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Abstract

Understanding the aspects of the cell functionality that account for disease or drug
action mechanisms is a main challenge for precision medicine. Here we propose a new
method that models cell signaling using biological knowledge on signal transduction.
The method recodes individual gene expression values (and/or gene mutations) into
accurate measurements of changes in the activity of signaling circuits, which ultimately
constitute high-throughput estimations of cell functionalities caused by gene activity
within the pathway. Moreover, such estimations can be obtained either at cohort-level,
in case/control comparisons, or personalized for individual patients. The accuracy of the
method is demonstrated in an extensive analysis involving 5640 patients from 12
different cancer types. Circuit activity measurements not only have a high diagnostic
value but also can be related to relevant disease outcomes such as survival, and can be

used to assess therapeutic interventions.
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Introduction

Despite most phenotypic traits (including disease and drug response) are multi-genic,
the vast majority of biomarkers in use are based on unique gene alterations (expression
changes, mutations, etc.) Obviously, the determination of the status of a single gene is
technically easier than multiple gene measurements. However, regardless of their
extensive clinical utility, single gene biomarkers frequently lack any mechanistic link to
the fundamental cellular processes responsible for disease progression or therapeutic
response. Such processes are better understood as pathological alterations in the normal
operation of functional modules caused by different combinations of gene perturbations

(mutations or gene expression changes) rather than by alterations of a unique gene [1].

Of particular interest are signaling pathways, a type of functional module known to play
a key role in cancer origin and progression, as well as in other diseases. Consequently,
analysis of the activity of signaling pathways should provide a more informative insight
of cellular function. Actually, the recent demonstration that the activity of a pathway
presents a significantly better association to bad prognostic in neuroblastoma patients
than the activity of their constituent genes (among them MICN, the conventional
biomarker) [2] constitutes an elegant confirmation of this concept. In a similar example
drug sensitivity is shown to be better predicted using probabilistic signaling pathway

models than directly using gene activity values [3].

However, conventional methods for pathway analysis, even the most sophisticated ones
based on pathway topology, can only detect the existence of a significant level of gene
activity within the pathway [4]. However, these methods ignore the obvious fact that
many pathways are multifunctional and often trigger opposite functions (e.g. depending

the receptor and the effector proteins involved in the transduction of the signal, the
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apoptosis pathway may trigger survival or cell death). Moreover, whether the level of
gene activity detected by conventional methods actually triggers cell functionalities or
not and, if so, what genes are the ultimate responsible for the resulting cell activity is
something that must be determined a posteriori, usually by heuristic methods. Thus,
pathway activity analysis (PAA) emerges as an alternative way of defining a new class
of mechanistic biomarkers, whose activity is related to the molecular mechanisms that
account for disease progression or drug response. However, capturing the aspects of the
activity of the pathway that are really related to cell functionality is not trivial. This
requires of an appropriate description of the elementary sub-pathways and an adequate
computation of the individual contributions of gene activities to the actual activity of the
sub-pathway. Different ways of computing activity scores for diverse sub-pathway
definitions using gene expression values [5-8], or even gene mutations [9], have been
proposed (See Table 1). However, in most of them sub-pathway definition is either
unconnected, or only collaterally related, to the functional consequences of pathway

activity (See Table 1).

Here we propose a new method to estimate the activity within a pathway that uses
biological knowledge on cell signaling to recode individual gene expression values
(and/or gene mutations) into measurements that ultimately account for cell
functionalities caused by the activity of the pathway. Specifically, we estimate the level
of activity of stimulus-response sub-pathways (signaling circuits thereinafter) within
signaling pathways, which ultimately trigger cell responses (e.g. proliferation, cell
death, etc.) The activity values of these canonical circuits connected to the
activation/deactivation of cell functionalities can be considered multigenic mechanistic

biomarkers that can easily be related to phenotypes and provide direct clues to
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understand disease mechanisms and drug mechanisms of action (MoA). Therefore, we

designate this method as canonical circuit activity analysis (CCAA).

Results

Data pre-processing

RNA-seq counts for 12 cancer types listed in Table 2 were downloaded from The
Cancer Genome Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/). In order
to detect possible batch effects, principal component analysis (PCA) were calculated.
The samples were plotted in the PCA representation by sequencing center, plate, cancer
type and project. Only a clear batch effect by sequencing center and cancer was found
(Figure S1A to S1E , upper panel), that was corrected by the application of the
COMBAT [21] method (Figure S1F to S1J, lower panels). Then, the 538 samples of the
Kidney renal clear cell carcinoma (KIRC) dataset were further normalized using TMM
[22] to account for RNA composition bias. Normalized data were used as input for the

CCAA method.
Estimation of the specificity of the CCAA method

In order to estimate the false positive rate, we generated different sets of
indistinguishable samples that were randomly divided into two groups which were
compared to try to find differentially activated circuits. Given that the compared groups
are composed of the same type of individuals, any significant difference in sub-pathway
activity found in the comparisons would be considered a false positive of the method.
Real and simulated samples were used for this purpose (see Methods) and the ratio of
false positives was always very low, far below the conventional alpha value of 0.05 (see

Figure S2).
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Estimation of the sensitivity of the CCAA method

In order to obtain an estimation the true positive rate of the CCAA method, we
compared cancer samples versus the corresponding healthy tissue in a series of contrasts
with different sizes (N=50,100,200 and 400 samples; see Methods) from which we
expect differences in cancer-associated pathways. Two different cancer types, KIRC
and BRCA, were used to avoid biases derived from using only a specific type of cancer.
We have used two definitions of cancer associated pathways, one of them taken from
KEGG (composed of 14 pathways belonging to the Cancer pathways category, see
Table 3), and the other one that contains 49 pathways curated by experts (Table 4).
Figure S3 shows how, except in the case of very small datasets in which the statistical
power of the method for detecting significant differences is limited, the proposed
CCAA methodology clearly identifies significant changes for both cancers in the two

cancer pathway definitions used.
Comparison to other available PAA methods

The performance of our method was compared to other PAA methods that provide
different definitions of sub-pathways and distinct algorithms to calculate a score for
them. From the list in (Table 1) we used eight methods that satisfy two basic conditions:
they can be applied to RNA-seq data and there is software available for running them.
These are: DEAP [38], subSPIA [32], using their own software, and topologyGSA [31],
DEGraph [6], clipper [5], TAPPA [29], PRS [40], PWEA [30], using the
implementation available in the topaseq package [41]. Figure 1 represents the true
positive and true negative ratios obtained for any of the methods compared (See
Methods). While most of the pathway activity definitions are reasonably specific, with
true negative ratios over 95% (except clipper, topologyGSA and PWEA, probably
because they define sub-pathways unconnected with cell functionality), the sensitivity is
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generally low (in most cases below 50%). When the curated list of cancer pathways (see
Table 4) is used, the performance of some methods improves but still, the sensibility is

in general low (clearly below 75%, see Figure S4).

From the technical standpoint, the CCAA method can handle loops in the pathway
topology, a feature absent in most PAA methods (see Table 1) allowing a more

comprehensive description of the circuit activity.

These results demonstrates that all the PAA methods analyzed, except ours, are not
properly capturing the biological signal and consequently failed to detect cancer
pathway activities when cancer and normal tissues were compared, across twelve

different cancer types.
A case example with kidney renal clear cell carcinoma

To demonstrate the utility of this approach in defining the activity of canonical
signaling circuits as highly reliable mechanistic biomarkers that, in addition, account for
important disease outcomes such as survival, kidney renal clear cell carcinoma (KIRC)
[14] data was used. In addition, survival data available on patients were used to
demonstrate that the activity of many of the selected circuits is significantly related to

the prognostic of the disease.

Firstly, 526 cancer samples were compared against the 72 available controls of normal
kidney tissue adjacent to the primary tumors (See Table 2). The comparison was made
at the level of canonical circuits (see Methods), effector circuits and functions (using
both Uniprot and GO annotations). As expectable, given the large number of
differentially expressed genes between the cancer and the healthy tissue [14], a large
number of signaling circuits present a significant differential activation between the

compared conditions (4966 with a FDR-adjusted p-value < 0.01; See Table S1).


https://doi.org/10.1101/076083
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/076083; this version posted September 19, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Focusing on effector circuits, this signaling interplay is reduced to 870 significant
changes in the intensity of signal reception (with a FDR-adjusted p-value < 0.01; See
Table S2). These effector nodes significantly trigger 71 cell functionalities (according to
Uniprot general definitions, see Table S3, which summarize 320 more detailed cell
functionalities according to GO definitions, see Table S4; both with a FDR-adjusted p-
value < 0.01). Figure 2 summarizes the different functions dysregulated by circuits in
different KEGG cancer pathways (see Table 3) and the corresponding impact on
patient’s survival. Figure S5 expands this summary to the set of curated cancer
pathways listed in Table 4. Although some functionalities are quite general descriptions
of cellular biological processes and others can be consequences of the extreme
deregulation process occurring in cancer cells, a considerable number of them can be
clearly linked to tumorigenic processes and can easily be mapped to cancer hallmarks

[43].
Circuits that trigger cancer hallmarks determine patient survival

Since survival data was among the clinical information available survival analysis of the
significant effector circuits, and functions listed in Tables S1, S2, S3 and S4) was
carried out. This analysis provides an independent validation of the involvement of
several cell functionalities, as well as several signaling circuits that trigger them, in

cancer pathogenesis.

Survival analysis discovered a total of 310 effector circuits whose dysregulation is
significantly associated to good or poor cancer prognostic (Table S5). These circuits
trigger a total of 31 general cell functionalities, according to Uniprot definitions (Table
S6) that can be expanded to 108 more detailed GO definitions (Table S7), which are

significantly related to patient’s survival.
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The main cancer hallmark is sustained proliferation [43]. A clear example of effector
circuit related to this hallmark is the CCNA2, from the AMPK signaling pathway,
whose high levels of activity are significantly associated to bad prognostic in the
patients in which triggers the Cell division function (Figure S6A). Actually, there is a
significant increase in the activity of the CCNA2 effector circuit as cancer stage
progresses (Figure S6C). In fact, dysregulated genes were recently identified in this sub-
pathway that might be potential biological markers and processes for treatment and
etiology mechanism in KIRC [44]. Another similar example is the effector circuit
ending in node CDK2, CCNE1 from the p53 signaling pathway, and triggering the Cell
cycle function, whose increased activity is significantly associated to bad prognostic in
KIRC patients (Figure S7TA and S7B). In addition, there is a significant increase in the
activity of the CDK2, CCNEL1 effector circuit as cancer stage progresses (Figure S7C).
Recently, CDK2, CCNEL1 genes were described as cancer prognostic factors [45]. When
the association is carried out at the function level, there are two Uniprot functions
(Table S6) representative of sustained proliferation hallmark: Mitosis (FDR-adjusted p-
value 1.7x10%%) and DNA replication (FDR-adjusted p-value=5.9x10"®), whose

upregulation is significantly associated to bad prognostic (See Figures S7A and S7B).

Another cancer hallmark is the activation of metastasis and invasion, favored when the
Uniprot function Cell adhesion decreases. Figure S7C depicts a clear association
between the downregulation of Cell adhesion and the poorer prognostic in patients

(FDR-adjusted p-value=4.4x10").

The third classical cancer hallmark in solid tumors is the induction of angiogenesis.
Angiogenesis appears as significantly associated to survival in both Uniprot and GO
annotations (Tables S6 and S7). Figure S8D depicts a significant relationship between

the upregulation of Positive regulation of angiogenesis and higher patient’s mortality
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(FDR-adjusted p-value=2.9x10?). Actually, the downregulation of the opposite term,
Negative regulation of angiogenesis, is also associated to bad prognostic, as expected,

although with marginal significance (FDR-adjusted p-value=0.055).

Finally, the CCAA method also detects the well-known Warburg effect, the observed
increased uptake and utilization of glucose, documented in many human tumor types
[43, 46]. Our functional analysis clearly predicts a bad prognostic for reduced
gluconeogenesis (FDR-adjusted p-value = 8.96x10°, see Table S6). Actually, it has
recently been suggested a novel mechanism of cancer cell death by augmenting the

gluconeogenesis pathway via mTOR inhibitors [47].

In addition, the CCAA method detects several terms whose perturbed activity seem a
consequence of the dedifferentiation process that occur in kidney cancer cells, such as
the down-activation of Sodium/potassium transport (FDR-adjusted p-value=2.95x10'®),
Sodium transport (FDR-adjusted p-value=8.96x10°) and, the general term Transport

(FDR-adjusted p-value= 6.52x10°) (see Table S6).
Cancer progression driven by specific circuits instead of specific genes

An additional advantage of using CCAA is that the signaling circuits that trigger the
functions in this particular cancer can be easily traced back. DNA replication is an
example of function that can easily be mapped to the sustained proliferative signaling
cancer hallmark [43]. The increase in the activity of this function is significantly related
with poor prognostic (FDR-adjusted p-value=5.94x10®). Three effector circuits
belonging to the Cell cycle and the p53 pathways (See Figure 3 and Table S6) are the
ultimate responsible for the activation of this function. Moreover, it has been described
that dysregulation of different genes within the same pathway may have a similar
impact on downstream pathway function [48, 49]. Figure 4 demonstrates how the

CCAA method can detect the same functional consequence (activation of DNA
10
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replication) caused by distinct, non-recurrent, differential gene expression patterns in
two different cancers (BRCA and KIRC). The detection of the specific circuits and the
particular gene activities involved in the tumorigenesis process has enormous

therapeutic implications.

Discussion

Models of pathway activity bridge the gap between conventional approaches based on
single-gene biomarkers, or functional enrichment methods, and more realistic, model-
based approaches. Models use biological knowledge available on relevant biological
modules (such as signaling pathways) to explain how their perturbations ultimately
cause diseases or responses to treatments. Therefore, such perturbations (initially gene

expression changes) can be related to disease mechanisms or drug MoAs [50, 51].

A unique feature of the CCAA method is that, if the analysis is made at the level of cell
functionality, the changes in the activity detected can be traced back to the circuits in
order to discover which ones are triggering the action and what genes are the ultimate
causative agents of such functional activity changes. Therefore, the resulting models can
be used to suggest and predict the effect of interventions (KOs, drugs or over-
expressions) on specific genes in the circuits so as to find suitable clinical targets,
predict side effects, speculate off-target activities, etc. Depending on the scenario

studied, such interventions can be more general or more personalized.

Another relevant feature missing in the rest of PAA methods (Table 1) is the possibility
of obtaining individual values of circuit, effector or function activities for each sample.
This opens the door to obtaining patient-specific personalized functional profiles

connected to the corresponding signaling circuits.
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Since clinical data are available at the TCGA repository, we were able to find
significant associations of specific pathway activities to patient survival, proving thus

the validity of PAA methodology to capture cell processes involved in disease outcome.

Finally, it is worth mentioning that the integration of information on protein
functionality in the model, if it is available, is straightforward. (See Methods for
details). Other omic data (methylomics data, Copy Number Variation, etc.) could also
be easily introduced in the model providing they could be coded as proxies of presence

and/or integrity of the protein.

Methods

Data source and processing

We used 12 cancer types from The Cancer Genome Atlas (TCGA) data portal
(https://tcga-data.nci.nih.gov/tcga/) in which RNA-seq counts for healthy control
samples were available in addition to the cancer samples: Bladder Urothelial Carcinoma
(BLCA) [10], Breast invasive carcinoma (BRCA) [11], Colon adenocarcinoma (COAD)
[12], Head and Neck squamous cell carcinoma (HNSC) [13], Kidney renal clear cell
carcinoma (KIRC) [14], Kidney renal papillary cell carcinoma (KIRP) [15], Liver
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD) [16], Lung squamous
cell carcinoma (LUSC) [17], Prostate adenocarcinoma (PRAD) [18], Thyroid carcinoma

(THCA) [19] and Uterine Corpus Endometrial Carcinoma (UCEC) [20] (Table 2).

Since TCGA cancer data has different origins and underwent different management
processes, non-biological experimental variations (batch effect) associated to Genome
Characterization Center (GCC) and plate ID must be removed from the RNA-seq data.
The COMBAT method [21] was used for this purpose. Then, we applied the trimmed
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mean of M-values normalization method (TMM) method [22] for data normalization.

The resulting normalized values were entered to the pathway activity analysis method.
Modelling framework

Modelling of pathway activity requires initially of a formal description of the
relationships between proteins within the pathway, which can be taken from different
pathway repositories. Here KEGG pathways [23] are used, but any other repository
could be used instead, as Reactome [24] or others. It also requires of a way to estimate
the activation status of each protein, which accounts for the intensity of signal they can

transmit along the pathway.

A total of 60 KEGG pathways (see Table 5), which include 2212 gene products that
participate in 3379 nodes, are used in this modelling framework. It must be noted that
any gene product can participate in more than one node (even in different pathways) and
a node can contain more than one gene product. Pathways are directed networks in
which nodes (composed by one or more proteins) relate to each other by edges. Only
two different kinds of relation between nodes are considered: activations and
inhibitions. In KEGG pathways, edges define different types of protein interactions that
include phosphorilations, ubiquitinations, glycosilations, etc., but they include a label

indicating if they act as activations or inhibitions.

In order to transmit the signal along the pathway, a protein needs: first, to be present
and functional, and second, to be activated by other protein. Preferably, the activity of
the proteins should be inferred from (phospho)proteomic and chemoproteomic
experiments [25], however, the production of these types of data still results relatively
complex [26]. Instead, an extensively used approach is taking the presence of the
MRNA corresponding to the protein as a proxy for the presence of the protein [5-8, 26,

27]. Therefore, the presence of the mRNAs corresponding to the proteins present in the
13
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pathway is quantified as a normalized value between 0 and 1. Second, a value of signal
intensity transmitted through a protein is computed, taking into account the level of
expression of the corresponding mRNA and the intensity of the signal arriving to it. The
net value of signal transmitted across the pathway corresponds to the signal values
transmitted by the last proteins of the pathway that ultimately trigger the cell functions

activated by the pathway.
Decomposing pathways into circuits

Pathways are represented by directed graphs, which connect input (receptor) nodes to
output (effector) nodes. The signal arrives to an initial input node and is transmitted
along the pathway following the direction of the interactions until it reaches an output
node that triggers an action within the cell. Thus, from different input nodes the signal
may follow different routes along the pathway to reach different output nodes. Within
this modelling context, a canonical circuit is defined as any possible route the signal can
traverse to be transmitted from a particular input to a specific output node (see Figure 5,

left).

Output nodes at the end of canonical are the ultimate responsible to carry out the action
the signal is intended to trigger in the cell. Then, from a functional viewpoint, an
effector circuit can be defined as a higher-level signaling entity composed by the
collection of all the canonical circuits ending in an unique output (effector) node (see
Figure 5, center). When applied to effector circuits, the method returns the joint

intensity of the signal arriving to the corresponding effector node.

A total of 6101 canonical circuits and 1038 effector circuits can be defined in the 60

pathways modelled.
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Computing the circuit activity

The methodology proposed uses gene expression values as proxies of protein presence
values, and consequently of potential protein activation values [5-8, 26, 27]. The
inferred protein activity values are then transformed into node activity values using the
information on node composition taken from KEGG. KEGG defines two types of
nodes: plain nodes, which may contain one or more proteins, whose value is
summarized as the percentile 90 of the values of the proteins contained in it, and
complex nodes, for which the minimum value of the proteins contained (the limiting

component of the complex), is taken as the node activity value.

Once the node activity values have been estimated, the computation of the signal
intensity across the different circuits of the pathways is performed by means of an
iterative algorithm beginning in the input nodes of each circuit. In order to initialize the
circuit signal we assume an incoming signal value of 1 in the input nodes of any circuit.
Then, for each node n of the network, the signal value is propagated along the nodes

according to the following rule:

Sw=va-| 1] Ja=sa || Ja-s0 ®

Sq€EA S;€l

where A is the total number of signals arriving to the node from activation edges, | is the
total number of signals arriving to the node from inhibition edges, and v, is the

normalized value of the current node n.

The algorithm to compute the transmission of the signal along the network is a recursive

method based on the Dijkstra algorithm [28]. Each time the signal value across a node is
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updated in a recursion and the difference with the previous value is greater than a
threshold, all the nodes to which an edge arrives from the current updated node are
marked to be updated. The recursion continues until the update in the values is below
the threshold. The advantage if using an iterative method is that the signal becomes
steady even in cases of loops in the pathway topology, allowing a more precise
estimation of circuit activities. Many PAA methods simply cannot handle with loops
and artificially disconnect them or even remove them from the calculations [5, 6, 8, 29-
32]. Figure 6 represents the computation of the intensity of signal transmission across a

node, and exemplifies in a simple scenario how the signal is transmitted across a circuit.
Effector circuits and functional analysis

Effector nodes at the end of the circuits trigger specific functions in the cell. These
functions are defined here based on the annotations of the proteins contained in the
effector node. Gene Ontology [33] (GO) terms corresponding to the biological process
ontology (February 16, 2016 release) and molecular function keywords of Uniprot [34]

(release of September 21, 2015) are used.

The signal intensity received by the effector node can be propagated to the functions
triggered by them following the same rationale of signal propagation along the circuits.
Figure 5 illustrates how effector circuits are composed by different canonical circuits

and how functions can be triggered by several effector circuits.
Straightforward integration of transcriptomic and genomic data

Finally, the integration of genomic and transcriptomic data in the proposed modeling
framework of signaling pathways is straightforward. In order to transmit the signal a
protein needs to be present (gene expressed) and to be functional (harboring no

impairing mutations). Genomic data can be integrated with transcriptomic data to infer
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combined gene activity and integrity (and consequently potential functionality). In the
simplest approach [9] the normalized expression value of genes harboring mutations is
multiplied by O if the pathogenicity (e.g. SIFT [35], PolyPhen [36]) and conservation
indexes (e.g. phastCons [37]) are beyond a given threshold (taking into account the
inheritance mode), or if the consequence type of the mutation (stop gain, stop loss, and
splicing disrupting) is deleterious per se, because it is considered to produce a non-
functional protein. The HiPathia program enables the analysis of mutations found in
standard variant files (VCF) from whole exome/genome sequencing experiments in

combination with gene expression values.
Specificity of the method of canonical circuit activity analysis (CCAA)

To estimate the false positive rate, different groups of N identical individuals were
generated and further divided into two datasets that were compared to each other for
finding differentially activated circuits. This comparison was repeated 2000 times for
different data sizes (N = 20, 50, 100, 200 and 400 individuals) in three different
scenarios: i) N individuals were randomly sampled among KIRC patients; ii) For each
gene g, an empirical distribution of gene expression values was derived from the
patients of the KIRC dataset, with mean g and variance o%. Then, N individuals were

generated by simulating their gene expression values as random numbers sampled from

a normal distribution N(ug,0%); iii) N individuals were generated by simulating their
gene expression values as random numbers from a normal distribution N'(0.5, 0.05).

Since the individuals involved in the comparison were taken either from the same type
of samples or were generated in the same way, any differential activation found can be

considered a false positive. The comparisons were carried out for both, circuits and

effector proteins.
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Sensitivity of the Canonical Circuit Activity Analysis (CCAA) method

To estimate the true positive rate, we tested a scenario in which biological differences
are expected. For this purpose, we used the two 2 cancers in Table 2 with more
individuals, BRCA [11] and KIRC [14]. For each of the two cancers we generated 100
datasets of N=50,100,200 and 400 samples by sampling randomly both the normal and
tumor samples in such a way that the normal/tumor proportion remained the same as in
the original dataset (Table 2). In total, we generated 2x100x4 = 800 datasets. CCAA
was calculated at the level of signaling circuits and effector circuits for both datasets.
The true positive rate was estimated as the number of cancer pathways containing one
or more differentially activated circuits divided by the total number of cancer pathways.
Although a gold standard is always difficult in this type of scenario, we can expect
changes in the 14 cancer pathways, as defined in KEGG (Cancer pathways category, see
Table 3). Additionally, we produced an extended table of 49 cancer pathways curated

by expert collaborators from the Valencia Institute of Oncology (IVO) (Table 4).
Comparison with other available methods for defining and scoring pathway activity

We compared the reliability of the CCAA method proposed here to other proposals for
defining sub-pathways and for calculating an activity score for them. Among the
methods listed in Table 1 only nine could be applied to RNA-seq data and have
software available for running them. These are: DEAP [38], subSPIA [32], using their
own software, and SPIA [39], topologyGSA [31], DEGraph [6], clipper [5], TAPPA
[29], PRS [40], PWEA [30], implemented in the topaseq package [41]. The relative
performance of the methods compared was derived from the estimation of their ratios of
false positives and false negatives in a similar way than above. In order to estimate the
false positives rate 12 cancer datasets (Table 2) were used. For each cancer, 50 patients
were randomly sampled 100 times. Any sampled set is divided into two equally sized
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subsets that are subsequently compared. Then, the 100 values obtained for each cancer
are used to determine a mean value and a SD for the false positives ratio. The same 12
cancers (Table 2) were used to estimate the true positive rates. For each cancer versus
normal tissue comparison the number of significant cancer pathways was calculated and
divided by the total number of cancer pathways. The ratios were calculated for both the
14 cancer pathways as defined in KEGG (Cancer pathways category, see Table 3) and

the extended list of 49 curated cancer pathways (Table 4).
Survival in cancer

The KIRC TCGA samples contain survival information among the clinical data
available. Kaplan-Meier (K-M) curves [42] were estimated using the function survdiff
from the survival R package (https://cran.r-project.org/web/packages/survival/) for each
signaling circuit, each effector circuit and each cell function (either Uniprot or GO
definitions) with a significant difference of activity when cancers were compared to the
corresponding controls. Specifically, the 10% of individuals presenting the highest (or

lowest) activity were compared to the rest of them.
Availability of data and materials

A user-friendly web server that runs the code for carrying out the CCAA method is

freely available at http://hipathia.babelomics.org.

The R code implementing the method IS available at

https://github.com/babelomics/hipathia.
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Figure 1. Comparison of performances of the different methods for defining pathways
and calculating its activity. CCAA is compared to DEAP [38], subSPIA [32], using
their own software, and topologyGSA [31], DEGraph [6], clipper [5], TAPPA [29],
PRS [40], PWEA [30], using the implementation available in the topaseq package [41].
The true positive rate has been estimated averaging the proportion of significant cancer
KEGG pathways (Table 3) across the 12 cancers analyzed and is represented in the Y
axis. Vertical bars in each point represent 1 SD of the true positive rate for the
corresponding method. The false positive rate was estimated from 100 comparisons of
groups (N=25) of identical individuals, randomly sampled from each cancer. The results
obtained in the 12 cancers are used to obtain a mean value and an error. The X axis
represents 1- the false positive rate. Horizontal bars represent in each point represent 1
SD of the false positive rate for the corresponding method.
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Figure 2. Circos plot that summarizes the relationships between effectors within
pathways and the functions triggered by them. Only cancer KEGG pathways (Table 3)
related to functions significantly related to survival are represented here. On the right

side appear the effector circuits grouped according to the pathway they belong to. There

is a histogram per pathway that represents the proportion of effector pathways
upregulated (red), downregulated (blue) and dysregulated in both directions (yellow).

regulated (blue) or when both situations occur (yellow). For each function there is a
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On the left side of the circo appear the functions triggered by the effector circuits
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Figure 3. Increase of DNA replication is related to bad prognostic. Effector nodes in two pathways trigger DNA replication in KIRC, as detected
by the Hipathia program (http://hipathia.babelomics.org). Genes in red represent genes upregulated in the cancer with respect to the
corresponding normal tissue; genes in blue represent downregulated genes and genes with no color were not differentially expressed. A) Cell
Cycle signaling pathway with three effector circuits highlighted, one of them ending in the node containing proteins CDC6, ORC3, ORCS5,
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ORC4, ORC2, ORC1 and ORCS6, the second one ending in node with proteins CDC45, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2 and
the last one ending in node with proteins ORC3, ORC5, ORC4, ORC2, ORC1, ORC6, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2. B)

p53 signaling pathway with the effector circuit ending in protein RRM2B highlighted. C) Survival Kaplan-Meier (K-M) curves obtained for
Uniprot function DNA replication.
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Figure 4. DNA replication is triggered by the same circuits in KIRC and BRCA, but using a different pattern of gene activation. The Hipathia
program (http://hipathia.babelomics.org) detected a total of four effector circuits in two pathways, Cell Cycle and P53 signaling, that are used by
both cancers to trigger DNA replication. Arrows in red represent activated circuits. Genes in red represent genes upregulated in the cancer with
respect to the corresponding normal tissue; genes in blue represent downregulated genes and genes with no color were not differentially
expressed. Squares at the end of the circuit represent the cell functions triggered by the circuits. A) Cell Cycle signaling pathway in KIRC with
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three effector circuits activated (highlighted), one of them ending in the node containing proteins CDC6, ORC3, ORC5, ORC4, ORC2, ORC1 and
ORCEB, the second one ending in node with proteins CDC45, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2 and the last one ending in node
with proteins ORC3, ORC5, ORC4, ORC2, ORC1, ORC6, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2. B) P53 signaling pathway in
BRCA with the effector circuit ending in protein RRM2B highlighted. C) Cell Cycle pathway in BRCA with the same effector circuits activated

that in KIRC, but using a different set of gene activations. D) P53 signaling pathway in BRCA with the same effector circuit activated that in
KIRC, but using a different set of gene activations.
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Figure 5. Schema that illustrates the relationship between circuits, effector circuits and functions. Left: signaling circuits, which are canonical
sub-pathways that transmit signals from a unique receptor to a unique effector node. Center: effector circuits that represent the combined activity
of all the signals that converge into a unique effector node. Right: functional activity that represents the combined effect of the signal received by

all the effectors that trigger a particular cell function.
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Function

Figure 6. Schematic representation of the signal propagation algorithm used. Upper part: the three types of activity transmitted: left) the
combination of two activations, center) the combination of an activation and an inhibition and right) the combination of two inhibitions. Central
part: the normalized values of gene expression are assigned to the corresponding nodes in the circuits. Lower part: the signal starts with a value
of 1 in the receptor node A and is propagated by multiplying the weights assigned to each node in the central part following the rules depicted in

the upper part.
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Table 1. List of methods for Pathway Analysis. The first column (Method) contains the name or acronym of the method, if exists, otherwise,
we refer to it as the fires author of the publication. The second column (Date) contains the publication date. The third column (code) informs
on the availability of the code to run the method. The fourth column (Pathway modelled) indicates the pathway definition used in the
method. The fifth column (Entity modelled) is the entity, within the pathway, used in the method (“subpath identification” methods obtain
candidate sub-pathways usually by differential expression of its constituent genes, “signal quantification” methods provide, in addition, a
quantification of the activation status of the sub-pathway). The sixth column (input) indicates the data type that inputs the method (MA:
Expression Microarray; CNV: copy number variation; NA: not available). The seventh column (output) describes the results provided by the
method. Some provide only a score (p-value, DE: differential expression matrix; PF: perturbation factor) for the whole pathway and other
also provide scores for sub-pathways, that can be defined within the pathways in many different ways. The eight column (Comparison)
indicates the type of comparison the method can deal with. It can be either a conventional two conditions (typically case/control) comparison
or it can allow obtaining personalized results per individual. And the ninth column (Loops) indicates whether the method can handle loop
structures in the topology of the sub-pathway analyzed or not.

Method Date Code Pathway modelled Entity modelled Input Output Comparison  Loops
p-value per pathway
. Web application Subpath p-value per subpathway = Two
MinePath[52] 2015 http://minepath.org/ KEGG pathways identification MA binary value per sample  conditions NA
graphical visualization
Qin et al.[53] 2015 NA® 12 cancer-related signal ?:A&Jizions Pathway activit Personalized es
' KEGG pathways quantification y y y
Cancer drugs
MA p-value of DE per
signal RNAseq (via subpathway Two
SubSPIA[32] 2015 R code KEGG pathways e . p-value of PF per . no
quantification SPIA in bath conditions
ToPASeq)  Subpathway
global p-value (DE+PF)
Pathome[54] 2014 NA KEGG pathways signal_ L MA p-value per subpathway Two NA
quantification RNAseq conditions
subpath Two
Pepe et al.[55] 2014 R code KEGG pathways identification MA p-value per subpathway conditions NA
ToPaSeq[41] 2014 R package graphite gene-gene integrates other MA Depends on the method  Two Depends


https://doi.org/10.1101/076083
http://creativecommons.org/licenses/by-nd/4.0/

DEAP[38]

CliPPER[5]

GraphiteWeb[56]

TEAK[57]

PRS[40]

networks
user's pathways

user defined pathway

2013 python code structure

graphite gene-gene

R package networks
2013 cliques
ToPASeq R package user's pathways (via
ToPASeq)

Web application:
2013 http://graphiteweb.bio.unipd.it/
R package

KEGG pathways
Reactome pathways

Code @ Google (Windows

2013 and Mac)

KEGG pathways

graphite gene-gene
networks (ToPASeq)
user's pathways (via
ToPASeq)

2012 ToPASeq R package

methods:
TopologyGSA
DEGraph
Clipper

SPIA

TAPPA

PRS

PWEA

signal
quantification

subpath
identification

integrates other
methods:
Hypergeometric
test

Global Test
GSEA

SPIA

CIliPPER

metabolism-
oriented
subpathway
identification

pathway
identification

RNAseq

MA
RNAseq

MA
RNAseq

MA
RNAseq

MA

MA
RNAseq

Score and p-value per
pathway

subgraph with the
maximum absolute score

p-value at pathway level
Most affected subgraph

per pathway

Gene-level statistics for

DE of genes

Significant pathways
Visualization of the
pathways with nodes
coloured according to
their contribution to the
analysis

Ranked subpathways

p-value per pathway
gene-level statistics for
DE of genes

conditions

Two
conditions

Two
conditions

Two
conditions

Two
conditions

Two
conditions

on the
method

yes

no

no

no

yes


https://doi.org/10.1101/076083
http://creativecommons.org/licenses/by-nd/4.0/

R package

DEGraph(6] 2012 1opAseq R package

Riveraetal.[58] 2012 NA

Chen et al.[59] 2011 NA

PWEAJ[30] 2010 ToPASeq R package

TopologyGSA[31] 2010 ToPASeq R package

DEGAS[60] 2010 Java (Windows)

TAPPA[29] 2007 ToPASeq R package

subgraphs of a large
graph (branch-and-
bound-like approach)
graphite gene-gene
networks (ToPASeq)
user's pathways (via
ToPASeq)

NetPathpathways

KEGG pathways

Complete pathways
(KEGG)

graphite gene-gene
networks (ToPASeq)
user's pathways (via
ToPASeq)

Complete pathways
(KEGG)

Cliques

graphite gene-gene
networks (ToPASeq)
user's pathways (via
ToPASeq)

KEGG pathways
PPIs network

graphite gene-gene
networks (ToPASeq)
user's pathways (via
ToPASeq)

subpath
identification

subpath
identification

subpath
identification

pathway
identification

subpath
identification

novel subpath

identification

pathway
identification

MA
RNAseq

MA

MA

MA
RNAseq

MA
RNAseq

MA

MA
RNASeq

p-value of DE per
subpathway

p-value per pathway
Gene-level statistics for
DE of genes

p-value of most perturbed

subpathway

p-value per subpathway
p-value of key genes

p-value of DE per
pathway

Gene-level statistics for
DE of genes

p-value of DE per
pathway

Gene-level statistics for
DE of genes

A subpathway per
pathway

p-value of DE per
pathway

Gene-level statistics for
DE of genes

Two
conditions

Two
conditions

Two
conditions

Two
conditions

Two
conditions

Two

conditions

Two
conditions

no

NA

NA

no

no

NA

no
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Table 2. Cancers used in this study with the number of samples sequenced of both tumour biopsy and normal adjacent tissue.

TCGA ldentifier | Cancer Primary tumor Normal adjacent tissue | Ref.
BLCA Bladder Urothelial Carcinoma 301 17 [10]
BRCA Breast invasive carcinoma 1057 113 [11]
COAD Colon adenocarcinoma 451 41 [12]
HNSC Head and Neck squamous cell carcinoma 480 42 [13]
KIRC Kidney renal clear cell carcinoma 526 72 [14]
KIRP Kidney renal papillary cell carcinoma 222 32 [15]
LIHC Liver hepatocellular carcinoma 294 48 -

LUAD Lung adenocarcinoma 486 55 [16]
LUSC Lung squamous cell carcinoma 428 45 [17]
PRAD Prostate adenocarcinoma 379 52 [18]
THCA Thyroid carcinoma 500 58 [19]
UCEC Uterine Corpus Endometrial Carcinoma 516 23 [20]
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Table 3. KEGG cancer pathways

KEGG identifier | Name

hsa04010 MAPK signaling pathway
hsa04310 Whnt signaling pathway
hsa04350 TGF-beta signaling pathway
hsa04370 VEGF signaling pathway
hsa04630 Jak-STAT signaling pathway
hsa04024 CAMP signaling pathway
hsa04151 PI3K-Akt signaling pathway
hsa04150 mTOR signaling pathway
hsa04110 Cell cycle

hsa04210 Apoptosis

hsa04115 p53 signaling pathway
hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa03320 PPAR signaling pathway
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Table 4. Curated cancer pathways

KEGG identifier Name

hsa04014 Ras signaling pathway

hsa04015 Rapl signaling pathway

hsa04010 MAPK signaling pathway

hsa04012 ErbB signaling pathway

hsa04310 Whnt signaling pathway

hsa04330 Notch signaling pathway

hsa04340 Hedgehog signaling pathway
hsa04350 TGF-beta signaling pathway
hsa04390 Hippo signaling pathway

hsa04370 VEGF signaling pathway

hsa04630 Jak-STAT signaling pathway
hsa04064 NF-kappa B signaling pathway
hsa04668 TNF signaling pathway

hsa04066 HIF-1 signaling pathway

hsa04068 FoxO signaling pathway

hsa04020 Calcium signaling pathway
hsa04024 cAMP signaling pathway

hsa04022 cGMP-PKG signaling pathway
hsa04151 PI3K-Akt signaling pathway
hsa04152 AMPK signaling pathway

hsa04150 mTOR signaling pathway

hsa04110 Cell cycle

hsa04114 Oocyte meiosis

hsa04210 Apoptosis

hsa04115 p53 signaling pathway

hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa04530 Tight junction

hsa04540 Gap junction

hsa04611 Platelet activation

hsa04620 Toll-like receptor signaling pathway
hsa04621 NOD-like receptor signaling pathway
hsa04650 Natural killer cell mediated cytotoxicity
hsa04660 T cell receptor signaling pathway
hsa04662 B cell receptor signaling pathway
hsa04670 Leukocyte transendothelial migration
hsa04062 Chemokine signaling pathway
hsa04910 Insulin signaling pathway

hsa04920 Adipocytokine signaling pathway
hsa03320 PPAR signaling pathway

hsa04912 GnRH signaling pathway

hsa04915 Estrogen signaling pathway
hsa04914 Progesterone-mediated oocyte maturation
hsa04919 Thyroid hormone signaling pathway
hsa04916 Melanogenesis

hsa05200 Pathways in cancer
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hsa05231 Choline metabolism in cancer
hsa05202 Transcriptional misregulation in cancer
hsa05205 Proteoglycans in cancer
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Table 5. KEGG pathways modeled in this study

KEGG identifier Name

hsa04014 Ras signaling pathway

hsa04015 Rap1l signaling pathway

hsa04010 MAPK signaling pathway

hsa04012 ErbB signaling pathway

hsa04310 Wnt signaling pathway

hsa04330 Notch signaling pathway

hsa04340 Hedgehog signaling pathway
hsa04350 TGF-beta signaling pathway
hsa04390 Hippo signaling pathway

hsa04370 VEGF signaling pathway

hsa04630 Jak-STAT signaling pathway
hsa04064 NF-kappa B signaling pathway
hsa04668 TNF signaling pathway

hsa04066 HIF-1 signaling pathway

hsa04068 FoxO signaling pathway

hsa04020 Calcium signaling pathway
hsa04071 Sphingolipid signaling pathway
hsa04024 cAMP signaling pathway

hsa04022 cGMP-PKG signaling pathway
hsa04151 PI3K-Akt signaling pathway
hsa04152 AMPK signaling pathway

hsa04150 mTOR signaling pathway

hsa04110 Cell cycle

hsa04114 Oocyte meiosis

hsa04210 Apoptosis

hsa04115 p53 signaling pathway

hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa04530 Tight junction

hsa04540 Gap junction

hsa04611 Platelet activation

hsa04620 Toll-like receptor signaling pathway
hsa04621 NOD-like receptor signaling pathway
hsa04622 RIG-I-like receptor signaling pathway
hsa04650 Natural killer cell mediated cytotoxicity
hsa04660 T cell receptor signaling pathway
hsa04662 B cell receptor signaling pathway
hsa04664 Fc epsilon RI signaling pathway
hsa04666 Fc gamma R-mediated phagocytosis
hsa04670 Leukocyte transendothelial migration
hsa04062 Chemokine signaling pathway
hsa04910 Insulin signaling pathway

hsa04922 Glucagon signaling pathway
hsa04920 Adipocytokine signaling pathway
hsa03320 PPAR signaling pathway

hsa04912 GnRH signaling pathway
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hsa04915 Estrogen signaling pathway

hsa04914 Progesterone-mediated oocyte maturation
hsa04921 Oxytocin signaling pathway

hsa04919 Thyroid hormone signaling pathway
hsa04916 Melanogenesis

hsa04261 Adrenergic signaling in cardiomyocytes
hsa04270 Vascular smooth muscle contraction
hsa04722 Neurotrophin signaling pathway
hsa05200 Pathways in cancer

hsa05231 Choline metabolism in cancer
hsa05202 Transcriptional misregulation in cancer
hsa05205 Proteoglycans in cancer

hsa04971 Gastric acid secretion

hsa05160 Hepatitis C
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Additional files

Additional File 1: Figure S1. PCA plots of the samples to discover batch effects.
Figure S2. False positive ratio of the CCAA method proposed, obtained as the
proportion of signaling circuits that present significant differential activity when
identical datasets are compared. Figure S3. True positive ratio of CCAA method
proposed obtained as the proportion of cancer pathways with one or more signaling
circuits with a significant differential activity found by comparing cancer cases to their
corresponding normal tissue samples, for which real differences are expected. Figure
S4. Comparison of performances of the different methods for defining pathways and
calculating its activity. Figure S5. Circos plot that summarises the relationships
between effectors within pathways and the functions triggered by them. Figure S6.
Example of effector circuit significantly associated to bad prognostic in KIRC. Figure
S7. Example of effector circuit significantly associated to bad prognostic in KIRC.
Figure S8. Survival Kaplan-Meier (K-M) curves obtained for Uniprot and GO
functions.

Additional File 2. Table S1. Canonical circuits differentially activated between cancer
and the normal tissue. Table S2. Effector circuits differentially activated between
cancer and the normal tissue. Table S3. Unitprot functions differentially activated
between cancer and the normal tissue. Table S4. Gene Ontology functions differentially
activated between cancer and the normal tissue. Table S5. Effector circuits associated to
patient survival. Table S6. Uniprot functions associated to patient survival. Table S7.

Gene Ontology functions associated to patient survival.
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