with M, and w as in Eq. (D1). Dashed lines (right
panel): expected trajectories given by the analytical solution of the linear PDE [4] under the weak selection strong
mutation (WSSM) approximation (see Appendix E). The shaded regions correspond 99% confidence intervals given by
individual based simulations, with 103 populations of N = N, = 10* individuals. The parameter values are n = 6 traits
and 1 =2|u|/n=1/300 (|us| = 0.01), leading to a critical mutation rate U, = 161 = 0.05. We assumed initially clonal

populations with my = —20|u,| = —0.2.
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Fig. D3. N = N, = 10% individuals. Mean fitness i, (top panels) and variance V, (bottom panels) trajectories in Gaussian
Fisher’s geometrical model with several values of the mutation rate. Plain lines: expected trajectories (m;) and (V;)
given by the numerical solution of the PDE (D2) (or [7] in the main text), with M, and w as in Eq. (D1). Dashed lines (right
panel): expected trajectories given by the analytical solution of the linear PDE [4] under the weak selection strong
mutation (WSSM) approximation (see Appendix E). The shaded regions correspond 99% confidence intervals given by
individual based simulations, with 103 populations of N = N, = 10° individuals. The parameter values are n = 6 traits
and A = 2|us|/n = 1/300 (|us| = 0.01), leading to a critical mutation rate U, = 161 ~ 0.05. We assumed initially clonal
populations with my = —20|us| = —0.2.
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Appendix E: Generalized FGM

Here we derive explicit results for a particular class of background — dependent models: Fisher’s
Geometrical model (FGM). We extend our results from the ‘gaussian FGM’ (the standard model of
guantitative genetics) where mutation effects on traits are normally distributed and which is analyzed in
appendix D. We derive approximate results (both equilibria and dynamics) for a generalization of this
model that relaxes the normality assumption for mutation effects.

“Generalized FGM”: We consider here an extension of the Gaussian FGM (Appendix D) to more general
phenotypic distributions. Darwinian (resp. Malthusian) fitness is still a Gaussian (resp. quadratic)
isotropic function of g € R™: logW (g) =m(g) = —||g||?/2. However, the distribution of mutation
effects on phenotype may now pertain to a broad class of distributions, with the only constraint that it
be spherically symmetric and continuous in the vicinity of dg = 0 (the latter to satisfy H, see
Appendix B). Note that we may set that the distribution has no spike at dg = 0 without loss of
generality, as U is the non-neutral mutation rate. We denote this model the “generalized FGM” as it is
characterized by fairly general mutant phenotype distributions.

I. Functions w(.) and M, (.) in the generalized FGM

The key to apply our approach to a particular model is to derive the functions M, (z) and w(z) for this
model. We derive these functions in the generalized FGM below. The stochastic representation of the
DFE, from a background with phenotype giss = —12/2 — r ||g|| u,, where r = ||dg|| is the norm of the
mutant phenotypic effect, and u,, is the cosine of the angle between dgand g. For any spherically
symmetric distribution of dg, u,, has MGF M, (z) = (F;(n/2,z%/4) (see e.g. (MARTIN and LENORMAND
2015)), where ¢F; (.) is the regular confluent hypergeometric function. Therefore, the DFE among those

mutants with fixed magnitude r, has MGF M*(z,7,g) = e‘”z/zMu(—r llgllz). This can be rewritten in

terms of the background fitness (m = —||g||?/2) and the fitness effect that the mutants with
magnitude r would have, in an optimal background (s, = —r2/2):
n
M3(z,m,s,) = e%?,F; (E'm S ZZ). (ED)

As required, at m = 0, the DFE for the mutant class with fitness s, has MGF M5(z,0, s,) = e>* (a Dirac
at s =s,). Taking the expectation of Eq. (El) over s,, we retrieve the MGF of the DFE in
background m: M*(z,m) = Eg (M*(z,m,s,)). The MGF of the DFE atm = 0is E(e®?) = M,(z), as

required.
Il. Equilibrium in the Generalized FGM: application to an exponential DFE

In order to compute general results on the equilibrium fitness distribution (see main text), we must
further derive the function w(z) = d,,log M*(z, m) |;,=0. We note from (E1) that 9,,M*(z, m, s,)|m=0
= 2 s5,e%%z% /n and use the exchangeability of expectation and derivation to get
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0, E. (M5(z,m,s,
W (2) = 0y, log M5 (2, m)|1po = — 5. (M )

MsS(z,m) o -
_ B nM zm s)lnm) _272Es (s.6%%) _222Mi(2) _27° E2)
w(@) = M5(z,0) “Thn M2 1 M.(2) +(2).

Note that, as should be, Eq. (E2) retrieves the correct w(z) = —12z%(1 + A z)™? for the Gaussian FGM.
The two corresponding functional coefficients a(.) and S(.) are given by

2U0
a(z)=1+Uw(@M.(2) =1+ TM,:(Z) z2,
B(z) =UM.(z) —1).

(E3)

From a given model for the distribution of dg, the framework can be applied to compute the
corresponding equilibrium of the fitness distribution. The load is given by L = U(1 — M, (z;)) where z; is
the smallest positive root of a(z) = 1+ 2 U/nM/(z) z%, or z; = w0 if a(z) > 0 forall z > 0.

As an example, consider that dg is such that the DFE is exponential at the optimum: s,~ — Exp(1/|us*|)
with mean E(s,) = s+ < 0, with MGF M, (2) = |us*| 71/ (z + |tg*| ~1). Assuming arbitrary number n of
dimensions, this model differs from the Gaussian FGM unless n = 2. Define A = 2|u,+|/n, the variance
of the phenotypic distribution at each trait (for consistency with the Gaussian FGM). If U < U, = n?1/4,
there is no root to a and the load is then L = U. Beyond U > U, , a has a unique positive root z; =
1/(m - n/'l/Z) and the load is L = U(1 — M,(z;)) = nU 1/2. Over all possible U values, the load

can thus be written: L = min(U,n VU 1/2).

We now turn to more general results, independent of the details of the distribution of mutant
phenotypes (hence of M,), in a weak selection limit.

lll. Weak selection strong mutation (WSSM) approximation

We note that in Eq. (El), s, enters the function MS(z,m,s,) in product withz. This implies that
mutation effects in background m scale with their counterparts in background m = 0 (with the norm of
the mutant phenotypic effect). Taking a leading order in z s, yields

MS(z,m,s,) ~1+zs, + 2 M2y 0(s%z?)

Taking expectations over the distribution of s, yields a mutational kernel of linear background-
dependence form:MS(z,m)=1+zugs+2z2mug/n+ 0(;152* Zz), where we require that the
coefficient of variation of s, be of order 1 (or equivalently E(s?) = 0(;12*)). Computing the weighted
sum over the within population distribution of m yields Ws(z,m) ~eMZ(1+zus) +
memZ2z% u~/n . Noting that me™Z = M/(z) and taking the ensemble expectation vyields
(emZMS(z,m)) = M (2)(1 + z ug*) + M{(2) 2 z2 u/n, once plugged into Eq. [2] vyields the
mutational term:
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A Ci(2)

mutA =U ((eszS(Z, m))e—ct(z) — 1) ~Uugz+22z%U ug/n G/ (2). (E4)
t

And (as any form of linear background-dependence) a linear PDE for C; (see Eq. [4]):

0:C¢(2) = @(2)C{(2) - C{(0) + B(2),

B ~ UAln (E5)
@(z)=1-UAz%,6(z) =— 5%

where we recall that A = 2|u+|/n is the variance of the phenotypic distribution at each trait. Note that
the above expressions of & and E correspond to series expansions at Az = 0 of the coefficients a, 8
proposed in Appendix D for the Gaussian FGM.

Range of validity: The approximation is valid to leading order in || z; therefore, it cannot be accurate
over the full range of z € R*, but remains accurate in some finite range z € [0, €/|us+|] where € < 1.
This reflects the fact that it does not capture the right tail of the DFE (fitter mutants), this tail being
determined by the values of M®(z, m) at large z. Such limited range implies that the mutation rate must

be strong enough relative to mutation fitness effects that the fitness dynamics are not driven by this tail:
this is a strong mutation weak selection regime. More precisely, under the approximation, the range of z
where the solution to Eq. [4] evolves is bounded by y(R*) = [0, z;] (see Eq. [5]). In Eq. (E5), the first
positive root of & is Z; = 1/m: consistency thus implies that a sufficient condition for the solution of
Eq. (E5) to capture the full dynamics over timeisthat 0 < z < Z; = 1/VU 1 < 1/|pug*
to a lower bound on the mutation rate, relative to the strength of selection: the weak selection

. This boils down

approximation is valid when

U»U,=n%*1/4. (E6)

Note here that we have used the notation U, (recalling the critical mutation rate U, in Appendix D) on
purpose. It is also the critical mutation rate where the phase transition occurs between L = U and L <

U, as computed from Eq. (E5). We have (beyond the phase transition) the load L ~ L = —(1/vVU 1) =
U |us+| /U 2 which is exactly equal to L = U (below phase transition) at the transition point U = U..

Equilibrium fitness distribution: We know that the mutation load is approximately L = U|ug:|/VU A =

n/2vU A, whenever the approximation applies. We also know that, outside this regime, there must be a
lower bound to U below which L = U (with L < U beyond this bound). A natural approximation
connecting all the range of U is

L~ min(U, n/Z\/W), (E7)
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with a phase transition at U = U. = n? 1/4. This ‘rule of thumb’ happens to yield the exact behavior for
a particular form of FGM (detailed above) with an exponential distribution of s,, also corresponding to
the Gaussian FGM inn = 2 dimensions.

The equilibrium fitness distribution has CGF C,, (z) satisfying 3,C;(z) = 0 with C,,(0) = =L = —nn/2,
which (from Eq. (ED)) yields:

ZB(Ww) +nU /2 n
Co(2) = —J;) 20 dv = —Elog(l + \/WZ) (E8)

This is the CGF of a negative gamma distribution m~ —T'(n/2,VU A).

Normal equilibrium trait distribution: Because the FGM links fitness and phenotype, the equilibrium
fitness distribution corresponds to a given multivariate distribution of the n traits. As fitness is a
quadratic function of breeding values for the traits (g € R"), it is easily shown that the gamma
distribution of fitness (Eq. (E8)) implies a multivariate normal (MVN) distribution of the breeding
values g at equilibrium, with mean at the optimal phenotype (g = 0) and variance VU 1 on each
trait:g~MVN(0,m1n), where I, is the identity matrix in n dimensions. Therefore, our weak
selection approximation exactly matches Kimura’s (1965) and Lande’s (1980) normal approximations for
trait distributions at mutation — selection balance under stabilizing selection. Indeed, although obtained
in strikingly different manners, these two approaches rely on the same assumption of strong mutation
relative to selection (Eq. (E6)). It is also maybe more straightforward here (although already noted by
Lande) that this equilibrium is mostly independent of the underlying distribution of mutation effects on
phenotypes (generalized FGM).

Beyond its application to fitness, the present treatment thus clarifies that the well-known normal
approximation for traits applies, at equilibrium, under two explicit quantitative conditions. First, the
mutation rate must be well above U, =n?1/4 =n |us-|/2. Second, the distribution of mutant
phenotypic effects must yield a DFE, at the optimum, that has a coefficient of variation of order 1 or less
(CV(s.) = 0(D)).

General fitness distribution dynamics: The solution of Eq. (E5) over time (Eq. [5] and Appendix B)
depends on the solution of the ODE J'(t) = @(J(t)) with boundary condition (0) = 0. This
yields y(t) = tanh(m t) /u with functional inverse §~1(z) = arctanh(m Z) /YU A. From a given
initial fitness distribution characterized by some CGF C,(z), and plugging the particular functions £(.),
$(.) and §~1(2) into the general solution in Eq. [5], the CGF of the fitness distribution at time t is
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C.(2) ~ —210g(1 + VI A ztanh (VU 21)) + Cy (tanh(m t + arctanh(VU 1 z)))

VU2
(E9)
¢ <tanh(m t))
‘N vuza /)
with mean fitness trajectory given by (Eq. [8]):
(m,) ~ — thanh(m t) + sech(m t)z Co <%> (E10)

Particular forms of C,(.) can be studied to obtain explicit forms, depending the on initial conditions: we
consider two standard scenarios.

Adaptation from a clone: If the population is initially clonal, with fitness m, < 0, then Cy(z) = myz and
the CGF of the fitness distribution becomes

myz sech(\/U A t)z n

Ci(2) =
2 1+zVUAtanh(VU At) 2

log(l +VU 2 ztanh(m t)) (E11)

The mean fitness is given by Eq. (E10), with C; (tanh(\/U A t)/VU /1) = m,. Eq. (E11) can be equated to
the CGF of a known distribution, providing a stochastic representation for the fitness distribution over
time:

m~—2A./2 x4 (),
A = \/U/ltanh(\/U/l t),

ey (E12)
my
. =4csch(2VU At ,
: VU0 =

where y2(r,) is a non-central chi-square distribution with n degrees of freedom and non-centrality
parameter r;. As for equilibrium, a corresponding trait distribution can also be derived: we retrieve again
a multivariate normal trait distribution, but with time-varying mean and variance. Consider a given
position g, of the initial clone in phenotype space, in any direction but with norm satisfying ||g, |l =

+/ 2|mg|; the trait distribution at time t is

g ~ MVN(sech(NU 1t) go, A1),

A = Mtanh(m t) . (E13)

Characteristic time of the trajectory: Let us consider the time t, it takes to fulfill a proportion g of the
full fitness trajectory. This t, is the time at which (Tﬁtq)—mo = q ((Me) —my), with(m,) =

2
my sech(\/U A t) —n/2VU /'Ltanh(\/U A t). When mgy = 0 it yields the time to reach equilibrium, from
an optimal clonal population. This time is t, = arctanh(q) /VU 4; for example with ¢ = 0.99, itist, =
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2.64/vU A. When considering adaptation from a strongly suboptimal clone ( mg > VU 1), most of the

2
trajectory is driven by the term mgsech(VUAt) , and the characteristic time is then t; =

arcsech(y/1— q)/VU 1. Again with g = 0.99 it is t, ~ 3/VU A. The two characteristic times are
remarkably close; in general, their ratio is t,/tg = log(h/2)/log(h/4) + o(h) where h = 1 — q, which
remains very close to 1 for any small h (large q). Therefore, it takes roughly the same time (0(3/@))
for an optimal clone to reach mutation selection balance, and for a suboptimal clone to reach the vicinity
of the optimum. The characteristic time is independent of the initial distance and only proportional

to 1/VU A.

Adaptation from a population formerly at equilibrium: Alternatively, the population may be initially at
equilibrium, around some optimum in phenotype space Og. At time t = 0 the optimum shifts from g, to
the origin 0; = 0 of the landscape, due to a change in the environment, and the population adapts to it.
As the equilibrium is characterized by a normal distribution of phenotypes in the diffusion regime, we
may import the theory of the Gaussian FGM to compute the initial fitness distribution after the optimum
has shifted. We have g, = O, the initial position of the mean phenotype (the former optimum),
corresponding to some fitness lag (in the new environment) my = —||0yl|2/2 < 0, in whatever
direction. The initial trait distribution is Multivariate Normal: go~MVN(Qy, /Uy A4 I,,) corresponding to
the ancestral (‘A’) mutation rate U4 and phenotypic variance A4 that were affecting the population
before the environmental change. In the new environment, the mutation rate and phenotypic variance
are U and A, respectively, yielding a new VUA. The stochastic representation of fitness, at the onset of

the environmental change, is m ~— /Uy 44/2x2(—2mg//Us 24), and the CGF of the fitness
distribution is Cq(z) =myz/(1 + Uy A4 2) —n/2log(1 + /Uy Ay 2). Let § = \JUy A4/VU A —1 be

the relative change in VU A before and after the onset of stress. Plugging Cy(.) into our general solution
yields a form similar to Eq. (E11):

Co2) » —2Z  _Tlog1 + 2, 2)
S T Az 2 BT
s
nt=\/U,1<1+2(6+2)62 TM_g). (E14)

(me) =my (cosh(m t) — \/rlljt_/lsinh(m t))z :

For a small effect of the environmental change on+vU A (to leading order in ), we have (m;) =
mg e 2VUAt(1 — §) and n, ~ VU 1 (1 + e‘“md) ~ VU A after some time. With no change in
either Uor A across environments (8§ = 0), the expected mean fitness trajectory is simply (m;) =

moe 2VUAt — n\JU 1/2. The stochastic representation of the fitness distribution is
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m~ _At/z szl(rt);
At =n; = VU A, (E15)
=2 |me|/ne = 2 e 2V [mg|(1 - 6).

In similarity with the model starting from a clonal population, the corresponding trait distribution is
again Gaussian (with approximately constant variance when én « 1):

gt ~MVN (g, n1y),
ne =vU A (1 +2

) =VU 1+ 0(8?),

(5+2)ezmt_§ (E16)

8: = 8o (cosh(m t)— \/%sinh(m t)) = e VAT =5 g, + 0(8).

The qualitative behavior of the trait distribution in the case of a constant mutation rate and effects (§ =

0) has been pointed out previously (HEREFORD et al. 2004): from equilibrium, the trait distribution evolves
as a Gaussian traveling wave with constant variance; the mean distance from the optimum decreases

exponentially as e~ VU A The effect of mild changes in U or 1 between environments is approximately

to modify the effective distance to the optimum, by a factorv1 — §.

Characteristic time of the trajectory: As above, let us consider the characteristic time for this trajectory.
When m, = 0 the interesting situation arises when U, # U or 44 # A (otherwise the system stays at the
same equilibrium). The characteristic time then describes how long it takes to adjust to a new mutation
rate or mutational variance, without moving from the optimum. Taking a leading order § yields t(’l’ =
log(1/h)/(2VU ) where h = 1 — q. The time to adjust is independent of the difference in mutation
rates, as long as they are close (§ «< 1). When mg > VU 2, away from the optimum, and if we consider
this time that § = 0 for simplicity, the trajectory is driven by the term in m, (M, = mye 2 mt) and we
obtain againty = log(1/h)/(2VU 2). It takes roughly the same time to adjust between different
mutation rates at equilibrium and to adapt to a new environment, from equilibrium.

The characteristic time for adaptation to a new environment, from standing variance or from an initially
clonal population are of similar order: tg /tq = log(1/h)/(2 arcsech(\/ﬁ)) = log(1/h)/log(4/h) +
o(h) remains within [0.6,1] with h € [0,0.1]. In this regime of strong mutation weak selection, de novo
mutation drives the dynamics.

PDF of the fitness distribution over time: As it appears, both models yield the same form of stochastic
representation; it is thus useful to derive its corresponding pdf. The distributions are of the form m ~ —
A/2 x2(r) with some 2 and 7 (which, here, depend on time), given by Egs. (E12) and (E15), depending
on the model. The pdf of the distribution is (from that of the non-central chi-square):

e—r/Z -n/2 n |x|r
= e Xl/A yv/2-1 Eo(Z I <0 E1l7
where (F; (.,.) is the confluent hypergeometric function and |x| = —x is the absolute value of x.
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