

1 Personalized genetic assessment of age-associated Alzheimer's disease risk

2
3 Rahul S. Desikan, MD, PhD^{1*#}; Chun Chieh Fan, MD^{2*}; Yunpeng Wang, PhD^{3,4}; Andrew
4 J. Schork, MS²; Howard J. Cabral, PhD⁵; L. Adrienne Cupples, PhD⁵; Wesley K.
5 Thompson, PhD⁶; Lilah Besser, MSPH⁷; Walter A. Kukull, PhD⁷; Dominic Holland,
6 PhD³; Chi-Hua Chen, PhD⁸; James B. Brewer, MD, PhD^{3,8,19}; David S. Karow, MD,
7 PhD⁸; Karolina Kauppi, PhD⁸; Aree Witoelar, PhD⁴; Celeste M. Karch, PhD⁹; Luke W.
8 Bonham, BS¹⁰; Jennifer S. Yokoyama, PhD¹⁰; Howard J. Rosen, MD¹⁰; Bruce L. Miller,
9 MD¹⁰; William P. Dillon, MD¹; David M. Wilson, MD, PhD¹; Christopher P. Hess, MD,
10 PhD¹; Margaret Pericak-Vance, PhD¹¹; Jonathan L. Haines, PhD¹²; Lindsay A. Farrer,
11 PhD¹³; Richard Mayeux, MD¹⁴; John Hardy, PhD¹⁵; Alison M. Goate, PhD¹⁶; Bradley T.
12 Hyman, MD, PhD¹⁷; Gerard D. Schellenberg, PhD¹⁸; Linda K. McEvoy, PhD⁸; Ole A.
13 Andreassen, MD, PhD^{4#}; Anders M. Dale, PhD^{2,3,8#} for the ADNI and ADGC
14 investigators
15

16 *Contributed equally

17 ¹Neuroradiology Section, Department of Radiology and Biomedical Imaging, University
18 of California, San Francisco, San Francisco, CA USA

19 Departments of ²Cognitive Sciences and ³Neurosciences, University of California, San
20 Diego, La Jolla, CA, USA

21 ⁴NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental
22 Health and Addiction, Oslo University Hospital, Oslo, Norway

23 ⁵Department of Biostatistics, Boston University School of Public Health, Boston, MA,
24 USA

25 ⁶Institute for Biological Psychiatry, Sankt Hans Psychiatric Hospital, Roskilde, Denmark

26 ⁷National Alzheimer's Coordinating Center, Department of Epidemiology, University of
27 Washington, Seattle, WA, USA

28 ⁸Department of Radiology, University of California, San Diego, La Jolla, CA, USA

29 ⁹Department of Psychiatry, Washington University, St. Louis, MO, USA

30 ¹⁰Department of Neurology, University of California, San Francisco, San Francisco, CA,
31 USA

32 ¹¹The John P. Hussman Institute for Human Genomics, University of Miami, Miami,
33 Florida, USA

34 ¹²Department of Epidemiology and Biostatistics and Institute for Computational
35 Biology, Case Western University, Cleveland, Ohio, USA

36 ¹³Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology,
37 Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public
38 Health, Boston, Massachusetts, USA

39 ¹⁴Department of Neurology, Taub Institute on Alzheimer's Disease and the Aging Brain,
40 and Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA

41 ¹⁵Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK

42 ¹⁶Departments of Neuroscience, Genetics and Genomic Sciences, Icahn School of
43 Medicine at Mount Sinai, New York, NY, USA

44 ¹⁷Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
45 ¹⁸Department of Pathology and Laboratory Medicine, University of Pennsylvania
46 Perelman School of Medicine, Philadelphia, PA, USA
47 ¹⁹Shiley-Marcos Alzheimer's Disease Research Center, University of California, San
48 Diego, La Jolla, CA, USA
49
50

51 #Correspondence should be addressed to:

52
53 Dr. Rahul S. Desikan
54 Neuroradiology Section, L-352
55 University of California, San Francisco
56 505 Parnassus Avenue
57 San Francisco, CA, USA 94143
58 Email: rahul.desikan@ucsf.edu
59 Phone: (415)-353-1079
60

61 Dr. Ole A. Andreassen
62 KG Jebsen Centre for Psychosis Research
63 Building 49, Oslo University Hospital, Ullevål
64 Kirkeveien 166, PO Box 4956 Nydalen
65 0424 Oslo, Norway
66 Email: o.a.andreassen@medisin.uio.no
67 Ph: +47 23 02 73 50 (22 11 78 43 dir)
68 Fax: +47 23 02 73 33
69

70
71 Dr. Anders M. Dale
72 Department of Radiology
73 University of California, San Diego
74 8950 Villa La Jolla Drive, Suite C101
75 La Jolla, CA, USA 92037-0841
76 Emails: amdale@ucsd.edu
77 Phone: (858)-822-6671
78 Fax: (858)-534-1078
79

80
81 *Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging
82 Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to
83 the design and implementation of ADNI and/or provided data but did not participate in analysis or writing
84 of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
85
86

87
88 Manuscript = 3,095 words
89
90

91 ABSTRACT

92 **Importance:** Identifying individuals at risk for developing Alzheimer's disease (AD) is
93 of utmost importance. Although genetic studies have identified *APOE* and other AD
94 associated single nucleotide polymorphisms (SNPs), genetic information has not been
95 integrated into an epidemiological framework for personalized risk prediction.

96 **Objective:** To develop, replicate and validate a novel polygenic hazard score for
97 predicting age-specific risk for AD.

98 **Setting:** Multi-center, multi-cohort genetic and clinical data.

99 **Participants:** We assessed genetic data from 17,008 AD patients and 37,154 controls
100 from the International Genetics of Alzheimer's Project (IGAP), and 6,409 AD patients
101 and 9,386 older controls from Phase 1 Alzheimer's Disease Genetics Consortium
102 (ADGC). As independent replication and validation cohorts, we also evaluated genetic,
103 neuroimaging, neuropathologic, CSF and clinical data from ADGC Phase 2, National
104 Institute of Aging Alzheimer's Disease Center (NIA ADC) and Alzheimer's Disease
105 Neuroimaging Initiative (ADNI) (total n = 20,680)

106 **Main Outcome(s) and Measure(s):** Use the IGAP cohort to first identify AD associated
107 SNPs (at $p < 10^{-5}$). Next, integrate these AD associated SNPs into a Cox proportional
108 hazards model using ADGC phase 1 genetic data, providing a polygenic hazard score
109 (PHS) for each participant. Combine population based incidence rates, and genotype-
110 derived PHS for each individual to derive estimates of instantaneous risk for developing
111 AD, based on genotype and age. Finally, assess replication and validation of PHS in
112 independent cohorts.

113 **Results:** Individuals in the highest PHS quantiles developed AD at a considerably lower
114 age and had the highest yearly AD incidence rate. Among *APOE* ε3/3 individuals, PHS

115 modified expected age of AD onset by more than 10 years between the lowest and
116 highest deciles. In independent cohorts, PHS strongly predicted empirical age of AD
117 onset ($p = 1.1 \times 10^{-26}$), longitudinal progression from normal aging to AD ($p = 1.54 \times 10^{-10}$)
118 and associated with markers of AD neurodegeneration.

119 **Conclusions:** We developed, replicated and validated a clinically usable PHS for
120 quantifying individual differences in age-specific risk of AD. Beyond *APOE*, polygenic
121 architecture plays an important role in modifying AD risk. Precise quantification of AD
122 genetic risk will be useful for early diagnosis and therapeutic strategies.

123

124

INTRODUCTION

125

126 Late onset Alzheimer's disease (AD), the most common form of dementia, places a large
127 emotional and economic burden on patients and society. With increasing health care
128 expenditures among cognitively impaired elderly¹, identifying individuals at risk for
129 developing AD is of utmost importance for potential preventative and therapeutic
130 strategies. Inheritance of the ε4 allele of apolipoprotein E (*APOE*) on chromosome 19q13
131 is the most significant risk factor for developing late-onset AD.² *APOE* ε4 has a dose
132 dependent effect on age of onset, increases AD risk three-fold in heterozygotes and
133 fifteen-fold in homozygotes, and is implicated in 20-25% of patients with AD.³

134

In addition to *APOE*, recent genome-wide association studies (GWAS) have
135 identified numerous AD associated single nucleotide polymorphisms (SNPs), most of
136 which have a small effect on disease risk.⁴⁻⁵ Although no single polymorphism may be
137 informative clinically, a combination of *APOE* and non-*APOE* SNPs may help identify
138 older individuals at increased risk for AD. Despite the detection of novel AD associated
139 genes, GWAS findings have not yet been incorporated into a genetic epidemiology
140 framework for individualized risk prediction.

141

Building on a prior approach evaluating GWAS-detected genetic variants for
142 disease prediction⁷ and using a survival analysis framework, we tested the feasibility of
143 combining AD associated SNPs and *APOE* status into a continuous measure 'polygenic
144 hazard score' (PHS) for predicting the age-specific risk for developing AD. We assessed
145 replication and validation of the PHS using several independent cohorts.

146

METHODS

148 *Participant Samples*

149 IGAP: To select AD associated SNPs, we evaluated publicly available AD GWAS
150 summary statistic data (p-values and odds ratios) from the International Genomics of
151 Alzheimer's Disease Project (IGAP Stage 1, for additional details see Supplemental
152 Information and reference 4). We used IGAP Stage 1 data, consisting of 17,008 AD cases
153 and 37,154 controls, for selecting AD associated SNPs (for a description of the AD cases
154 and controls within the IGAP Stage 1 sub-studies, please see Table 1 and reference 4).

155 ADGC: To develop the survival model for the polygenic hazard scores (PHS), we first
156 evaluated age of onset and raw genotype data from 6,409 patients with clinically
157 diagnosed AD and 9,386 cognitively normal older individuals provided by the
158 Alzheimer's Disease Genetics Consortium (ADGC, Phase 1, a subset of the IGAP
159 dataset), excluding individuals from the National Institute of Aging Alzheimer's Disease
160 Center (NIA ADC) samples and Alzheimer's Disease Neuroimaging Initiative (ADNI).

161 To evaluate replication of PHS, we used an independent sample of 6,984 AD patients and
162 10,972 cognitively normal older individuals from the ADGC Phase 2 cohort (Table 1). A
163 detailed description of the genotype and phenotype data within the ADGC datasets has
164 been described in detail elsewhere.^{7,24} Briefly, the ADGC Phase 1 and 2 datasets consist
165 of multi-center, case-control, prospective, and family-based sub-studies of Caucasian
166 participants with AD occurrence after age 60. Participants with autosomal dominant
167 (*APP*, *PSEN1* and *PSEN2*) mutations were excluded. All participants were genotyped
168 using commercially available high-density SNP microarrays from Illumina or
169 Affymetrix. Clinical diagnosis of AD within the ADGC sub-studies was established using
170 NINCDS/ADRDA criteria for definite, probable or possible AD.⁸ For most participants,

171 age of AD onset was obtained from medical records and defined as the age when AD
172 symptoms manifested, as reported by the participant or an informant. For participants
173 lacking age of onset, age at ascertainment was used. Patients with an age-at-onset or age-
174 at-death less than 60 years, and Caucasians of European ancestry were excluded from the
175 analyses. For additional details regarding the ADGC datasets, please see references 7 and
176 24.

177 NIA ADC: To assess longitudinal prediction, we evaluated an ADGC-independent
178 sample of 2,724 cognitively normal elderly individuals with at least 2 years of
179 longitudinal clinical follow-up derived from the NIA funded ADCs (data collection
180 coordinated by the National Alzheimer's Coordinating Center).⁹ To assess the
181 relationship between polygenic risk and neuropathology, we assessed 2,960 participants
182 from the NIA ADC samples with genotype and neuropathological evaluations. For the
183 neuropathological variables, we examined the Braak stage for neurofibrillary tangles
184 (NFTs) (0: none; I-II: entorhinal; III-IV: limbic, and V-VI: isocortical)¹⁰ and the
185 Consortium to Establish a Registry for Alzheimer's Disease (CERAD) score for neuritic
186 plaques (none/sparse, moderate, or frequent).¹¹

187 ADNI: To assess the relationship between polygenic risk and *in vivo* biomarkers, we
188 evaluated an ADGC-independent sample of 692 older controls, mild cognitive
189 impairment and AD participants from the ADNI (see Supplemental Methods). On a
190 subset of ADNI1 participants with available genotype data, we evaluated baseline CSF
191 levels of A β ₁₋₄₂ and total tau, as well as longitudinal clinical dementia rating-sum of box
192 (CDR-SB) scores. In ADNI1 participants with available genotype and quality-assured
193 baseline and follow-up MRI scans, we also assessed longitudinal sub-regional change in

194 medial temporal lobe volume (atrophy) on 2471 serial T₁-weighted MRI scans (for
195 additional details see Supplemental Methods).

196

197 *Statistical Analysis*

198 We followed three steps to derive the polygenic hazard scores (PHS) for predicting AD
199 age of onset: 1) we defined the set of associated SNPs, 2) we estimated hazard ratios for
200 polygenic profiles, and 3) we calculated individualized absolute hazards (see
201 Supplemental Information for detailed description of these steps).

202 Using the IGAP Stage 1 summary statistics, we first identified a list of SNPs
203 associated with increased risk for AD using significance threshold of $p < 10^{-5}$. Next, we
204 evaluated all IGAP-detected, AD-associated SNPs within the ADGC Phase 1 case-
205 control dataset. Using a stepwise procedure in survival analysis, we delineated the final
206 list of SNPs for constructing the polygenic hazard score.¹²⁻¹³ In the Cox proportional
207 hazard models, we identified the top AD-associated SNPs within the ADGC Phase 1
208 cohort (excluding NIA ADC and ADNI samples), while controlling for the effects of
209 gender, *APOE* variants, and top five genetic principal components (to control for the
210 effects of population stratification). We utilized age of AD onset and age of last clinical
211 visit to estimate ‘age appropriate’ hazards¹⁴ and derived a PHS for each participant. In
212 each step of the stepwise procedure, the algorithm selected one SNP from the pool that
213 most improved model prediction (i.e. minimizing the Martingale residuals); additional
214 SNP inclusion that did not further minimize the residuals resulted in halting of the
215 selection process. To prevent over-fitting in the training step, we used 1000x
216 bootstrapping for model averaging and estimating the hazard ratios for each selected

217 SNPs. We assessed the proportional hazard assumption in the final model using graphical
218 comparisons.

219 To assess replication, we first examined whether the ADGC Phase 1 derived
220 predicted PHSs could stratify individuals into different risk strata within the ADGC
221 Phase 2 cohort. We next evaluated the relationship between predicted age of AD onset
222 and the empirical/actual age of AD onset using cases from ADGC Phase 2. We binned
223 risk strata into percentile bins and calculated the mean of actual age in that percentile as
224 the empirical age of AD onset.

225 Because case-control samples cannot provide the proper baseline hazard,¹⁶ we
226 used the previously reported annualized incidence rates by age, estimated from the
227 general United States of America (US) population.¹⁷ For each participant, by combining
228 the overall population-derived incidence rates¹⁷ and genotype-derived PHS, we
229 calculated an individual's instantaneous risk for developing AD, based on their genotype
230 and age (for additional details see Supplemental Information). To independently validate
231 the predicted instantaneous risk, we evaluated longitudinal follow-up data from 2,724
232 cognitively normal older individuals from the NIA ADC with at least 2 years of clinical
233 follow-up. We assessed the number of cognitively normal individuals progressing to AD
234 as a function of the predicted PHS risk strata and examined whether the predicted PHS-
235 derived incidence rate reflects the empirical/actual progression rate using a Cochran-
236 Armitage trend test.

237 To assess validity, we examined the association between our PHS and established
238 *in vivo* and pathologic markers of AD neurodegeneration. Using linear models, we
239 assessed whether the PHS correlated with Braak stage for NFTs and CERAD score for

240 neuritic plaques as well as CSF A β ₁₋₄₂, and CSF total tau. Using linear mixed effects
241 models, we also investigated whether the PHS was associated with longitudinal CDR-SB
242 score and volume loss within the entorhinal cortex and hippocampus. In all analyses, we
243 co-varied for the effects of age and sex.

244

245 RESULTS

246 *PHS: model development, relationship to APOE and independent replication*

247 From the IGAP cohort, we found 1854 SNPs associated with increased risk for
248 AD at a $p < 10^{-5}$. Of these, using the Cox stepwise regression framework, we identified
249 31 SNPs, in addition to two *APOE* variants, within the ADGC cohort for inclusion into
250 the polygenic model (Table 2). Figure 1 illustrates the relative risk for developing AD
251 using the ADGC case/control Phase 1 cohort. The graphical comparisons among Kaplan-
252 Meier estimations and Cox proportional hazard models indicate the proportional hazard
253 assumption holds for the final model (Figure 1).

254 To quantify the additional prediction provided by polygenic information beyond
255 *APOE*, we evaluated how PHS modulates age of AD onset in *APOE* ε3/3 individuals.
256 Among these individuals, we found that age of AD onset can vary by more than 10 years,
257 depending on polygenic risk. For example, for an *APOE* ε3/3 individual in the 10th decile
258 (top 10%) of PHS, at a survival proportion of 50%, the expected age for developing AD
259 is approximately 84 years (Figure 2); however, for an *APOE* ε3/3 individual in the 1st
260 decile (bottom 10%) of PHS, the expected age of developing AD is approximately 95
261 years (Figure 2). Similarly, we also evaluated the relationship between PHS and the

262 different *APOE* alleles (ϵ 2/3/4) (Supplemental Figure 1). These findings show that
263 beyond *APOE*, the polygenic architecture plays an integral role in affecting AD risk.

264 To assess independent replication, we applied the ADGC Phase 1-trained model
265 on independent replication samples from ADGC Phase 2. Using the empirical
266 distributions, we found that the PHS successfully stratified individuals from independent
267 cohorts into different risk strata (Figure 3a). Among AD cases in the ADGC Phase 2
268 cohort, we found that the predicted age of onset was strongly associated with the
269 empirical (actual) age of onset (binned in percentiles, $r = 0.90$, $p = 1.1 \times 10^{-26}$, Figure 3b).

270

271 *Predicting population risk of AD onset*

272 To evaluate risk for developing AD, combining the estimated hazard ratios from the
273 ADGC cohort, allele frequencies for each of the AD-associated SNPs from the 1000
274 Genomes Project and the disease incidence in the general US population,¹⁷ we generated
275 the population baseline-corrected survival curves given an individual's genetic profile
276 and age (Supplemental Figures 2A and 2B). We found that the risk for developing AD as
277 well as the distribution of age of onset is modified by PHS status (Supplemental Figures
278 2A,B).

279 Given an individual's genetic profile and age, the corrected survival proportion
280 can be translated directly into incidence rates (Figure 4, Table 3 and Supplemental Table
281 1). As previously reported in a meta-analysis summarizing four studies from the US
282 general population,¹⁷ the annualized incidence rate represents the proportion (in percent)
283 of individuals in a given risk stratum and age, who have not yet developed AD but will
284 develop AD in the following year; thus the annualized incidence rate represents the

285 instantaneous risk for developing AD conditional on having survived up to that point in
286 time. For example, for a cognitively normal 65 year-old individual in the 80th percentile
287 PHS, the incidence rate would be: 0.29 at age 65, 1.22 at age 75, 5.03 at age 85, and
288 20.82 at age 95 (Figure 4 and Table 3); in contrast, for a cognitively normal 65 year old
289 in the 20th percentile PHS, the incidence rate (per 100 person-years) would be 0.10 at age
290 65, 0.43 at age 75, 1.80 at age 85, and 7.43 at age 95 (Figure 4 and Table 3). As
291 independent validation, we examined whether the PHS predicted incidence rate reflects
292 the empirical progression rate (from normal control to clinical AD) (Figure 5). We found
293 that the PHS predicted incidence was strongly associated with empirical progression rates
294 (Cochrane Armitage trend test, $p = 1.54 \times 10^{-10}$).

295

296 *Association with known markers of AD pathology*

297 We found that the PHS was significantly associated with Braak stage of NFTs (β -
298 coefficient = 0.115, standard error (SE) = 0.024, p-value = 3.9×10^{-6}) and CERAD score
299 for neuritic plaques (β -coefficient = 0.105, SE = 0.023, p-value = 6.8×10^{-6}). We
300 additionally found that the PHS was associated with worsening CDR-Sum of Box score
301 over time (β -coefficient = 2.49, SE = 0.38, p-value = 1.1×10^{-10}), decreased CSF A β_{1-42}
302 (reflecting increased intracranial A β plaque load) (β -coefficient = -0.07, SE = 0.01, p-
303 value = 1.28×10^{-7}), increased CSF total tau (β -coefficient = 0.03, SE = 0.01, p-value =
304 0.05), and increased volume loss within the entorhinal cortex (β -coefficient = -0.022, SE
305 = 0.005, p-value = 6.30×10^{-6}) and hippocampus (β -coefficient = -0.021, SE = 0.0054, p-
306 value = 7.86×10^{-5}).

307

308

DISCUSSION

309 In this study, by integrating AD-associated SNPs from recent GWAS and disease
310 incidence estimates from the US population into a genetic epidemiology framework, we
311 have developed a clinically usable, polygenic hazard score for quantifying individual
312 differences in risk for developing AD, as a function of genotype and age. The PHS
313 systematically modified age of AD onset, and was associated with known *in vivo* and
314 pathologic markers of AD neurodegeneration. In independent cohorts, the PHS
315 successfully predicted empirical (actual) age of onset and longitudinal progression from
316 normal aging to AD. Even among individuals who do not carry the ε4 allele of *APOE*
317 (the majority of the US population), we found that polygenic information is useful for
318 predicting age of AD onset.

319 Using a case/control design, prior work has combined GWAS-associated
320 polymorphisms and disease prediction models to predict risk for AD.¹⁸⁻¹⁹ Rather than
321 representing a continuous process where non-demented individuals progress to AD over
322 time, the case/control approach implicitly assumes that normal controls do not develop
323 dementia and treats the disease process as a dichotomous variable where the goal is
324 maximal discrimination between diseased ‘cases’ and healthy ‘controls’. Given the
325 striking age-dependence of AD, this approach is clinically suboptimal for predicting risk
326 of AD. Building on prior genetic estimates from the general population,^{2,20} we
327 employed a survival analysis framework to integrate AD-associated common variants
328 with established population-based incidence¹⁷ to derive a continuous measure, polygenic
329 hazard score (PHS). From a personalized medicine perspective, for a single non-

330 demented individual, the PHS can estimate individual differences in AD risk across a
331 lifetime and can quantify the yearly incidence rate for developing AD.

332 These findings indicate that the lifetime risk of age of AD onset varies by
333 polygenic profile. For example, the annualized incidence rates (risk for developing AD in
334 a given year) are considerably lower for an 80-year old individual in the 20th percentile
335 PHS relative to an 80-year old in the 99th percentile PHS (Figure 4 and Table 3). Across
336 the lifespan (Supplemental Figure 2B), our results indicate that even individuals with low
337 genetic risk (low PHS) develop AD, but at a later peak age of onset. This suggests that all
338 individuals, irrespective of genotype, would eventually succumb to dementia if they did
339 not die from other causes. Certain loci (including *APOE* ε2) may ‘protect’ against AD by
340 delaying, rather than preventing, disease onset.

341 Our polygenic results provide important predictive information beyond *APOE*.
342 Among *APOE* ε3/3 individuals, who constitute 70-75% of all individuals diagnosed with
343 late-onset AD, age of onset varies by more than 10 years, depending on polygenic risk
344 profile (Figure 2). At 60% AD risk *APOE* ε3/3 individuals in the 1st decile of PHS have
345 an expected age of onset of 85 whereas for individuals in the 10th decile of PHS, the
346 expected age of onset is greater than 95. These findings are directly relevant to the
347 general population where *APOE* ε4 only accounts for a fraction of AD risk ³ and are
348 consistent with prior work ²¹ indicating that AD is a polygenic disease where non-*APOE*
349 genetic variants contribute significantly to disease etiology.

350 Using the ADGC phase 2 dataset, we found that the PHS strongly predicted actual
351 age of AD onset in an independent sample indicating the feasibility of using PHS for
352 diagnosing clinical AD. Within the NIA ADC sample, the PHS robustly predicted

353 longitudinal progression from normal aging to AD illustrating the clinical value of using
354 polygenic information to identify cognitively normal older individuals at highest risk for
355 developing AD (preclinical AD). We found a strong relationship between PHS and
356 increased tau associated NFTs and amyloid plaques suggesting that our genetic marker of
357 disease risk reflects underlying Alzheimer's pathology. The PHS also demonstrated
358 robust associations with CSF A β ₁₋₄₂ levels, longitudinal MRI measures of medial
359 temporal lobe volume loss and baseline CDR-SB score illustrating that increased genetic
360 risk predicts clinical status and neurodegeneration *in vivo*.

361 From a clinical perspective, our genetic risk score, based on standard SNP chip
362 arrays, can be used clinically for disease diagnosis, accurate identification of older
363 individuals at greatest risk for developing AD and potentially, for informing management
364 decisions. By providing an accurate, probabilistic assessment as to whether Alzheimer's
365 neurodegeneration is likely to occur, determining a 'genomic profile' of AD may help
366 initiate a dialogue on future planning. Importantly, a continuous, polygenic measure of
367 AD genetic risk may provide an enrichment strategy for prevention and therapeutic trials
368 and could also be useful for predicting which individuals may respond to therapy.
369 Finally, a similar genetic epidemiology framework may be useful for quantifying the risk
370 associated with numerous other common diseases.

371 There are several limitations to our study. We primarily focused on Caucasian
372 individuals of European descent. Given that AD incidence ²⁰ and genetic risk ^{22,23} in
373 African-Americans and Latinos is different than in Caucasians, additional work will be
374 needed to develop a polygenic risk model in non-Caucasian populations. The previously
375 reported population annualized incidence rates were not separately provided for males

376 and females.¹⁷ Therefore, we could not report PHS annualized incidence rates stratified
377 by sex. Finally, we focused on *APOE* and GWAS-detected polymorphisms for disease
378 prediction. Given the flexibility of our genetic epidemiology framework, it can be used to
379 investigate whether a combination of common and rare genetic variants along with
380 clinical, cognitive and imaging biomarkers may prove useful for refining the prediction
381 of AD age of onset.

382 In conclusion, we have developed, replicated and validated a clinically useful new
383 polygenic hazard score for quantifying the age-associated risk for developing AD. By
384 integrating population based incidence proportion and genome-wide data into a genetic
385 epidemiology framework, we were able to derive hazard estimates whereby an individual
386 could calculate his/her ‘personalized’ age-specific AD risk, given genetic information.
387 Measures of polygenic risk may prove useful for early detection, determining prognosis,
388 and as an enrichment strategy in clinical trials.

389

390

ACKNOWLEDGEMENTS

391 Drs. Rahul Desikan and Anders Dale had full access to all of the data in the study and
392 take responsibility for the integrity of the data and the accuracy of the data analysis. Drs.
393 Rahul Desikan (UCSF), Chun Chieh Fan (UCSD), Yunpeng Wang (UCSD and
394 University of Oslo) and Anders Dale (UCSD) conducted and are responsible for the data
395 analysis in this manuscript. The sources of financial and material support had no role in
396 the design and conduct of the study; collection, management, analysis, and interpretation
397 of the data; and preparation, review, or approval of the manuscript. We thank the Shiley-
398 Marcos Alzheimer's Disease Research Center at UCSD and the Memory and Aging
399 Center at UCSF for continued support and the International Genomics of Alzheimer's
400 Project (IGAP) for providing summary results data for these analyses. This work was
401 supported by grants from the National Institutes of Health (NIH-AG046374,
402 K01AG049152, R01MH100351), the Research Council of Norway (#213837, #225989,
403 #223273, #237250/EU JPND), the South East Norway Health Authority (2013-123),
404 Norwegian Health Association and the KG Jebsen Foundation. Please see Supplemental
405 Acknowledgements for IGAP, NIAGADS, ADGC, ADNI and NACC funding sources.
406
407
408

409
410

REFERENCES

1. Kelley AS, McGarry K, Gorges R, MA, Skinner JS. The Burden of Health Care Costs for Patients With Dementia in the Last 5 Years of Life. *Ann Intern Med.* 2015;163:729-736.
2. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. *JAMA.* 1997 Oct 22-29;278(16):1349-56.
3. Karch CM, Cruchaga C, Goate AM. Alzheimer's disease genetics: from the bench to the clinic. *Neuron* 2014;83:11-26.
4. Lambert JC, Ibrahim-Verbaas CA, Harold D et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. *Nat Genet* 2013;45:1452-8.
5. Desikan RS, Schork AJ, Wang Y, et al. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. *Circulation.* 2015;131:2061-9.
6. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. *Genome Res* 2007;17:1520-8.
7. Naj AC, Jun G, Beecham GW, Wang LS, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. *Nat Genet* 2011;43:436-41.
8. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* 1984;34:939-44.
9. Beekly DL, Ramos EM, Lee WW, et al. The National Alzheimer's Coordinating Center (NACC) database: the Uniform Data Set. *Alzheimer Dis Assoc Disord* 2007;21:249-58.
10. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol* 1991;82:239-59.
11. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. *Neurology* 1991;41:479-86.
12. Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. *Nat Genet* 2012;44:369-U170.
13. Dudbridge F. Power and Predictive Accuracy of Polygenic Risk Scores. *Plos Genet* 2013;9.
14. Klein JP, Houwelingen HC, Ibrahim JG, Scheike TH. *Handbook of Survival Analysis* 2014.
15. Heagerty PJ, Zheng YY. Survival model predictive accuracy and ROC curves. *Biometrics* 2005;61:92-105.

453 16. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed: Lippincott
454 Williams & Wilkins; 2008.

455 17. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer's disease in the
456 United States and the public health impact of delaying disease onset. *Am J Public
457 Health* 1998;88:1337-42.

458 18. Escott-Price V, Sims R, Bannister C, et al. Common polygenic variation enhances
459 risk prediction for Alzheimer's disease. *Brain*. 2015 Oct 21.

460 19. Yokoyama JS, Bonham LW, Sears RL, et al. Decision tree analysis of genetic risk
461 for clinically heterogeneous Alzheimer's disease. *BMC Neurol* 2015;15:47.

462 20. Tang MX, Stern Y, Marder K, et al. The APOE-epsilon4 allele and the risk of
463 Alzheimer disease among African Americans, whites, and Hispanics. *JAMA*
464 1998;279:751-5.

465 21. Sims R, Williams J. Defining the Genetic Architecture of Alzheimer's Disease:
466 Where Next. *Neurodegener Dis*. 2016;16(1-2):6-11.

467 22. Tang MX, Cross P, Andrews H, Jacobs DM, et al. Incidence of AD in African-
468 Americans, Caribbean Hispanics, and Caucasians in northern Manhattan.
469 *Neurology* 2001;56:49-56.

470 23. Reitz C, Jun G, Naj A, et al. Variants in the ATP-binding cassette transporter
471 (ABCA7), apolipoprotein E \square 4, and the risk of late-onset Alzheimer disease in
472 African Americans. *JAMA* 2013;309:1483-92.

473 24. Jun G, Ibrahim-Verbaas CA, Vronskaya M, et al. A novel Alzheimer disease
474 locus located near the gene encoding tau protein. *Mol Psychiatry*. 2016
475 Jan;21:108-17.

476

477 **Table 1.** Demographic data for AD patients and older controls.

478

	IGAP AD patien ts	IGAP older control	ADGC Phase 1 AD patients	ADGC Phase 1 older control	ADGC Phase 2 AD patien ts	ADGC Phase 2 older control
Total N	17,008	37,154	6,409	9,386	6,984	10,972
Mean age (SD) of onset (cases) or assessme nt (controls)	74.7 (8.0)	68.6 (8.5)	74.7 (7.7)	76.4 (8.1)	73.6 (7.3)	75.7 (8.6)
% Female	63	57	61	59	57.6	60.7
% <i>APOE</i> ε4 carriers	59.0	25.4	51.6	26.7	56.0	28.4

479

480

481 **Table 2.** Selected 31 SNPs, their closest genes, hazard ratio estimations, and their
482 conditional p values in the final joint model, after controlling for effects of gender and
483 APOE variants.

484

	Chr	Position	Gene	β	Conditional p in $-\log_{10}$
ε2 allele	19		<i>APOE</i>	-0.47	> 15
ε4 allele	19		<i>APOE</i>	1.03	> 20
rs4266886	1	207685786	<i>CR1</i>	-0.09	2.7
rs61822977	1	207796065	<i>CR1</i>	-0.08	2.8
rs6733839	2	127892810	<i>BIN1</i>	-0.15	10.5
rs10202748	2	234003117	<i>INPP5D</i>	-0.06	2.1
rs115124923	6	32510482	<i>HLA-DRB5</i>	0.17	7.4
rs115675626	6	32669833	<i>HLA-DQBI</i>	-0.11	3.2
rs1109581	6	47678182	<i>GPR115</i>	-0.07	2.6
rs17265593	7	37619922	<i>BC043356</i>	-0.23	3.6
rs2597283	7	37690507	<i>BC043356</i>	0.28	4.7
rs1476679	7	100004446	<i>ZCWPW1</i>	0.11	4.9
rs78571833	7	143122924	<i>AL833583</i>	0.14	3.8
rs12679874	8	27230819	<i>PTK2B</i>	-0.09	4.2
rs2741342	8	27330096	<i>CHRNA2</i>	0.09	2.9
rs7831810	8	27430506	<i>CLU</i>	0.09	3.0
rs1532277	8	27466181	<i>CLU</i>	0.21	8.3
rs9331888	8	27468862	<i>CLU</i>	0.16	5.1
rs7920721	10	11720308	<i>CR595071</i>	-0.07	2.9
rs3740688	11	47380340	<i>SPI1</i>	0.07	2.8
rs7116190	11	59964992	<i>MS4A6A</i>	0.08	3.9
rs526904	11	85811364	<i>PICALM</i>	-0.20	2.3
rs543293	11	85820077	<i>PICALM</i>	0.30	4.2
rs11218343	11	121435587	<i>SORL1</i>	0.18	2.8
rs6572869	14	53353454	<i>FERMT2</i>	-0.11	3.0
rs12590273	14	92934120	<i>SLC24A4</i>	0.10	3.5
rs7145100	14	107160690	<i>abParts</i>	0.08	2.0
rs74615166	15	64725490	<i>TRIP4</i>	-0.23	3.1
rs2526378	17	56404349	<i>BZRAP1</i>	0.09	4.9
rs117481827	19	1021627	<i>C19orf6</i>	-0.09	2.5
rs7408475	19	1050130	<i>ABCA7</i>	0.18	4.3
rs3752246	19	1056492	<i>ABCA7</i>	-0.25	8.4
rs7274581	20	55018260	<i>CASS4</i>	0.10	2.1

485

486

487
488**Table 3. Predicted annualized incidence rate (per 100 person-years) by age using polygenic hazard scores.**

Age	Population Baseline*	PHS 1 percentile (95% CI)	PHS 20 th percentile (95% CI)	PHS 80 th percentile (95% CI)	PHS 99 th percentile (95% CI)	<i>APOE ε4+</i> (95% CI)	<i>APOE ε4-</i> (95% CI)
60	0.08	0.02 (0.01,0.03)	0.04 (0.01,0.08)	0.15 (0.04, 0.27)	0.61 (0.16, 1.06)	0.19 (0.18, 0.20)	0.06 (0.06, 0.7)
65	0.17	0.04 (0.01,0.06)	0.09 (0.03, 0.16)	0.32 (0.09, 0.54)	1.24 (0.33,2.15)	0.38 (0.36, 0.40)	0.13 (0.12, 0.13)
70	0.35	0.07 (0.02,0.13)	0.19 (0.05,0.32)	0.64 (0.18, 1.10)	2.53 (0.68, 4.38)	0.78 (0.74, 0.82)	0.26 (0.25, 0.27)
75	0.71	0.15 (0.05,0.19)	0.38 (0.11,0.65)	1.30 (0.36,2.25)	5.15 (1.38, 8.91)	1.58 (1.51, 1.66)	0.53 (0.52, 0.55)
80	1.44	0.31 (0.26,0.26)	0.77 (0.22,1.32)	2.65 (0.74, 4.57)	10.47 (2.81, 18.13)	3.22 (3.06, 3.38)	1.08 (1.05, 1.11)
85	2.92	0.63 (0.19,1.07)	1.57 (0.45, 2.68)	5.39 (1.50, 9.29)	21.30 (5.72, 36.88)	6.55 (6.23, 6.87)	2.2 (2.13, 2.27)
90	5.95	1.28 (0.38,2.18)	3.19 (0.91, 5.46)	10.97 (3.05, 18.89)	43.32 (11.63, 75.00)	13.33 (12.68, 13.98)	4.48 (4.34, 4.61)
95	12.1	2.61 (0.78,4.44)	6.48 (1.85, 11.10)	22.31 (6.20, 38.43)	88.11 (23.66, 100.00)	27.11 (25.79, 28.43)	9.1 (8.83, 9.38)

489 * US community-sampled population incidence proportion (% year) reported by reference 17.

490 # *APOE ε4+* refers to individuals with at least one copy of the ε4 allele of *APOE*; *APOE ε4-* refers to individuals with no copies of the
491 ε4 allele of *APOE*

492

493

FIGURE LEGENDS

494

495 **Figure 1.** Kaplan-Meier estimates and Cox proportional model fits from the case-control
496 ADGC phase 1 dataset, excluding NACC and ADNI samples. The proportional hazard
497 assumptions were checked based on the graphical comparisons between Kaplan-Meier
498 estimation and Cox proportional hazard models. 95% confidence intervals of Kaplan-
499 Meier estimation are also demonstrated. The baseline hazard (gray line) in this model is
500 based on the mean of ADGC data.

501

502 **Figure 2.** Kaplan-Meier estimates and Cox proportional model fits among *APOE* □ 3/□
503 3 individuals in ADGC phase 1 dataset, excluding NACC and ADNI samples.

504

505 **Figure 3. (a)** Risk stratification in ADGC phase 2 cohort, using PHS derived from
506 ADGC phase 1 dataset. **(b)** Predicted age of AD onset as a function of empirical age of
507 AD onset among cases in ADGC phase 2 cohort. Prediction is based on the final survival
508 model trained in the ADGC phase 1 dataset.

509

510 **Figure 4.** Annualized incidence rates showing the instantaneous hazard as a function of
511 PHS percentiles and age. The gray line represents the population baseline estimate.

512

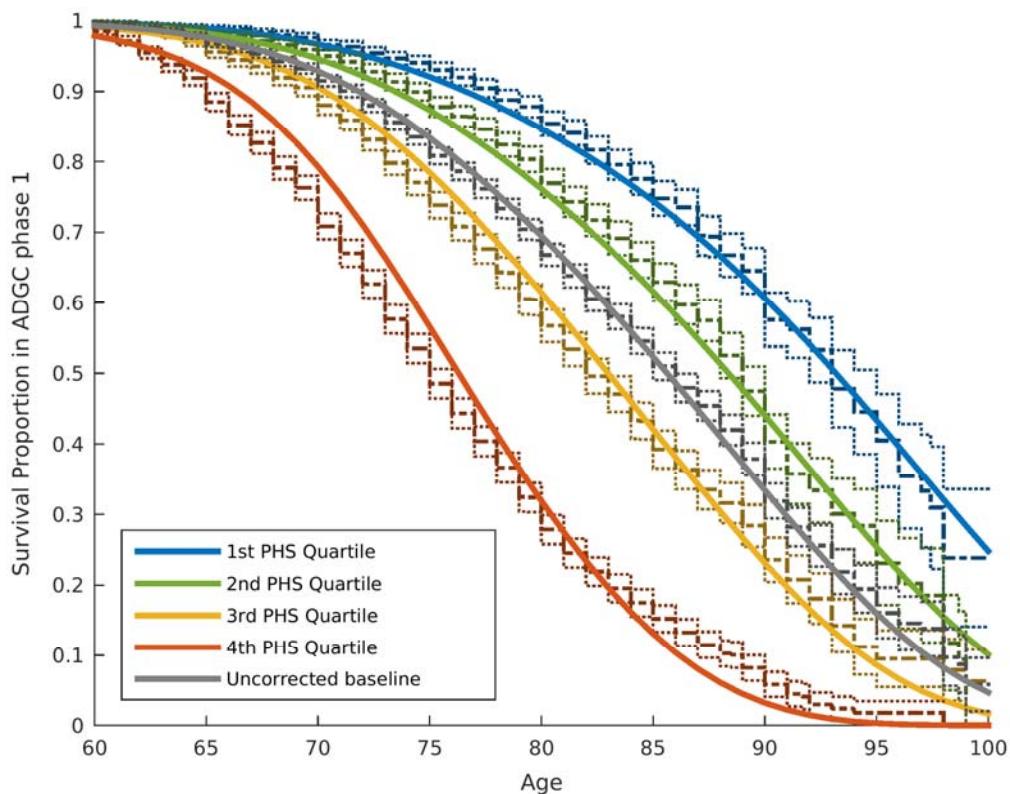
513 **Figure 5.** Empirical progression rates observed in the NIA ADC longitudinal cohort as a
514 function of predicted incidence. CA = Cochrane-Armitage test

515

516

517

518 **Figure 1.**

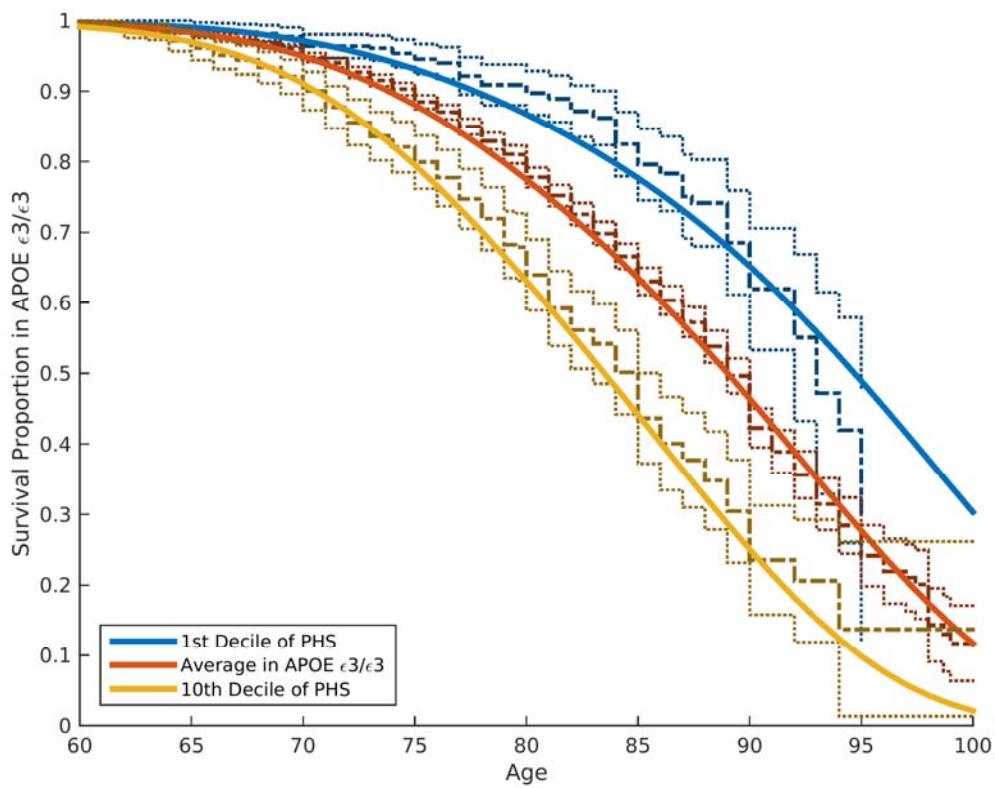


519

520

521

522 **Figure 2.**



523

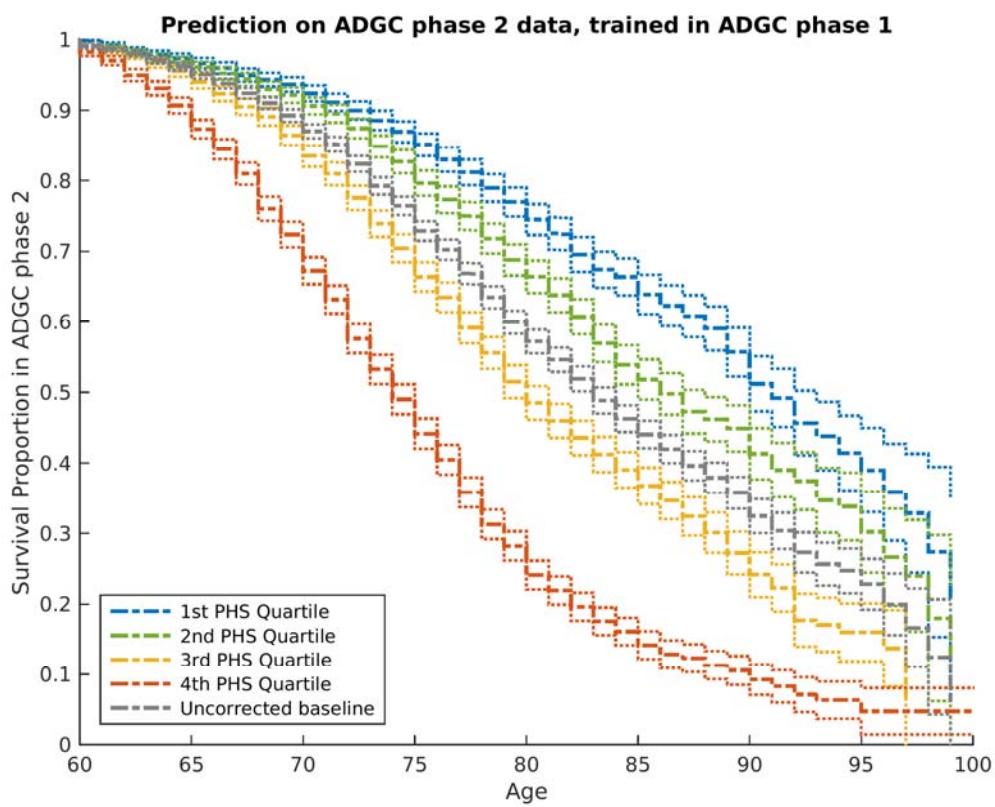
524

525

526

527

528 **Figure 3a**



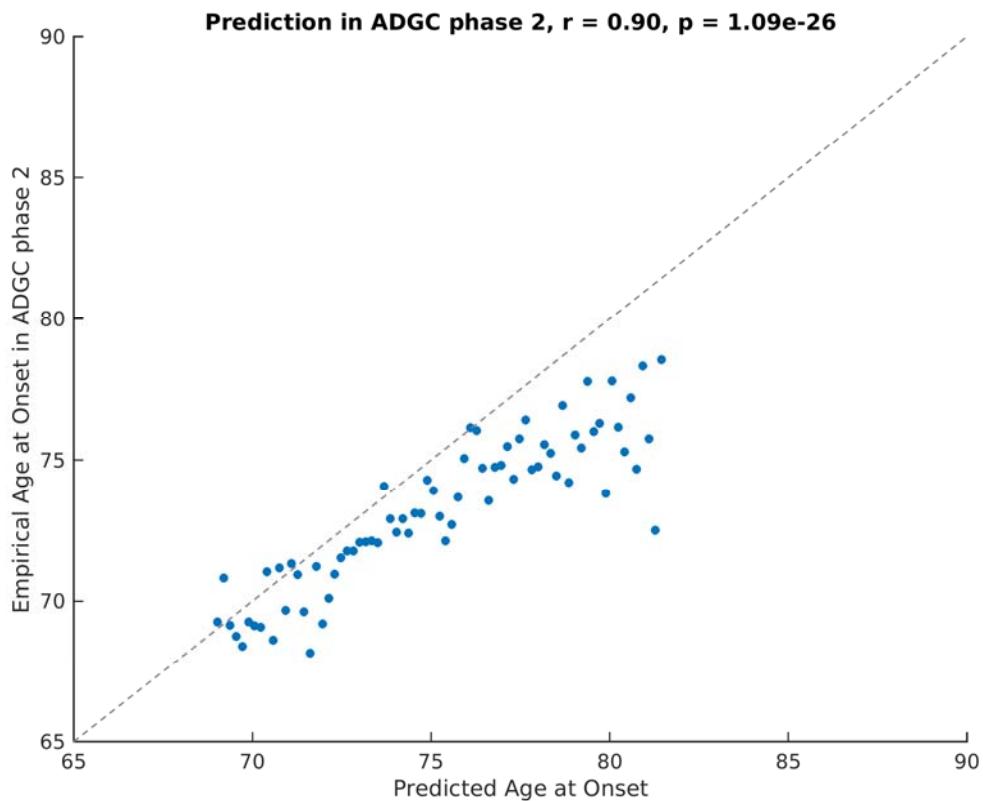
529

530

531

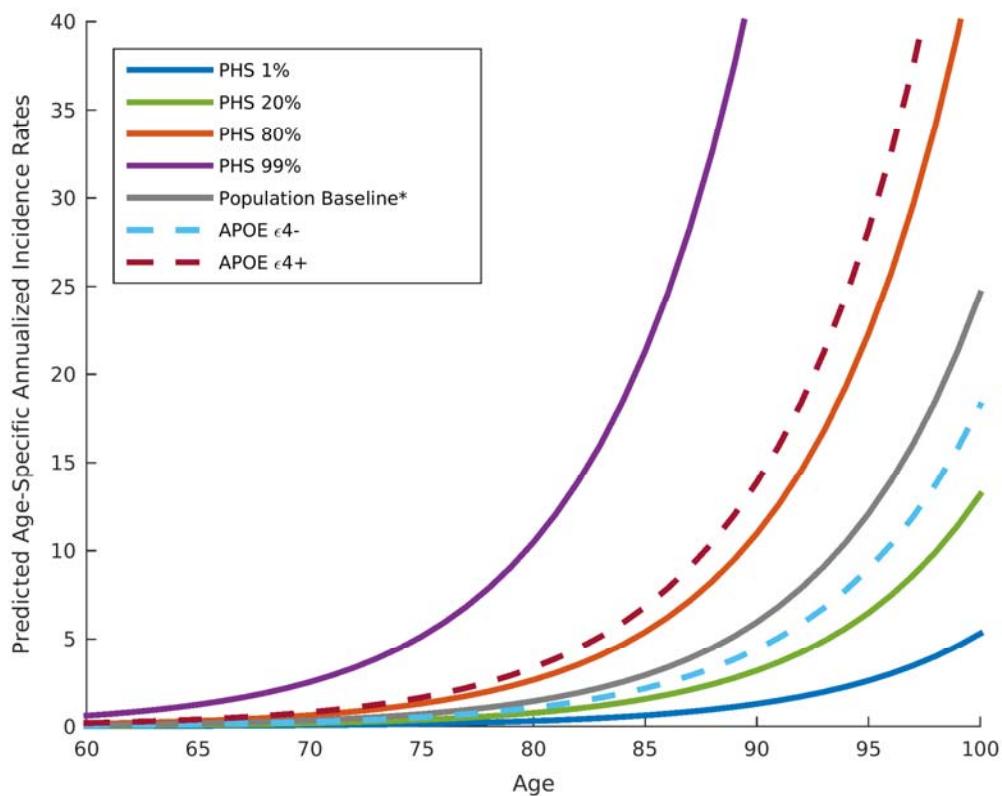
532

533 **Figure 3b.**



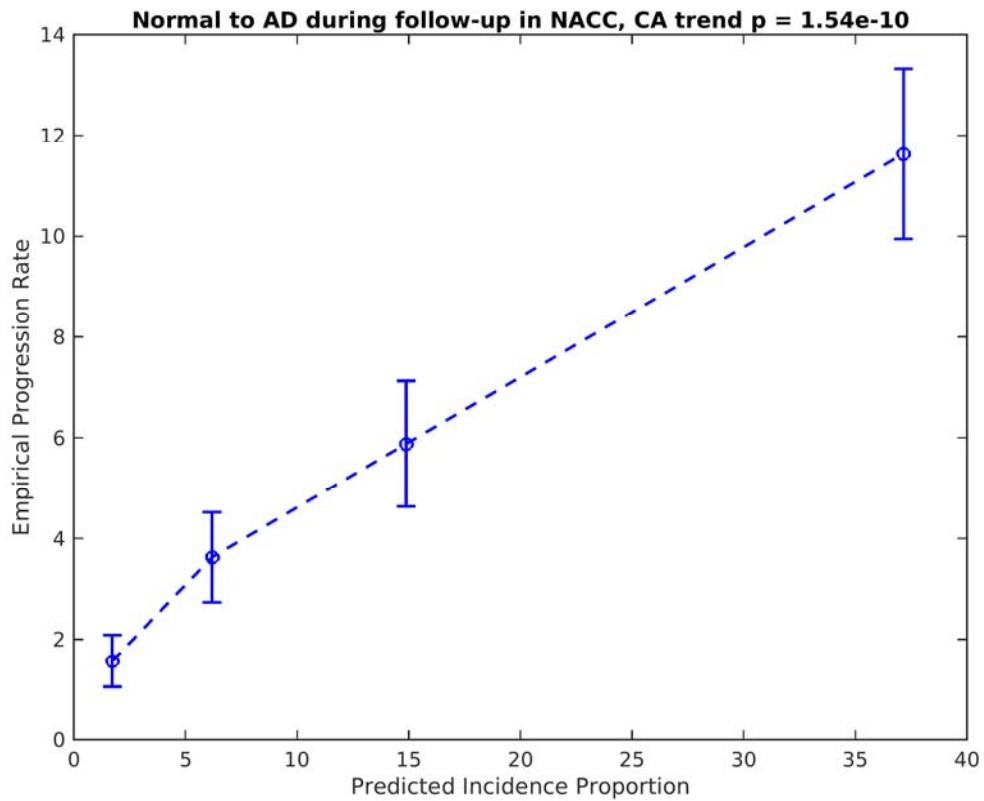
534
535
536
537

538 **Figure 4.**



539
540
541

542 **Figure 5.**



543