

1 **Cassava HapMap: Masking deleterious mutations in a clonal crop species**

2

3 **Punna Ramu^{1*}, Williams Esuma², Robert Kawuki², Ismail Y Rabbi³, Chiedozie Egesi^{3,4,5},**
4 **Jessen V Bredeson⁶, Rebecca S Bart⁷, Janu Verma¹, Edward S Buckler^{1,8}, Fei Lu^{1*}**

5

6 ¹Institute of Genomic Diversity, Cornell University, Ithaca, NY, USA.

7 ²National Crops Resources Research Institute (NaCRRI), Kampala, Uganda.

8 ³International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.

9 ⁴National Root Crops Research Institute (NRCRI), Umudike, Nigeria.

10 ⁵International Programs, College of Agriculture and Life Sciences, Cornell University,
11 Ithaca, NY, USA.

12 ⁶Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

13 ⁷Donald Danforth Plant Science Center, St. Louis, MO, USA.

14 ⁸US Department of Agriculture – Agriculture Research Service (USDA-ARS).

15 Correspondence should be addressed to P.R. (rp444@cornell.edu) or F.L.

16 (f1262@cornell.edu)

17 **Cassava (*Manihot esculenta* Crantz) is an important staple food crop in Africa and**
18 **South America, however, ubiquitous deleterious mutations may severely reduce its**
19 **fitness. To evaluate these deleterious mutations in the cassava genome, we**
20 **constructed a cassava haplotype map using deep sequencing from 241 diverse**
21 **accessions and identified over 28 million segregating variants. We found that, 1) while**
22 **domestication modified starch and ketone metabolism pathways for human**
23 **consumption, the concomitant bottleneck and clonal propagation resulted in a large**
24 **proportion of fixed deleterious amino acid changes, raised the number of deleterious**
25 **mutations by 26%, and shifted the mutational burden towards common variants; 2)**
26 **deleterious mutations are ineffectively purged due to limited recombination in**
27 **cassava genome; 3) recent breeding efforts maintained the yield by masking the most**
28 **damaging recessive mutations in the heterozygous state, but unable to purge the**
29 **mutation burden, which should be a key target for future cassava breeding.**

30

31 Cassava is the third most consumed carbohydrate source for millions of people in
32 tropics, after rice and maize¹. Even though cassava was domesticated in Latin America²,
33 it has spread widely and become a major staple crop in Africa. Cassava stores starch in
34 underground storage roots, which remain fresh until harvest. Cassava is a highly
35 heterozygous species. Although its wild progenitor, *M. esculenta* ssp. *falbellifolia*,
36 reproduces by seed³, it is particularly worth noted that cultivated cassava is almost
37 exclusively clonally propagated via stem cutting, in which a single individual contributes
38 its entire genome to its offspring⁴. The limited number of recombination events in such
39 vegetatively propagated crops results in a potential accumulation of deleterious
40 mutations across the genome⁵. Thus, mutation burden in cassava is expected to be
41 more severe than in sexually propagated species. Deleterious mutations are considered
42 to be at the heart of inbreeding depression⁶. Inbreeding depression is extremely severe,
43 even in elite cassava accessions, where a single generation of inbreeding results in >60%

44 reduction in fresh root yield^{7,8}. In this study, we aimed to identify deleterious mutations
45 in cassava populations, which in turn can help accelerate cassava breeding by allowing
46 breeders to purge deleterious mutations more efficiently.

47 We conducted a comprehensive characterization of genetic variation by whole genome
48 sequencing (WGS) of 241 cassava accessions, including 203 elite breeding accessions (*M.*
49 *esculenta* Crantz), 16 close relatives (*M. esculenta* ssp. *flabellifolia*, *M. esculenta* ssp.
50 *peruviana*) of modern cultivars^{2,9}, 11 hybrid/tree cassava accessions, and 11 more
51 divergent wild relatives (*M. glaziovii* and others) (**Supplementary Fig. 1** and
52 **Supplementary Table 1**). Samples included 54 accessions from an initial haplotype map I
53 (HapMapI) study¹⁰. Wild *M. glaziovii* has been used extensively in cassava breeding
54 programs to transfer disease resistance alleles to cultivated cassava (e.g., Amani
55 Breeding program)⁸. On average, more than 30x coverage sequences were generated
56 for each accession. The 518.5 Mb cassava genome (v6.1) has roughly 51% repetitive
57 elements with several common recent retrotransposons¹⁰. To exclude misalignment and
58 ensure high quality of variant calling, repeat sequences were pre-filtered using repeat
59 bait (**Supplementary Fig. 2**) and the remaining sequences were aligned against the
60 cassava reference genome v6.1^{10,11}. Variants from low copy regions of the genome were
61 identified to develop the cassava haplotype map II (HapMapII) with 27.8 million variants
62 (25.9 million SNPs and 1.9 million indels) and with a low error rate of 0.01%, which is the
63 proportion of segregating sites in the reference accession (**Supplementary Fig. 3**). The
64 correlation between read depth and proportion of heterozygotes of SNPs is extremely
65 low ($r^2 = 6E-05$, **Supplementary Fig. 4**). Cultivated cassava exhibited 9.94 million variants
66 (**Supplementary Table 2**), of which nearly 50% were found to be rare (<5% minor allele
67 frequency (MAF)) (**Supplementary Table 2 and Supplementary Fig. 5**). Haplotypes were
68 phased and missing genotypes were imputed with high accuracy using BEAGLE v4.1¹²
69 (accuracy $r^2 = 0.966$) (**Supplementary Fig. 6**). Linkage disequilibrium was as low as in
70 maize¹³ and decayed to an average $r^2 = 0.1$ in 3,000 bp (**Supplementary Fig. 7**).

71 Cultivated cassava presented lower nucleotide diversity ($\pi = 0.0036$) compared with its
72 progenitors (*M. esc. ssp. flabellifolia*, $\pi = 0.0051$). In addition, a close relationship
73 between the two species was observed from phylogenetic analysis (**Supplementary Fig.**
74 **8**). Both lines of evidence support the hypothesis that cultivated cassava was
75 domesticated from *M. esc. ssp. flabellifolia*^{2,9,10}. To evaluate population differentiation
76 of cassava, a principal component (PC) analysis was performed and showed substantial
77 differentiation among all cassava species and hybrids (**Fig. 1a**), where cultivated cassava
78 showed moderate genetic differentiation from its progenitors (F_{st} : 0.16), and high
79 genetic differentiation from tree cassava (F_{st} : 0.32) and wild relatives (F_{st} : 0.44)
80 (**Supplementary Table 2 and Supplementary Figs. 9 and 10**). However, PC analysis
81 showed very little differentiation among cultivated cassava (**Fig. 1b**), where geographic
82 subpopulations of cultivated cassava presented surprisingly low value of F_{st} among
83 themselves (0.01-0.05) despite the fact that these subpopulations were sampled from
84 different continents (**Supplementary Table 2**). This suggests that despite clonal

85 propagation, there has been enough crossing to keep cultivated cassava in one breeding
86 pool.

87 Sequence conservation is a powerful tool to discover functional variation^{14,15}. We
88 identified deleterious mutations by utilizing genomic evolution and amino acid
89 conservation modeling. The cassava genome was aligned to seven species in the
90 Malpighiales clade to identify evolutionarily constrained regions of cassava genome.
91 Based on genomic evolutionary rate profiling (GERP)¹⁶ score, nearly 104-Mb of the
92 genome (20%) of cassava was constrained (GERP score > 0) (**Supplementary Fig. 11**).
93 The evolutionarily constrained genome of cassava (104 Mb) is comparable to maize (111
94 Mb)¹⁷ in size, but less than humans (214 Mb)¹⁶ and more than *Drosophila* (88 Mb)¹⁸.
95 GERP profiling also identified remarkably asymmetric distribution of constrained
96 sequence at the chromosome scale (**Supplementary Fig. 12**). In addition to the
97 constraint estimation at the DNA level, consequences of mutation on amino acids in
98 proteins were assessed using Sorting Intolerant From Tolerant (SIFT) program¹⁹. Nearly
99 3.0% of coding SNPs in cultivated cassava were non-synonymous mutations
100 (**Supplementary Table 2** and **Supplementary Fig. 13**), of which 19.3% (57,952) were
101 putatively deleterious (SIFT < 0.05). As the strength of functional prediction methods
102 varies¹⁴, we combined SIFT (< 0.05) and GERP (> 2) to obtain a more conservative set of
103 22,495 deleterious mutations (**Supplementary Fig. 14**).

104 To estimate the individual mutation burden, we used rubber (*Hevea brasiliensis*), which
105 diverged from the cassava lineage 27 million years ago¹⁰, as an out-group to identify
106 derived deleterious alleles in cassava. First, we focused on the fixed deleterious
107 mutations. The derived allele frequency (DAF) spectrum shows that cassava (5%, **Fig. 2**)
108 appears to have more fixed deleterious mutations than maize (3.2%, DAF > 0.8)²⁰ when
109 compared at the same threshold (SIFT < 0.05). Across cultivated cassava there were 150
110 fixed deleterious mutations. These deleterious mutations cannot be purged through
111 standard breeding which relies on recombination of segregating alleles, but these fixed
112 deleterious mutations are the potential targets for genome editing²¹. Together with the
113 other 22,345 segregating deleterious mutations, the mutation burden in cassava was
114 substantial. Given the several millennia of breeding in the species, why are these
115 deleterious mutations still in cultivated cassava and how were breeders managing
116 them? We evaluated the effects of recombination, selection, and drift, as the main
117 processes controlling the distribution of deleterious mutations in the genome.

118 Recombination is an essential process to purge deleterious mutations from genome²². In
119 vegetatively propagated species like cassava, recombination is expected be less efficient
120 in purging deleterious mutations. This hypothesis was supported by a weak correlation
121 between recombination rate and distribution of deleterious mutations ($r = -0.065, P =$
122 0.13, **Fig. 3a**). Deleterious mutation were nearly uniformly spread across the cassava
123 genome (**Fig. 3b** and **Supplementary Fig. 15**), rather than being concentrated in low
124 recombination regions as in human²³, fruit fly²⁴, and maize¹⁷. Thus, recombination,

125 which is presumably rare in a clonally propagated crop, does not effectively purge
126 mutation burden in cassava.

127 Domestication is important in evolution and improvement of crop species. The major
128 domestication trait of cassava is the large carbohydrate rich storage root. Cultivated
129 cassava has 5-6 times higher starch content than its progenitor³. Another domestication
130 trait is the reduced cyanide content in roots³. Every tissue of cassava contains
131 cyanogenic glucosides²⁵. Ketones, cyanohydrin, and hydrogen cyanide are the key toxic
132 compounds formed upon degradation of cyanogenic glucosides^{25,26}. These toxic
133 compounds have to be eliminated before consumption. To identify the genomic regions
134 under selection during the domestication, a likelihood method (the cross-population
135 composite likelihood ratio, XP-CLR)²⁷ was used to scan the genome in Latin American
136 accessions and the progenitor *M. esculenta* ssp. *flabellifolia*. We identified 203 selective
137 sweeps containing 427 genes in Latin American accessions (**Supplementary Fig. 16a**).
138 Genes in these sweep regions were enriched for starch and sucrose synthesis (3.8-fold
139 enrichment; FDR = 7.2×10^{-3}) and cellular ketone metabolism (3.4-fold enrichment; FDR
140 = 5.3×10^{-3}) (**Supplementary Fig. 16b**). The results suggest that selection during
141 domestication increased production of carbohydrates and reduced cyanogenic glucoside
142 in cassava. Likewise, selection signatures of recent bottleneck event in African cassava
143 accessions were also evaluated. A total of 244 selective sweeps were identified
144 containing 416 genes. These genes were enriched for serine family amino acid
145 metabolism (4.2-fold enrichment, FDR = 2.1×10^{-6}) and cellular response to stress (1.3-
146 fold enrichment, FDR = 4.9×10^{-6} , **Supplementary Fig. 17**). Since L-Serine is involved in
147 the plant response to biotic and abiotic stresses^{28,29}, together with the functional
148 enrichment of cellular response to stress, it may reflect that disease resistance
149 accessions were selected in recent breeding program in Africa⁸.

150 How was the genetic burden shaped in the selective sweeps? We found that Latin
151 American accessions showed 25% less ($P = 0.009$, **Fig. 4a**) deleterious mutations than
152 progenitors in sweep regions. Similarly, African accessions exhibited a 35% drop ($P = 2.1$
153 $\times 10^{-7}$, **Fig. 4b**) in sweeps compared to Latin American accessions. In addition to the
154 comparison between populations, significant reductions of deleterious mutations were
155 observed within population by comparing sweep regions and the rest of the genome.
156 For example, selective sweeps presented 44% depletion ($P = 9.7 \times 10^{-12}$, **Fig. 4c**) of
157 deleterious mutations in Latin American accessions and 41% reduction ($P = 8.7 \times 10^{-130}$,
158 **Fig. 4d**) in African accessions. This implies that haplotypes containing fewer deleterious
159 alleles were favored during selection.

160 However, drift after domestication played a more important role in affecting mutation
161 burden in cassava. Although Latin American accessions and African accessions had a
162 similar number of deleterious mutations ($P = 0.42$, **Fig. 5a**), they presented a prominent
163 increase of total burden by 26% ($P = 9.1 \times 10^{-9}$, **Fig. 5a**) when compared with
164 progenitors, and shifted the mutation burden towards common deleterious variants
165 (**Supplementary Fig. 18**). The increase of deleterious mutations during domestication

166 was also found in dog³⁰. The results suggest that the severe bottleneck of domestication
167 and shift from sexual reproduction to clonal propagation resulted in a rapid
168 accumulation of deleterious mutations in cultivated cassava.

169 How have the breeders been able to maintain yield, given the substantial growth of
170 mutation burden in cultivated cassava? This became apparent when the homozygous
171 deleterious mutations and heterozygous deleterious mutations were compared.
172 Relative to *M. esculenta*. ssp. *flabellifolia*, the homozygous mutation burden
173 substantially decreased by 23% ($P = 7 \times 10^{-3}$, **Fig. 5b**) in cultivated accessions regardless
174 of the elevated frequency of deleterious alleles (**Supplementary Fig. 18**), while the
175 heterozygous mutation burden remarkably increased by 96% ($P = 8.1 \times 10^{-7}$, **Fig. 5c**),
176 despite the reduced genetic diversity in cultivated cassava ($\pi = 0.0036$) relative to
177 progenitors ($\pi = 0.0051$). In addition to the comparison between cultivated cassava and
178 progenitors, we also compared observed and expected mutation burden under the
179 assumption of Hardy–Weinberg Equilibrium (HWE) within cultivated cassava (**Online**
180 **Methods**). Although HWE was probably never reached in the breeding pool, the relative
181 depletion of homozygous mutation burden and excess of heterozygous mutation
182 burden would not be seen unless it was selected and maintained. The results from
183 bootstrap resampling (10,000 times) showed that the observed homozygous mutation
184 burden was less than the expected (Latin American cassava: 5.6% decrease, $P = 0$;
185 African cassava: 10.3% decrease, $P = 0$, **Fig. 5d**), and the observed heterozygous
186 mutation burden was more than expected (Latin American cassava: 3.5% increase, $P =$
187 1.5×10^{-312} ; African cassava: 6.9% increase, $P = 0$, **Fig. 5e**), indicating a significant
188 deviation from HWE expectation. These evidence suggest that breeders have been
189 trying to manage the recessive deleterious mutations in the heterozygous state to mask
190 their harmful effects.

191 Mutations with large homozygous effect are more likely to be recessive³¹. We found
192 nearly 64.5% of deleterious mutations occurred only in the heterozygous state
193 (**Supplementary Fig. 19**). Although the low allele frequency confines effective tests for
194 the excess heterozygotes of these deleterious mutations, they are more likely to be
195 strong deleterious mutations, resulting in the significant yield loss in the first generation
196 of selfed cassava plants^{7,8}. These mutations were in genes ($n = 7,774$) mainly enriched
197 for macromolecule catabolism and biosynthesis (**Supplementary Fig. 20a**). In contrast,
198 the deleterious mutations existing predominantly in the homozygous state (proportion
199 of homozygotes > 70%, **Supplementary Fig. 19**), were present in genes ($n = 245$)
200 enriched for amine and ketone metabolism, as well as chemical and stimulus responses
201 (**Supplementary Fig. 20b**). This difference suggests that the deleterious mutations
202 primarily exhibited in the heterozygous state may have relatively large fitness
203 consequences.

204 Cassava is a major staple crop feeding hundreds of millions of people. Using deep
205 sequencing of a comprehensive and representative collection of 241 cassava accessions,
206 we developed the HapMapII, a highly valuable resource for cassava genetic studies and

207 breeding. In this vegetatively propagated species, deleterious mutations have been
208 accumulating rapidly due to the lack of recombination. The bottleneck event during
209 domestication exacerbated the existing mutation burden in cassava. Breeding efforts
210 successfully maintained the yield by selecting high fitness haplotypes at a few hundred
211 loci and handling most damaging mutations in the heterozygous state. However,
212 breeders were unable to purge the mutation burden due to limited recombination,
213 instead they shielded deleterious mutations by increasing the heterozygosity while
214 screening thousands of potential hybrids (**Supplementary Fig. 21**). In the short term,
215 this practice for managing mutation burden may produce gains in yield. In the long run,
216 however, a mutational meltdown may be triggered by new mutations, decreasing
217 genetic diversity in breeding pool, and clonal propagation. The deleterious mutations
218 should be important targets for future cassava breeding programs. Genomic selection
219 and genomic editing technologies²¹ are anticipated to help purge deleterious mutations
220 and improve this globally important crop.

221 **ONLINE METHODS**

222 **Samples and whole genome sequencing**

223 To maximize the diversity and representation for cassava, all samples were selected
224 based on breeders' choice and diversity analysis from accessions included in Next
225 Generation Cassava Breeding project (www.nextgencassava.org). Whole genome
226 sequences were generated from 241 cassava accessions including 203 elite breeding
227 accessions, 16 progenitors (*M. falcifolia*, *M. peruviana*)⁷, 11 hybrid/tree cassava
228 accessions and 11 wild relative cassava accessions (*M. glaziovii* and others)
229 (**Supplementary Table 1**). Among 241 cassava accessions, 172 accessions were
230 sequenced at the Genomic Diversity Facility at Cornell University, Ithaca, NY, USA.
231 Standard Illumina PCR-free libraries were constructed with insert size of 500-bp using
232 Illumina standard protocol. Sequences of 200-bp length were generated using Illumina
233 HiSeq 2500 and 150-bp length were generated using NextSeq Series Desktop
234 sequencers. Donald Danforth Plant Science Center, St. Louis, MO, USA generated ~20x
235 coverage sequences for 15 elite cassava accessions. Sequences for remaining 54 cassava
236 accessions were collected from HapMapI¹⁰, generated at the University of California at
237 Berkeley (USA).

238

239 **Alignment of reads and variant calling for generation of cassava haplotype map**
240 **(HapMapII)**

241 The cassava genome was found to have large amounts of repeat sequences¹⁰. To
242 minimize misalignment, these repeats were pre-filtered by aligning the sequences to a
243 bait containing repeat sequences and organelle sequences (**Supplementary Fig. 1**).
244 Remaining sequences after pre-filtering were aligned to reference genome (v6.1) using
245 burrows-wheeler alignment with maximal exact matches (BWA-MEM) algorithm
246 (<http://bio-bwa.sourceforge.net/bwa.shtml#13>). To ensure high quality SNP calling,
247 especially for those rare variants, we developed an in-house pipeline, FastCall
248 (<https://github.com/Fei-Lu/FastCall>), to perform the stringent variant discovery. The
249 procedures include: 1) Genomic positions having both insertion and deletion variants
250 were ignored, since these sites were likely in complex regions with many misalignments;
251 2) For multiple allelic sites, if the third allele had more than 20% depth in any individual,
252 the site was ignored; 3) For a specific site, if the minor allele did not have a depth
253 between 40% and 60% in at least one individual when individual depth was greater than
254 5, the site was ignored; 4) A chi square test for allele segregation¹³ in all individual is
255 performed. The sites with *P*-value more than 1.0×10^{-03} were ignored. 5) On average,
256 over 30X depth was used to for individual genotype calls. The genotype likelihood was
257 calculated based on multinomial test reported by Hohenlohe *et. al*³². To remove
258 potential spurious variants arising from paralogs, an additional filter was applied to keep
259 only variants with depth between 7,500 and 11,500. The missing data was about 4%.
260 The genotypes were imputed and phased into haplotypes using BEAGLE v4.1¹². A total
261 of 10% of the genotypes were masked before imputation to calculate the imputation
262 accuracy.

263

264 **Population genetics analysis**

265 SNP density, pair-wise nucleotide diversity (π), Tajima's D and F_{st} were calculated using
266 VCFtools³³ (**Supplementary Fig. 8**). Principal component analysis was carried out in Trait
267 Analysis by aSSociation, Evolution and Linkage (TASSEL)³⁴. Recombination rates were
268 obtained from cassava HapMapI source¹⁰.
269

270 **Genomic evolutionary rate profiling (GERP)**

271 Constrained portion of cassava genome was identified by quantifying rejected
272 substitutions (strength of purifying selection) using GERP++ program¹⁶. Multiple whole
273 genome sequence alignment was carried out for the seven species in Malpighiales clade
274 of plant kingdom, including cassava, rubber (*Hevea brasiliensis*), jatropha (*Jatropha*
275 *curcas*), castor bean (*Ricinus communis*), willow (*Salix purpurea*), flax (*Linum*
276 *usitatissimum*), and poplar (*Populus trichocarpa*). Phylogenetic tree and neutral branch
277 length (estimated from 4-fold degenerate sites) were used to quantify constraint
278 intensity at every position on cassava genome. Cassava genome sequence was
279 eliminated during the site specific observed estimates (RS scores) to eliminate the
280 confounding influence of deleterious derived alleles segregating in cassava populations
281 that are present in reference sequence.
282

283 **Identifying deleterious mutation**

284 Amino acid substitution and their effects on protein function were predicted using
285 'Sorting Tolerant From Intolerant (SIFT)' algorithm¹⁹. Non-synonymous mutations with
286 SIFT score < 0.05 were defined as putative deleterious mutations. SIFT (< 0.05) and GERP
287 (>2) annotations were combined to identify the deleterious mutations existing in
288 constrained portion of the genome. These deleterious mutations were used to calculate
289 mutation burden of cassava.
290

291 **Identifying selective sweep regions**

292 Cross-population composite likelihood approach (XP-CLR) method²⁷ was used to identify
293 the selective sweeps in two contrasts: Latin America cassava accessions (test
294 populations) against progenitors (*M. esc. ssp flabellifolia*, reference population) for
295 domestication event and African cassava accessions (test populations) against Latin
296 American cassava accessions (reference population) for recent improvement in Africa.
297 Selection scan was performed across the genome using 0.5 cM sliding window between
298 the SNPs spacing of 2-kb. A genetic map of cassava generated by International Cassava
299 Genetic Map Consortium³⁵ was used in the XP-CLR analysis. XP-CLR scores were
300 normalized using Z-score and smoothed spline technique with R-package (GenWin)³⁶.
301 Outlier peaks were selected which were above than 99 percentile of normalized values.
302 AgriGO³⁷ and REVIGO³⁸ tools were used for GO enrichment analysis.
303

304 **Mutation burden in cassava accessions**

305 Number of derived deleterious alleles present in each cassava accessions were counted
306 to identify mutation burden in cassava accessions in three models (homozygous
307 mutation burden, heterozygous mutation burden, and total mutation burden).
308 Homozygous mutation burden is the number of derived deleterious alleles in the

309 homozygous state. Heterozygous mutation burden is the number of derived deleterious
310 alleles existing in the heterozygous state. Total mutation burden is the number of
311 derived deleterious alleles existing in an accession (2 x homozygous mutation burden +
312 heterozygous mutation burden)^{15,39}.

313

314 **Comparison of observed and expected mutation burden under HWE**

315 A bootstrap approach (with replacement) was used to resample cultivated cassava
316 accessions from both Latin American (24 samples) and African (174 samples) breeding
317 pools. The process was repeated for 10,000 times to generate the distribution of
318 expected homozygous and heterozygous mutation burden. For each resampling,
319

$$320 \quad b_{ho} = \sum_{i=1}^n d_i^2, \quad b_{he} = \sum_{i=1}^n 2(1 - d_i)d_i$$

321

322 where b_{ho} is the expected homozygous mutation burden under HWE, b_{he} is the expected
323 heterozygous mutation burden under HWE, n is the total number of deleterious
324 mutations identified (n = 22,495), d_i is the allele frequency of i th deleterious allele in the
325 sampled population. The observed mutation burden was calculated for each accession
326 as described in 'mutation burden in cassava accessions'. The means of observed
327 homozygous and heterozygous mutation were used for the comparison.

328

329

330 Data access:

331 Whole genome sequences, raw and imputed HapMapII SNPs can be accessed from
332 CassavaBase at <ftp://ftp.cassavabase.org/HapMapII/>.

333

334

335 **ACKNOWLEDGEMENTS**

336 This work was supported by the Bill & Melinda Gates Foundation (BMGF:
337 #01511000147), with additional support from NSF Plant Genome Research Project
338 (#1238014) and the UDSA-ARS. We thank Next Generation cassava project
339 (www.nextgencassava.org) for helping us to choose the accessions to include in whole
340 genome sequencing efforts. We thank Simon E. Prochnik (DOE Joint Genome Institute,
341 Walnut Creek, CA, USA) for his timely help during the analysis.

342

343 **AUTHORS CONTRIBUTIONS**

344 The manuscript was prepared by P.R., F.L.. Data analysis was carried out by P.R., F.L. and
345 E.S.B.. Whole genome sequences for 54 accessions included in HapMapI¹⁰ are provided
346 by J.V.B. W.E., I.Y.R., C.E., R.K. and R.S.B. provided the germplasm for WGS. All authors
347 provided their comments and edited the manuscript. F.L. and E.S.B designed and
348 coordinated the project.

349

350 **COMPETING FINANCIAL INTERESTS**

351 The authors declare no competing financial interests.

352 **References**

- 353 1. Raven, P., Fauquet, C., Swaminathan, M.S., Borlaug, N. & Samper, C. Where Next
354 for Genome Sequencing? *Science* 311, 468-468 (2006).
- 355 2. Olsen, K.M. & Schaal, B.A. Evidence on the origin of cassava: Phylogeography of
356 *Manihot esculenta*. *Proceedings of the National Academy of Sciences* 96, 5586-
357 5591 (1999).
- 358 3. Wang, W. et al. Cassava genome from a wild ancestor to cultivated varieties. *Nat
359 Commun* 5(2014).
- 360 4. McDonald, M.J., Rice, D.P. & Desai, M.M. Sex speeds adaptation by altering the
361 dynamics of molecular evolution. *Nature* 531, 233-236 (2016).
- 362 5. McKey, D., Elias, M., Pujol, B. & Duputié, A. The evolutionary ecology of clonally
363 propagated domesticated plants. *New Phytologist* 186, 318-332 (2010).
- 364 6. Charlesworth, D. & Willis, J.H. The genetics of inbreeding depression. *Nat Rev
365 Genet* 10, 783-796 (2009).
- 366 7. Rojas, M.C. et al. Analysis of Inbreeding Depression in Eight S1 Cassava Families.
367 *Crop Science* 49, 543-548 (2009).
- 368 8. Nuwamanya, E., Herselman, L. & Ferguson, M. Segregation of selected
369 agronomic traits in six S1 cassava families. *Journal of Plant Breeding and Crop
370 Science* 3, 154-160 (2011).
- 371 9. Allem, A.C. The closest wild relatives of cassava (*Manihot esculenta* Crantz).
372 *Euphytica* 107, 123-133 (1999).
- 373 10. Bredeson, J.V. et al. Sequencing wild and cultivated cassava and related species
374 reveals extensive interspecific hybridization and genetic diversity. *Nat Biotech*
375 34, 562-570 (2016).
- 376 11. Prochnik, S. et al. The Cassava Genome: Current Progress, Future Directions.
377 *Tropical Plant Biology* 5, 88-94 (2012).
- 378 12. Browning, Brian L. & Browning, Sharon R. Genotype Imputation with Millions of
379 Reference Samples. *The American Journal of Human Genetics* 98, 116-126.
- 380 13. Chia, J.-M. et al. Maize HapMap2 identifies extant variation from a genome in
381 flux. *Nat Genet* 44, 803-807 (2012).
- 382 14. Tennessen, J.A. et al. Evolution and Functional Impact of Rare Coding Variation
383 from Deep Sequencing of Human Exomes. *Science* 337, 64-69 (2012).
- 384 15. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human
385 protein-coding variants. *Nature* 493, 216-220 (2013).
- 386 16. Davydov, E.V. et al. Identifying a High Fraction of the Human Genome to be
387 under Selective Constraint Using GERP++. *PLoS Comput Biol* 6, e1001025 (2010).
- 388 17. Rodgers-Melnick, E. et al. Recombination in diverse maize is stable, predictable,
389 and associated with genetic load. *Proceedings of the National Academy of
390 Sciences* 112, 3823-3828 (2015).
- 391 18. Mackay, T.F.C. et al. The *Drosophila melanogaster* Genetic Reference Panel.
392 *Nature* 482, 173-178 (2012).
- 393 19. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-
394 synonymous variants on protein function using the SIFT algorithm. *Nat. Protocols*
395 4, 1073-1081 (2009).

396 20. Mezmouk, S. & Ross-Ibarra, J. The Pattern and Distribution of Deleterious
397 Mutations in Maize. *G3: Genes/Genomes/Genetics* 4, 163-171 (2014).

398 21. Horvath, P. & Barrangou, R. CRISPR/Cas, the Immune System of Bacteria and
399 Archaea. *Science* 327, 167-170 (2010).

400 22. Keller, P.J. & Knop, M. Evolution of Mutational Robustness in the Yeast Genome:
401 A Link to Essential Genes and Meiotic Recombination Hotspots. *PLoS Genet* 5,
402 e1000533 (2009).

403 23. Hussin, J.G. et al. Recombination affects accumulation of damaging and disease-
404 associated mutations in human populations. *Nat Genet* 47, 400-404 (2015).

405 24. Haddrill, P.R., Halligan, D.L., Tomaras, D. & Charlesworth, B. Reduced efficacy of
406 selection in regions of the *Drosophila* genome that lack crossing over. *Genome
407 Biology* 8, 1-9 (2007).

408 25. Jørgensen, K. et al. Cassava Plants with a Depleted Cyanogenic Glucoside
409 Content in Leaves and Tubers. Distribution of Cyanogenic Glucosides, Their Site
410 of Synthesis and Transport, and Blockage of the Biosynthesis by RNA
411 Interference Technology. *Plant Physiology* 139, 363-374 (2005).

412 26. Conn, E.E. Cyanogenic Compounds. *Annual Review of Plant Physiology* 31, 433-
413 451 (1980).

414 27. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for
415 selective sweeps. *Genome Research* 20, 393-402 (2010).

416 28. Ros, R., Muñoz-Bertomeu, J. & Krueger, S. Serine in plants: biosynthesis,
417 metabolism, and functions. *Trends in Plant Science* 19, 564-569 (2014).

418 29. Benstein, R.M. et al. *Arabidopsis* Phosphoglycerate Dehydrogenase1 of the
419 Phosphoserine Pathway Is Essential for Development and Required for
420 Ammonium Assimilation and Tryptophan Biosynthesis. *The Plant Cell* 25, 5011-
421 5029 (2013).

422 30. Marsden, C.D. et al. Bottlenecks and selective sweeps during domestication have
423 increased deleterious genetic variation in dogs. *Proceedings of the National
424 Academy of Sciences* 113, 152-157 (2016).

425 31. Agrawal, A.F. & Whitlock, M.C. Inferences About the Distribution of Dominance
426 Drawn From Yeast Gene Knockout Data. *Genetics* 187, 553-566 (2011).

427 32. Hohenlohe, P.A. et al. Population Genomics of Parallel Adaptation in Threespine
428 Stickleback using Sequenced RAD Tags. *PLoS Genet* 6, e1000862 (2010).

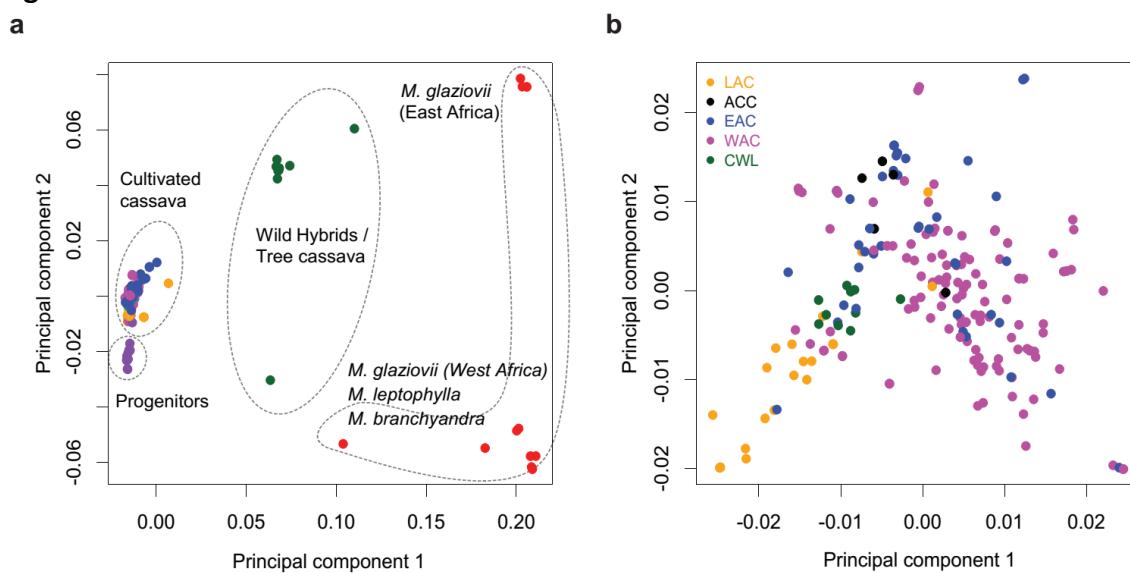
429 33. Danecek, P. et al. The variant call format and VCFtools. *Bioinformatics* 27, 2156-
430 2158 (2011).

431 34. Bradbury, P.J. et al. TASSEL: software for association mapping of complex traits
432 in diverse samples. *Bioinformatics* 23, 2633-2635 (2007).

433 35. Consortium, I.C.G.M. High-Resolution Linkage Map and Chromosome-Scale
434 Genome Assembly for Cassava (*Manihot esculenta* Crantz) from 10 Populations.
435 *G3: Genes/Genomes/Genetics* 5, 133-144 (2015).

436 36. Beissinger, T.M., Rosa, G.J., Kaepller, S.M., Gianola, D. & de Leon, N. Defining
437 window-boundaries for genomic analyses using smoothing spline techniques.
438 *Genetics Selection Evolution* 47, 1-9 (2015).

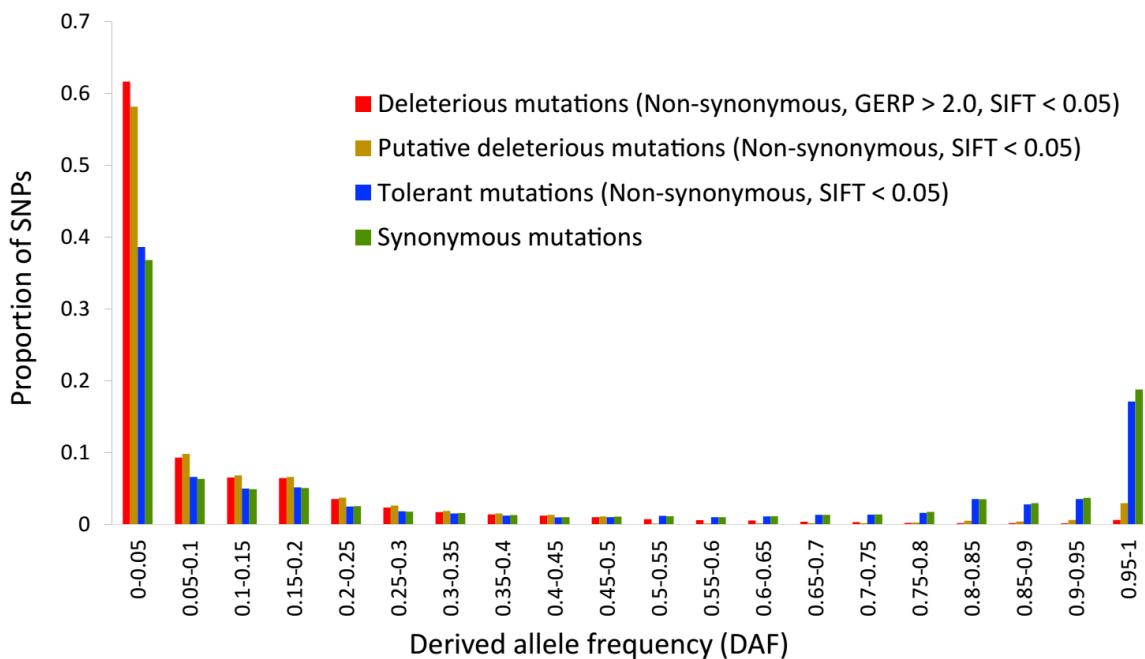
439 37. Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agriGO: a GO analysis toolkit for the
440 agricultural community. *Nucleic Acids Research* 38, W64-W70 (2010).

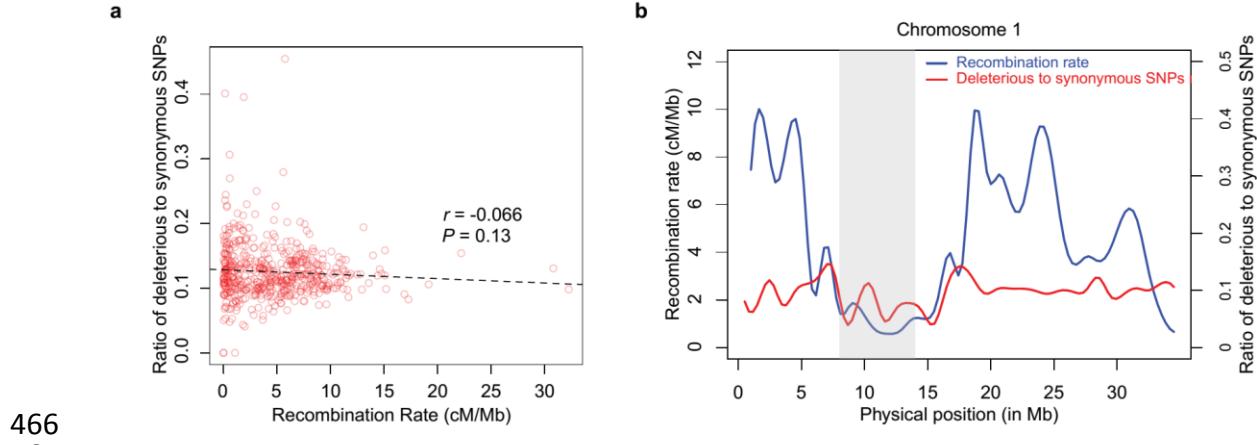

441 38. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO Summarizes and Visualizes
442 Long Lists of Gene Ontology Terms. *PLoS ONE* 6, e21800 (2011).

443 39. Henn, B.M. et al. Distance from sub-Saharan Africa predicts mutational load in
444 diverse human genomes. *Proceedings of the National Academy of Sciences* 113,
445 E440-E449 (2016).

446

447

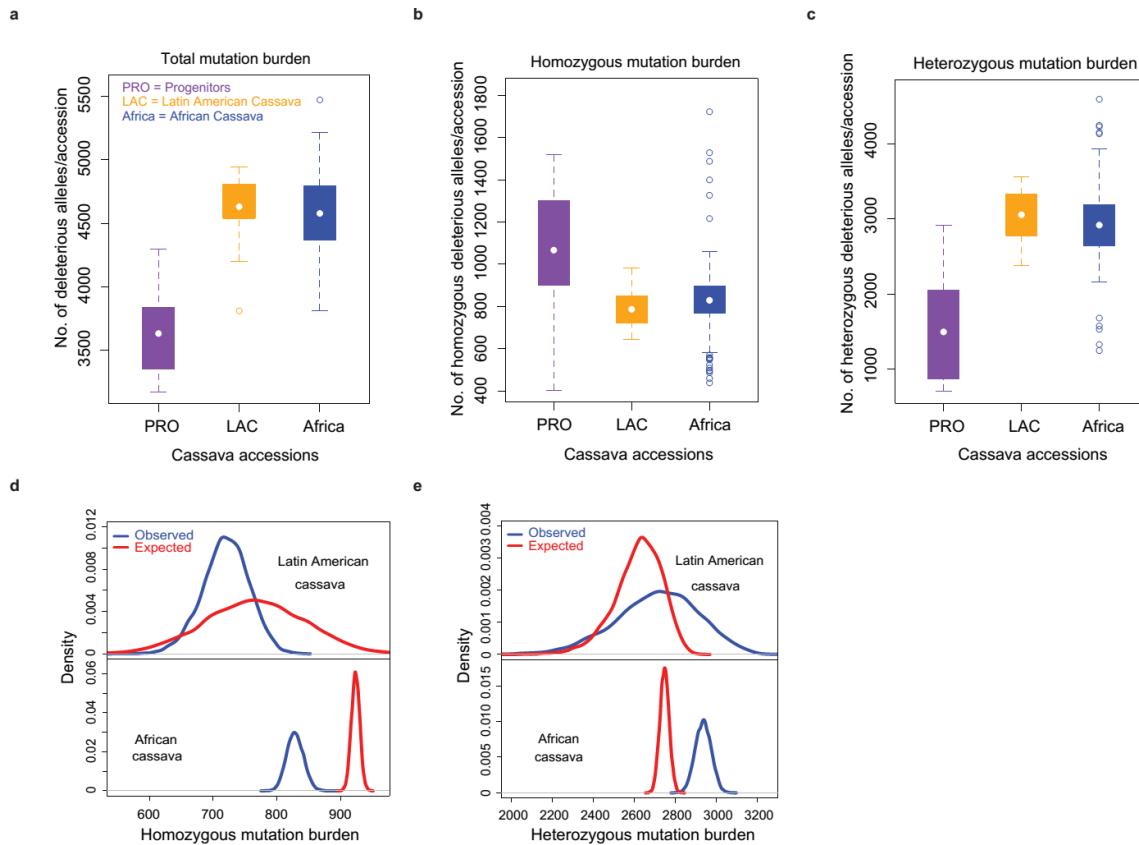

448 **Figures**


449

450

451 **Figure 1** Principal component analysis (PCA) of cassava accessions included in cassava
452 HapMapII. (a) PCA of all cassava accessions (progenitors, cultivated, and wild cassava
453 accessions). A total of 43.8% genetic variance is captured in first two principal
454 components. (b) PCA of cultivated cassava clones. A total of 9.1% genetic variance is
455 captured in first two principal components. The abbreviations are represented as
456 follows: LAC – Latin American cassava, ACC – Asian Cultivated cassava, EAC – East
457 African cassava, WAC – West African cassava, CWL – Crosses between WAC and LAC.
458

459
460
461
462 **Figure 2** Site allele frequency spectrum of deleterious mutations in cassava genome.
463 Derived allele frequency (DAF) distribution of alleles are presented. Rubber genome is
464 used as the out group to define derived alleles.
465



473

474

475 **Figure 4** Mutation burden in selective sweep regions. (a) Mutation burden between
476 progenitors and Latin American cassava accessions in domestication sweep regions. (b)
477 Mutation burden between Africa and Latin American cassava accessions in sweep
478 regions identified in recent improvement in Africa. (c) Mutation burden in Latin
479 American cassava accessions between domestication selective sweeps and control
480 regions (rest of the genome). (d) Mutation burden in African cassava accessions
481 between sweep regions identified in recent improvement and control regions (rest of
482 the genome) in Africa.

483

484
485

486 **Figure 5** Mutation burden in cassava populations. (a) Total mutation burden in
487 progenitors, Latin American cassava and African cassava accessions. Bottleneck during
488 domestication increased mutation burden. Demography in Africa has no significant
489 influence on mutation burden in African cassava accessions. (b) Homozygous mutation burden
490 in cassava populations. Domestication decreased homozygous mutation burden
491 in cultivated cassava. (c) Heterozygous mutation burden in cassava populations.
492 Domestication increased heterozygous mutation burden in cultivated cassava. (d)
493 Comparison between the observed homozygous mutation burden and the expected
494 homozygous mutation burden under HWE assumption in cultivated cassava. (e)
495 Comparison between the observed heterozygous mutation burden and the expected
496 heterozygous mutation burden under HWE assumption in cultivated cassava.
497