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Abstract

Recent successes in genome-wide association studies (GWASs) make it possible to address
important questions about the genetic architecture of complex traits, such as allele frequency
and effect size. One lesser-known aspect of complex traits is the extent of allelic heterogeneity
(AH) arising from multiple causal variants at a locus. We developed a computational method
to infer the probability of AH and applied it to three GWAS and four expression quantitative
trait loci (eQTL) datasets. We identified a total of 4152 loci with strong evidence of AH. The
proportion of all loci with identified AH is 4-23% in eQTLs, 35% in GWAS of High-Density
Lipoprotein (HDL), and 23% in schizophrenia. For eQTLs, we observed a strong correlation
between sample size and the proportion of loci with AH (R?=0.85, P = 2.2e-16), indicating
that statistical power prevents identification of AH in other loci. Understanding the extent of
AH may guide the development of new methods for fine mapping and association mapping of

complex traits.


https://doi.org/10.1101/076984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/076984; this version posted December 9, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

3

1 Introduction

Genome-wide association studies (GWASs) have successfully identified many loci associated with
various diseases and traits [1-4]. Unfortunately, interpreting the detected associated genes is chal-
lenging due to two facts: First, most of the associated variants fall in non-coding regions of the
genome [5-10]. Second, for only a handful of GWAS loci a causal sequence variant was detected
that underlies the trait or disease susceptibility. Therefore, it is challenging to identify the relevant
genes, which is the first step to understanding the biological mechanisms of the disease.

Detecting the causal variants is complicated by the fact that most significant associated variants
may not be causal, but instead be in linkage disequilibrium (LD) with unknown functional variants.
In general, sequence variants, with respect to a trait, can be grouped into three categories. The
first category is causal variants that have a biological effect on the trait and are responsible for the
association signal. The second category is variants that are statistically associated with the trait
due to high LD with the causal variants. The third category is variants that are not statistically
associated with the trait and are not causal. Fine-mapping methods aim to distinguish between
the two first categories (causal variants vs. correlated variants). One way to link the causal variant
with a particular gene is by colocalization methods that determine whether a single variant is
responsible for both variation in the trait and variation in expression of a gene at the same locus
(expression quantitative trait loci, eQTLs).

Fine-mapping and colocalization methods are designed to identify the causal variant and the
associated gene at a locus, but in many cases, they assume a single causal variant. In the presence
of multiple causal variants, those fine-mapping and colocalization methods [11-13] will have a lower
accuracy to detect the true causal variants and genes. Thus, a fundamental question is how many
different causal variants are present in a locus

The presence of multiple causal variants, at the same locus that influence a particular disease or
trait is known as allelic heterogeneity (AH). AH is very common for Mendelian traits. Clearly, many
different mutations in the same gene may cause loss or gain of function leading to specific Mendelian
disease. For example, approximately 100 independent mutations are known to exist at the cystic
fibrosis locus [14], and even more are present at loci causing inherited haemoglobinopathies [15].

In contrast to Mendelian traits, the extent of AH at loci contributing to common, complex disease
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is almost unknown. Hermani et al. [16] have shown in their study the existence of multiple
reproducible epistatic effects that influence gene expression. However, a recent study has shown
that most of these epistatic effects can be explained by a third variant in that locus [17]. Thus, it is
of utmost importance to detect loci that harbor AH in order to avoid considering them as epistatic
interactions.

Identifying the number of causal variants in complex traits is difficult because of extensive LD
and small effect sizes. The standard approach to identify AH is to use conditional analysis. In
conditional analysis, the independent association of multiple SNPs is tested after conditioning on
other SNPs, which are more significant. The conditional analysis lacks power because it requires
multiple variants to have a strong effect and to be independently significant. When several asso-
ciated variants are highly correlated, the conditional analysis will not detect multiple independent
associations, but we cannot rule out the existence of AH. Thus, the extent of AH in complex traits
is unknown. AH could substantially influence our ability to explain the missing heritability and to
identify causal genes.

We developed and applied a new method to quantify the number of independent causal variants
at a locus responsible for the observed association signals in GWAS. Our method is incorporated into
the CAusal Variants Identification in Associated Regions (CAVIAR) software [18]. The method is
based on the principle of jointly analyzing association signals (i.e., summary level Z-scores) and LD
structure in order to estimate the number of causal variants. Our method computes the probability
of having multiple independent causal variants by summing the probability of all possible sets
of SNPs for being causal. We compared results from our method to results produced using the
standard conditional method (CM) [19], which tests for independent association of a variant after
conditioning on its significantly associated neighbors. Using simulated datasets, we illustrate that
CAVIAR tends to outperform CM. We observed a very low false positive rate for CAVIAR to
detect loci with AH even when the true causal variant is not included in our dataset. We applied
CAVIAR to both eQTL and GWAS datasets. Our results indicate that in the Genotype-Tissue
Expression (GTEx) dataset [20] 4-23% of eGenes harbor AH. We observed a high correlation
between the portions of loci with AH and sample size. In addition, we replicated a significant
fraction of the loci with AH in three other existing eQTL studies. We also applied CAVIAR to

three GWAS datasets, schizophrenia (SCZ) [3], high-density lipoprotein (HDL) [21], and major
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depression disorder (MDD) [22], where we observed 23%, 35%, and 50% of loci (respectively) with

strong evidence for AH.

2 Results

2.1 Overview of identifying allelic heterogeneity

Our method utilizes the shape of marginal statistics (statistics obtained from GWAS such as z-
score) and the patterns of LD to detect whether or not a locus harbors AH. In Figures 1A and
1B, we illustrate a simple example with no AH. However, we can guess that the region shown in
Figure 1C harbors AH; here, we observe two high independent peaks in the region. Unfortunately,
detecting AH is less intuitive in regions that are more complicated.

The input to our method is the LD structure of the locus and the marginal statistics for each
variant in the locus. The LD between each pair of variants is computed from genotyped data or is
approximated from HapMap or 1000G data [23, 24]. We use the fact that the joint distribution of
the marginal statistics follows a multivariate normal distribution (MVN) [18, 25-27] to compute the
posterior probability of each subset of variants being causal, as described below. Then, we compute
the probability of having i independent causal variants in a locus by summing the probability of
all possible subsets of size i (sets that have i causal variants). We consider a locus to be AH when
the probability of having more than one independent causal variant is more than 80%.

We would like to emphasize that only using summary statistics and LD information is insufficient
for differentiating tightly linked variants. For example, if two variants are in perfect pairwise LD
(correlation of 1), it is impossible to detect with just the summary statistics whether only one of
the variants is causal or both are causal. Therefore, our estimates are just a lower bound on the

amount of loci with AH for a given complex trait.

2.2 CAVIAR is more accurate than existing methods

In order to assess the performance of our method, we generated simulated data sets. We used
HAPGEN2 [28], a widely used software, to generate a case-control study using the European
population obtained from the 1000G. Then, we implanted one or two causal variants in a region and

generated simulated phenotypes using the linear mixed model (described in the Method section).
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Figure 1. Overview of CAVIAR for Detecting Allelic Heterogeneity Regions. Panels (A) and (B) indicate
the marginal statistics for a locus where we have implanted one causal variant. In panel (A), SNP23 is causal
and in panel (B), SNP33 is causal. Panel (C) is the same locus where both SNP23 and SNP33 are causal.
In these figures, the x-axis is the negative logarithm of the p-values for each locus to indicate the strength of
the marginal statistics. The grey triangle below each figure indicates the LD pattern. Each square indicates
the correlation between two variants and the magnitude of the correlation is shown by the color intensity of
the square. The darker the square the higher the correlation between two variants.

After generating the phenotypes, we performed a t-test to generate the marginal statistics for each
variant. We applied CAVIAR to all the simulated data sets to detect loci that harbor AH. We
generated two datasets. In the first datasets, we set the non-centrality parameter (NCP) to have
10%, 30%, 50% or 70% power to detect the causal variants. In the second datasets, we set the
NCP of the causal variants to have 20%, 40%, 60%, or 80% power to detect the causal variants.
We compared our results with the conditional method (CM). We use false positive (FP) and true
positive (TP) as metrics for comparison. FP indicates the fraction of loci with one causal variant

that are incorrectly detected as loci with AH. TP indicates the fraction of loci with AH that are
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correctly detected. We found that our method has higher TP compared to CM for the same FP
rate. Figure 2 and Supplementary Figure 1 illustrate the ROC curves for the first and second

simulated datasets.
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Figure 2. ROC curve for our method (CAVIAR) and CM. We implant one causal variant to compute the
false positive (FP) rate. FP indicates loci that harbor one causal variant; however, these loci are detected as
AH. We implant two causal variants to compete the true positive (TP) rate. TP indicates loci that harbor
AH and are detected correctly. We range the NCP such that the power at the causal variant is 20%, 40%,
60%, and 80% at the genome significant level 1078, In (A) , (B), (C), and (D) NCP for the first causal SNP
is set to 20% power. In (A) , (B), (C), and (D) NCP for the second causal SNP is set to 20%, 40%, 60%,
and 80%, respectively. In (E), (F), and (G) NCP for the first causal SNP is set to 40% power. In (E), (F),
and (G) NCP for the second causal SNP is set to 40%, 60%, and 80%, respectively. In (H) and (I) NCP for
the first causal SNP is set to 60% power. In (H) the NCP of the second causal SNP is set to 60% power and
in (I) the NCP of the second causal SNP is set to 80%. in (J) the NCP for both causal SNPs are set to 80%
power.
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2.3 CAVIAR has a low false positive even when the causal variant is not in-

cluded

In the previous section, we show CAVIAR has an extremely low FP and a high TP rate in detecting
loci with AH. In the simulated data, the causal variant was included. However, in real datasets
we cannot guarantee that information will exist for all the causal variants. One possible reason for
detecting a locus as AH could be that the actual causal variant is not included or tagged in the
data. In this section, we show that loci detected by CAVIAR with AH are rarely due to the fact
that the actual causal variant is not included.

We simulate datasets where we implant one causal variant in a locus and generate marginal
statistics in a method similar to the previous section. Next, we remove the causal variants from
our analysis and use the remaining variants in the locus as an input to CAVIAR. We observe the
FP is extremely low (FP < 0.015), even when the causal variant was not included in the analyzed
data (see Figure 2). Our conclusion is that CAVIAR may fail to detect AH in some loci, but a very

small proportion of loci where we detected AH do not harbor AH.

2.4 CAVIAR is robust to different input parameters

There are two main input parameters to CAVIAR, excluding the summary statistics of a locus: the
prior probability that a variant is causal () and LD structure. The LD structure can be computed
from raw genotypes when it is available. However, in most datasets, we do not have access to the
raw genotypes. Thus, we approximate the LD utilizing the 1000G [23, 24] or HapMap [29] dataset.

We simulated marginal statistics in a way similar to previous sections. Then, we vary v among
0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.000001, and 0.000005. We observed that for different
values of v, CAVIAR tends to have extremely low FP (FP < 0.001) and high TP. The result for
this experiment is shown in Supplementary Figure 2.

In the next experiment, we want to investigate the effect of using misspecified LD structures.
We simulated the marginal statistics by utilizing the LD structure (LD matrix) obtained from
HAPGEN2. After, we simulate the marginal statistics, we generate a misspecified LD by adding
standard Gaussian noise, N (0, 7), to each element of the original LD matrix. We use the simulated

marginal statistics and the misspecified LD as an input to CAVIAR. We simulated 10,000 loci that


https://doi.org/10.1101/076984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/076984; this version posted December 9, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

9

0.05
B Tag
B Not-Tag
0.04
0.03
o
LL
0.02 -
0.01
0.00 - N =
- To) — To) - To) - To)
o o o o o o o o
o o o o o o o o
o o o o o o o
o S o o o
o o 8
Y

Figure 3. CAVIAR has low FP even when the true causal variant is not collected (untagged). Thus,
most loci that are detected by CAVIAR to harbor AH are most probably true. X-axis indicates the prior
probability of causal variant (y). We set v to 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.000001, and
0.000005.

harbor one causal variant to compute the FP, and we simulated 10,000 loci that harbor two causal
variants to measure TP. We vary the variance of the Gaussian noise (7) between 0.01, 0.02, 0.05,

0.1, 0.2, 0.25, and 0.3. In this experiment, we observe low FP and high TP for CAVIAR results.

The result for this experiment is shown in Supplementary Figure 3.

2.5 CAVIAR accurately detects the number of causal variants in a locus when

all the variants are collected

In the previous sections, we have shown that CAVIAR is accurate in detecting loci that harbor
AH. An additional benefit of our new method is that it can accurately detect the number of
causal variants in a locus. We simulated the phenotypes similar to the previous sections. In these

experiments, we implanted one, two, and three causal variants in a locus. We set the NCP of the
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Figure 4. CAVIAR is more accurate than CM to detect the number of causal variants. The x-axis is the
power of causal variants and the y-axis is the accuracy to detect the number of causal variants in a locus.
We implanted one, two, and three causal variants. (A-C) Recall rate of each method for different number
of causal variants, (A) one causal variant (B) two causal variants (C) three causal variants. We vary the
statistical power to detect the causal variant among 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.

causal variant such that the statistical power is 20%, 30%, 40%, 50%, 60%, 70%, and 80%.

As CAVIAR provides probability values for different number of causal variants, we consider a
locus to have i independent causal variants where the probability of having ¢ causal variants is the
maximum probability for different numbers of causal variants. In the case of CM, the number of
causal variants in a locus is equivalent to the number of conditional steps that we perform until
the p-value of all variants is higher than - (Bonferroni correction) where m is the total number
of variants in a locus and « is 0.05. We compute recall rate as the fraction of simulations where
any methods correctly predicated the number of causal variants in a locus. In Figure 4, we plot
the recall rate of CAVIAR and CM in detecting the number of causal variants. We observe that

CAVIAR has much higher recall rate in detecting the true number of causal variants in a locus

than CM.

2.6 CAVIAR distinguishes between epistatic interaction and allelic heterogene-
ity

It is possible to incorrectly detect a locus with AH due to the epistatic interaction in that locus. In

this section, we utilize simulated data to illustrate that CAVIAR rarely detects AH in loci where

the true genetics architecture is epistasis. We simulated different datasets where we implanted

epistatic interactions between two randomly selected variants in a locus. Then, we generated
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simulated phenotypes using the linear additive model (described in the Method section). We vary
the number of individuals in each dataset among 500, 1000, 1500, 2000, 2500, and 3000. In addition,
for each dataset, we vary the effect size among 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
and 0.2. For each simulated dataset, we simulated 5,000 different marginal statistics. CAVIAR has
extremely low false positive in these experiments (see Figure 5). In Figure 5, we show the results
for the effect size of 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, and 0.2. The results for effect size of
0.01, 0.02, and 0.02 are not shown as the FP is zero for these values. As a result, CAVIAR only
detects a small fraction of epistatic interactions as AH. It is worth mentioning that the amount of
epistatic interactions for different traits is very low. Thus, these results indicate the loci detected

by CAVIAR that harbor AH are not artifacts of epistatic interaction.

2.7 Prevalence of allelic heterogeneity in eQTL datasets

We used four datasets to examine the extent of AH in eQTL datasets. We utilize version v6p of
data, which consists of 44 tissues. For each tissue, we have around 22,000 genes (probes). For each
gene in each tissue, we have access to the marginal statistics for the cis-eQTL analysis, which we
obtained from the GTEx project [20] and genotype data that is used to compute the LD pattern for
each gene. Then, we filtered out genes lacking at least one significant SNP. We set the significant
cut-off threshold to a p-value of 10-5. Genes that have a significant cis-eQTL SNP are known as
eGene. We applied our method to detect AH loci only to eGene. We found that 4%-23% of the
eGenes show evidence for AH (with probability > 80%) (Figure 6, Table 1). In addition, we applied
the CM to the same set of eGenes. We observed that 50%-80% of loci detected by the CM to have
AH were also detected by CAVIAR (see Table 1).

The number of eGenes detected in a tissue depends on the statistical power to detect a significant
variant associated with the gene expression. The statistical power is highly correlated to the number
of samples for that tissue. We hypothesized that there might also exist correlation between the
sample size and the number of loci with AH. Indeed, we observed that the proportion of eGenes
with AH for each tissue is in a linear relationship with the sample size (R?=0.85, P = 2.2¢-16).
This result indicates that statistical power prevents the identification of AH at other loci.

To check the reproducibility of the AH detection, we compared the results from GTEx blood

data with results from two other blood eQTL studies: GEUVADIS [30] and Wester et al. (2013)
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[31]. We tested the overlap between genes with AH for skin and adipose tissues based on the GTEx
[20] and MuTHER [32] datasets. We only considered eGenes that are common between the studies.
In all comparisons, we observed a high reproducibility rate for the detection of AH in blood (Figure

6B, P=7.9¢-97), skin (Figure 6C, P=4.9¢-63), and adipose (Figure 6D, P=1.1e-69) tissues.

Tissue #Individual | #AH (CAVIAR) | #AH/ #eGene | #AH (CM) | #Overlap between(%)
CAVIAR & CM

Vagina 79 63 0.0410 26 13 (50.0%)
Brain-Anterior-cingulate-cortex-BA24 72 73 0.0418 27 0 (42.4%)
Small-Intestine-Terminal-Tleum 7 87 0.0439 32 7 (53.1%)
Brain-Hypothalamus 81 81 0.0462 31 (o4 8%)
Uterus 70 71 0.0472 33 14(42.4%)
Brain-Putamen-basal-ganglia 82 102 0.0475 52 24 (46.1%)
Brain-Hippocampus 82 82 0.0478 35 13 (37.1%)
Liver 97 120 0.0558 40 8 (45.0%)
Prostate 87 120 0.0574 31 21 (67.7%)
Brain-Nucleus-accumbens-basal-ganglia 93 162 0.0624 70 41 (58.5%)
Brain-Frontal-Cortex-BA9 92 159 0.0624 70 40 (57.1%)
Ovary 85 112 0.0630 58 30 (51.7%)
Pituitary 87 181 0.0668 71 39 (54.9%)
Brain-Cerebellar-Hemisphere 89 241 0.0697 115 59 (51.3%)
Brain-Caudate-basal-ganglia 100 206 0.0700 95 54 (56.8%)
Spleen 89 224 0.0713 107 59 (55.1%)
Brain-Cortex 96 236 0.0784 91 51 (56.0%)
Artery-Coronary 124 230 0.0793 119 65 (54.6%)
Colon-Sigmoid 124 282 0.0868 130 87 (66.4%)
Cells-EBV-transformed-lymphocytes 114 287 0.0875 126 81 (64.2%)
Esophagus-Gastroesophageal-Junction 127 294 0.0909 138 100 (72.4%)
Brain-Cerebellum 103 393 0.0918 181 119 (65.7%)
Adrenal-Gland 126 358 0.0984 189 110 (58.2%)
Stomach 170 433 0.1080 146 103 (70.5%)
Pancreas 149 526 0.1203 235 153 (65.1%)
Colon-Transverse 124 576 0.1207 279 203 (72.7%)
Heart-Atrial-Appendage 159 522 0.1250 192 125 (65.1%)
Breast-Mammary-Tissue 183 590 0.1282 246 178 (72.3%)
Adipose-Visceral-Omentum 185 611 0.1325 296 223 (75.3%)
Heart-Left-Ventricle 190 627 0.1385 278 205 (73.7%)
Testis 157 1220 0.1464 349 257 (73.6%)
Artery-Aorta 197 898 0.1535 435 338 (77.7%)
Skin-Not-Sun-Exposed-Suprapubic 197 835 0.1554 180 138 (76.6%)
Esophagus-Muscularis 218 1153 0.1792 515 411 (79.8%)
Esophagus-Mucosa 241 1228 0.1792 605 480 (79.3%)
Lung 278 1356 0.1929 662 537 (81.1%)
Adipose-Subcutaneous 298 1669 0.2138 870 714 (82.6%)
Muscle-Skeletal 361 1452 0.2171 715 614 (85.8%)
Whole-Blood 338 1489 0.2182 792 656 (82.8%)
Skin-Sun-Exposed-Lower-leg 302 1780 0.2199 549 467 (85.0%)
Artery-Tibial 285 1647 0.2212 796 653 (82.0%)
Cells-Transformed-fibroblasts 272 1841 0.2325 965 798 (82.6%)
Thyroid 278 2088 0.2337 932 786 (84.3%)
Nerve-Tibial 256 2012 0.2386 1075 881 (81.9%)
Total 7014 28717

Table 1. List of 44 tissues in GTEx. Tissues are sorted based on the number of samples. #Individual indi-
cates the number of samples for each tissue. #AH (CAVIAR) is the number of loci detected by CAVIAR that
harbor AH. #AH(CAVIAR)/#eGene is the fraction of eGenes that are detected to harbor AH. #AH(CM)
is the number of loci detected by conditional method (CM) that harbor AH.
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2.8 Prevalence of allelic heterogeneity in GWAS datasets

To measure the level of AH in a human quantitative trait, we applied our method to a GWAS
of High-Density Lipoprotein (HDL)[21]. Out of 37 loci, 13 (35%) showed evidence for AH with
probability > 80% (see Supplementary Table 1). We also studied the results of GWASs focused
on two psychiatric diseases: major depression disorder (MDD) [22] and schizophrenia (SCZ) [3].
For MDD, we found evidence for AH at one of two loci. For SCZ, we identified 25 loci out of 108
(23%) with high probability of AH (see Supplementary Table 2). One example of AH in SCZ is the
locus on chromosome 18 that includes the TC'F4 gene (Figure TA). The locus contains multiple
associated SNPs that are distributed in different LD blocks (Figure 7B). According to our analysis,
there are three or more causal variants in this locus with high probability (Figure 7C) (for similar
results in other loci, see Supplementary Figures 4-39 for HDL and Supplementary Figures 40-167
for SCZ).

3 Methods

3.1 Joint Distribution of Observed Statistics in Standard GWAS

In this section, we provide a brief description of statistical tests that are performed in GWAS and
the joint distribution of computed marginal statistics. These statistics are used as an input to
CAVIAR. We consider, we perform GWAS on a quantitative traits for n individuals. Let Y be a
vector of (n x 1) where y; indicates phenotypic value for the i-th individual. Moreover, we genotype
all the individuals for all the m variants. Let G' € {0,1,2}{"*™} be a matrix of genotypes for all
the individuals where g;; is the minor allele count for the i-th individual at the j-th variant. We
standardize the minor allele count for each variant to have mean of zero and variance one. We use
X to indicate the standardized minor allele count for all the individuals at the j-th variant. We
have 17X; = 0 and XZ»T X; = n as the genotypes are standardized.

We assume that phenotypic values follow the linear model and the ¢ variant is the causal variant.

Thus, we have :

Y=pl+p.X.+e
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where p is the phenotypic mean value, f3 is the effect size of the variant X, 1 is a (n x 1) vector of
ones, and e is a (n x 1) vector to model the environment contribution and error in the measurement.
In this model, we assume the error are i.i.d. and follows a normal distribution with mean of zero
and variance of 021, where I is a (n x n) matrix of identity and o, is the variance scalar of e. From
the model explained above, we have Y ~ N(ul + 8.X.,c2I). We use the maximum likelihood to

compute the estimated S. and o, which are denoted by BC and .. Thus, we have:

1
L (Y|u,ﬁC7 Ug) = [27021| "2 exp (—é (Y —pl1 - BCXC)T (Y —pl — BCXC)>,

fr=217Y, i N (0 %)),

B =Xy b NN(%\/HJ) .
The association statistic for SNP ¢, denoted by S., follows a non-central t-distribution, which is the
ratio of a normally distributed random variable to the square root of an independent chi-squared
distributed random random variable. As shown in previous works, if the number of individuals are
large enough [18], we can assume the marginal statistics follows a normal distribution with mean

equal to A\, = g\/ﬁ and variance of one,

Se ~taem BN (Ao, 1) (2)

We assume that variant ¢ is correlated with the causal variant ¢ and the correlation between the
two variants are r where r = %XZT X.. Then, the marginal statistics estimated at variant ¢ is equal
to the marginal statistics for the causal variant that is scaled by r. We compute the covariance of

the marginal statistics between two variants where the LD between the two variants are r.

Cov (ﬁﬁ \/ﬁﬁc> = %XiT Var (V) X, = 1.
g g no

We compute the joint distribution of the marginal statistics for two variants ¢ and j as follow:

7 Az’ 1 T’ij

~N , : (3)
Sj >‘j Tij 1

where \; = r); if the variant ¢ is causal and the variant j is not causal or A\; = r); if the variant j


https://doi.org/10.1101/076984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/076984; this version posted December 9, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

15

is causal and the variant 7 is not causal.

3.2 Computing the Likelihood of Causal Configuration

We can extend the joint distribution of marginal statistics for two variants to more general case.
Assume we have m variants and the pair-wise correlation between each variant is denoted by X.
Let S = [S1,59,53,--Smu]T be the vector of marginal statistics obtained for each variant. The

joint distribution of the marginal statistics for all the m variants is computed as follow:

(S|A) ~ N (A, D), (4)

where A is (m x 1) is a vector of normalized effect sizes and A; is the normalized effect size of the
i-th variant. We introduce a new parameter C that indicates the causal status of each variant.
Each variant can have two possible causal status. We have ¢; = 1 if the i-th variant is causal and
¢; = 0 if the i-th variant is not a causal variant. We define a prior probability on the vector of

effect size A for a given causal status using a multivariate normal distribution,

(AC) ~ N (0,%c), ()

where ¥, is a (m x m) matrix. The off diagonal elements of ¥, are set to zero. The diagonal
elements are set to o or zero. We set the i-th diagonal element to o if the i-th variant is causal and
we set i-th diagonal element to zero if the i-th variant is not causal. Thus, the joint distribution

follows a multivariate normal distribution,

(SIC) ~ N (0, X + XX.X), (6)

3.3 Computing the Number of Independent Causal Variants in a Locus

In this section, we provide the formula to compute the probability of having ¢ causal variants in a
locus. We compute the probability of having i causal variants in a locus by summing over all the
possible causal configurations where only ¢ variants are causal. Let N, indicates the number causal

variants in a locus. We have,
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e ) S e PEIOIPO) "

where P(C) is the prior on the causal configuration C, C is the set of all possible causal configu-

rations including the configuration all the variants are not causal and |C| indicates the number of
causal variants in the causal configuration C. The numerator in the above equation considers all
possible causal configurations that have 7 causal variants, and the denominator is a normalization
factor to ensure the probability definition holds.

In this paper, we use a simple prior for a causal status. We assume the probability of a variant
to be causal is independent from other variants and the probability of a variant to be causal is ~.
Thus, we compute the prior probability as, P (C*) = []+/%/(1 —4)~l¢l. We utilize different values
for v as shown in Supplementary Figure 2. In our experiment, we set vy to 0.001 [33-35]. It is worth
mentioning, although we use a simple prior for our model, we can incorporate external information
such as functional data or knowledge from previous studies. As a result, we can have variant-specific
prior where -y; indicates the prior probability for the i-th variant to be causal. Thus, we can extend

the prior probability to a more general case, P (C*|I" = [y1,72, - Y]) = H%‘,C”(l — )t lel,

3.4 Reducing the Computational Complexity for Computing the Likelihood of

a Causal Status

Unfortunately, the time complexity to compute the likelihood of a causal status using Equation
(6) is O(m?). In this section, we provide a speed up process that reduces the time complexity to
O(m?k) where k is the number of causal variants for a causal status. The number of causal variants
is smaller than the total number of variants in a locus (k << m). Thus, we manage to speed up
the likelihood computation by a factor of 7.

According to Equation (6) to compute the likelihood of a causal status, we require to compute

the following quantity:

(2m)~% det| + B8 exp{— 57 (2 + 55,5)S) (8)

where det|.| denotes the determinant of a matrix. First, we speed up the exponential part. Thus,

we have:
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ST+ 22.2)71S = ST (Lwm + B.2) 1S (9)

where STY~! is independent from the causal status and can be computed once and used many
times. As a result, the expensive computational part is to compute (Lyxm + XcX)7L. We set
elements of U and V such that . = UV. Let «; indicate the index of i-th causal variant. We set
elements of V' as follows: V(i,7) = rq,,;. Let U(a;,1) = 0 and we set the rest of elements of U to

zero. Thus, we have:

(Imxm +2e2) ™ = (Insem + UV) 71 (10)

We use Woodbury matrix identity formula to compute the inverse. We have:

(A+UEV) ' =A - At U(E +vA~U) tva! (11)

We set A to Ixm and E to Iig, then the left side of Woodbury matrix identity formula converts

to (Imxm + 2eX) 7. From the right side of Woodbury matrix identity formula, we have:

(Imxm + 2e2) " = (Inxm +UV)7? (12)
= I;zlxm - IJZIXmU(Ik_xlk + ka_xlkU)ilVIan (13)
= L — U(Tpxr + VU) IV (14)

where (Ix,+VU) ™! requires inverting a (k x k) matrix that is much faster than inverting a (m xm)
matrix.
In similar way, the naive method to compute det|Z + ¥X.X| requires O(n3). We utilize the

Sylvester’s determinant identity that is as follows:

det| I + UV| = det|Tuxy + VU (15)

Thus, instead of computing the determinant of a (m x m) matrix, we can compute the same value

by computing the determinant of a (k x k) matrix. We have:
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det|Y + SX.3| = det|S| det|mxm + S| (16)
= det|S| det|Ipyxm + UV (17)
= det|S| det|Ipxy, + VU] (18)

In above equation, we can compute det|X| once and use it for different causal statuses. In addition,
the computational complexity of det|Iyy, + VU] is O(k®). Thus, the time complexity to compute
det|S + D83 is O(k?).

3.5 Conditional Method (CM)

A standard method to detect allelic heterogeneity (AH) is the conditional method (CM). In CM,
we identify the SNP with most significant association statistics. Then, conditioning on that SNP,
we re-compute the marginal statistics of all the remaining variants in the locus. We consider a
locus to have AH when the re-computed marginal statistics for at least one of the variants is more
significant than a predefined threshold. Similarly, we consider a locus to not have AH when the
re-computed marginal statistics of all variants fall below the predefined threshold. The predefined
threshold is referred to as the stopping threshold for CM. This standard method can be applied to
either summary statistics or individual level data. GCTA-COJO [19] performs conditional analysis
while utilizing the summary statistics.

When applying CM to individual level data, we re-compute the marginal statistics by performing
linear regression where we add the set of variants that are selected as covariates. We utilize the LD
between the variants, which we obtain from a reference dataset, when applying CM to summary

statistics data. In this case, we re-compute the marginal statistics for the ith variant as follows:

(19)

when we have selected the jth variant as causal. Let z; indicate the marginal statistics for the

ith variant and r;; the genotype correlations between the ith and jth variants.
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3.6 Datasets

Genotype-Tissue Expression (GTEx): We obtained the summary statistics for GTEx eQTL

dataset (Release v6p, dbGaP Accession phs000424.v6.p1). We estimated the LD structure using
the available genotypes in the GTEx dataset. We considered 44 tissues and applied our method to
all eGenes, genes that have at least one significant eQTL, in order to detect loci that harbor allelic

heterogeneity.

Genetic European Variation in Disease (GEUVADIS): We obtained the summary statis-

tics of blood eQTL for 373 European individuals from the GEUVADIS website. We approximated
LD structure from the 1000G CEU population. We applied our method to the 2954 eGenes in
GEUVADIS to detect AH loci.

Multiple Tissue Human Expression Resource (MuTHER): We obtained the summary statis-

tics from the MuTHER website. We utilized the skin and fat (adipose) tissues. We then approxi-
mated LD from the 1000G CEU population. We obtained 1433 eGenes for skin and 2769 eGenes

for adipose.

High-Density Lipoprotein Cholesterol (HDL-C): We used the High-Density Lipoprotein Choles-

terol (HDL-C) trait [21]. We only considered the GWAS hits, which are reported in a previous
study. We applied ImpG-Summary [36] to impute the summary statistics with 1000G as the refer-
ence panel. We identified 37 loci that have at least one causal variant. Following common protocol
in fine-mapping methods, we assumed at least one causal variant. Then, we applied our method to

each locus.

Psychiatric diseases: We analyzed the recent GWAS on major depression disorder and schizophre-

nia. The major depression disorder study has 2 and the schizophrenia study has 108 loci identified
to contain at least one significant variant. We utilized the summary statistics provided by each

study and approximated the LD using the 1000G CEU population.
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3.7 Data simulation

Simulated data with no epistasis interaction: We first simulated genotypes using HAPGEN2[28],

where we utilized the 1000G CEU population as initial reference panels. Then, we simulated phe-
notypes using the Fisher’s polygenic model, where the effects of causal variants are obtained from
the normal distribution with a mean of zero. Let Y indicate the phenotypes and X indicate the
standardized genotypes. In addition, 3 is the vector of effect sizes where §; is the effect of the i-th

variant. Thus, we have:

Y=XB+e (20)

, where e models the environment and measurement noise. Under the Fisher’s polygenic model, the
effect size of the causal variants is obtained from N (0, (o7)/N,), where N, is the number of causal
variants and o, is the genetic variation. In addition, the effect size for variants that are non-causal
is zero. We set the effect size in order to obtain the desired statistical power. We implanted one,
two, or three causal variants in our simulated datasets.

We use false positive (FP) and true positive (TP) as metrics to compare different methods. FP
indicates the fraction of loci that harbor one causal variant and are incorrectly detected as loci that
harbor AH. TP indicates the fraction of loci that harbor AH and are correctly detected.

Simulated data with epistasis interaction: We simulated the genotypes similar to the case

where we have no epistasis interaction, which is mentioned above. Then, we simulated phenotypes

using the following model:

Y = Iiiﬂjﬁij +e (21)

, where z; and z; indicate the standardized genotypes for ith and jth variants, respectively. More-
over, f3;; is the epistasis interaction effect size. We set (3;; such that we obtained the desired heri-
tability for the simulated phenotype. Then, we computed the marginal statistics for each variant

utilizing the linear regression single variant testing.
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4 Discussion

We have proposed a novel probabilistic method to detect loci with AH. Our results show that our
method is more accurate than existing methods. One of the main benefits of our method is that it
only requires summary statistics. Summary statistics of a GWAS study or eQTL study are widely
available; thus, our method is applicable to most existing datasets. We have shown that AH is
widespread and more common than previously estimated in complex traits, both in GWASs and
eQTL studies. Since our method is influenced by statistical power and uncertainty induced by LD,
the proportions of loci with AH detected in this study are just a lower bound on the true amount
of AH. Thus, our study suggests that many, and maybe even most, loci are affected by AH.

Our results highlight the importance of accounting for the presence of multiple causal variants
when characterizing the mechanism of genetic association in complex traits. Falling to account for
AH can reduce the power to detect true causal variants, and can explain the limited success of
fine mapping of GWASs. Similarly, attempts to explain GWAS using eQTLs data should be more
successful with methods that assume that some loci may include multiple causative variants (e.g.
eCAVIAR [37] and RTC [38]).

One of the limitations of our method is that we assume that the observed marginal statistics
are corrected for the population using PCA-based methods. Recently, linear mixed models (LMM)
[39-44] have become a popular correction for population structures that have cryptic relationships.
Thus, the current version of our method is not applicable to summary statistics that have been
corrected for population structure using LMM. However, we have shown in our previous work
that the same statistical model can be extended to incorporate the summary statistics that have
been corrected for population structure using LMM. Unfortunately, in this case, the study’s raw
genotypes and phenotypes should be available in order to perform the desired analysis.

In summary, we have developed a method to detect the presence of AH in loci of complex traits.
We show that while the method may fail to detect AH in some loci, the false positive rate is very
low. Thus, when our method detects a locus to have AH with a high probability, the prediction is
very reliable. Since the amount of AH detected in our study is just a lower bound on the number

of loci with AH, we suggest that AH is widespread in complex traits.
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6 Web Resources

CAVIAR is available http://genetics.cs.ucla.edu/caviar/

GTEx dataset (Release v6, dbGaP Accession phs000424.v6.pl) is available at http://www.gtexportal.org.
GEUVADIS dataset is available at ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/
GEUV/E-GEUV-1/analysis_results/.

MuTHER dataset is available at http://www.muther.ac.uk/Data.html.

Blood eQTL dataset is available at http://genenetwork.nl/bloodeqtlbrowser/.
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Figure 5. CAVIAR distinguishes between epistatic interaction and allelic heterogeneity. The x-axis is the
sample size that we vary between 500, 1000, 1500, 2000, 2500, and 3000 individuals and the y-axis is the
false positive (FP) rate. We simulated datasets where we have epistatic interaction and compute the FP as
the number of cases where CAVIAR incorrectly detects these loci to harbor AH. (A-I) illustrate the FP for

different effect sizes of the epistatic interaction.
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Figure 6. Levels of allelic heterogeneity in eQTL studies. (A) Linear relationship between the amount of
AH and sample size. Each red circle indicates a different type of tissue from the GTEx dataset. The size
of each red circle is proportional to the number of genes that harbor a significant eQTL (eGenes). (B-D)
Significant overlap between AH estimations for different eQTL datasets, shown for (B) blood (P=7.9e-97),
(C) skin (P=4.9e-63), and (D) adipose (P=1.1e-69).


https://doi.org/10.1101/076984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/076984; this version posted December 9, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

30

A) |I1 0O o8 O 06 @ 04 O 02

14
rs9636107 (P = 9.09e-13) =
rs9636107, incl. replication (P = 3.34e-12)

12 rs72934570, incl. replication (P = 1.97e-1§
= @ chr18_52749216_D, incl. replicatfon (P = 8.03e—11) =
&o b "’o.' & ) B 40:)/

[ , o
~ '.-% riﬂﬁ#%k\. replicat] = 1,32e~0%§ v 15715170, incl. replication (P = 1,2Ze5-68)-08 S
8 8 — L . mg t o, . TV g .rephcahon(P:i.iQepr;é %
> ) . % . . O
b o "= S5z Ml & n (P = 3.19-06 =
36_ g;. l. * .‘Wg.p:?u ) o'. g
o . A % . . — 205
©,. ..‘@-'n;“";-l"&a PIAE A s JECTU £

[] ) J Y)Y o L] (@)
% ] & 2 (&)
[0}
o | e
0 - Cill80rf54 D:|YNAP F|LA.BZ7B TCF4 LOHC_)“iI00505474 TXNIA 0
H—<t———=— :
CCDC68 MIR4529
HH I
[ I I I |
51900 52300 53100 53900 54300

Chromosome 18 (kb)

B) C)

~= = ==

= S == OO= s = SO OO ===~ =~~~
N=mD==NDNNDDD=NNDND==N=DDNDNDDY =~ DOOGN =D ==NNDDNNONONONONNN -
@ G WO N ===t () NININB RN NNNOINNOI0) =2y = = = NNNNWSNBBN= NN NSNS
HLEAGIR=0INNOENNNOUIN=NNNTTINNOWON®N 1) ¢) ¢) CONININICIN - OONINNNNNINNI N
= =000 LIO O UTONOOONHOUDHOOHNOO OO O THO N O NN NOOOOO —2 ONO THO OO

INONDNNLIO LI LIULICITTLHOLIGILIO LG = GIUTO0 =4 00 =+ UTLILILHO L UTTUIW O

P==2UIOROODWAOO . . BEANSORNDSNOD.

B Ol ROONDRAL.
NNO=BNORGIW=SNNNNUTN = NNNOTNNO=WN ONNOUIUITIWOTR WUIWH O
BON=0=O01HWWUITIUTI=HOTHONNNO O OTTUTRUTRONN N —NOUTIOOO! NN
N=00RNDHLNO=INOORWWNOARDNONNNOUIWAUINONOADNONRRONUIRW A= AO

e

0.8

Probability

.

0.4

o

o 01 2 ’_5__6_

2
r~ Color Ke
(]:* Number of Causal SNPs
072 04 06 08

Figure 7. Allelic heterogeneity in the TCF4 locus associated with schizophrenia. (A) Manhattan plot
obtained from Ricopili (http://data.broadinstitute.org/mpg/ricopili/) consists of all the variants in a 1Mbp
window centered on the most significant SNP in the locus (rs9636107). This plot indicates multiple significant
variants that are not in tight LD with the peak variant. (B) LD plot of the 50 most significant SNPs showing
several distinct LD blocks. (C) Histogram of the estimated number of causal variants.


https://doi.org/10.1101/076984
http://creativecommons.org/licenses/by-nc-nd/4.0/

