bioRxiv preprint doi: https://doi.org/10.1101/074864; this version posted September 13, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

[ERN

el el
ODRWNROOONOUDWN

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

under aCC-BY-ND 4.0 International license.

Personalized genetic assessment of age-associated Alzheimer’ s disease risk
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Importance: Identifying individuals at risk for developing Alzheimer’s disease (AD) is
of utmost importance. Although genetic studies have identified APOE and other AD
associated single nucleotide polymorphisms (SNPs), genetic information has not been
integrated into an epidemiological framework for personalized risk prediction.
Objective: To develop, replicate and validate a novel polygenic hazard score for
predicting age-specific risk for AD.

Setting: Multi-center, multi-cohort genetic and clinical data.

Participants. We assessed genetic data from 17,008 AD patients and 37,154 controls
from the International Genetics of Alzheimer’s Project (IGAP), and 6,409 AD patients
and 9,386 older controls from Phase 1 Alzheimer’ s Disease Genetics Consortium
(ADGC). Asindependent replication and validation cohorts, we also evaluated genetic,
neuroi maging, neuropathologic, CSF and clinical datafrom ADGC Phase 2, National
Institute of Aging Alzheimer’s Disease Center (NIA ADC) and Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (total n = 20,680)

Main Outcome(s) and Measur e(s): Use the IGAP cohort to first identify AD associated
SNPs (at p < 10™). Next, integrate these AD associated SNPsinto a Cox proportional
hazards model usng ADGC phase 1 genetic data, providing a polygenic hazard score
(PHYS) for each participant. Combine population based incidence rates, and genotype-
derived PHS for each individual to derive estimates of instantaneous risk for developing
AD, based on genotype and age. Finally, assess replication and validation of PHSin
independent cohorts.

Results: Individualsin the highest PHS quantiles developed AD at a considerably lower

age and had the highest yearly AD incidence rate. Among APOE €3/3 individuals, PHS
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modified expected age of AD onset by more than 10 years between the lowest and
highest deciles. In independent cohorts, PHS strongly predicted empirical age of AD
onset (p = 1.1 x 10%), longitudinal progression from normal aging to AD (p = 1.54 x 10
19 and associated with markers of AD neurodegeneration.

Conclusions: We developed, replicated and validated aclinically usable PHS for
guantifying individual differencesin age-specific risk of AD. Beyond APOE, polygenic
architecture plays an important role in modifying AD risk. Precise quantification of AD

genetic risk will be useful for early diagnosis and therapeutic strategies.
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INTRODUCTION
Late onset Alzheimer’ s disease (AD), the most common form of dementia, places alarge
emotional and economic burden on patients and society. With increasing health care
expenditures among cognitively impaired elderly?, identifying individuals at risk for
developing AD is of utmost importance for potential preventative and therapeutic
strategies. Inheritance of the €4 allele of apolipoprotein E (APOE) on chromosome 19913
is the most significant risk factor for developing late-onset AD.? APOE ¢4 has adose
dependent effect on age of onset, increases AD risk three-fold in heterozygotes and
fifteen-fold in homozygotes, and isimplicated in 20-25% of patients with AD.*

In addition to APOE, recent genome-wide association studies (GWAS) have
identified numerous AD associated single nucleotide polymorphisms (SNPs), most of
which have a small effect on disease risk.*> Although no single polymorphism may be
informative clinically, a combination of APOE and non-APOE SNPs may help identify
older individuals at increased risk for AD. Despite the detection of novel AD associated
genes, GWAS findings have not yet been incorporated into a genetic epidemiology
framework for individualized risk prediction.

Building on a prior approach evaluating GWA S-detected genetic variants for
disease prediction’ and using a survival analysis framework, we tested the feasibility of
combining AD associated SNPs and APOE status into a continuous measure ‘ polygenic
hazard score’ (PHS) for predicting the age-specific risk for developing AD. We assessed

replication and validation of the PHS using several independent cohorts.

METHODS
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Participant Samples

IGAP: To select AD associated SNPs, we evaluated publicly available AD GWAS
summary statistic data (p-values and odds ratios) from the International Genomics of
Alzheimer’ s Disease Project (IGAP Stage 1, for additional details see Supplemental
Information and reference 4). We used IGAP Stage 1 data, consisting of 17,008 AD cases
and 37,154 controls, for selecting AD associated SNPs (for a description of the AD cases
and controls within the IGAP Stage 1 sub-studies, please see Table 1 and reference 4).
ADGC: To develop the survival model for the polygenic hazard scores (PHS), we first
evaluated age of onset and raw genotype data from 6,409 patients with clinically
diagnosed AD and 9,386 cognitively normal older individuals provided by the
Alzheimer’ s Disease Genetics Consortium (ADGC, Phase 1, a subset of the IGAP
dataset), excluding individuals from the National Institute of Aging Alzheimer’s Disease
Center (NIA ADC) samples and Alzheimer’s Disease Neuroimaging Initiative (ADNI).
To evaluate replication of PHS, we used an independent sample of 6,984 AD patients and
10,972 cognitively normal older individuals from the ADGC Phase 2 cohort (Table 1). A
detailed description of the genotype and phenotype data within the ADGC datasets has
been described in detail elsewhere.”?* Briefly, the ADGC Phase 1 and 2 datasets consist
of multi-center, case-control, prospective, and family-based sub-studies of Caucasian
participants with AD occurrence after age 60. Participants with autosomal dominant
(APP, PSEN1 and PSEN2) mutations were excluded. All participants were genotyped
using commercially available high-density SNP microarrays from Illuminaor
Affymetrix. Clinical diagnosis of AD within the ADGC sub-studies was established using

NINCDS/ADRDA criteriafor definite, probable or possible AD. ® For most participants,
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171  ageof AD onset was obtained from medical records and defined as the age when AD
172  symptoms manifested, as reported by the participant or an informant. For participants
173  lacking age of onset, age at ascertainment was used. Patients with an age-at-onset or age-
174  at-death lessthan 60 years, and Caucasians of European ancestry were excluded from the
175 analyses. For additional details regarding the ADGC datasets, please see references 7 and
176  24.

177 NIA ADC: To assess longitudinal prediction, we evaluated an ADGC-independent

178  sample of 2,724 cognitively normal elderly individuals with at least 2 years of

179 longitudinal clinical follow-up derived from the NIA funded ADCs (data collection

180  coordinated by the National Alzheimer's Coordinating Center). ° To assess the

181 relationship between polygenic risk and neuropathology, we assessed 2,960 participants
182 from the NIA ADC samples with genotype and neuropathological evaluations. For the
183  neuropathological variables, we examined the Braak stage for neurofibrillary tangles
184  (NFTs) (O: none; I-11: entorhinal; 111-1V: limbic, and V-VI: isocortical) ° and the

185  Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) score for neuritic
186  plagues (none/sparse, moderate, or frequent). **

187 ADNI: To assess the relationship between polygenic risk and in vivo biomarkers, we
188 evaluated an ADGC-independent sample of 692 older controls, mild cognitive

189 impairment and AD participants from the ADNI (see Supplemental Methods). On a

190 subset of ADNI1 participants with available genotype data, we evaluated baseline CSF
191  levelsof ABi.42 and total tau, aswell aslongitudinal clinical dementia rating-sum of box
192 (CDR-SB) scores. In ADNI1 participants with available genotype and quality-assured

193  basdline and follow-up MRI scans, we also assessed longitudinal sub-regional changein
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194  medial temporal lobe volume (atrophy) on 2471 serial T;-weighted MRI scans (for

195 additional details see Supplemental Methods).

196

197 Satistical Analysis

198 Wefollowed three steps to derive the polygenic hazard scores (PHS) for predicting AD
199 ageof onset: 1) we defined the set of associated SNPs, 2) we estimated hazard ratios for
200  polygenic profiles, and 3) we calculated individualized absolute hazards (see

201  Supplemental Information for detailed description of these steps).

202 Using the IGAP Stage 1 summary statistics, we first identified alist of SNPs
203  associated with increased risk for AD using significance threshold of p < 10°. Next, we
204  evaluated all IGAP-detected, AD-associated SNPs within the ADGC Phase 1 case-

205  control dataset. Using a stepwise procedure in survival analysis, we delineated the final
206 list of SNPsfor constructing the polygenic hazard score. **** In the Cox proportional
207  hazard models, we identified the top AD-associated SNPs within the ADGC Phase 1
208  cohort (excluding NIA ADC and ADNI samples), while controlling for the effects of
209 gender, APOE variants, and top five genetic principal components (to control for the
210 effectsof population stratification). We utilized age of AD onset and age of last clinical
211  visit to estimate ‘ age appropriate’ hazards '* and derived a PHS for each participant. In
212 each step of the stepwise procedure, the algorithm selected one SNP from the pool that
213  most improved model prediction (i.e. minimizing the Martingale residuals); additional
214  SNPinclusion that did not further minimize the residuals resulted in halting of the

215  selection process. To prevent over-fitting in the training step, we used 1000x

216  bootstrapping for model averaging and estimating the hazard ratios for each selected
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SNPs. We assessed the proportional hazard assumption in the final model using graphical
comparisons.

To assess replication, we first examined whether the ADGC Phase 1 derived
predicted PHSs could stratify individuals into different risk strata within the ADGC
Phase 2 cohort. We next evaluated the relationship between predicted age of AD onset
and the empirical/actual age of AD onset using cases from ADGC Phase 2. We binned
risk stratainto percentile bins and calculated the mean of actual agein that percentile as
the empirical age of AD onset.

Because case-control samples cannot provide the proper baseline hazard, *° we
used the previously reported annualized incidence rates by age, estimated from the
general United States of America (US) population. *” For each participant, by combining
the overall population-derived incidence rates *” and genotype-derived PHS, we
calculated an individual’ s instantaneous risk for developing AD, based on their genotype
and age (for additional details see Supplemental Information). To independently validate
the predicted instantaneous risk, we evaluated longitudinal follow-up datafrom 2,724
cognitively normal older individuals from the NIA ADC with at least 2 years of clinical
follow-up. We assessed the number of cognitively normal individuals progressing to AD
as afunction of the predicted PHS risk strata and examined whether the predicted PHS-
derived incidence rate reflects the empirical/actual progression rate using a Cochran-
Armitage trend test.

To assess validity, we examined the association between our PHS and established
in vivo and pathologic markers of AD neurodegeneration. Using linear models, we

assessed whether the PHS correlated with Braak stage for NFTs and CERAD score for
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neuritic plagues as well as CSF AB1.42, and CSF total tau. Using linear mixed effects
models, we also investigated whether the PHS was associated with longitudinal CDR-SB
score and volume loss within the entorhinal cortex and hippocampus. In all analyses, we

co-varied for the effects of age and sex.

RESULTS
PHS model devel opment, relationship to APOE and independent replication

From the IGAP cohort, we found 1854 SNPs associated with increased risk for
AD at ap < 10°. Of these, using the Cox stepwise regression framework, we identified
31 SNPs, in addition to two APOE variants, within the ADGC cohort for inclusion into
the polygenic model (Table 2). Figure 1 illustrates the relative risk for developing AD
using the ADGC case/control Phase 1 cohort. The graphical comparisons among Kaplan-
Meier estimations and Cox proportional hazard models indicate the proportional hazard
assumption holds for the final model (Figure 1).

To quantify the additional prediction provided by polygenic information beyond
APOE, we evaluated how PHS modulates age of AD onset in APOE €3/3 individuals.
Among these individuals, we found that age of AD onset can vary by more than 10 years,
depending on polygenic risk. For example, for an APOE £3/3 individual in the 10" decile
(top 10%) of PHS, at a survival proportion of 50%, the expected age for developing AD
is approximately 84 years (Figure 2); however, for an APOE £3/3 individual in the 1%
decile (bottom 10%) of PHS, the expected age of developing AD is approximately 95

years (Figure 2). Similarly, we also evaluated the relationship between PHS and the

10
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262 different APOE alleles (g 2/3/4) (Supplemental Figure 1). These findings show that

263  beyond APOE, the polygenic architecture plays an integral rolein affecting AD risk.

264 To assess independent replication, we applied the ADGC Phase 1-trained model
265  on independent replication samples from ADGC Phase 2. Using the empirical

266  digributions, we found that the PHS successfully stratified individuals from independent
267  cohortsinto different risk strata (Figure 3a). Among AD casesin the ADGC Phase 2

268  cohort, we found that the predicted age of onset was strongly associated with the

269  empirical (actual) age of onset (binned in percentiles, r = 0.90, p = 1.1 x 10, Figure 3b).
270

271  Predicting population risk of AD onset

272  Toevauaterisk for developing AD, combining the estimated hazard ratios from the

273  ADGC cohort, allele frequencies for each of the AD-associated SNPs from the 1000

274  Genomes Project and the disease incidence in the general US population, *” we generated
275  the population basdline-corrected survival curves given an individual’s genetic profile
276  and age (Supplemental Figures 2A and 2B). We found that the risk for developing AD as
277  wéll asthedistribution of age of onset is modified by PHS status (Supplemental Figures
278  2A,B).

279 Given an individual’ s genetic profile and age, the corrected survival proportion
280 can betrandated directly into incidence rates (Figure 4, Table 3 and Supplemental Table
281 1). Asprevioudy reported in a meta-analysis summarizing four studies from the US

282  general population, *' the annualized incidence rate represents the proportion (in percent)
283  of individualsin agiven risk stratum and age, who have not yet developed AD but will

284  develop AD in the following year; thus the annualized incidence rate represents the

11
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285 ingtantaneous risk for developing AD conditional on having survived up to that point in
286  time. For example, for a cognitively normal 65 year-old individual in the 80" percentile
287  PHS, theincidence rate would be: 0.29 at age 65, 1.22 at age 75, 5.03 at age 85, and

288 20.82 at age 95 (Figure 4 and Table 3); in contrast, for a cognitively normal 65 year old
289  inthe 20" percentile PHS, the incidence rate (per 100 person-years) would be 0.10 at age
290 65,0.43 at age 75, 1.80 at age 85, and 7.43 at age 95 (Figure 4 and Table 3). As

291  independent validation, we examined whether the PHS predicted incidence rate reflects
292  theempirical progression rate (from normal control to clinical AD) (Figure 5). We found
293  that the PHS predicted incidence was strongly associated with empirical progression rates
294  (Cochrane Armitage trend test, p = 1.54 x 10™9).

295

296  Association with known markers of AD pathology

297  Wefound that the PHS was significantly associated with Braak stage of NFTs (-

298  coefficient = 0.115, standard error (SE) = 0.024, p-value = 3.9 x 10°) and CERAD score
299  for neuritic plagues (B-coefficient = 0.105, SE = 0.023, p-value = 6.8 x 10°). We

300 additionally found that the PHS was associated with worsening CDR-Sum of Box score
301  over time (B-coefficient = 2.49, SE = 0.38, p-value = 1.1 x 10™%), decreased CSF AB 1.4
302  (reflecting increased intracranial AP plaque load) (B-coefficient = -0.07, SE = 0.01, p-
303 value=1.28 x 10, increased CSF total tau (B-coefficient = 0.03, SE = 0.01, p-value =
304  0.05), and increased volume loss within the entorhinal cortex (B-coefficient = -0.022, SE
305 =0.005, p-value = 6.30 x 10®) and hippocampus (p-coefficient = -0.021, SE = 0.0054, p-
306 value=7.86x107).

307

12
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DISCUSSION
In this study, by integrating AD-associated SNPs from recent GWAS and disease
incidence estimates from the US popul ation into a genetic epidemiology framework, we
have developed a clinically usable, polygenic hazard score for quantifying individual
differencesinrisk for developing AD, as a function of genotype and age. The PHS
systematically modified age of AD onset, and was associated with known in vivo and
pathologic markers of AD neurodegeneration. In independent cohorts, the PHS
successfully predicted empirical (actual) age of onset and longitudinal progression from
normal aging to AD. Even among individuals who do not carry the €4 allele of APOE
(the majority of the US population), we found that polygenic information is useful for
predicting age of AD onset.

Using a case/control design, prior work has combined GWA S-associated
polymorphisms and disease prediction models to predict risk for AD. ***° Rather than
representing a continuous process where non-demented individuals progress to AD over
time, the case/control approach implicitly assumes that normal controls do not develop
dementia and treats the disease process as a dichotomous variable where the goal is
maximal discrimination between diseased ‘cases and healthy ‘controls'. Given the
striking age-dependence of AD, this approach is clinically suboptimal for predicting risk
of AD. Building on prior genetic estimates from the general population, > % we
employed a survival analysis framework to integrate AD-associated common variants
with established population-based incidence ! to derive a continuous measure, polygenic

hazard score (PHS). From a personalized medicine perspective, for a single non-

13
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demented individual, the PHS can estimate individual differencesin AD risk across a
lifetime and can quantify the yearly incidence rate for developing AD.

These findingsindicate that the lifetime risk of age of AD onset varies by
polygenic profile. For example, the annualized incidence rates (risk for developing AD in
agiven year) are considerably lower for an 80-year old individual in the 20™ percentile
PHS relative to an 80-year old in the 99" percentile PHS (Figure 4 and Table 3). Across
the lifespan (Supplemental Figure 2B), our resultsindicate that even individuals with low
genetic risk (low PHS) develop AD, but at a later peak age of onset. This suggests that all
individuals, irrespective of genotype, would eventually succumb to dementiaif they did
not die from other causes. Certain loci (including APOE €2) may ‘protect’ against AD by
delaying, rather than preventing, disease onset.

Our polygenic results provide important predictive information beyond APOE.
Among APOE ¢3/3 individuals, who constitute 70-75% of all individuals diagnosed with
late-onset AD, age of onset varies by more than 10 years, depending on polygenic risk
profile (Figure 2). At 60% AD risk APOE £3/3 individuals in the 1% decile of PHS have
an expected age of onset of 85 whereas for individualsin the 10" decile of PHS, the
expected age of onset is greater than 95. These findings are directly relevant to the
general population where APOE ¢4 only accounts for afraction of AD risk  and are
consistent with prior work # indicating that AD is a polygenic disease where non-APOE
genetic variants contribute significantly to disease etiology.

Using the ADGC phase 2 dataset, we found that the PHS strongly predicted actual
age of AD onset in an independent sample indicating the feasibility of using PHS for

diagnosing clinical AD. Within the NIA ADC sample, the PHS robustly predicted
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longitudinal progression from normal aging to AD illustrating the clinical value of using
polygenic information to identify cognitively normal older individuals at highest risk for
developing AD (preclinical AD). We found a strong relationship between PHS and
increased tau associated NFTs and amyloid plagues suggesting that our genetic marker of
disease risk reflects underlying Alzheimer’ s pathology. The PHS also demonstrated
robust associations with CSF AB;.4, levels, longitudinal MRI measures of medial
temporal lobe volume loss and baseline CDR-SB score illustrating that increased genetic
risk predicts clinical status and neurodegeneration in vivo.

From aclinical perspective, our genetic risk score, based on standard SNP chip
arrays, can be used clinically for disease diagnosis, accurate identification of older
individuals at greatest risk for developing AD and potentially, for informing management
decisions. By providing an accurate, probabilistic assessment asto whether Alzheimer’s
neurodegeneration is likely to occur, determining a‘genomic profile’ of AD may help
initiate a dialogue on future planning. Importantly, a continuous, polygenic measure of
AD genetic risk may provide an enrichment strategy for prevention and therapeutic trials
and could also be useful for predicting which individuals may respond to therapy.
Finally, asimilar genetic epidemiology framework may be useful for quantifying the risk
associated with numerous other common diseases.

There are several limitations to our study. We primarily focused on Caucasian
individuals of European descent. Given that AD incidence ? and genetic risk %% in
African-Americans and Latinosis different than in Caucasians, additional work will be
needed to develop a polygenic risk model in non-Caucasi an populations. The previously

reported population annualized incidence rates were not separately provided for males
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and females. *” Therefore, we could not report PHS annualized incidence rates stratified
by sex. Finally, we focused on APOE and GWAS-detected polymorphisms for disease
prediction. Given the flexibility of our genetic epidemiology framework, it can be used to
investigate whether a combination of common and rare genetic variants along with
clinical, cognitive and imaging biomarkers may prove useful for refining the prediction
of AD age of onset.

In conclusion, we have developed, replicated and validated a clinically useful new
polygenic hazard score for quantifying the age-associated risk for developing AD. By
integrating population based incidence proportion and genome-wide data into a genetic
epidemiology framework, we were able to derive hazard estimates whereby an individual
could calculate his/her ‘personalized’ age-specific AD risk, given genetic information.
Measures of polygenic risk may prove useful for early detection, determining prognosis,

and as an enrichment strategy in clinical trials.
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477  Table 1. Demographic datafor AD patients and older controls.

478
IGAP ADGC ADGC ADGC ADGC
older Phasel Phasel Phase Phase
control  AD older 2AD 2 older
s patients control patien control
s ts s
Total N 17,008 37,154 6,409 9,386 6,984 10,972
Mean age 74.7 68.6 747 76.4 73.6 75.7
(SD) of (8.0) (8.5) (7.7) (8.2) (7.3 (8.6)
onset
(cases) or
assessme
nt
(controls)
% 63 57 61 59 57.6 60.7
Female
% APOE 59.0 254 51.6 26.7 56.0 28.4
4
carriers
479
480
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481 Table 2. Sdected 31 SNPs, their closest genes, hazard ratio estimations, and their
482  conditional p valuesin thefinal joint model, after controlling for effects of gender and
483  APOE variants.

484
Conditional
Chr Position Gene B p in —0gio

g2 dlele 19 APOE -0.47 > 15
ed dlele 19 APOE 1.03 > 20
rs4266886 1 207685786 CR1 -0.09 2.7
rs61822977 1 207796065 CR1 -0.08 2.8
rs6733839 2 127892810 BIN1 -0.15 105
rs10202748 2 234003117 INPP5D -0.06 2.1
rs115124923 6 32510482 HLA-DRB5 0.17 7.4
rs115675626 6 32669833 HLA-DQB1 -0.11 3.2
rs1109581 6 47678182 GPR115 -0.07 2.6
rs17265593 7 37619922  BC043356 -0.23 3.6
rs2597283 7 37690507  BC043356 0.28 4.7
rs1476679 7 100004446 ZCWPW1 0.11 4.9
rs78571833 7 143122924  AL833583 0.14 3.8
rs12679874 8 27230819 PTK2B -0.09 4.2
rs2741342 8 27330096 CHRNA2 0.09 29
rs7831810 8 27430506 CLU 0.09 3.0
rs1532277 8 27466181 CLU 0.21 8.3
rs9331888 8 27468862 CLU 0.16 5.1
rs7920721 10 11720308 CR595071 -0.07 29
rs3740688 11 47380340 SPI1 0.07 2.8
rs7116190 11 59964992  MSAAGA 0.08 39
rs526904 11 85811364 PICALM -0.20 2.3
rs543293 11 85820077  PICALM 0.30 4.2
rs11218343 11 121435587 SORL1 0.18 2.8
rs6572869 14 53353454  FERMT2 -0.11 3.0
rs12590273 14 92934120 9. .C24A4 0.10 35
rs7145100 14 107160690 abParts 0.08 2.0
rs74615166 15 64725490 TRIP4 -0.23 3.1
rs2526378 17 56404349 BZRAP1 0.09 4.9
rs117481827 19 1021627 C19orf6 -0.09 25
rs7408475 19 1050130 ABCA7 0.18 4.3
rs3752246 19 1056492 ABCA7 -0.25 8.4
rs7274581 20 55018260 CASA 0.10 2.1
485

486
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487
488

489
490
491
492

Table 3. Predicted annualized incidencerate (per 100 per son-year s) by age using polygenic hazard scores.

Age Population | PHS 1 percentile PHS 20" PHS 80" PHS 99" APOE g4+ APOE g4-
Basdline* (95% ClI) per centile per centile per centile (95% ClI) (95% CI)
(95% ClI) (95% Cl) (95% Cl)
60 0.02 0.04 0.15 0.61 0.19 0.06
0.08 (0.01,0.03) (0.01,0.08) (0.04,0.27) (0.16, 1.06) (0.18, 0.20) (0.06, 0.7)
65
0.04 0.09 0.32 1.24 0.38 0.13
0.17 (0.01,0.06) (0.03, 0.16) (0.09, 0.54) (0.33,2.15) (0.36, 0.40) (0.12,0.13)
70
2.53
0.07 0.19 0.64 0.78 0.26
0.35 (0.02,0.13) (0.05,0.32) (0.18, 1.10) (0.68, 4.38) (0.74,0.82) (0.25, 0.27)
75
0.15 0.38 1.30 5.15 1.58 0.53
0.71 (0.05,0.19) (0.11,0.65) (0.36,2.25) (1.38, 8.91) (1.51, 1.66) (0.52, 0.55)
80
031 0.77 2.65 10.47 3.22 1.08
1.44 (0.26,0.26) (0.22,1.32) (0.74, 457) (2.81, 18.13) (3.06, 3.38) (1.05, 1.11)
85
0.63 157 5.39 21.30 6.55 2.2
2.92 (0.19,1.07) (0.45, 2.68) (1.50, 9.29) (5.72, 36.88) (6.23, 6.87) (2.13,2.27)
20
1.28 3.19 10.97 43.32 13.33 4.48
5.95 (0.38,2.18) (0.91, 5.46) (3.05, 18.89) (11.63, 75.00) (12.68, 13.98) (4.34, 4.61)
95
2.61 6.48 22.31 88.11 27.11 9.1
12.1 (0.78,4.44) (1.85, 11.10) (6.20, 38.43) (23.66, 100.00) (25.79, 28.43) (8.83,9.38)

* US community-sampled population incidence proportion (% year) reported by reference 17.

# APOE ¢4+ refers to individuals with at least one copy of the €4 alele of APOE; APOE &4- refers to individuals with no copies of the

¢4 dlele of APOE
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FIGURE LEGENDS
Figure 1. Kaplan-Meier estimates and Cox proportional model fits from the case-control
ADGC phase 1 dataset, excluding NACC and ADNI samples. The proportional hazard
assumptions were checked based on the graphical comparisons between Kaplan-Meier
estimation and Cox proportional hazard models. 95% confidence intervals of Kaplan-
Meier estimation are al'so demonstrated. The baseline hazard (gray line) in thismodel is

based on the mean of ADGC data.

Figure 2. Kaplan-Meier estimates and Cox proportional model fits among APOE [ 3/[J

3individualsin ADGC phase 1 dataset, excluding NACC and ADNI samples.

Figure 3. (a) Risk gtratification in ADGC phase 2 cohort, using PHS derived from
ADGC phase 1 dataset. (b) Predicted age of AD onset as a function of empirical age of
AD onset among cases in ADGC phase 2 cohort. Prediction is based on the final survival

mode trained in the ADGC phase 1 dataset.

Figure 4. Annualized incidence rates showing the instantaneous hazard as a function of

PHS percentiles and age. The gray line represents the population baseline estimate.

Figure 5. Empirical progression rates observed in the NIA ADC longitudinal cohort asa

function of predicted incidence. CA = Cochrane-Armitage test
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