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experiment to assess inter-individual differences in default mode network (DMN)
activity. This repository includes cross-sectional functional magnetic resonance
imaging (fMRI) data from the Multi Source Interference Task, to assess DMN
deactivation, the Moral Dilemma Task, to assess DMN activation, a resting state
fMRI scan, and a DMN neurofeedback paradigm, to assess DMN modulation,
along with accompanying behavioral and cognitive measures. We report technical
validation from n=125 participants of the final targeted sample of 180
participants. Each session includes acquisition of one whole-brain anatomical scan
and whole-brain echo-planar imaging (EPI) scans, acquired during the
aforementioned tasks and resting state. The data includes several self-report
measures related to perseverative thinking, emotion regulation, and imaginative
processes, along with a behavioral measure of rapid visual information processing.

Technical validation of the data confirms that the tasks deactivate and activate
the DMN as expected. Group level analysis of the neurofeedback data indicates
that the participants are able to modulate their DMN with considerable
inter-subject variability. Preliminary analysis of behavioral responses and
specifically self-reported sleep indicate that as many as 73 participants may need
to be excluded from an analysis depending on the hypothesis being tested.
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1 Introduction

The default mode network (DMN) consists of an aggregation of brain regions that
are active during rest, as measured by BOLD signal, and are associated with spon-
taneous thought and emotion regulation [1, 2, 3]. The network is also commonly
deactivated during cognitively demanding tasks [4]. Alterations to the DMN have
been associated with a broad array of neuropsychiatric conditions [5, 6]. However,
as the DMN is most commonly assessed during rest [7] or as a result of deactivation
during a task [8], most studies fail to differentiate ability to modulate the DMN
from the tendency to do so. Individuals likely vary both in their capacity to acti-
vate and/or deactivate the DMN and in spontaneous implementation of function
related to the DMN. Just as the use of specific emotion regulation strategies (e.g.,
cognitive reappraisal) relate to psychopathology specifically in the tendency to use
them vs. instructed use [9], the ability to modulate the DMN and tendency to do so
may represent distinct and important domains of neural and psychological function
[10]. Consistent with the National Institute of Mental Health’s Research Domain
Criteria project [11], the ability and tendency to regulate the DMN may have both
general and specific illness implications. For example, it could be that deficits in the
ability to suppress DMN-related activity such as mind-wandering may be related
to cognitive deficits across differing forms of mental illness [12], while an increased
likelihood to engage in specific forms of mind-wandering (e.g., worry, rumination)
may be more specific to anxiety and depression [13, 12, 14].

While psychological functions related to the DMN can be targeted, the DMN
itself is somewhat more difficult to target, as the functions it instantiates are pre-
sumably multiply determined (i.e., invoking specific aspects of the DMN and/or
other networks) and varied (i.e., different in nature and possibly kind) [15]. Recent
advances in real-time fMRI (rt-fMRI) [16, 17, 18] have made it possible to provide
participant-specific feedback about neural networks. These advances permit the ad-
dition of instructions to modulate given neural networks as well as the assessment
of an individual’s ability to follow the instructions or modulate the specific network.
In addition to collecting task-based and resting-state data, using rt-fMRI as neu-
rofeedback may be critical to acquiring knowledge about tendencies and capability
to regulate the DMN.

The Default Network Regulation Neuroimaging Repository contains data from a
suite of fMRI experiments aimed at better understanding individual variation in
DMN activity and modulation. Although it is a separate project, it has been har-
monized with, and is distributed alongside, the Enhanced Nathan Kline Institute-
Rockland Sample (NKI-RS) [19], which aims to capture deep and broad phenotyp-
ing of a large community-ascertained sample. In addition to the NKI-RS protocol,
this project includes data collection from tasks that activate (Moral Dilemma task
[8]) and deactivate the DMN (Multi-Source Interference Task [20]), a resting state
scan, a novel real-time fMRI neurofeedback-based paradigm that specifically probes
DMN modulation [16], and additional self-report measures.

In this data descriptor, we provide an overview of planned data collection, methods
used, summaries of data collected and available to date, and validation analyses.
New data will be released on a regular basis and will be available at the Collaborative
Informatics and Neuroimaging Suite (COINS) Data Exchange (http://coins.mrn.
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org/dx) [21, 22], as well as the Neuroimaging Informatics Tools and Resources
Clearinghouse (NITRC; http://wuw.nitrc.org/) and in the Amazon Web Services
(https://aws.amazon.com/s3/).

2 Organization and access to the repository

Datasets for the present project can be accessed through the COINS Data Exchange
(http://coins.mrn.org/dx) [21, 22|, NITRC (http://fcon_1000.projects.
nitrc.org/indi/enhanced/download.html) or through the Amazon Web Ser-
vices S3 bucket (https://aws.amazon.com/s3/). Documentation on download-
ing the datasets can be found at http://fcon_1000.projects.nitrc.org/indi/
enhanced/sharing.html. Data are available through both COINS and NITRC in
the form of .tar files, containing all imaging and phenotypic data. The COINS data
exchange (only accessible with DUA) offers a query builder tool, permitting the
user to target and download files by specific search criteria (e.g., full completion of
certain phenotypic measures and/or imaging sequences). Data are available through
AWS as individual compressed NIfTT files that are arranged in the brain imaging
data structure (BIDS) file structure [23].

All of the presented data are shared in accordance with the procedures of the NKI-
RS study (http://fcon_1000.projects.nitrc.org/indi/enhanced/sharing.
html). While a goal of the project is to maximize access to these data, pri-
vacy for the participants and their personal health information is paramount. De-
identified neuroimaging data along with limited demographic information can be
downloaded from the repository without restriction. To protect participant pri-
vacy, access to the high dimensional phenotypic and assessment data requires a
data usage agreement (DUA). The DUA is relatively simple and requires a sig-
nature by an appropriate institutional representative. The DUA is available via
Neuroimaging Informatics Tools and Resources Clearinghouse (Data Citation Al:
http://fcon_1000.projects.nitrc.org/indi/enhanced/data/DUA. pdf).

2.1 Phenotypic data

Basic phenotypic data, which includes age, sex and handedness are available in
the participants.tsv file at the root of the repository. Comprehensive pheno-
typic data are available as comma separated value (.csv) files from COINS after
completing a minimal data usage agreement. Summary scores calculated from the
RVIP task info area available through COINs and trial-by-trial response information
is available via NITRC (Data Citation Y1: http://fcon_1000.projects.nitrc.
org/indi/enhanced/RVIP-master.zip).

2.2 Imaging data

The imaging data is released in unprocessed form except that image headers have
been wiped of protected health information and faces have been removed from the
structural images. Data are available in NIfTT files arranged in the BIDS format
[23]. Acquisition parameters are provided in JSON files that are named the same as
their corresponding imaging data. Task traces (including stimulus onsets and dura-
tions) and responses, and physiological recordings, are also provided in JSON files
along with the data. Additional details for all MRI data, as well as corresponding
task information are available via NITRC (Data Citation X1: http://fcon_1000.

projects.nitrc.org/indi/enhanced/mri_protocol.html#scans-acquired).
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2.3 Quality assessment data

Quality metrics are available for download from the QAP repository (http:
//preprocessed-connectomes-project.org/quality-assessment-protocol).

They are available as two (anatomical and functional) comma separated value
files.

3 Contents of the Repository

The Neurofeedback (NFB) repository contains neuroimaging and assessment data
that characterizes DMN function in a community ascertained sample of adults (21-
45 years old) with a variety of psychiatric diagnoses. The data is collected in a
separate 2.5-hour visit that occurred within **six** months of completing the
Enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) protocol [19]. The
NKI-RS entails a 1 to 2 -visit deep phenotyping protocol [19] and a Connectomes ori-
ented neuroimaging assessment (data collection visit schedules are available online
at: http://fcon_1000.projects.nitrc.org/indi/enhanced/sched.html). NKI-
RS phenotyping includes a variety of cognitive and behavioral assessments, a blood
draw , a basic fitness assessment, nighttime actigraphy, medical history question-
naire, and the administration of the Structured Clinical Interview for DSM-IV-TR
Non-patient edition [24]. The NKI-RS imaging protocol includes structural MRI,
diffusion MRI, several resting state fMRI, and perfusion fMRI scans. Although the
NKI-RS data is being openly shared (http://fcon_1000.projects.nitrc.org/
indi/enhanced/) it is not a part of the NFB repository and is not described in
further detail herein.

3.1 Participants
The NFB repository will ultimately contain data from a total of 180 residents of
Rockland, Westchester, or Orange Counties, New York, or Bergen County, New
Jersey aged 21 to 45, (50% male at each age year). Based on census data from
2013, Rockland County, New York has the following demographics [25]: Median
age 36.0 years, population is 50.5% female, 80.4% White, 11.4% Black/African
American, 6.3% Asian, 0.5% Native American/Pacific Islander, and 1.4% “Other”.
With regards to ethnicity, 13.8% of the population endorses being Hispanic/Latino.
Minimally restrictive psychiatric exclusion criteria, which only screen out severe
illness, were employed to include individuals with a range of clinical and sub-clinical
psychiatric symptoms. Medical exclusions include: chronic medical illness, history
of neoplasia requiring intrathecal chemotherapy or focal cranial irradiation, prema-
ture birth (prior to 32 weeks estimated gestational age or birth weight < 1500g,
when available), history of neonatal intensive care unit treatment exceeding 48
hours, history of leukomalacia or static encephalopathy, or other serious neurologi-
cal (specific or focal) or metabolic disorders including epilepsy (except for resolved
febrile seizures), history of traumatic brain injury, stroke, aneurysm, HIV, carotid
artery stenosis, encephalitis, dementia or mild cognitive impairment, Huntington’s
Disease, Parkinson’s, hospitalization within the past month, contraindication for
MRI scanning (metal implants, pacemakers, claustrophobia, metal foreign bodies
or pregnancy) or inability to ambulate independently. Severe psychiatric illness can
compromise the ability of an individual to comply with instructions, tolerate the
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MRI environment and participate in the extensive phenotyping protocol. Accord-
ingly, participants with severe psychiatric illness were excluded, as determined by
Global Assessment of Function (GAF; DSM-IV TR [24]) < 50, history of chronic
or acute substance dependence disorder, history of diagnosis with schizophrenia,
history of psychiatric hospitalization, or suicide attempts requiring medical inter-
vention.

The technical validation reported in this paper includes 125 participants with the
following demographics: median age 30, mean age, 31, std. dev. 6.6, 77 females,
59.2% White, 28.8% Black/African American, 0.56% Asian, 0% Native Ameri-
can/Pacific Islander, and 0.56% “Other”, and 16.8% Hispanic/Latino. A summary
of participant diagnoses and current medications are listed in tables 1 and 2.

Table 1 Medications used by participants on a daily basis. Medications were grouped by class and
the number of participants who reported taking them is provided (Pts.). Full medication
information regarding drug name, dosage, primary indication, and duration of time taken at a
participant level can be accessed through COINs after completing a DUA.

Medication Class Pts.
Vitamins/Supplements 34
Obstetrics/Gynecology 12
Psychiatric
Gastrointestinal
Endocrine
Analgesics
Cardiovascular
Rheumatologic
Asthma/Pulmonary
Allergy/Cold/ENT
Immunology
Dermatologic
Antihistamine

HERFRFRFRNDNWPSOO ©

3.2 Phenotypic Data
In addition to the NKI-RS protocol, participants completed a variety of assess-
ments that probe cognitive, emotional, and behavioral domains that have been
previously implicated with DMN function [2, 13, 12, 3]. These included the Affect
Intensity Measure (AIM) [26]-to measure the strength or weakness with which one
experiences both positive and negative emotions, Emotion Regulation Question-
naire (ERQ; [27])—to assess individual differences in the habitual use of two emo-
tion regulation strategies: cognitive reappraisal and expressive suppression, Penn
State Worry Questionnaire (PSWQ; [28])—to measure worry, Perseverative Think-
ing Questionnaire (PTQ; [29])-to measure the broad idea of repetitive negative
thought, Positive and Negative Affect Schedule — short version (PANAS-S; [30])-to
measure degrees of positive or negative affect, Ruminative Responses Scale (RRS;
[31]) —to assess rumination that is related to, but not confounded by depression,
and the Short Imaginal Process Inventory (SIPI; [32])—to measure aspects of day-
dreaming style and content, mental style, and general inner experience. Assessments
were completed using web-based forms implemented in COINs [21]. Sample mean,
standard deviation, and range of the above measures for the first 125 participants
are provided in Table 3.

Participants also completed a Rapid Visual Information Processing (RVIP) task
to assess sustained attention and working memory. Response times and detection
accuracy from this task have been previously correlated with DMN function [33].
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Table 2 Summary diagnostic information for the included 125 participants as determined by the
SCID-IV or consensus diagnosis by the study psychiatrist. Diagnoses are accompanied with the
SCID diagnostic code and the number of participants diagnosed (Pts.). Full diagnostic information
at a participant level can be accessed through COINs after completing a DUA.

Diagnosis (SCID-1V code) Pts.
No Diagnosis or Condition on Axis I (V71.09) 59
Alcohol Abuse Past (305.00) 21
Major Depressive Disorder, Single Episode, In Full Remission (296.26) 12
Cannabis Abuse Current (305.20) 12
Cannabis Dependence Past (304.30) 11
Major Depressive Disorder, Recurrent, In Full Remission Past (296.36) 8

Major Depressive Disorder, Single Episode, Unspecified Past (296.20)
Posttraumatic Stress Disorder Current (309.81)

Alcohol Dependence Past (303.90)

Specific Phobia Past (300.29)

Generalized Anxiety Disorder Current (300.02)
Attention-Deficit/Hyperactivity Disorder, Inattentive Type Current (314.00)
Attention-Deficit/Hyperactivity Disorder NOS Current (314.9)
Attention-Deficit/Hyperactivity Disorder, Hyperactive-Impulsive Type Current (314.01)
Cocaine Abuse Past (305.60)

Anorexia Nervosa Past (307.1)

Anxiety Disorder NOS Current (300.00)

Panic Disorder Without Agoraphobia Past (300.01)

Social Phobia Current (300.23)

Agoraphobia Without History of Panic Disorder Current (300.22)
Panic Disorder With Agoraphobia Past (300.21)

Hallucinogen Abuse Past (305.30)

Cocaine Dependence Past (304.20)

Trichotillomania (312.39)

Bulimia Nervosa Current (307.51)

Major Depressive Disorder, Recurrent, In Partial Remission Past (296.35)
Major Depressive Disorder, Recurrent, Moderate Current (296.32)
Bereavement (V62.82)

Hallucinogen Dependence Past (304.50)

Obsessive-Compulsive Disorder Current (300.3)

Body Dysmorphic Disorder Current (300.7)

Eating Disorder NOS Past (307.50)

Phencyclidine Abuse Past (305.90)

Delusional Disorder Mixed Type (297.1)

Amphetamine Dependence Past (304.40)

Opioid Abuse Past (305.50)

Sedative, Hypnotic, or Anxiolytic Dependence Past (304.10)

FHRERRHERRERRRERBERERHEREREERONDNNNODNNONNNNDWWASDNOCGO OO

The RVIP is administered using custom software, implemented in PsychoPy [34],
which conforms to the literature describing its original implementation in the Cam-
bridge Neuropsychological Test Automated Battery (CANTAB [35]). A pseudo-
random stream of digits (0-9) is presented to the participants in white, centered
on a black background, surrounded by a white box. Participants are instructed
to press the space bar whenever they observe the sequences 2-4-6, 3-5-7, or 4-6-
8. Digits are presented one after another at a rate of 100 digits per minute and
the number of stimuli that occurred between targets varied between 8 and 30. Re-
sponses that occurred within 1.5 seconds of the last digit of a target sequence being
presented were considered “hits”. Stimuli presentation continued until a total of
32 target sequences were encountered, which required on average 4 minutes and
20 seconds. Before performing the task, participants completed a practice version
that indicated when a target sequence had occurred and provided feedback (“hit”
or “false alarm”) whenever the participant pressed the space bar. Participants were
allowed to repeat the practice until they felt that they were comfortable with the
instructions. Summary statistics calculated from the RVIP included: mean reac-
tion time, total targets, hits, misses, false alarms, hit rate (H), false alarm rate
(F), and A’ (Eqn. 1), A is an alternative to the more common d’ in signal detec-
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tion theory [36]). The task can be downloaded from the OpenCogLab Repository
(http://opencoglabrepository.github.io/experiment_rvip.html).

54 UEPUHED when H > F

1
54+ U whenH < F )

!

3.3 MRI Acquisition
Data was acquired on a 3 T Siemens Magnetom TIM Trio scanner (Siemens Medical
Solutions USA: Malvern PA, USA) using a 12-channel head coil. Anatomic images

3 resolution with a 3D T1-weighted magnetization-

were acquired at 1 x 1 x 1 mm
prepared rapid acquisition gradient-echo (MPRAGE) sequence [37] in 192 sagittal
partitions each with a 256 x 256 field of view (FOV), 2600 ms repetition time (TR),
3.02 ms echo time (TE), 900 ms inversion time (TT), 8° flip angle (FA), and gen-
eralized auto-calibrating partially parallel acquisition (GRAPPA) [38] acceleration
factor of 2 with 32 reference lines. The sMRI data were acquired immediately after
a fast localizer scan and preceded the collection of the functional data.

Table 3 Statistics for self-report measures from the neurofeedback specific visit related to
perseverative thinking, emotion regulation, and imaginative processes. Mean, Standard Deviation,

and Range are reported for the total AIM, ERQ, PSWQ, PTQ, PANAS, RRS, and SIPI scores, as
well as each measure’s sub-scales.

Scale Mean Std. Dev. Range
Affect Intensity Measure

Total 138.38 16.76  88-178

Positive Affect 62.33 12.87  30-100

Positive Intensity 26.48 4.99 14-40

Negative Affect 26.77 5.35 14-38

Negative Intensity 29.91 4.84 20-48
Emotion Regulation Questionnaire

Total 44.15 8.14 12-60

Reappraisal 31.03 6.88 6-42

Suppression 13.11 4.59 4-23
Penn State Worry Questionnaire

Total 28.03 10.71 11-52
Perseverative Thinking Questionnaire

Total 20.01 12.79 0-57
Positive and Negative Affect Scale — State

Total 44.21 9.32  25-82

Positive Affect 30.98 8.33 13-50

Negative Affect 13.24 5.16 10-38
Ruminative Responses Scale

Total 40.32 13.76 22-81

Depression-Related 21.52 7.89 11-45

Brooding 9.54 3.36 5-20

Reflection 9.24 3.92 5-20
Short Imaginal Processes Inventory

Total 126.6 20.42 56-180

Positive Constructive Daydreaming 49.81 8.59 27-72

Guilty Fear of Failure Daydreaming 33.27 9.04 17-59

Poor Attentional Control 43.83 9.39 16-70

A gradient echo field map sequence was acquired with the following parameters:
TR 500 ms, TE1/TE2 2.72 ms/5.18 ms, FA 55°, 64 x 64 matrix, with a 220 mm
FOV, 30 3.6 mm thick interleaved, oblique slices, and in plane resolution of 3.4 x 3.4
mm?. All functional data were collected with a blood oxygenation level dependent
(BOLD) contrast weighted gradient-recalled echo-planar-imaging sequence (EPI)

that was modified to export images, as they were acquired, to AFNI over a network


http://opencoglabrepository.github.io/experiment_rvip.html
https://doi.org/10.1101/075275
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/075275; this version posted October 31, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

McDonald et al. Page 8 of 26

interface [39, 40]. FMRI acquisition consisted of 30 3.6mm thick interleaved, oblique
slices with a %10 slice gap, TR 2000 ms, TE 30 ms, FA 90°, 64 x 64 matrix, with
220 mm FOV, and in plane resolution of 3.4 x 3.4 mm?. Functional MRI scanning
included a three volume “mask” scan and a six-minute resting state scan followed by
three task scans (described later) whose order was counterbalanced across subjects.

During all scanning, galvanic skin response (GSR), pulse and respiration wave-
forms were measured using MRI compatible non-invasive physiological monitoring
equipment (Biopac Systems, Inc.). Rate and depth of breathing were measured with
a pneumatic abdominal circumference belt. Pulse was monitored with a standard
infrared pulse oximeter placed on the tip of the index finger of the non-dominant
hand. Skin conductance was measured with disposable passive electrodes that were
non-magnetic and non-metallic, and collected on the hand. The physiological record-
ings were synchronized with the imaging data using a timing signal output from the
scanner. Visual stimuli were presented to the participants on a projection screen
that they could see through a mirror affixed to the head coil. Audio stimuli were
presented through headphones using an Avotec Silent-Scan® pneumatic system
(Avotec, Inc.: Stuart FL, USA).

3.4 MRI acquisition order and online Processing

The real time fMRI neurofeedback experiment utilizes a classifier based approach
for extracting DMN activity levels from fMRI data TR-by-TR, similar to [16]. The
classifier is trained from resting state fMRI data using a time course of DMN activity
extracted from the data using spatial regression to a publicly available template
derived from a meta-analysis of task and resting state datasets [41, 42]. Several
stages of online processing are necessary to perform this classifier training, as well
as, denoising of fMRI data in real-time. These stages include calculating transforms
required to convert the DMN template from MNI space to subject space, creating
white matter (WM) and cerebrospinal fluid (CSF) masks for extracting nuisance
signals, and training a support vector regression (SVR) model for extracting DMN
activity. The MRI session was optimized to collect the data required for these various
processing steps, and to perform the processing, while minimizing delays in the
experiment.

After acquiring a localizer, the scanning protocol began with the acquisition of a
T1 weighted anatomical image used for calculating transforms to MNI space and
white matter and CSF masks. Once the image was acquired it was transferred
to a DICOM server on the real-time analysis computer (RTAC), which triggered
initialization of online processing. The processing script started AFNI in real-time
mode, configured it for fMRI acquisition, and began structural image processing.
Structural processing included reorienting the structural image to RPI voxel order,
skull-stripping using AFNT’s 3dSkullStrip [43], resampling the image to isotropic 2-
mm voxels (to reduce computational cost of subsequent operations), segmentation
into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using
FSL’s FAST [44], and normalization into MNI space using FSL’s FLIRT [45, 46].
WM and CSF probability maps were binarized using a 90% threshold. The CSF
mask was constrained to the lateral ventricles using an ROI from the AAL atlas to
avoid overlap with GM.
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In parallel with the structural processing a FieldMap was collected but not used in
the online processing. Subsequently, a three volume “mask” EPI scan was acquired
and transferred to the RTAC. The three images were averaged, reoriented to RPI,
and used to create a mask to differentiate brain signal from background (using
AFNI's 3dAutomask [43]). The mean image was coregistered to the anatomical
image using FSL’s boundary based registration (BBR) [47]. The resulting linear
transform was inverted and applied to the WM and CSF masks to bring them
into alignment with the fMRI data. Additionally, the transform was combined with
the inverted anatomical-to-MNI transform and applied to the canonical map of the
DMN (from [41]).

Next, a 6-minute resting state scan (182 volumes) was collected and used as
training data to create the support vector regression (SVR) model. This procedure
involved motion correction followed by a nuisance regression procedure to orthogo-
nalize the data to six head motion parameters, mean WM, mean CSF, and global
signal [48, 49, 50]. A SVR model of the DMN was trained using a modified dual
regression procedure in which a spatial regression to the unthresholded DMN tem-
plate was performed to extract a time course of DMN activity. The Z-transformed
DMN time course was then used as labels (independent variable), with the prepro-
cessed resting state data as features (dependent variables), for SVR training (C=1.0,
e = 0.01) using AFNI’s 3dsvm tool [51]. The result was a DMN map tailored to the
individual participant based on preexisting expectations about DMN anatomy and
function. After SVR training was completed (generally took less than 2 minutes),
the MSIT (198 volumes), Moral Dilemma (144 volumes), and Neurofeedback test
(412 volumes) scans were run. The order of the task based functional scans was
counterbalanced and stratified for age and sex across participants.

3.5 Functional MRI Tasks

3.5.1 Resting state scan

Participants were instructed to keep their eyes open during the scan and fixate on
a white plus (+) sign centered on a black background. They were asked to let their
mind wander freely and if they noticed themselves focusing on any particular train
of thought, to let their mind wander away from it.

3.5.2 Moral Dilemma Task

The Moral Dilemma (MD) task involved a participant making a decision about
what he or she would do in a variety of morally ambiguous scenarios presented as a
series of vignettes (see Fig. 1A for an example) [8]. As a control, the participant was
asked to recall a detail from a dilemma-free vignette (see Fig. 1B for an example).
Prior work using these vignettes has shown strong activation of DMN regions during
moral dilemma scenarios relative to control scenarios [8]. The MD task provided a
basis to directly examine task-induced activation of the DMN.

Just prior to the scan, participants listened to a recording of the vignette while
viewing a corresponding image (see Fig. 1A and 1B for examples) and were asked to
decide how they would react in the scenario. The fMRI tasks consisted of 24 moral
dilemma questions and 24 control questions presented in eight 30-second blocks,
each consisting of six questions, that alternated between moral dilemma and con-
trol conditions. Participants viewed an image and heard a question corresponding to
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Figure 1 Examples of vignettes from the moral dilemma task. A) A control vignette: " Mr. Jones
is practicing his three-point throw on the basketball court behind his house. He hasn't managed to
score a basket during the whole morning, despite all the practice. He concentrates hard and
throws the ball one more time. This time his aim is more accurate, the ball curves through the air
and falls cleanly into the basket. Mr. Jones has managed to score a basket for the first time.”
Question during task: Will he score? B) A dilemma vignette. " Mr. Jones and his only son are held
in a concentration camp. His son tries to escape but he is caught. The guard watching them tells
Mr. Jones that his son is going to be hanged and that it will be him (Mr. Jones) who has to push
the chair. If he does not do it, not only will his son die but also five more people held in the
concentration camp.” Question during task: Would you push the chair? Vignettes are copied from
[8] Support Information Appendix.

each vignette. Each image was displayed for 5 seconds and the audio began one sec-
ond after image onset. Participants responded to the proposed question by pressing
one of two buttons on a response box (index finger button for “yes”, middle finger
button for “no”). The task began and ended with 20 second fixation blocks during
which participants passively viewed a plus (+) sign centered on a grey background.
The task was implemented in PsychoPy [34] using images provided by the authors
of the original work [8] and can be downloaded from the OpenCogLab Repository
(http://opencoglabrepository.github.io/experiment_moraldillema.html).

3.5.8 Multi-Source Interference Task
The MSIT was developed as an all-purpose task to provide robust single-participant
level activation of cognitive control and attentional regions in the brain [20]. Early
work with the MSIT suggests robust activation of regions associated with top-down
control — regions that are often active when the DMN is inactive [20]. The MSIT
provided a basis for directly examining task-induced deactivation of the DMN.
During the task, participants were presented with a series of stimuli consisting of
three digits, two of which were identical and one that differed from the other two
(see Fig. 2 for examples). Participants were instructed to indicate the value and not
the position of the digit that differed from the other two (e.g., 1 in 100, 1 in 221).
During control trials, distractor digits were Os and the targets were presented in
the same location as they appear on the response box (e.g., 1 in 100 was the first
button on the button box and the first number in the sequence). During interference
trials, distractors were other digits and target digits were incongruent with the
corresponding location on the button box (e.g., 221 — 1 was the first button on the
button box but was the third number in the sequence).
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Congruent Incongruent

Figure 2 Examples of MSIT task stimuli. For congruent trials, the paired digits are zero and the
position of the target digit corresponds to its location. For incongruent trials, the distractor digits
are non-zero and the target digits location is not the same as its value.

The task was presented as a block design with eight 42-second blocks that
alternated between conditions, starting with a control block. Each block con-
tained 24 randomly generated stimuli with an inter-stimulus interval of 1.75 sec-
onds. The task began and ended with a 30 second fixation period during which
they passively viewed a white plus (4) sign centered on a black background.
The MSIT was implemented in PsychoPy (Peirce, 2008) and can be downloaded
from the OpenCogLab Repository (http://opencoglabrepository.github.io/
experiment_msit.html).

3.5.4 Neurofeedback Task

In the real-time Neurofeedback (rt-NFB) task, fMRI data were processed during
collection, allowing the experimenter to provide visual feedback of brain activity
over the course of the experiment [39, 17]. The rt-NFB task was developed to
examine each individual participant’s ability to either increase or decrease DMN

activity in response to instructions, accompanied by real-time feedback of activity
from their own DMN [16].

Focused Wandering

WANDER

Focused Wandering

Figure 3 Stimuli for “Focus” and “Wander” conditions of the neurofeedback task. The needle
moves to the left or the right based on DMN activity.

During the rt-NFB task, participants were shown an analog meter with ‘Wan-
der’ at one end and ‘Focus’ at the other, along with an indicator of their current
performance (see Fig. 3). The fixation point was a white square positioned equally
between the two poles. Participants were instructed at the beginning of each block
to attempt to either focus their attention (Focus) or to let their mind wander (Wan-
der). The task began with a 30 second control condition and then proceeded with
alternating blocks with a specific sequence of durations — 30, 90, 60, 30, 90, 60, 60,
90, 30, 60, 90, and 30 seconds. At the end of each block, the participant was asked
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to press a button within a two second window. Starting condition (‘Focus’ vs. ‘Wan-
der’) was counterbalanced, as was the location of each descriptor (‘Focus’, ‘Wander’;
Right vs. Left) on the analog meter was counterbalanced across participants.
Each fMRI volume acquired during the task was transmitted from the scanner to
the RTAC shortly after it was reconstructed and passed to AFNT’s real-time plugin
[39] for online processing. The volume was realigned to the previously collected
mean volume to correct for motion and to bring it into alignment with the tissue
masks and DMN SVR model. Mean WM intensity, mean CSF intensity, and global
mean intensity were extracted from the volume using masks calculated from the
earlier online segmentation of the anatomical image. A general linear model was
calculated at each voxel, using all of the data that were acquired up to the current
time point, with WM, CSF, global, and motion parameters included as regressors
of no interest. The recently acquired volume was extracted from the residuals of
the nuisance variance regression, spatially smoothed (6-mm FWHM), and then a
measure of DMN activity was decoded from the volume using the SVR model
trained from the resting state data. The resulting measure of DMN activity was
translated to an angle, which was added to the current position of the needle on
the analog meter, moving it in the direction of focus or wander based on DMN
activation or deactivation, respectively. This moving average procedure was used to
smooth the motion of the needle. The position of the needle was reset to the center
at each change between conditions. The neurofeedback stimulus was implemented in
Vision Egg [52] and can be downloaded from the OpenCogLab Repository (http://
opencoglabrepository.github.io/experiment_RTfMRIneurofeedback.html).

3.6 Quality Measures.
Metrics of the spatial quality of the structural and functional MRI data and tempo-
ral quality of the fMRI data were calculated using the Preprocessed Connectomes
Project Quality Assessment Protocol (QAP; http://preprocessed-connectomes-
project.org/quality-assessment-protocol, [53]). For the structural data, spa-
tial measures include:

e Signal-to-Noise Ratio (SNR): mean grey matter intensity divided by standard
deviation of out-of-brain (OOB) voxels, larger values are better [54].

e Contrast-to-Noise Ratio (CNR): the difference between mean gray matter
intensity and mean white matter intensity divided by standard deviation of
OOB voxels, larger values are better [54].

e Foreground-to-Background Energy Ratio (FBER): variance of in-brain (IB)
voxels divided by variance of OOB voxels, larger values are better.

e Percent artifact voxels (QI1): number of OOB voxels that are in structured
noise (i.e. artifacts) divided by the total number of OOB voxels, smaller values
are better [55].

e Spatial smoothness (FWHM): smoothness of voxels expressed as full-width
half maximum of the spatial distribution of voxel intensities in units of voxels,
smaller values are better [56].

e Entropy focus criterion (EFC): the Shannon entropy of voxel intensities
normed by the maximum possible entropy for an image of the same size,
is a measure of ghosting and blurring induced by head motion, lower values
are better [57]
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e Summary measures: mean, standard deviation, and size of different image
compartments, including, foreground, background, WM, GM, and CSF.

Spatial measures of fMRI data include EFC, FBER, FWHM, and well as:

e Ghost-to-signal Ratio (GSR): mean of the voxel intensities in parts of the fMRI
image (determined by the phase encoding direction) that are susceptible to
ghosting, smaller values are better [58].

e Summary measures: mean, standard deviation, and size of foreground and

background.

Temporal measures of fMRI data include:

e Standardized DVARS (DVARS): the mean intensity change between every
pair of consecutive fMRI volumes, standardized to make it comparable be-
tween scanning protocols, smaller values are better [59].

e Outliers: the mean number of outlier voxels found in each volume using AFNI’s
3dToutcount command, smaller values are better [43].

e Global correlation (gcorr): the average correlation between every pair of voxel
time series in the brain, sensitive to physiological noise, head motion, as well as
imaging technical artifacts, such as, signal bleeding in multi-band acquisitions,
values that are closer to zero are better [60].

e Mean root mean square displacement (mean RMSD): the average distance
between consecutive fMRI volumes [61]. This has shown to be a more accurate
representation of head motion than mean frame-wise displacement (meanFD)
proposed by Power et. al. [62] [63].

4 Technical Validation

A variety of initial analyses have been performed on the first 125 participants to
be released in the NFB repository to establish the quality of these data and the
successful implementation of the tasks. A series of quality assessment measures were
calculated from the raw imaging data and compared with data available through
other data sharing repositories. Results of the behavioral tasks were evaluated to
ensure consistency with the existing literature. Preliminary analyses of the various
fMRI tasks were performed to verify activation and deactivation of the DMN as
predicted.

4.1 Behavioral Assessment

Participant responses for the RVIP, MSIT, moral dilemma task and neurofeedback
task were analyzed to evaluate whether the participants complied with task instruc-
tions, and whether their responses are consistent with previous literature.

RVIP. The RVIP python script calculated hit rate, false alarm rate, A’, and mean
reaction time during task performance. Responses that occur within 1.5 seconds of
the last digit of a target sequence being displayed were considered hits, multiple
responses within 1.5 seconds are considered a hit followed by multiple false alarms,
and responses that occur outside of the 1.5-second window are considered false
alarms. The number of hits and false alarms are converted to rates by dividing by
the total number of targets. Since the number of false alarms are not bounded, the
false alarm rate can be higher than 100%, resulting in A’ values greater than 1 (see
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Eqn. 1). In post-hoc analysis, false alarm raters greater than 1 were replaced with
1 and A’ values greater than 1 were replaced with 0.

MSIT. Reaction times and correctness of response were calculated for each trial
by the MSIT python script. The response window begins at stimulus presentation
and ends just prior to the presentation of the next stimulus. The last key pressed
after stimulus presentation is considered in these calculations. A summary script
distributed with the task was used to summarize response times and accuracy rates
for congruent and incongruent trials. This script assumes that the task begins with
a block of congruent stimuli.

Moral Dilemma. Reaction times and correctness of responses for control trials
were calculated for each trial from the task log files using a script distributed with
the task. The response window starts at the beginning of the auditory question
prompt and the last key received in this window is used to calculate response times.
The length of the auditory question was subtracted from reaction times to control
for question length across stimuli. This may result in negative reaction times. These
values were then summarized into average reaction time for control and dilemma
stimuli. Response accuracy was calculated for the control trials, there is no defini-
tively correct response to the dilemmas.

Self-report sleep. After completing the scans, participants were asked to list the
scans that they fell asleep during, if any. The results are coded in the COINS
database and were analyzed to determine which of the participants fell asleep during
the training or testing scans.

Neurofeedback. Participants are asked to press a button at transitions between
“focus” and “wander” blocks. The hit rate for these catch trials were calculated
from the task log files using a script distributed with the task.

4.2 FMRI Analysis

All data were preprocessed using a development version of the Configurable Pipeline
for the Analysis of Connectomes (C-PAC version 0.4.0, http://fcp-indi.github.
io). C-PAC is an open-source, configurable pipeline for the automated preprocessing
and analysis of fMRI data [64]. C-PAC is a software implemented in Python that
integrates tools from AFNI [43], FSL [65], and ANTS [66] with custom tools, using
the Nipype [67] pipelining library, to achieve high-throughput processing on high
performance computing systems.

Anatomical processing began with skull stripping using the BEaST toolset
[68] with a study-specific library and careful manual correction of the results.
The masks and BEaST library generated through this effort are shared through
the Preprocessed Connectomes Project NFB Skullstripped repository (http:
//preprocessed-connectomes-project.org/NFB_skullstripped/) [69]. Skull-
stripped images were resampled to RPI orientation and then a non-linear transform
between images and a 2mm MNI brain-only template (FSL, [65]) was calculated
using ANTs [66]. The skullstripped images were additionally segmented into WM,
GM, and CSF using FSL’s FAST tool [44]. A WM mask was calculated by ap-
plying a 0.96 threshold to the resulting WM probability map and multiplying the
result by a WM prior map (avgl52T1_white_bin.nii.gz - distributed with FSL) that
was transformed into individual space using the inverse of the linear transforms
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previously calculated during the ANTs procedure. A CSF mask was calculated by
applying a 0.96 threshold to the resulting CSF probability map and multiplying the
result by a ventricle map derived from the Harvard-Oxford atlas distributed with
FSL [70]. The thresholds were chosen and the priors were used to avoid overlap
with grey matter.

Functional preprocessing began with resampling the data to RPI orientation, and
slice timing correction. Next, motion correction was performed using a two-stage
approach in which the images were first coregistered to the mean fMRI and then a
new mean was calculated and used as the target for a second coregistration (AFNI
3dvolreg [71]). A 7 degree of freedom linear transform between the mean fMRI and
the structural image using FSL’s implementation of boundary-based registration
[47]. Nuisance variable regression (NVR) was performed on motion corrected data
using a 2nd order polynomial, a 24-regressor model of motion [48], 5 nuisance signals,
identified via principal components analysis of signals obtained from white matter
(CompCor, [72]), and mean CSF signal. WM and CSF signals were extracted using
the previously described masks after transforming the fMRI data to match them
in 2mm space using the inverse of the linear fMRI-sMRI transform. NVR residuals
were written into MNI space at 3mm resolution and subsequently smoothed using
a 6mm FWHM kernel.

Individual level analyses of the MSIT and MD tasks were performed in FSL using
a general linear model. The expected hemodynamic response of each task condi-
tion was derived from a boxcar model, specified from stimulus onset and duration
times, convolved with a canonical hemodynamic response function. Multiple regres-
sions were performed at each voxel with fMRI activity as the independent variable
and task regressors as the dependent variables. Regression coefficients at each voxel
were contrasted to derive a statistic for the difference in activation between task
conditions (incongruent > congruent for MSIT, dilemma > control for MD). The re-
sulting individual level task maps were entered into group-level one-sample t-tests,
whose significance were assessed using multiple comparison correction via a per-
mutation test (10,000 permutations) implemented by FSL’s randomise (p < 0.001
FWE - Threshold Free Cluster Enhancement (TFCE) [73]). Participants with miss-
ing behavioral data, or whose behavioral responses were outliers (> 1.5 interquartile
range), were excluded from group level analysis.

Maps of DMN functional connectivity were extracted from the resting state and
neurofeedback scans using a dual regression procedure [74]. Time courses from
10 commonly occurring intrinsic connectivity networks (ICNs) were extracted by
spatially regressing each dataset onto templates derived from a meta-analysis of
task and resting state datasets [41]. The resulting time courses were entered into
voxel-wise multiple regressions to derive connectivity map for each of the 10 ICNs.
The ICN corresponding to the DMN was subsequently subtracted and entered into
group-level one-sample t-tests, whose significance were assessed using multiple com-
parison correction via a permutation test (10,000 permutations) implemented by
FSL’s randomise (p < 0.001 FWE - Threshold Free Cluster Enhancement (TFCE)
[73]). To evaluate performance on the neurofeedback task, DMN time course for
each participant were correlated with an ideal time course (obtained by using in-
struction onset and duration information — i.e., focus or wander). Participants who
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reported sleeping during the resting-state scan were excluded from its analysis and
analysis of the feedback scan was performed with and without participants who
reported sleep.

4.3 Validation Results
4.8.1 Behavioral Assessment.

A. Rapid Visual Information
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Figure 4 Visualizations of behavioral results for all tasks. Panels A-C show data as violin plots
(filled circle represents the mean, line range represents the confidence interval, ‘X' data points
indicate outliers (1.5x Interquartile range)). Panel A shows, A’, False Alarm Rate, Hit Rate, and
mean reaction time for the RVIP. Panel B shows accuracy (left) and reaction time (right) for
congruent relative to incongruent trials of the MSIT task. Panel C shows accuracy for the control
trials, as well as reaction time for both the dilemma and control trials of the Moral Dilemma Task.
Panel D shows self-reported sleep (none, sleep during train only, sleep during test only, and sleep
during train and test sessions) as a percentage of the total sample on the left and correct response
(i.e., pressed any button) during catch trials as a histogram.

The behavioral results for the Rapid Visual Information Processing (RVIP), Multi-
Source Interference Task (MSIT), Moral Dilemma Task (MD), and Neurofeedback
Task (NFB) are illustrated in Fig. 4. Reaction times, hit rates, and A’ calculated
from the RVIP task were consistent with, although slightly worse than, those pre-
viously published in young adults (n=20, age 25.30 +/- 5.09 years, RVIP reaction
time 425.6 +/- 43.0 ms, A’ = 0.936 +/- 0.05, [75]). The differences in performance
may have been due to the inclusion of participants with psychiatric diagnoses in the
NFB population. The RVIP had the highest number of outliers of the tasks with
16 participants having false alarm rates greater than 1.5 times the inter-quartile
range, 11 of which also had outlier A’ values (see Fig. 5). Similarly, Figure 4B il-
lustrates that the performance on the MSIT was consistent with, although a little
worse than, values published in a previous validation study (n = 8, 4 females, age
= 30.4 +/- 5.6 years, congruent trial reaction time = 479 +/- 92 ms, incongruent
trial reaction time = 787 4/- 129 ms [76]). MSIT data was only available in 107 of
the participants due to a faulty button box, of which a total of 13 had responses
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that were outliers on at least one of the statistics derived from the task (see Fig. 5).
For MD, the difference in reaction times distributions between control and dilemma
trials support the hypothesis that the dilemma trials require more processing, as is
expected [8] (see Fig. 4C). MD results are available for 121 participants due to but-
ton box problems and 12 of the remaining have accuracy on the control trials that
are outliers (see Fig. 5). Only 58.5% of the participants reported remaining awake
during both the resting state and neurofeedback scans, these subjective measures
were validated by catch trial performance (see Fig. 4D).

Participant ID

o
&
Variable
[ Missing I Present Outlier

Figure 5 The intersection of behavioral assessment outliers and missing data. Participants are
ordered by their number of outliers or missing measurements.

When using the data it might be desirable to exclude participants who had poor
task performance, slept during the parts of the experiment, or experienced technical
issues that resulted in missing data. Figure 5 illustrates the intersection of these
various problems across participants to get a better understanding of their total
impact on sample size. Data is missing for twenty-three participants due to technical

errors such as button box malfunction, scanner problems, and power outages. Two
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participants asked to be removed from the scanner before the task was completed.
A total of 50 participants have some unusable data due to poor task performance

or falling asleep during the resting state or feedback scans.

4.8.2 Quality Assessment Protocol

To evaluate the spatial and temporal quality of the NFB fMRI data, QAP measures
calculated on the data were compared to those calculated from resting state fMRI
scans from the Consortium on Reproducibility and Reliability (CoRR) [77]. The
CoRR dataset contains scans on 1,499 participants using a variety of test-retest
experiment designs. To avoid biasing the comparison with multiple scans from the
same subjects, the first resting state scan acquired on the first scanning session was
used for each participant. Signal-to-noise ratio, ghost-to-signal ratio, voxel smooth-
ness, global correlation, standardized DVARS and mean RMSD of the NFB fMRI
data are all comparable to CoRR (Fig. 6). Head motion, as indexed by mean RMSD,
is higher for the resting state (train) and neurofeedback scans than the other two
tasks (Fig. 6F).
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Figure 6 lllustrations of the overall quality of the functional neuroimaging data. Distributions of
the measures for fMRI data from the MSIT, Moral Dilemma, Resting Scan (NFB Train), and
Neurofeedback (NFB Test) are shown in comparison to resting state fMRI data from the CoRR
dataset. Quality measures are represented as violin plots overlaid with boxplots (center line
represents the median, box range represents the confidence interval, ‘X' data points indicate
outliers (1.5x Interquartile range)). Lines representing the 57, 10t 25t 50th 75t% 90" and
95" percentiles for the CoRR data are shown to simplify visual comparisons. Standardized
DVARS is mean root-mean-square variance of the temporal derivative of voxels time courses that
has been standardized to make the values comparable across different acquisition protocols. Mean
RMSD is the mean root mean squared deviation (RMSD) of motion between consecutive volumes.

4.3.8 fMRI Assessment

The group level analysis of the MSIT task included 87 participants after 18 were
excluded for missing data and 20 were excluded for being outliers on either accuracy
of response or mean reaction times (see Fig. 5). 110 participants data were included
in the group level analysis of the MD task after 5 participants were excluded due to

technical problems, and another 10 were excluded due to outlier task performance.
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As expected from the literature, the MD task robustly activated the DMN (Fig. TA,
red) and deactivated attentional networks (Fig. 7A, blue) that are typically active
during task performance [8]. Consistent with previous literature [76] group level
analysis of the MSIT showed robust activation of the dorsal and ventral attention
networks (Fig 7B, red) and deactivation of the DMN (Fig 7B, blue). 21 participants
reported falling asleep during the resting state scan and were excluded from group-
level analysis. Figure 7C illustrates the expected pattern of anti-correlation between
DMN and task networks [49] for the remaining 104 participants. These results con-
firm that these three tasks are working as expected for deactivating, activating, and
localizing the DMN.

A. Moral Dilemma Task

C. Resting State Default Mode Network

z.zzo.

Figure 7 lllustrations of the overall quality of the functional neuroimagDefault network patterns
extracted from the Moral Dilemma, MSIT, and Resting State fMRI Tasks. A) The dillemma >
control contrast from group-level analysis of the Moral Dilemma task results in DN activation. B)
The incongruent > congruent contrast of the MSIT shows DN deactivation. C) Functional
connectivity of the DN extracted from the resting state task using dual regression. Statistical
maps were generated by a permutation group analysis, thresholded at p < 0.001 TFCE
FWE-corrected; overlay colors represent t statistics.

The neurofeedback task was analyzed with all of the participants that completed
the scan (n=121) (Fig. 8A and B) and again with only the participants who did
not fall asleep during the resting state or neurofeedback tasks (Fig. 8C). The group
averaged DMN map extracted from this data is consistent with what we expect,
with the exception of the prominent negative correlations (Fig. 8A). Comparing
the group mean DMN time course for all participants to the task ideal time course
shows that overall the task trend is followed, with a good deal of high frequency
noise (Fig 8B). When the participants that fell asleep are removed, the high fre-
quency noise remains, but the amplitude difference between wander and focus trials
becomes greater, driving a higher correlation with the task waveform (Fig. 8C). This
is further seen in the distribution of individual-level correlations between DMN ac-
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tivity and the task, where those who do not sleep perform marginally better for
both conditions (Fig. 9).

A. Average Default Mode Spaital Map (all subjects)
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Figure 8 Technical validation for the neurofeedback paradigm. Panel A shows the functional
connectivity map for the default mode network across all participants (p j 10-30 uncorrected,
n=121) derived through dual regression. Panel B shows average overall time-series (in dark blue
with shading indicating standard error) of the default mode network, across all participants
(n=121), in relation to ideal time-series (in black). The coefficient of determination of the
averaged time series is R? = 0.36. Panel C shows average overall time-series (in dark blue with
shading indicating standard error) of the default mode network across participants who reported
no sleep during both training and feedback trials (n=76), in relation to ideal time-series (in
black). The coefficient of determination of the averaged time series is R? = 0.68.

5 Usage Notes

The PSWQ and PTQ were added to the assessment battery in July 2014, approxi-
mately nine months after data collection began. As a result, scores for these mea-
sures are missing from the first 26 and 27 participants, respectively. Additionally,
in July of 2014, the full scale Response Styles Questionnaire (RSQ) was replaced
with the newer subscale RRS, which has better psychometric properties and fewer
questions. The only difference between the RRS subscale of the RSQ and the newer
RRS is that one item from the Depression-Related subscale in the RRS is absent
from the RSQ. To correct for this missing item in those who received the RSQ,
we suggest the following: (1) Divide the RSQ derived Depression Related subscale
score by 11; (2) round down to the nearest whole number (3) add this number to
the RSQ derived Depression Related subscale and RSQ derived RRS-subscale to-
tal score. This procedure was validated using responses from 13 participants who
received the RRS and RSQ. Correlations between scores calculated using all of the
questions and those calculated using the above procedure were r = 0.9994 for the
Depression-Related subscale and r = 0.9997 for the RRS total score.
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Figure 9 Distribution of individual correlations for participant default mode network time-series
with ideal-times series as a function of sleep status. Each sleep status group is then sub-divided
into the two task conditions — Focus/Wander. Subjects with reported sleep during both trials show
lower correlations with the model compared to subjects with no reported sleep. The dots indicate
the mean within each group and the distributions of the correlations are plotted around the mean.

For the MSIT, fMRI data should be analyzed as 42s blocks with the following
onset times after dropping the first four TRs: congruent blocks - 22, 106, 190, 274;
incongruent blocks —64,148, 232, 316. The Moral Dilemma fMRI data should be
analyzed as 30s blocks with the following onset times after dropping the first four
TRs: control blocks — 12, 72, 132, 192; dilemma blocks — 42, 102, 162, 222. Note that
up until April 2014 (first 11 participants), no pre-experiment fixation period was
implemented for the moral dilemma task. For those participants, all of the afore-
mentioned stimulus onset times should be altered by subtracting 20s. For analysis
of the NFB fMRI data, the first stimulus onset (and duration) times, in seconds, are
as follows: 34(30), 162(60), 260(90), 418(60), 576(30), 674(90). The second stimu-
lus onset (and duration) times, in seconds, are as follows: 68(90), 226(30), 354(60),
482(90), 610(60), 768(30). This timing information is also available in events.tsv
files provided in the repository alongside the task fMRI data.

For some participants, the button box used to record participant responses in the
scanner was defective, resulting in unusable data for the MSIT task (18 participants)
and Moral Dilemma task (5 participants).

As previously discussed scripts are provided with each of the tasks for calculat-
ing response accuracies and reaction times. The assumptions made in calculating
these scores may not be appropriate to all researchers, or in all applications. For
this reason we have released the trial-by-trail response information in log files that

accompany the fMRI data.
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The impact of sleep on intrinsic brain activity, and the preponderance of sleep that
occurs during resting state fMRI acquisition, has been highlighted in the literature
[78, 79]. Indeed, a large proportion of the participants in this study reported falling
asleep during either the resting state or neurofeedback scans. Whether or not this
data should be excluded is up to the researcher and depends on the analysis being
performed. Users of this resource might also consider whether they trust the self
reports, or whether they should try to decode an objective measure of sleep from
the data [79]. Additionally, researchers could potentially use the respiratory, heart
rate, or galvanic skin response recordings provided in the repository to monitor
wakefulness.

See information in Data Privacy section of Data Records for restrictions and

limitations on data use.

6 Discussion/Conclusions

This manuscript describes a repository of data from an experiment designed to
evaluate DMN function across a variety of clinical and subclinical symptoms in a
community-ascertained sample of 180 adults (50% females, aged 21-45). The data
includes assessments that cover a variety of domains that have been associated
with or affected by DMN activity, including emotion regulation, mind wandering,
rumination, and sustained attention. Functional MRI task data is included for tasks
shown to activate, deactivate, and localize the DMN, along with a novel real-time
fMRI neurofeedback paradigm for evaluating DMN regulation. Preliminary analysis
of the first 125 participants released for sharing confirms that each of the tasks is
operating as expected.

Group level analysis of the neurofeedback data indicates that the participants are
able to modulate their DMN along with the task instructions. For all participants
the group average time-course co-varies significantly with the task model and in-
creases when removing participants who reported sleep. Greater than half of the
participants who reported no sleep had a significant correlation (p <0.05; r>0.15,
phase randomization permutation test) with the task model (see Fig. 9). The large
portion of participants who were able to significantly modulate their DMN shows
the effectiveness of the neurofeedback protocol.

One unexpected result of our technical validation is a high amount of data loss due
to poor participant performance and compliance. Excluding all of the participants
who are considered outliers on at least one of the tasks or who fell asleep during the
resting state or neurofeedback scans, would remove 73 of the 125 participants (see
Fig. 5). Forty-six individuals could be excluded for sleep, which is not surprising
given recent reports of the high incidence of sleep during resting state scans [79].
Interestingly, 26 of these participants were also outliers in at least one other task.
This indicates that either they had trouble staying awake during the other tasks as
well, or were non-compliant overall. Due to a paucity of information on participant
compliance during fMRI experiments, it is hard to tell whether what we are seeing
is common for our population, or whether there is a specific problem with our
experiment protocol. We do believe that compliance would be higher if we were
to utilize a younger healthy population, or participants who have been scanned

multiple times, as is commonly done in cognitive neuroscience. These problems
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with sleep and poor performance illustrate the need to debrief participants, monitor
their wakefulness during the scan, or try decode sleep from the fMRI data [79].
Additionally, it is important to check the data as it is acquired so that a study
protocol can be adapted to reduce data loss.

Although much of the interest in real-time fMRI based neurofeedback is focused
on clinical interventions [80], it is also a valuable paradigm for probing typical
and atypical brain function. We believe that the data in this repository will have
a substantial impact for understanding the nuances of DMN function and how
variation in its regulation leads to variation in phenotype. This resource will be
particularly useful to students and junior researchers for testing their hypothesis
of DMN function, learning new techniques, developing analytical methods, and as
pilot data for obtaining grants. We encourage users to provide us with feedback for
improving the resource and are very interested to learn about the research performed
with the data.
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