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Abstract  

Understanding the aspects of the cell functionality that account for disease or drug 

action mechanisms is a main challenge for precision medicine.  Here we propose a new 

method that models cell signaling using biological knowledge on signal transduction. 

The method recodes individual gene expression values (and/or gene mutations) into 

accurate measurements of changes in the activity of signaling circuits, which ultimately 

constitute high-throughput estimations of cell functionalities caused by gene activity 

within the pathway. Moreover, such estimations can be obtained either at cohort-level, 

in case/control comparisons, or personalized for individual patients. The accuracy of the 

method is demonstrated in an extensive analysis involving 5640 patients from 12 

different cancer types. Circuit activity measurements not only have a high diagnostic 

value but also can be related to relevant disease outcomes such as survival, and can be 

used to assess therapeutic interventions.  
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Introduction 

Despite most phenotypic traits (including disease and drug response) are multi-genic, 

the vast majority of biomarkers in use are based on unique gene alterations (expression 

changes, mutations, etc.) Obviously, the determination of the status of a single gene is 

technically easier than multiple gene measurements. However, regardless of their 

extensive clinical utility, single gene biomarkers frequently lack any mechanistic link to 

the fundamental cellular processes responsible for disease progression or therapeutic 

response. Such processes are better understood as pathological alterations in the normal 

operation of functional modules caused by different combinations of gene perturbations 

(mutations or gene expression changes) rather than by alterations of a unique gene [1].  

Of particular interest are signaling pathways, a type of functional module known to play 

a key role in cancer origin and progression, as well as in other diseases. Consequently, 

analysis of the activity of signaling pathways should provide a more informative insight 

of cellular function. Actually, the recent demonstration that the activity of a pathway 

presents a significantly better association to bad prognostic in neuroblastoma patients 

than the activity of their constituent genes (among them MICN, the conventional 

biomarker) [2] constitutes an elegant confirmation of this concept. In a similar example 

drug sensitivity is shown to be better predicted using probabilistic signaling pathway 

models than directly using gene activity values [3].  

However, conventional methods for pathway analysis, even the most sophisticated ones 

based on pathway topology, can only detect the existence of a significant level of gene 

activity within the pathway [4]. However, these methods ignore the obvious fact that 

many pathways are multifunctional and often trigger opposite functions (e.g. depending 

the receptor and the effector proteins involved in the transduction of the signal, the 
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apoptosis pathway may trigger survival or cell death). Moreover, whether the level of 

gene activity detected by conventional methods actually triggers cell functionalities or 

not and, if so, what genes are the ultimate responsible for the resulting cell activity is 

something that must be determined a posteriori, usually by heuristic methods. Thus, 

pathway activity analysis (PAA) emerges as an alternative way of defining a new class 

of mechanistic biomarkers, whose activity is related to the molecular mechanisms that 

account for disease progression or drug response. However, capturing the aspects of the 

activity of the pathway that are really related to cell functionality is not trivial.  This 

requires of an appropriate description of the elementary sub-pathways and an adequate 

computation of the individual contributions of gene activities to the actual activity of the 

sub-pathway. Different ways of computing activity scores for diverse sub-pathway 

definitions using gene expression values [5-8], or even gene mutations [9], have been 

proposed (See Table 1). However, in most of them sub-pathway definition is either 

unconnected, or only collaterally related, to the functional consequences of pathway 

activity (See Table 1).  

Here we propose a new method to estimate the activity within a pathway that uses 

biological knowledge on cell signaling to recode individual gene expression values 

(and/or gene mutations) into measurements that ultimately account for cell 

functionalities caused by the activity of the pathway. Specifically, we estimate the level 

of activity of stimulus-response sub-pathways (signaling circuits thereinafter) within 

signaling pathways, which ultimately trigger cell responses (e.g. proliferation, cell 

death, etc.) The activity values of these canonical circuits connected to the 

activation/deactivation of cell functionalities can be considered multigenic mechanistic 

biomarkers that can easily be related to phenotypes and provide direct clues to 
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understand disease mechanisms and drug mechanisms of action (MoA). Therefore, we 

designate this method as canonical circuit activity analysis (CCAA). 

 

Results 

Data pre-processing 

RNA-seq counts for 12 cancer types listed in Table 2 were downloaded from The 

Cancer Genome Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/). In order 

to detect possible batch effects, principal component analysis (PCA) were calculated. 

The samples were plotted in the PCA representation by sequencing center, plate, cancer 

type and project. Only a clear batch effect by sequencing center and cancer was found 

(Figure S1A to S1E , upper panel), that was corrected by the application of the 

COMBAT [21] method (Figure S1F to S1J, lower panels). Then, the 538 samples of the 

Kidney renal clear cell carcinoma (KIRC) dataset were further normalized using TMM 

[22] to account for RNA composition bias. Normalized data were used as input for the 

CCAA method.  

Estimation of the specificity of the CCAA method 

In order to estimate the false positive rate, we generated different sets of 

indistinguishable samples that were randomly divided into two groups which were 

compared to try to find differentially activated circuits. Given that the compared groups 

are composed of the same type of individuals, any significant difference in sub-pathway 

activity found in the comparisons would be considered a false positive of the method. 

Real and simulated samples were used for this purpose (see Methods) and the ratio of 

false positives was always very low, far below the conventional alpha value of 0.05 (see 

Figure S2). 
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Estimation of the sensitivity of the CCAA method 

In order to obtain an estimation the true positive rate of the CCAA method, we 

compared cancer samples versus the corresponding healthy tissue in a series of contrasts 

with different sizes (N=50,100,200 and 400 samples; see Methods) from which we 

expect differences in cancer-associated pathways. Two different cancer types, KIRC 

and BRCA, were used to avoid biases derived from using only a specific type of cancer. 

We have used two definitions of cancer associated pathways, one of them taken from 

KEGG (composed of 14 pathways belonging to the Cancer pathways category, see 

Table 3), and the other one that contains 49 pathways curated by experts (Table 4). 

Figure S3 shows how, except in the case of very small datasets in which the statistical 

power of the method for detecting significant differences is limited, the proposed 

CCAA methodology clearly identifies significant changes for both cancers in the two 

cancer pathway definitions used. 

Comparison to other available PAA methods  

The performance of our method was compared to other PAA methods that provide 

different definitions of sub-pathways and distinct algorithms to calculate a score for 

them. From the list in (Table 1) we used eight methods that satisfy two basic conditions: 

they can be applied to RNA-seq data and there is software available for running them. 

These are: DEAP [38], subSPIA [32], using their own software, and topologyGSA [31], 

DEGraph [6], clipper [5], TAPPA [29], PRS [40], PWEA [30], using the 

implementation available in the topaseq package [41].  Figure 1 represents the true 

positive and true negative ratios obtained for any of the methods compared (See 

Methods). While most of the pathway activity definitions are reasonably specific, with 

true negative ratios over 95% (except clipper, topologyGSA and PWEA, probably 

because they define sub-pathways unconnected with cell functionality), the sensitivity is 
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generally low (in most cases below 50%). When the curated list of cancer pathways (see 

Table 4) is used, the performance of some methods improves but still, the sensibility is 

in general low (clearly below 75%, see Figure S4).  

From the technical standpoint, the CCAA method can handle loops in the pathway 

topology, a feature absent in most PAA methods (see Table 1) allowing a more 

comprehensive description of the circuit activity. 

These results demonstrates that all the PAA methods analyzed, except ours, are not 

properly capturing the biological signal and consequently failed to detect cancer 

pathway activities when cancer and normal tissues were compared, across twelve 

different cancer types. 

A case example with kidney renal clear cell carcinoma 

To demonstrate the utility of this approach in defining the activity of canonical 

signaling circuits as highly reliable mechanistic biomarkers that, in addition, account for 

important disease outcomes such as survival, kidney renal clear cell carcinoma (KIRC) 

[14]  data was used. In addition, survival data available on patients were used to 

demonstrate that the activity of many of the selected circuits is significantly related to 

the prognostic of the disease. 

Firstly, 526 cancer samples were compared against the 72 available controls of normal 

kidney tissue adjacent to the primary tumors (See Table 2). The comparison was made 

at the level of canonical circuits (see Methods), effector circuits and functions (using 

both Uniprot and GO annotations). As expectable, given the large number of 

differentially expressed genes between the cancer and the healthy tissue [14], a large 

number of signaling circuits present a significant differential activation between the 

compared conditions (4966 with a FDR-adjusted p-value < 0.01; See Table S1). 
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Focusing on effector circuits, this signaling interplay is reduced to 870 significant 

changes in the intensity of signal reception (with a FDR-adjusted p-value < 0.01; See 

Table S2). These effector nodes significantly trigger 71 cell functionalities (according to 

Uniprot general definitions, see Table S3, which summarize 320 more detailed cell 

functionalities according to GO definitions,  see Table S4; both with a FDR-adjusted p-

value < 0.01). Figure 2 summarizes the different functions dysregulated by circuits in 

different KEGG cancer pathways (see Table 3) and the corresponding impact on 

patient’s survival. Figure S5 expands this summary to the set of curated cancer 

pathways listed in Table 4. Although some functionalities are quite general descriptions 

of cellular biological processes and others can be consequences of the extreme 

deregulation process occurring in cancer cells, a considerable number of them can be 

clearly linked to tumorigenic processes and can easily be mapped to cancer hallmarks 

[43].  

Circuits that trigger cancer hallmarks determine patient survival 

Since survival data was among the clinical information available survival analysis of the 

significant effector circuits, and functions listed in Tables S1, S2, S3 and S4) was 

carried out. This analysis provides an independent validation of the involvement of 

several cell functionalities, as well as several signaling circuits that trigger them, in 

cancer pathogenesis.  

Survival analysis discovered a total of 310 effector circuits whose dysregulation is 

significantly associated to good or poor cancer prognostic (Table S5). These circuits 

trigger a total of 31 general cell functionalities, according to Uniprot definitions (Table 

S6) that can be expanded to 108 more detailed GO definitions (Table S7), which are 

significantly related to patient’s survival.  
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The main cancer hallmark is sustained proliferation [43]. A clear example of effector 

circuit related to this hallmark is the CCNA2, from the AMPK signaling pathway, 

whose high levels of activity are significantly associated to bad prognostic in the 

patients in which triggers the Cell division function (Figure S6A). Actually, there is a 

significant increase in the activity of the CCNA2 effector circuit as cancer stage 

progresses (Figure S6C). In fact, dysregulated genes were recently identified in this sub-

pathway that might be potential biological markers and processes for treatment and 

etiology mechanism in KIRC [44]. Another similar example is the effector circuit 

ending in node CDK2, CCNE1 from the p53 signaling pathway, and triggering the Cell 

cycle function, whose increased activity is significantly associated to bad prognostic in 

KIRC patients (Figure S7A and S7B). In addition, there is a significant increase in the 

activity of the CDK2, CCNE1 effector circuit as cancer stage progresses (Figure S7C). 

Recently, CDK2, CCNE1 genes were described as cancer prognostic factors [45]. When 

the association is carried out at the function level, there are two Uniprot functions 

(Table S6) representative of sustained proliferation hallmark: Mitosis (FDR-adjusted p-

value 1.7x10
-12

) and DNA replication (FDR-adjusted p-value=5.9x10
-8

), whose 

upregulation is significantly associated to bad prognostic (See Figures S7A and S7B).  

Another cancer hallmark is the activation of metastasis and invasion, favored when the 

Uniprot function Cell adhesion decreases. Figure S7C depicts a clear association 

between the downregulation of Cell adhesion and the poorer prognostic in patients 

(FDR-adjusted p-value=4.4x10
-5

).  

The third classical cancer hallmark in solid tumors is the induction of angiogenesis. 

Angiogenesis appears as significantly associated to survival in both Uniprot and GO 

annotations (Tables S6 and S7). Figure S8D depicts a significant relationship between 

the upregulation of Positive regulation of angiogenesis and higher patient’s mortality 
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(FDR-adjusted p-value=2.9x10
-2

). Actually, the downregulation of the opposite term, 

Negative regulation of angiogenesis, is also associated to bad prognostic, as expected, 

although with marginal significance (FDR-adjusted p-value=0.055).  

Finally, the CCAA method also detects the well-known Warburg effect, the observed 

increased uptake and utilization of glucose, documented in many human tumor types 

[43, 46]. Our functional analysis clearly predicts a bad prognostic for reduced 

gluconeogenesis (FDR-adjusted p-value = 8.96x10
-6

, see Table S6). Actually, it has 

recently been suggested a novel mechanism of cancer cell death by augmenting the 

gluconeogenesis pathway via mTOR inhibitors [47].  

In addition, the CCAA method detects several terms whose perturbed activity seem a 

consequence of the dedifferentiation process that occur in kidney cancer cells, such as 

the down-activation of Sodium/potassium transport (FDR-adjusted p-value=2.95x10
-9

), 

Sodium transport (FDR-adjusted p-value=8.96x10
-6

) and, the general term Transport 

(FDR-adjusted p-value= 6.52x10
-5

) (see Table S6). 

Cancer progression driven by specific circuits instead of specific genes 

An additional advantage of using CCAA is that the signaling circuits that trigger the 

functions in this particular cancer can be easily traced back. DNA replication is an 

example of function that can easily be mapped to the sustained proliferative signaling 

cancer hallmark [43]. The increase in the activity of this function is significantly related 

with poor prognostic (FDR-adjusted p-value=5.94x10
-8

). Three effector circuits 

belonging to the Cell cycle and the p53 pathways (See Figure 3 and Table S6) are the 

ultimate responsible for the activation of this function. Moreover, it has been described 

that dysregulation of different genes within the same pathway may have a similar 

impact on downstream pathway function [48, 49].  Figure 4 demonstrates how the 

CCAA method can detect the same functional consequence (activation of DNA 
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replication) caused by distinct, non-recurrent, differential gene expression patterns in 

two different cancers (BRCA and KIRC). The detection of the specific circuits and the 

particular gene activities involved in the tumorigenesis process has enormous 

therapeutic implications.  

 

Discussion 

Models of pathway activity bridge the gap between conventional approaches based on 

single-gene biomarkers, or functional enrichment methods, and more realistic, model-

based approaches. Models use biological knowledge available on relevant biological 

modules (such as signaling pathways) to explain how their perturbations ultimately 

cause diseases or responses to treatments. Therefore, such perturbations (initially gene 

expression changes) can be related to disease mechanisms or drug MoAs [50, 51].  

A unique feature of the CCAA method is that, if the analysis is made at the level of cell 

functionality, the changes in the activity detected can be traced back to the circuits in 

order to discover which ones are triggering the action and what genes are the ultimate 

causative agents of such functional activity changes. Therefore, the resulting models can 

be used to suggest and predict the effect of interventions (KOs, drugs or over-

expressions) on specific genes in the circuits so as to find suitable clinical targets, 

predict side effects, speculate off-target activities, etc. Depending on the scenario 

studied, such interventions can be more general or more personalized.  

Another relevant feature missing in the rest of PAA methods (Table 1) is the possibility 

of obtaining individual values of circuit, effector or function activities for each sample. 

This opens the door to obtaining patient-specific personalized functional profiles 

connected to the corresponding signaling circuits.  
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Since clinical data are available at the TCGA repository, we were able to find 

significant associations of specific pathway activities to patient survival, proving thus 

the validity of PAA methodology to capture cell processes involved in disease outcome.  

Finally, it is worth mentioning that the integration of information on protein 

functionality in the model, if it is available, is straightforward. (See Methods for 

details). Other omic data (methylomics data, Copy Number Variation, etc.) could also 

be easily introduced in the model providing they could be coded as proxies of presence 

and/or integrity of the protein.  

 

Methods 

Data source and processing 

We used 12 cancer types from The Cancer Genome Atlas (TCGA) data portal 

(https://tcga-data.nci.nih.gov/tcga/) in which RNA-seq counts for healthy control 

samples were available in addition to the cancer samples: Bladder Urothelial Carcinoma 

(BLCA) [10], Breast invasive carcinoma (BRCA) [11], Colon adenocarcinoma (COAD) 

[12], Head and Neck squamous cell carcinoma (HNSC) [13], Kidney renal clear cell 

carcinoma (KIRC) [14], Kidney renal papillary cell carcinoma (KIRP) [15], Liver 

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD) [16], Lung squamous 

cell carcinoma (LUSC) [17], Prostate adenocarcinoma (PRAD) [18], Thyroid carcinoma 

(THCA) [19] and Uterine Corpus Endometrial Carcinoma (UCEC) [20] (Table 2).  

Since TCGA cancer data has different origins and underwent different management 

processes, non-biological experimental variations (batch effect) associated to Genome 

Characterization Center (GCC) and plate ID must be removed from the RNA-seq data. 

The COMBAT method [21] was used for this purpose. Then, we applied the trimmed 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2016. ; https://doi.org/10.1101/076083doi: bioRxiv preprint 

https://doi.org/10.1101/076083
http://creativecommons.org/licenses/by-nd/4.0/


 

13 

 

mean of M-values normalization method (TMM) method [22] for data normalization. 

The resulting normalized values were entered to the pathway activity analysis method. 

Modelling framework 

Modelling of pathway activity requires initially of a formal description of the 

relationships between proteins within the pathway, which can be taken from different 

pathway repositories. Here KEGG pathways [23] are used, but any other repository 

could be used instead, as Reactome [24] or others. It also requires of a way to estimate 

the activation status of each protein, which accounts for the intensity of signal they can 

transmit along the pathway.  

A total of 60 KEGG pathways (see Table 5), which include 2212 gene products that 

participate in 3379 nodes, are used in this modelling framework. It must be noted that 

any gene product can participate in more than one node (even in different pathways) and 

a node can contain more than one gene product. Pathways are directed networks in 

which nodes (composed by one or more proteins) relate to each other by edges. Only 

two different kinds of relation between nodes are considered: activations and 

inhibitions. In KEGG pathways, edges define different types of protein interactions that 

include phosphorilations, ubiquitinations, glycosilations, etc., but they include a label 

indicating if they act as activations or inhibitions. 

In order to transmit the signal along the pathway, a protein needs: first, to be present 

and functional, and second, to be activated by other protein. Preferably, the activity of 

the proteins should be inferred from (phospho)proteomic and chemoproteomic 

experiments [25], however, the production of these types of data still results relatively 

complex [26]. Instead, an extensively used approach is taking the presence of the 

mRNA corresponding to the protein as a proxy for the presence of the protein [5-8, 26, 

27]. Therefore, the presence of the mRNAs corresponding to the proteins present in the 
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pathway is quantified as a normalized value between 0 and 1. Second, a value of signal 

intensity transmitted through a protein is computed, taking into account the level of 

expression of the corresponding mRNA and the intensity of the signal arriving to it. The 

net value of signal transmitted across the pathway corresponds to the signal values 

transmitted by the last proteins of the pathway that ultimately trigger the cell functions 

activated by the pathway. 

Decomposing pathways into circuits 

Pathways are represented by directed graphs, which connect input (receptor) nodes to 

output (effector) nodes. The signal arrives to an initial input node and is transmitted 

along the pathway following the direction of the interactions until it reaches an output 

node that triggers an action within the cell. Thus, from different input nodes the signal 

may follow different routes along the pathway to reach different output nodes. Within 

this modelling context, a canonical circuit is defined as any possible route the signal can 

traverse to be transmitted from a particular input to a specific output node (see Figure 5, 

left).  

Output nodes at the end of canonical are the ultimate responsible to carry out the action 

the signal is intended to trigger in the cell. Then, from a functional viewpoint, an 

effector circuit can be defined as a higher-level signaling entity composed by the 

collection of all the canonical circuits ending in an unique output (effector) node (see 

Figure 5, center). When applied to effector circuits, the method returns the joint 

intensity of the signal arriving to the corresponding effector node.  

A total of 6101 canonical circuits and 1038 effector circuits can be defined in the 60 

pathways modelled.  
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Computing the circuit activity 

The methodology proposed uses gene expression values as proxies of protein presence 

values, and consequently of potential protein activation values [5-8, 26, 27]. The 

inferred protein activity values are then transformed into node activity values using the 

information on node composition taken from KEGG. KEGG defines two types of 

nodes: plain nodes, which may contain one or more proteins, whose value is 

summarized as the percentile 90 of the values of the proteins contained in it, and 

complex nodes, for which the minimum value of the proteins contained (the limiting 

component of the complex), is taken as the node activity value.  

Once the node activity values have been estimated, the computation of the signal 

intensity across the different circuits of the pathways is performed by means of an 

iterative algorithm beginning in the input nodes of each circuit. In order to initialize the 

circuit signal we assume an incoming signal value of 1 in the input nodes of any circuit. 

Then, for each node n of the network, the signal value is propagated along the nodes 

according to the following rule: 

 

𝑆𝑛 = 𝜐𝑛 ∙ (1 − ∏(1 − 𝑠𝑎)

𝑠𝑎∈𝐴

) ⋅∏(1 − 𝑠𝑖)

𝑠𝑖∈𝐼

 (1) 

 

where A is the total number of signals arriving to the node from activation edges, I is the 

total number of signals arriving to the node from inhibition edges, and vn is the 

normalized value of the current node n. 

The algorithm to compute the transmission of the signal along the network is a recursive 

method based on the Dijkstra algorithm [28]. Each time the signal value across a node is 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2016. ; https://doi.org/10.1101/076083doi: bioRxiv preprint 

https://doi.org/10.1101/076083
http://creativecommons.org/licenses/by-nd/4.0/


 

16 

 

updated in a recursion and the difference with the previous value is greater than a 

threshold, all the nodes to which an edge arrives from the current updated node are 

marked to be updated. The recursion continues until the update in the values is below 

the threshold. The advantage if using an iterative method is that the signal becomes 

steady even in cases of loops in the pathway topology, allowing a more precise 

estimation of circuit activities. Many PAA methods simply cannot handle with loops 

and artificially disconnect them or even remove them from the calculations [5, 6, 8, 29-

32]. Figure 6 represents the computation of the intensity of signal transmission across a 

node, and exemplifies in a simple scenario how the signal is transmitted across a circuit. 

Effector circuits and functional analysis 

Effector nodes at the end of the circuits trigger specific functions in the cell. These 

functions are defined here based on the annotations of the proteins contained in the 

effector node. Gene Ontology [33] (GO) terms corresponding to the biological process 

ontology (February 16, 2016 release) and molecular function keywords of Uniprot [34] 

(release of September 21, 2015) are used.  

The signal intensity received by the effector node can be propagated to the functions 

triggered by them following the same rationale of signal propagation along the circuits. 

Figure 5 illustrates how effector circuits are composed by different canonical circuits 

and how functions can be triggered by several effector circuits.  

Straightforward integration of transcriptomic and genomic data 

Finally, the integration of genomic and transcriptomic data in the proposed modeling 

framework of signaling pathways is straightforward. In order to transmit the signal a 

protein needs to be present (gene expressed) and to be functional (harboring no 

impairing mutations). Genomic data can be integrated with transcriptomic data to infer 
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combined gene activity and integrity (and consequently potential functionality). In the 

simplest approach [9] the normalized expression value of genes harboring mutations is 

multiplied by 0 if the pathogenicity (e.g. SIFT [35], PolyPhen [36]) and conservation 

indexes (e.g. phastCons [37]) are beyond a given threshold (taking into account the 

inheritance mode), or if the consequence type of the mutation (stop gain, stop loss, and 

splicing disrupting) is deleterious per se, because it is considered to produce a non-

functional protein. The HiPathia program enables the analysis of mutations found in 

standard variant files (VCF) from whole exome/genome sequencing experiments in 

combination with gene expression values.   

Specificity of the method of canonical circuit activity analysis (CCAA) 

To estimate the false positive rate, different groups of N identical individuals were 

generated and further divided into two datasets that were compared to each other for 

finding differentially activated circuits. This comparison was repeated 2000 times for 

different data sizes (N = 20, 50, 100, 200 and 400 individuals) in three different 

scenarios: i) N individuals were randomly sampled among KIRC patients; ii) For each 

gene g, an empirical distribution of gene expression values was derived from the 

patients of the KIRC dataset, with mean µg and variance σ
2

g. Then, N individuals were 

generated by simulating their gene expression values as random numbers sampled from 

a normal distribution N(µg,σ
2

g); iii) N individuals were generated by simulating their 

gene expression values as random numbers from a normal distribution N(0.5, 0.05).  

Since the individuals involved in the comparison were taken either from the same type 

of samples or were generated in the same way, any differential activation found can be 

considered a false positive. The comparisons were carried out for both, circuits and 

effector proteins.  
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Sensitivity of the Canonical Circuit Activity Analysis (CCAA) method  

To estimate the true positive rate, we tested a scenario in which biological differences 

are expected. For this purpose, we used the two 2 cancers in Table 2 with more 

individuals, BRCA [11] and KIRC [14]. For each of the two cancers we generated 100 

datasets of N=50,100,200 and 400 samples by sampling randomly both the normal and 

tumor samples in such a way that the normal/tumor proportion remained the same as in 

the original dataset (Table 2). In total, we generated 2x100x4 = 800 datasets. CCAA 

was calculated at the level of signaling circuits and effector circuits for both datasets. 

The true positive rate was estimated as the number of cancer pathways containing one 

or more differentially activated circuits divided by the total number of cancer pathways. 

Although a gold standard is always difficult in this type of scenario, we can expect 

changes in the 14 cancer pathways, as defined in KEGG (Cancer pathways category, see 

Table 3). Additionally, we produced an extended table of 49 cancer pathways curated 

by expert collaborators from the Valencia Institute of Oncology (IVO) (Table 4).  

Comparison with other available methods for defining and scoring pathway activity  

We compared the reliability of the CCAA method proposed here to other proposals for 

defining sub-pathways and for calculating an activity score for them. Among the 

methods listed in Table 1 only nine could be applied to RNA-seq data and have 

software available for running them. These are: DEAP [38], subSPIA [32], using their 

own software, and SPIA [39], topologyGSA [31], DEGraph [6], clipper [5], TAPPA 

[29], PRS [40], PWEA [30], implemented in the topaseq package [41]. The relative 

performance of the methods compared was derived from the estimation of their ratios of 

false positives and false negatives in a similar way than above. In order to estimate the 

false positives rate 12 cancer datasets (Table 2) were used. For each cancer, 50 patients 

were randomly sampled 100 times. Any sampled set is divided into two equally sized 
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subsets that are subsequently compared. Then, the 100 values obtained for each cancer 

are used to determine a mean value and a SD for the false positives ratio. The same 12 

cancers (Table 2) were used to estimate the true positive rates. For each cancer versus 

normal tissue comparison the number of significant cancer pathways was calculated and 

divided by the total number of cancer pathways. The ratios were calculated for both the 

14 cancer pathways as defined in KEGG (Cancer pathways category, see Table 3) and 

the extended list of 49 curated cancer pathways (Table 4). 

Survival in cancer 

The KIRC TCGA samples contain survival information among the clinical data 

available. Kaplan-Meier (K-M) curves [42] were estimated using the function survdiff 

from the survival R package (https://cran.r-project.org/web/packages/survival/)  for each 

signaling circuit, each effector circuit and each cell function (either Uniprot or GO 

definitions) with a significant difference of activity when cancers were compared to the 

corresponding controls. Specifically, the 10% of individuals presenting the highest (or 

lowest) activity were compared to the rest of them.   

Availability of data and materials 

A user-friendly web server that runs the code for carrying out the CCAA method is 

freely available at http://hipathia.babelomics.org. 

The R code implementing the method is available at 

https://github.com/babelomics/hipathia. 
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Figures  

 

Figure 1. Comparison of performances of the different methods for defining pathways 

and calculating its activity. CCAA is compared to DEAP [38], subSPIA [32], using 

their own software, and topologyGSA [31], DEGraph [6], clipper [5], TAPPA [29], 

PRS [40], PWEA [30], using the implementation available in the topaseq package [41]. 

The true positive rate has been estimated averaging the proportion of significant cancer 

KEGG pathways (Table 3) across the 12 cancers analyzed and is represented in the Y 

axis. Vertical bars in each point represent 1 SD of the true positive rate for the 

corresponding method. The false positive rate was estimated from 100 comparisons of 

groups (N=25) of identical individuals, randomly sampled from each cancer. The results 

obtained in the 12 cancers are used to obtain a mean value and an error. The X axis 

represents 1- the false positive rate. Horizontal bars represent in each point represent 1 

SD of the false positive rate for the corresponding method. 
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Figure 2. Circos plot that summarizes the relationships between effectors within 

pathways and the functions triggered by them. Only cancer KEGG pathways (Table 3) 

related to functions significantly related to survival are represented here. On the right 

side appear the effector circuits grouped according to the pathway they belong to. There 

is a histogram per pathway that represents the proportion of effector pathways 

upregulated (red), downregulated (blue) and dysregulated in both directions (yellow). 

On the left side of the circo appear the functions triggered by the effector circuits 

divided into those which are significant when are up-regulated (red), when are down-

regulated (blue) or when both situations occur (yellow). For each function there is a 

band that indicates the prognostic of its deregulation, which can be good (green) or bad 

(grey).  
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Figure 3. Increase of DNA replication is related to bad prognostic. Effector nodes in two pathways trigger DNA replication in KIRC, as detected 

by the Hipathia program (http://hipathia.babelomics.org). Genes in red represent genes upregulated in the cancer with respect to the 

corresponding normal tissue; genes in blue represent downregulated genes and genes with no color were not differentially expressed. A) Cell 

Cycle signaling pathway with three effector circuits highlighted, one of them ending in the node containing proteins CDC6, ORC3, ORC5, 
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ORC4, ORC2, ORC1 and ORC6, the second one ending in node with proteins CDC45, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2 and 

the last one ending in node with proteins ORC3, ORC5, ORC4, ORC2, ORC1, ORC6, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2. B) 

p53 signaling pathway with the effector circuit ending in protein RRM2B highlighted. C) Survival Kaplan-Meier (K-M) curves obtained for 

Uniprot function DNA replication. 
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Figure 4. DNA replication is triggered by the same circuits in KIRC and BRCA, but using a different pattern of gene activation. The Hipathia 

program (http://hipathia.babelomics.org) detected a total of four effector circuits in two pathways, Cell Cycle and P53 signaling, that are used by 

both cancers to trigger DNA replication. Arrows in red represent activated circuits. Genes in red represent genes upregulated in the cancer with 

respect to the corresponding normal tissue; genes in blue represent downregulated genes and genes with no color were not differentially 

expressed. Squares at the end of the circuit represent the cell functions triggered by the circuits. A) Cell Cycle signaling pathway in KIRC with 
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three effector circuits activated (highlighted), one of them ending in the node containing proteins CDC6, ORC3, ORC5, ORC4, ORC2, ORC1 and 

ORC6, the second one ending in node with proteins CDC45, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2 and the last one ending in node 

with proteins ORC3, ORC5, ORC4, ORC2, ORC1, ORC6, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2. B) P53 signaling pathway in 

BRCA with the effector circuit ending in protein RRM2B highlighted. C) Cell Cycle pathway in BRCA with the same effector circuits activated 

that in KIRC, but using a different set of gene activations. D) P53 signaling pathway in BRCA with the same effector circuit activated that in 

KIRC, but using a different set of gene activations. 
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Figure 5. Schema that illustrates the relationship between circuits, effector circuits and functions. Left: signaling circuits, which are canonical 

sub-pathways that transmit signals from a unique receptor to a unique effector node. Center: effector circuits that represent the combined activity 

of all the signals that converge into a unique effector node. Right: functional activity that represents the combined effect of the signal received by 

all the effectors that trigger a particular cell function. 
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Figure 6. Schematic representation of the signal propagation algorithm used. Upper part: the three types of activity transmitted: left) the 

combination of two activations, center) the combination of an activation and an inhibition and right) the combination of two inhibitions. Central 

part: the normalized values of gene expression are assigned to the corresponding nodes in the circuits. Lower part: the signal starts with a value 

of 1 in the receptor node A and is propagated by multiplying the weights assigned to each node in the central part following the rules depicted in 

the upper part. 
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Table 1. List of methods for Pathway Analysis. The first column (Method) contains the name or acronym of the method, if exists, otherwise, 

we refer to it as the fires author of the publication. The second column (Date) contains the publication date. The third column (code) informs 

on the availability of the code to run the method. The fourth column (Pathway modelled) indicates the pathway definition used in the 

method. The fifth column (Entity modelled) is the entity, within the pathway, used in the method (“subpath identification” methods obtain 

candidate sub-pathways usually by differential expression of its constituent genes, “signal quantification” methods provide, in addition, a 

quantification of the activation status of the sub-pathway). The sixth column (input) indicates the data type that inputs the method (MA: 

Expression Microarray; CNV: copy number variation; NA: not available). The seventh column (output) describes the results provided by the 

method. Some provide only a score (p-value, DE: differential expression matrix; PF: perturbation factor) for the whole pathway and other 

also provide scores for sub-pathways, that can be defined within the pathways in many different ways. The eight column (Comparison) 

indicates the type of comparison the method can deal with. It can be either a conventional two conditions (typically case/control) comparison 

or it can allow obtaining personalized results per individual. And the ninth column (Loops) indicates whether the method can handle loop 

structures in the topology of the sub-pathway analyzed or not. 

 

Method Date Code Pathway modelled Entity modelled Input Output Comparison Loops 

MinePath[52] 2015 
Web application 

http://minepath.org/ 
KEGG pathways 

Subpath 

identification 
MA 

p-value per pathway 

p-value per subpathway 

binary value per sample 

graphical visualization 

Two 

conditions 
NA 

Qin et al.[53] 2015 NA
b
 

12 cancer-related 

KEGG pathways 

signal 

quantification 

Mutations 

CNVs 

Cancer drugs 

Pathway activity Personalized yes 

subSPIA[32] 2015 R code KEGG pathways 
signal 

quantification 

MA 

RNAseq (via 

SPIA in 

ToPASeq) 

p-value of DE per 

subpathway 

p-value of PF per 

subpathway 

global p-value (DE+PF) 

Two 

conditions 
no 

Pathome[54] 2014 NA KEGG pathways 
signal 

quantification 

MA 

RNAseq 
p-value per subpathway 

Two 

conditions 
NA 

Pepe et al.[55] 2014 R code KEGG pathways 
subpath 

identification 
MA p-value per subpathway 

Two 

conditions 
NA 

ToPaSeq[41] 2014 R package graphite gene-gene integrates other MA Depends on the method Two Depends 
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networks 

user's pathways  

methods: 

TopologyGSA 

DEGraph 

Clipper 

SPIA 

TAPPA 

PRS 

PWEA 

RNAseq conditions on the 

method 

DEAP[38] 2013 python code 
user defined pathway 

structure 

signal 

quantification 

MA 

RNAseq 

Score and p-value per 

pathway 

subgraph with the 

maximum absolute score 

Two 

conditions 
yes 

CliPPER[5] 2013 
R package 

ToPASeq R package 

graphite gene-gene 

networks 

cliques 

user's pathways (via 

ToPASeq) 

subpath 

identification 

MA 

RNAseq 

p-value at pathway level 

Most affected subgraph 

per pathway 

Gene-level statistics for 

DE of genes 

Two 

conditions 
no 

GraphiteWeb[56] 2013 

Web application: 

http://graphiteweb.bio.unipd.it/ 

R package 

KEGG pathways 

Reactome pathways 

integrates other 

methods: 

Hypergeometric 

test 

Global Test 

GSEA 

SPIA 

CliPPER 

MA 

RNAseq 

Significant pathways 

Visualization of the 

pathways with nodes 

coloured according to 

their contribution to the 

analysis 

Two 

conditions 
no 

TEAK[57] 2013 
Code @ Google (Windows 

and Mac) 
KEGG pathways 

metabolism-

oriented 

subpathway 

identification 

MA Ranked subpathways 
Two 

conditions 
no 

PRS[40] 2012 ToPASeq R package 

graphite gene-gene 

networks (ToPASeq) 

user's pathways (via 

ToPASeq) 

pathway 

identification 

MA 

RNAseq 

p-value per pathway 

gene-level statistics for 

DE of genes 

Two 

conditions 
yes 
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DEGraph[6] 2012 
R package 

ToPASeq R package 

subgraphs of a large 

graph (branch-and-

bound-like approach) 

graphite gene-gene 

networks (ToPASeq) 

user's pathways (via 

ToPASeq) 

subpath 

identification 

MA 

RNAseq 

p-value of DE per 

subpathway 

p-value per pathway 

Gene-level statistics for 

DE of genes 

Two 

conditions 
no 

Rivera et al.[58] 2012 NA NetPathpathways 
subpath 

identification 
MA 

p-value of most perturbed 

subpathway 

Two 

conditions 
NA 

Chen et al.[59] 2011 NA KEGG pathways 
subpath 

identification 
MA 

p-value per subpathway 

p-value of key genes 

Two 

conditions 
NA 

PWEA[30] 2010 ToPASeq R package 

Complete pathways 

(KEGG) 

graphite gene-gene 

networks (ToPASeq) 

user's pathways (via 

ToPASeq) 

pathway 

identification 

MA 

RNAseq 

p-value of DE per 

pathway 

Gene-level statistics for 

DE of genes 

Two 

conditions 
no 

TopologyGSA[31] 2010 ToPASeq R package 

Complete pathways 

(KEGG) 

Cliques 

graphite gene-gene 

networks (ToPASeq) 

user's pathways (via 

ToPASeq) 

subpath 

identification 

MA 

RNAseq 

p-value of DE per 

pathway 

Gene-level statistics for 

DE of genes 

Two 

conditions 
no 

DEGAS[60] 2010 Java (Windows) 
KEGG pathways 

PPIs network 

novel subpath 

identification 
MA 

A subpathway per 

pathway 

Two 

conditions 
NA 

TAPPA[29] 2007 ToPASeq R package 

graphite gene-gene 

networks (ToPASeq) 

user's pathways (via 

ToPASeq) 

pathway 

identification 

MA 

RNASeq 

p-value of DE per 

pathway 

Gene-level statistics for 

DE of genes 

Two 

conditions 
no 
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Table 2. Cancers used in this study with the number of samples sequenced of both tumour biopsy and normal adjacent tissue. 

TCGA Identifier Cancer Primary tumor Normal adjacent tissue Ref. 

BLCA Bladder Urothelial Carcinoma 301 17 [10] 

BRCA Breast invasive carcinoma 1057 113 [11] 

COAD Colon adenocarcinoma 451 41 [12] 

HNSC Head and Neck squamous cell carcinoma 480 42 [13] 

KIRC Kidney renal clear cell carcinoma 526 72 [14] 

KIRP Kidney renal papillary cell carcinoma 222 32 [15] 

LIHC Liver hepatocellular carcinoma 294 48 - 

LUAD Lung adenocarcinoma 486 55 [16] 

LUSC Lung squamous cell carcinoma 428 45 [17] 

PRAD Prostate adenocarcinoma 379 52 [18] 

THCA Thyroid carcinoma 500 58 [19] 

UCEC Uterine Corpus Endometrial Carcinoma 516 23 [20] 
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Table 3. KEGG cancer pathways 

KEGG identifier Name 

hsa04010 MAPK signaling pathway 

hsa04310 Wnt signaling pathway 

hsa04350 TGF-beta signaling pathway 

hsa04370 VEGF signaling pathway 

hsa04630 Jak-STAT signaling pathway 

hsa04024 cAMP signaling pathway 

hsa04151 PI3K-Akt signaling pathway 

hsa04150 mTOR signaling pathway 

hsa04110 Cell cycle 

hsa04210 Apoptosis 

hsa04115 p53 signaling pathway 

hsa04510 Focal adhesion 

hsa04520 Adherens junction 

hsa03320 PPAR signaling pathway 
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Table  4. Curated cancer pathways 

KEGG identifier Name 

hsa04014 Ras signaling pathway 

hsa04015 Rap1 signaling pathway 

hsa04010 MAPK signaling pathway 

hsa04012 ErbB signaling pathway 

hsa04310 Wnt signaling pathway 

hsa04330 Notch signaling pathway 

hsa04340 Hedgehog signaling pathway 

hsa04350 TGF-beta signaling pathway 

hsa04390 Hippo signaling pathway 

hsa04370 VEGF signaling pathway 

hsa04630 Jak-STAT signaling pathway 

hsa04064 NF-kappa B signaling pathway 

hsa04668 TNF signaling pathway 

hsa04066 HIF-1 signaling pathway 

hsa04068 FoxO signaling pathway 

hsa04020 Calcium signaling pathway 

hsa04024 cAMP signaling pathway 

hsa04022 cGMP-PKG signaling pathway 

hsa04151 PI3K-Akt signaling pathway 

hsa04152 AMPK signaling pathway 

hsa04150 mTOR signaling pathway 

hsa04110 Cell cycle 

hsa04114 Oocyte meiosis 

hsa04210 Apoptosis 

hsa04115 p53 signaling pathway 

hsa04510 Focal adhesion 

hsa04520 Adherens junction 

hsa04530 Tight junction 

hsa04540 Gap junction 

hsa04611 Platelet activation 

hsa04620 Toll-like receptor signaling pathway 

hsa04621 NOD-like receptor signaling pathway 

hsa04650 Natural killer cell mediated cytotoxicity 

hsa04660 T cell receptor signaling pathway 

hsa04662 B cell receptor signaling pathway 

hsa04670 Leukocyte transendothelial migration 

hsa04062 Chemokine signaling pathway 

hsa04910 Insulin signaling pathway 

hsa04920 Adipocytokine signaling pathway 

hsa03320 PPAR signaling pathway 

hsa04912 GnRH signaling pathway 

hsa04915 Estrogen signaling pathway 

hsa04914 Progesterone-mediated oocyte maturation 

hsa04919 Thyroid hormone signaling pathway 

hsa04916 Melanogenesis 

hsa05200 Pathways in cancer 
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hsa05231 Choline metabolism in cancer 

hsa05202 Transcriptional misregulation in cancer 

hsa05205 Proteoglycans in cancer 
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Table 5. KEGG pathways modeled in this study 

 

KEGG identifier Name 

hsa04014  Ras signaling pathway  

hsa04015  Rap1 signaling pathway  

hsa04010  MAPK signaling pathway 

hsa04012  ErbB signaling pathway                     

hsa04310  Wnt signaling pathway                      

hsa04330  Notch signaling pathway                    

hsa04340  Hedgehog signaling pathway                 

hsa04350  TGF-beta signaling pathway                 

hsa04390  Hippo signaling pathway                    

hsa04370  VEGF signaling pathway                     

hsa04630  Jak-STAT signaling pathway                 

hsa04064  NF-kappa B signaling pathway               

hsa04668  TNF signaling pathway                      

hsa04066  HIF-1 signaling pathway                    

hsa04068  FoxO signaling pathway                     

hsa04020  Calcium signaling pathway                  

hsa04071  Sphingolipid signaling pathway             

hsa04024  cAMP signaling pathway                     

hsa04022  cGMP-PKG signaling pathway                 

hsa04151  PI3K-Akt signaling pathway                 

hsa04152  AMPK signaling pathway                     

hsa04150  mTOR signaling pathway                     

hsa04110  Cell cycle                                 

hsa04114  Oocyte meiosis                             

hsa04210  Apoptosis                                  

hsa04115  p53 signaling pathway  

hsa04510  Focal adhesion           

hsa04520  Adherens junction                          

hsa04530  Tight junction                             

hsa04540  Gap junction                               

hsa04611  Platelet activation                        

hsa04620  Toll-like receptor signaling pathway       

hsa04621  NOD-like receptor signaling pathway        

hsa04622  RIG-I-like receptor signaling pathway      

hsa04650  Natural killer cell mediated cytotoxicity  

hsa04660  T cell receptor signaling pathway          

hsa04662  B cell receptor signaling pathway          

hsa04664  Fc epsilon RI signaling pathway            

hsa04666  Fc gamma R-mediated phagocytosis           

hsa04670  Leukocyte transendothelial migration       

hsa04062  Chemokine signaling pathway                

hsa04910  Insulin signaling pathway                  

hsa04922  Glucagon signaling pathway                 

hsa04920  Adipocytokine signaling pathway            

hsa03320  PPAR signaling pathway                     

hsa04912  GnRH signaling pathway                     
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hsa04915  Estrogen signaling pathway                 

hsa04914  Progesterone-mediated oocyte maturation    

hsa04921  Oxytocin signaling pathway                 

hsa04919  Thyroid hormone signaling pathway          

hsa04916  Melanogenesis                              

hsa04261  Adrenergic signaling in cardiomyocytes     

hsa04270  Vascular smooth muscle contraction         

hsa04722  Neurotrophin signaling pathway             

hsa05200  Pathways in cancer                         

hsa05231  Choline metabolism in cancer               

hsa05202  Transcriptional misregulation in cancer    

hsa05205  Proteoglycans in cancer                    

hsa04971  Gastric acid secretion  

hsa05160     Hepatitis C 
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Additional files 

 

Additional File 1: Figure S1. PCA plots of the samples to discover batch effects. 

Figure S2. False positive ratio of the CCAA method proposed, obtained as the 

proportion of signaling circuits that present significant differential activity when 

identical datasets are compared. Figure S3. True positive ratio of CCAA method 

proposed obtained as the proportion of cancer pathways with one or more signaling 

circuits with a significant differential activity found by comparing cancer cases to their 

corresponding normal tissue samples, for which real differences are expected. Figure 

S4. Comparison of performances of the different methods for defining pathways and 

calculating its activity. Figure S5. Circos plot that summarises the relationships 

between effectors within pathways and the functions triggered by them. Figure S6. 

Example of effector circuit significantly associated to bad prognostic in KIRC. Figure 

S7. Example of effector circuit significantly associated to bad prognostic in KIRC. 

Figure S8. Survival Kaplan-Meier (K-M) curves obtained for Uniprot and GO 

functions.  

Additional File 2. Table S1. Canonical circuits differentially activated between cancer 

and the normal tissue. Table S2. Effector circuits differentially activated between 

cancer and the normal tissue. Table S3. Unitprot functions differentially activated 

between cancer and the normal tissue. Table S4. Gene Ontology functions differentially 

activated between cancer and the normal tissue. Table S5. Effector circuits associated to 

patient survival. Table S6. Uniprot functions associated to patient survival. Table S7. 

Gene Ontology functions associated to patient survival.  
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