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Importance: Identifying individuals at risk for developing Alzheimer’s disease (AD) is 92 

of utmost importance. Although genetic studies have identified APOE and other AD 93 

associated single nucleotide polymorphisms (SNPs), genetic information has not been 94 

integrated into an epidemiological framework for personalized risk prediction.  95 

Objective: To develop, replicate and validate a novel polygenic hazard score for 96 

predicting age-specific risk for AD. 97 

Setting: Multi-center, multi-cohort genetic and clinical data. 98 

Participants: We assessed genetic data from 17,008 AD patients and 37,154 controls 99 

from the International Genetics of Alzheimer’s Project (IGAP), and 6,409 AD patients 100 

and 9,386 older controls from Phase 1 Alzheimer’s Disease Genetics Consortium 101 

(ADGC). As independent replication and validation cohorts, we also evaluated genetic, 102 

neuroimaging, neuropathologic, CSF and clinical data from ADGC Phase 2, National 103 

Institute of Aging Alzheimer’s Disease Center (NIA ADC) and Alzheimer’s Disease 104 

Neuroimaging Initiative (ADNI) (total n = 20,680) 105 

Main Outcome(s) and Measure(s): Use the IGAP cohort to first identify AD associated 106 

SNPs (at p < 10-5). Next, integrate these AD associated SNPs into a Cox proportional 107 

hazards model using ADGC phase 1 genetic data, providing a polygenic hazard score 108 

(PHS) for each participant. Combine population based incidence rates, and genotype-109 

derived PHS for each individual to derive estimates of instantaneous risk for developing 110 

AD, based on genotype and age. Finally, assess replication and validation of PHS in 111 

independent cohorts.  112 

Results: Individuals in the highest PHS quantiles developed AD at a considerably lower 113 

age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, PHS 114 
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modified expected age of AD onset by more than 10 years between the lowest and 115 

highest deciles. In independent cohorts, PHS strongly predicted empirical age of AD 116 

onset (p = 1.1 x 10-26), longitudinal progression from normal aging to AD (p = 1.54 x 10-117 

10) and associated with markers of AD neurodegeneration.  118 

Conclusions: We developed, replicated and validated a clinically usable PHS for 119 

quantifying individual differences in age-specific risk of AD. Beyond APOE, polygenic 120 

architecture plays an important role in modifying AD risk. Precise quantification of AD 121 

genetic risk will be useful for early diagnosis and therapeutic strategies. 122 

123 
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INTRODUCTION 124 
 125 

Late onset Alzheimer’s disease (AD), the most common form of dementia, places a large 126 

emotional and economic burden on patients and society. With increasing health care 127 

expenditures among cognitively impaired elderly1, identifying individuals at risk for 128 

developing AD is of utmost importance for potential preventative and therapeutic 129 

strategies. Inheritance of the ε4 allele of apolipoprotein E (APOE) on chromosome 19q13 130 

is the most significant risk factor for developing late-onset AD.2 APOE ε4 has a dose 131 

dependent effect on age of onset, increases AD risk three-fold in heterozygotes and 132 

fifteen-fold in homozygotes, and is implicated in 20-25% of patients with AD.3 133 

 In addition to APOE, recent genome-wide association studies (GWAS) have 134 

identified numerous AD associated single nucleotide polymorphisms (SNPs), most of 135 

which have a small effect on disease risk.4-5 Although no single polymorphism may be 136 

informative clinically, a combination of APOE and non-APOE SNPs may help identify 137 

older individuals at increased risk for AD. Despite the detection of novel AD associated 138 

genes, GWAS findings have not yet been incorporated into a genetic epidemiology 139 

framework for individualized risk prediction.  140 

Building on a prior approach evaluating GWAS-detected genetic variants for 141 

disease prediction7 and using a survival analysis framework, we tested the feasibility of 142 

combining AD associated SNPs and APOE status into a continuous measure ‘polygenic 143 

hazard score’ (PHS) for predicting the age-specific risk for developing AD. We assessed 144 

replication and validation of the PHS using several independent cohorts. 145 

 146 

METHODS 147 
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Participant Samples 148 

IGAP: To select AD associated SNPs, we evaluated publicly available AD GWAS 149 

summary statistic data (p-values and odds ratios) from the International Genomics of 150 

Alzheimer’s Disease Project (IGAP Stage 1, for additional details see Supplemental 151 

Information and reference 4). We used IGAP Stage 1 data, consisting of 17,008 AD cases 152 

and 37,154 controls, for selecting AD associated SNPs (for a description of the AD cases 153 

and controls within the IGAP Stage 1 sub-studies, please see Table 1 and reference 4).  154 

ADGC: To develop the survival model for the polygenic hazard scores (PHS), we first 155 

evaluated age of onset and raw genotype data from 6,409 patients with clinically 156 

diagnosed AD and 9,386 cognitively normal older individuals provided by the 157 

Alzheimer’s Disease Genetics Consortium (ADGC, Phase 1, a subset of the IGAP 158 

dataset), excluding individuals from the National Institute of Aging Alzheimer’s Disease 159 

Center (NIA ADC) samples and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 160 

To evaluate replication of PHS, we used an independent sample of 6,984 AD patients and 161 

10,972 cognitively normal older individuals from the ADGC Phase 2 cohort (Table 1). A 162 

detailed description of the genotype and phenotype data within the ADGC datasets has 163 

been described in detail elsewhere.7,24 Briefly, the ADGC Phase 1 and 2 datasets consist 164 

of multi-center, case-control, prospective, and family-based sub-studies of Caucasian 165 

participants with AD occurrence after age 60. Participants with autosomal dominant 166 

(APP, PSEN1 and PSEN2) mutations were excluded. All participants were genotyped 167 

using commercially available high-density SNP microarrays from Illumina or 168 

Affymetrix. Clinical diagnosis of AD within the ADGC sub-studies was established using 169 

NINCDS/ADRDA criteria for definite, probable or possible AD. 8 For most participants, 170 
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age of AD onset was obtained from medical records and defined as the age when AD 171 

symptoms manifested, as reported by the participant or an informant. For participants 172 

lacking age of onset, age at ascertainment was used. Patients with an age-at-onset or age-173 

at-death less than 60 years, and Caucasians of European ancestry were excluded from the 174 

analyses. For additional details regarding the ADGC datasets, please see references 7 and 175 

24. 176 

NIA ADC: To assess longitudinal prediction, we evaluated an ADGC-independent 177 

sample of 2,724 cognitively normal elderly individuals with at least 2 years of 178 

longitudinal clinical follow-up derived from the NIA funded ADCs (data collection 179 

coordinated by the National Alzheimer’s Coordinating Center). 9 To assess the 180 

relationship between polygenic risk and neuropathology, we assessed 2,960 participants 181 

from the NIA ADC samples with genotype and neuropathological evaluations. For the 182 

neuropathological variables, we examined the Braak stage for neurofibrillary tangles 183 

(NFTs) (0: none; I-II: entorhinal; III-IV: limbic, and V-VI: isocortical) 10 and the 184 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) score for neuritic 185 

plaques (none/sparse, moderate, or frequent). 11   186 

ADNI: To assess the relationship between polygenic risk and in vivo biomarkers, we 187 

evaluated an ADGC-independent sample of 692 older controls, mild cognitive 188 

impairment and AD participants from the ADNI (see Supplemental Methods). On a 189 

subset of ADNI1 participants with available genotype data, we evaluated baseline CSF 190 

levels of Aβ1-42 and total tau, as well as longitudinal clinical dementia rating-sum of box 191 

(CDR-SB) scores. In ADNI1 participants with available genotype and quality-assured 192 

baseline and follow-up MRI scans, we also assessed longitudinal sub-regional change in 193 
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medial temporal lobe volume (atrophy) on 2471 serial T1-weighted MRI scans (for 194 

additional details see Supplemental Methods).  195 

 196 

Statistical Analysis 197 

We followed three steps to derive the polygenic hazard scores (PHS) for predicting AD 198 

age of onset: 1) we defined the set of associated SNPs, 2) we estimated hazard ratios for 199 

polygenic profiles, and 3) we calculated individualized absolute hazards (see 200 

Supplemental Information for detailed description of these steps).  201 

Using the IGAP Stage 1 summary statistics, we first identified a list of SNPs 202 

associated with increased risk for AD using significance threshold of p < 10-5. Next, we 203 

evaluated all IGAP-detected, AD-associated SNPs within the ADGC Phase 1 case-204 

control dataset. Using a stepwise procedure in survival analysis, we delineated the final 205 

list of SNPs for constructing the polygenic hazard score. 12-13 In the Cox proportional 206 

hazard models, we identified the top AD-associated SNPs within the ADGC Phase 1 207 

cohort (excluding NIA ADC and ADNI samples), while controlling for the effects of 208 

gender, APOE variants, and top five genetic principal components (to control for the 209 

effects of population stratification). We utilized age of AD onset and age of last clinical 210 

visit to estimate ‘age appropriate’ hazards 14 and derived a PHS for each participant. In 211 

each step of the stepwise procedure, the algorithm selected one SNP from the pool that 212 

most improved model prediction (i.e. minimizing the Martingale residuals); additional 213 

SNP inclusion that did not further minimize the residuals resulted in halting of the 214 

selection process. To prevent over-fitting in the training step, we used 1000x 215 

bootstrapping for model averaging and estimating the hazard ratios for each selected 216 
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SNPs. We assessed the proportional hazard assumption in the final model using graphical 217 

comparisons.  218 

To assess replication, we first examined whether the ADGC Phase 1 derived 219 

predicted PHSs could stratify individuals into different risk strata within the ADGC 220 

Phase 2 cohort. We next evaluated the relationship between predicted age of AD onset 221 

and the empirical/actual age of AD onset using cases from ADGC Phase 2. We binned 222 

risk strata into percentile bins and calculated the mean of actual age in that percentile as 223 

the empirical age of AD onset.  224 

 Because case-control samples cannot provide the proper baseline hazard, 16 we 225 

used the previously reported annualized incidence rates by age, estimated from the 226 

general United States of America (US) population. 17 For each participant, by combining 227 

the overall population-derived incidence rates 17 and genotype-derived PHS, we 228 

calculated an individual’s instantaneous risk for developing AD, based on their genotype 229 

and age (for additional details see Supplemental Information). To independently validate 230 

the predicted instantaneous risk, we evaluated longitudinal follow-up data from 2,724 231 

cognitively normal older individuals from the NIA ADC with at least 2 years of clinical 232 

follow-up. We assessed the number of cognitively normal individuals progressing to AD 233 

as a function of the predicted PHS risk strata and examined whether the predicted PHS-234 

derived incidence rate reflects the empirical/actual progression rate using a Cochran-235 

Armitage trend test.  236 

To assess validity, we examined the association between our PHS and established 237 

in vivo and pathologic markers of AD neurodegeneration. Using linear models, we 238 

assessed whether the PHS correlated with Braak stage for NFTs and CERAD score for 239 
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neuritic plaques as well as CSF Aβ1-42, and CSF total tau. Using linear mixed effects 240 

models, we also investigated whether the PHS was associated with longitudinal CDR-SB 241 

score and volume loss within the entorhinal cortex and hippocampus. In all analyses, we 242 

co-varied for the effects of age and sex. 243 

 244 

RESULTS 245 

PHS: model development, relationship to APOE and independent replication 246 

From the IGAP cohort, we found 1854 SNPs associated with increased risk for 247 

AD at a p < 10-5.  Of these, using the Cox stepwise regression framework, we identified 248 

31 SNPs, in addition to two APOE variants, within the ADGC cohort for inclusion into 249 

the polygenic model (Table 2). Figure 1 illustrates the relative risk for developing AD 250 

using the ADGC case/control Phase 1 cohort. The graphical comparisons among Kaplan-251 

Meier estimations and Cox proportional hazard models indicate the proportional hazard 252 

assumption holds for the final model (Figure 1).  253 

To quantify the additional prediction provided by polygenic information beyond 254 

APOE, we evaluated how PHS modulates age of AD onset in APOE ε3/3 individuals. 255 

Among these individuals, we found that age of AD onset can vary by more than 10 years, 256 

depending on polygenic risk.  For example, for an APOE ε3/3 individual in the 10th decile 257 

(top 10%) of PHS, at a survival proportion of 50%, the expected age for developing AD 258 

is approximately 84 years (Figure 2); however, for an APOE ε3/3 individual in the 1st 259 

decile (bottom 10%) of PHS, the expected age of developing AD is approximately 95 260 

years (Figure 2). Similarly, we also evaluated the relationship between PHS and the 261 
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different APOE alleles (ε 2/3/4) (Supplemental Figure 1). These findings show that 262 

beyond APOE, the polygenic architecture plays an integral role in affecting AD risk. 263 

To assess independent replication, we applied the ADGC Phase 1-trained model 264 

on independent replication samples from ADGC Phase 2. Using the empirical 265 

distributions, we found that the PHS successfully stratified individuals from independent 266 

cohorts into different risk strata (Figure 3a). Among AD cases in the ADGC Phase 2 267 

cohort, we found that the predicted age of onset was strongly associated with the 268 

empirical (actual) age of onset (binned in percentiles, r = 0.90, p = 1.1 x 10-26, Figure 3b).  269 

 270 

Predicting population risk of AD onset  271 

To evaluate risk for developing AD, combining the estimated hazard ratios from the 272 

ADGC cohort, allele frequencies for each of the AD-associated SNPs from the 1000 273 

Genomes Project and the disease incidence in the general US population, 17 we generated 274 

the population baseline-corrected survival curves given an individual’s genetic profile 275 

and age (Supplemental Figures 2A and 2B). We found that the risk for developing AD as 276 

well as the distribution of age of onset is modified by PHS status (Supplemental Figures 277 

2A,B).  278 

Given an individual’s genetic profile and age, the corrected survival proportion 279 

can be translated directly into incidence rates (Figure 4, Table 3 and Supplemental Table 280 

1). As previously reported in a meta-analysis summarizing four studies from the US 281 

general population, 17 the annualized incidence rate represents the proportion (in percent) 282 

of individuals in a given risk stratum and age, who have not yet developed AD but will 283 

develop AD in the following year; thus the annualized incidence rate represents the 284 
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instantaneous risk for developing AD conditional on having survived up to that point in 285 

time. For example, for a cognitively normal 65 year-old individual in the 80th percentile 286 

PHS, the incidence rate would be: 0.29 at age 65, 1.22 at age 75, 5.03 at age 85, and 287 

20.82 at age 95 (Figure 4 and Table 3); in contrast, for a cognitively normal 65 year old 288 

in the 20th percentile PHS, the incidence rate (per 100 person-years) would be 0.10 at age 289 

65, 0.43 at age 75, 1.80 at age 85, and 7.43 at age 95 (Figure 4 and Table 3). As 290 

independent validation, we examined whether the PHS predicted incidence rate reflects 291 

the empirical progression rate (from normal control to clinical AD) (Figure 5). We found 292 

that the PHS predicted incidence was strongly associated with empirical progression rates 293 

(Cochrane Armitage trend test, p = 1.54 x 10-10). 294 

 295 

Association with known markers of AD pathology 296 

We found that the PHS was significantly associated with Braak stage of NFTs (β-297 

coefficient = 0.115, standard error (SE) = 0.024, p-value = 3.9 x 10-6) and CERAD score 298 

for neuritic plaques (β-coefficient = 0.105, SE = 0.023, p-value = 6.8 x 10-6). We 299 

additionally found that the PHS was associated with worsening CDR-Sum of Box score 300 

over time (β-coefficient = 2.49, SE = 0.38, p-value = 1.1 x 10-10), decreased CSF Aβ1-42 301 

(reflecting increased intracranial Aβ plaque load) (β-coefficient = -0.07, SE = 0.01, p-302 

value = 1.28 x 10-7), increased CSF total tau (β-coefficient = 0.03, SE = 0.01, p-value = 303 

0.05), and increased volume loss within the entorhinal cortex (β-coefficient = -0.022, SE 304 

= 0.005, p-value = 6.30 x 10-6) and hippocampus (β-coefficient = -0.021, SE = 0.0054, p-305 

value = 7.86 x 10-5).  306 

  307 
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DISCUSSION 308 

In this study, by integrating AD-associated SNPs from recent GWAS and disease 309 

incidence estimates from the US population into a genetic epidemiology framework, we 310 

have developed a clinically usable, polygenic hazard score for quantifying individual 311 

differences in risk for developing AD, as a function of genotype and age. The PHS 312 

systematically modified age of AD onset, and was associated with known in vivo and 313 

pathologic markers of AD neurodegeneration. In independent cohorts, the PHS 314 

successfully predicted empirical (actual) age of onset and longitudinal progression from 315 

normal aging to AD. Even among individuals who do not carry the ε4 allele of APOE 316 

(the majority of the US population), we found that polygenic information is useful for 317 

predicting age of AD onset. 318 

 Using a case/control design, prior work has combined GWAS-associated 319 

polymorphisms and disease prediction models to predict risk for AD. 18-19 Rather than 320 

representing a continuous process where non-demented individuals progress to AD over 321 

time, the case/control approach implicitly assumes that normal controls do not develop 322 

dementia and treats the disease process as a dichotomous variable where the goal is 323 

maximal discrimination between diseased ‘cases’ and healthy ‘controls’.  Given the 324 

striking age-dependence of AD, this approach is clinically suboptimal for predicting risk 325 

of AD.  Building on prior genetic estimates from the general population, 2, 20 we 326 

employed a survival analysis framework to integrate AD-associated common variants 327 

with established population-based incidence 17 to derive a continuous measure, polygenic 328 

hazard score (PHS). From a personalized medicine perspective, for a single non-329 
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demented individual, the PHS can estimate individual differences in AD risk across a 330 

lifetime and can quantify the yearly incidence rate for developing AD.  331 

These findings indicate that the lifetime risk of age of AD onset varies by 332 

polygenic profile. For example, the annualized incidence rates (risk for developing AD in 333 

a given year) are considerably lower for an 80-year old individual in the 20th percentile 334 

PHS relative to an 80-year old in the 99th percentile PHS (Figure 4 and Table 3). Across 335 

the lifespan (Supplemental Figure 2B), our results indicate that even individuals with low 336 

genetic risk (low PHS) develop AD, but at a later peak age of onset. This suggests that all 337 

individuals, irrespective of genotype, would eventually succumb to dementia if they did 338 

not die from other causes. Certain loci (including APOE ε2) may ‘protect’ against AD by 339 

delaying, rather than preventing, disease onset. 340 

Our polygenic results provide important predictive information beyond APOE. 341 

Among APOE ε3/3 individuals, who constitute 70-75% of all individuals diagnosed with 342 

late-onset AD, age of onset varies by more than 10 years, depending on polygenic risk 343 

profile (Figure 2). At 60% AD risk APOE ε3/3 individuals in the 1st decile of PHS have 344 

an expected age of onset of 85 whereas for individuals in the 10th decile of PHS, the 345 

expected age of onset is greater than 95. These findings are directly relevant to the 346 

general population where APOE ε4 only accounts for a fraction of AD risk 3 and are 347 

consistent with prior work 21 indicating that AD is a polygenic disease where non-APOE 348 

genetic variants contribute significantly to disease etiology.  349 

Using the ADGC phase 2 dataset, we found that the PHS strongly predicted actual 350 

age of AD onset in an independent sample indicating the feasibility of using PHS for 351 

diagnosing clinical AD. Within the NIA ADC sample, the PHS robustly predicted 352 
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longitudinal progression from normal aging to AD illustrating the clinical value of using 353 

polygenic information to identify cognitively normal older individuals at highest risk for 354 

developing AD (preclinical AD). We found a strong relationship between PHS and 355 

increased tau associated NFTs and amyloid plaques suggesting that our genetic marker of 356 

disease risk reflects underlying Alzheimer’s pathology. The PHS also demonstrated 357 

robust associations with CSF Aβ1-42 levels, longitudinal MRI measures of medial 358 

temporal lobe volume loss and baseline CDR-SB score illustrating that increased genetic 359 

risk predicts clinical status and neurodegeneration in vivo. 360 

From a clinical perspective, our genetic risk score, based on standard SNP chip 361 

arrays, can be used clinically for disease diagnosis, accurate identification of older 362 

individuals at greatest risk for developing AD and potentially, for informing management 363 

decisions. By providing an accurate, probabilistic assessment as to whether Alzheimer’s 364 

neurodegeneration is likely to occur, determining a ‘genomic profile’ of AD may help 365 

initiate a dialogue on future planning. Importantly, a continuous, polygenic measure of 366 

AD genetic risk may provide an enrichment strategy for prevention and therapeutic trials 367 

and could also be useful for predicting which individuals may respond to therapy. 368 

Finally, a similar genetic epidemiology framework may be useful for quantifying the risk 369 

associated with numerous other common diseases. 370 

 There are several limitations to our study. We primarily focused on Caucasian 371 

individuals of European descent. Given that AD incidence 20 and genetic risk 22,23 in 372 

African-Americans and Latinos is different than in Caucasians, additional work will be 373 

needed to develop a polygenic risk model in non-Caucasian populations. The previously 374 

reported population annualized incidence rates were not separately provided for males 375 
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and females. 17 Therefore, we could not report PHS annualized incidence rates stratified 376 

by sex. Finally, we focused on APOE and GWAS-detected polymorphisms for disease 377 

prediction. Given the flexibility of our genetic epidemiology framework, it can be used to 378 

investigate whether a combination of common and rare genetic variants along with 379 

clinical, cognitive and imaging biomarkers may prove useful for refining the prediction 380 

of AD age of onset.   381 

 In conclusion, we have developed, replicated and validated a clinically useful new 382 

polygenic hazard score for quantifying the age-associated risk for developing AD. By 383 

integrating population based incidence proportion and genome-wide data into a genetic 384 

epidemiology framework, we were able to derive hazard estimates whereby an individual 385 

could calculate his/her ‘personalized’ age-specific AD risk, given genetic information. 386 

Measures of polygenic risk may prove useful for early detection, determining prognosis, 387 

and as an enrichment strategy in clinical trials. 388 

  389 
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Table 1. Demographic data for AD patients and older controls. 477 
 478 

 IGAP 
AD 
patien
ts 

IGAP 
older 
control
s 

ADGC 
Phase 1 
AD 
patients 

ADGC 
Phase 1 
older 
control
s 

ADGC 
Phase  
2 AD 
patien
ts 

ADGC 
Phase  
2 older 
control
s 

Total N 17,008 37,154 6,409 9,386 6,984 10,972 
Mean age 
(SD) of 
onset 
(cases) or 
assessme
nt 
(controls) 

74.7 
(8.0) 

68.6  
(8.5) 

74.7 
(7.7) 

76.4 
(8.1) 

73.6 
(7.3) 

75.7 
(8.6) 

% 
Female 

63 57 61 59 57.6 60.7 

% APOE 
ε4 

carriers 
 

59.0 25.4 51.6 26.7 56.0 28.4 

 479 
  480 
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Table 2. Selected 31 SNPs, their closest genes, hazard ratio estimations, and their 481 
conditional p values in the final joint model, after controlling for effects of gender and 482 
APOE variants. 483 
 484 

 Chr Position Gene β 
Conditional 
p in –log10  

ε2 allele 19  APOE -0.47 > 15  
ε4 allele 19  APOE 1.03 > 20 
rs4266886 1 207685786  CR1 -0.09 2.7 
rs61822977 1 207796065  CR1 -0.08 2.8 
rs6733839 2 127892810  BIN1 -0.15 10.5 
rs10202748 2 234003117  INPP5D -0.06 2.1 
rs115124923 6 32510482  HLA-DRB5 0.17 7.4 
rs115675626 6 32669833  HLA-DQB1 -0.11 3.2 
rs1109581 6 47678182  GPR115 -0.07 2.6 
rs17265593 7 37619922  BC043356 -0.23 3.6 
rs2597283 7 37690507  BC043356 0.28 4.7 
rs1476679 7 100004446  ZCWPW1 0.11 4.9 
rs78571833 7 143122924  AL833583 0.14 3.8 
rs12679874 8 27230819  PTK2B -0.09 4.2 
rs2741342 8 27330096  CHRNA2 0.09 2.9 
rs7831810 8 27430506  CLU 0.09 3.0 
rs1532277 8 27466181  CLU 0.21 8.3 
rs9331888 8 27468862  CLU 0.16 5.1 
rs7920721 10 11720308  CR595071 -0.07 2.9 
rs3740688 11 47380340  SPI1 0.07 2.8 
rs7116190 11 59964992  MS4A6A 0.08 3.9 
rs526904 11 85811364  PICALM -0.20 2.3 
rs543293 11 85820077  PICALM 0.30 4.2 
rs11218343 11 121435587  SORL1 0.18 2.8 
rs6572869 14 53353454  FERMT2 -0.11 3.0 
rs12590273 14 92934120  SLC24A4 0.10 3.5 
rs7145100 14 107160690  abParts 0.08 2.0 
rs74615166 15 64725490  TRIP4 -0.23 3.1 
rs2526378 17 56404349  BZRAP1 0.09 4.9 
rs117481827 19 1021627  C19orf6 -0.09 2.5 
rs7408475 19 1050130  ABCA7 0.18 4.3 
rs3752246 19 1056492  ABCA7 -0.25 8.4 
rs7274581 20 55018260  CASS4 0.10 2.1 

 485 
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Table 3. Predicted annualized incidence rate (per 100 person-years) by age using polygenic hazard scores. 487 
 488 
Age Population 

Baseline* 
PHS 1 percentile 

(95% CI) 
PHS 20th 
percentile 
(95% CI) 

PHS 80th 
percentile 
(95% CI) 

PHS 99th 
percentile 
(95% CI) 

APOE ε4+ 
(95% CI) 

APOE ε4- 
(95% CI) 

60 
0.08 

0.02 
(0.01,0.03) 

0.04 
(0.01,0.08) 

0.15 
(0.04, 0.27) 

0.61 
(0.16, 1.06) 

0.19 
(0.18, 0.20) 

0.06 
(0.06, 0.7) 

65 

0.17 
0.04 

(0.01,0.06) 
0.09 

(0.03, 0.16) 
0.32 

(0.09, 0.54) 
1.24 

(0.33,2.15) 
0.38 

(0.36, 0.40) 
0.13 

(0.12, 0.13) 
70 

0.35 
0.07 

(0.02,0.13) 
0.19 

(0.05,0.32) 
0.64 

(0.18, 1.10) 

2.53 

(0.68, 4.38) 
0.78 

(0.74, 0.82) 
0.26 

(0.25, 0.27) 
75 

0.71 
0.15 

(0.05,0.19) 
0.38 

(0.11,0.65) 
1.30 

(0.36,2.25) 
5.15 

(1.38, 8.91) 
1.58 

(1.51, 1.66) 
0.53 

(0.52, 0.55) 
80 

1.44 
0.31 

(0.26,0.26) 
0.77 

(0.22,1.32) 
2.65 

(0.74, 4.57) 
10.47 

(2.81, 18.13) 
3.22 

(3.06, 3.38) 
1.08 

(1.05, 1.11) 
85 

2.92 
0.63 

(0.19,1.07) 
1.57 

(0.45, 2.68) 
5.39 

(1.50, 9.29) 
21.30 

(5.72, 36.88) 
6.55 

(6.23, 6.87) 
2.2 

(2.13, 2.27) 
90 

5.95 
1.28 

(0.38,2.18) 
3.19 

(0.91, 5.46) 
10.97 

(3.05, 18.89) 
43.32 

(11.63, 75.00) 
13.33 

(12.68, 13.98) 
4.48 

(4.34, 4.61) 
95 

12.1 
2.61 

(0.78,4.44) 
6.48 

(1.85, 11.10) 
22.31 

(6.20, 38.43) 
88.11 

(23.66, 100.00) 
27.11 

(25.79, 28.43) 
9.1 

(8.83, 9.38) 
* US community-sampled population incidence proportion (% year) reported by reference 17.  489 
# APOE ε4+ refers to individuals with at least one copy of the ε4 allele of APOE; APOE ε4- refers to individuals with no copies of the 490 
ε4 allele of APOE 491 
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FIGURE LEGENDS 493 
 494 
Figure 1. Kaplan-Meier estimates and Cox proportional model fits from the case-control 495 

ADGC phase 1 dataset, excluding NACC and ADNI samples. The proportional hazard 496 

assumptions were checked based on the graphical comparisons between Kaplan-Meier 497 

estimation and Cox proportional hazard models. 95% confidence intervals of Kaplan-498 

Meier estimation are also demonstrated. The baseline hazard (gray line) in this model is 499 

based on the mean of ADGC data.  500 

 501 

Figure 2. Kaplan-Meier estimates and Cox proportional model fits among APOE � 3/�502 

3 individuals in ADGC phase 1 dataset, excluding NACC and ADNI samples. 503 

 504 

Figure 3. (a) Risk stratification in ADGC phase 2 cohort, using PHS derived from 505 

ADGC phase 1 dataset. (b) Predicted age of AD onset as a function of empirical age of 506 

AD onset among cases in ADGC phase 2 cohort. Prediction is based on the final survival 507 

model trained in the ADGC phase 1 dataset.  508 

 509 

Figure 4. Annualized incidence rates showing the instantaneous hazard as a function of 510 

PHS percentiles and age. The gray line represents the population baseline estimate. 511 

 512 

Figure 5. Empirical progression rates observed in the NIA ADC longitudinal cohort as a 513 

function of predicted incidence. CA = Cochrane-Armitage test 514 

 515 
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 517 
Figure 1.  518 

 519 

 520 
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Figure 2.   522 
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Figure 3a 528 

 529 
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Figure 3b. 533 
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Figure 4. 538 
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Figure 5. 542 
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