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Abstract 

As genetic association studies increase in size to 100,000s of individuals, subtle biases may 

influence conclusions. One possible bias is “index event bias” (IEB), also called “collider 

bias”, caused by the stratification by, or enrichment for, disease status when testing 

associations between gene variants and a disease-associated trait. We first provided a 

statistical framework for quantifying IEB then identified real examples of IEB in a range of 

study and analytical designs.  We observed evidence of biased associations for some disease 

alleles and genetic risk scores, even in population-based studies. For example, a genetic risk 

score consisting of type 2 diabetes variants was associated with lower BMI in 113,203 type 2 

diabetes controls from the population based UK Biobank study (-0.010 SDs BMI per allele, 

P=5E-4), entirely driven by IEB. Three of 11 individual type 2 diabetes risk alleles, and 10 of 

25 hypertension alleles were associated with lower BMI at p<0.05 in UK Biobank when 

analyzing disease free individuals only, of which six hypertension alleles remained associated 

at p<0.05 after correction for IEB. Our analysis suggested that the associations between 

CCND2 and TCF7L2 diabetes risk alleles and BMI could (at least partially) be explained by 

IEB. Variants remaining associated after correction may be pleiotropic and include those in 

CYP17A1 (allele associated with hypertension risk and lower BMI).  In conclusion, IEB may 

result in false positive or negative associations in very large studies stratified or strongly 

enriched for/against disease cases.  
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Introduction 

Genome wide association studies (GWAS) in increasingly large sample sizes have resulted in 

the identification of many 100s of genetic variants associated with common diseases
1-3

. We 

assume that the results from GWAS are robust to potential confounding factors and biases 

because genetic variants are inherited randomly and not influenced by disease processes 

throughout life. These assumptions tend to hold provided population substructure is 

accounted for using methods, which are now standard
4-6

. Researchers may also run genetic 

association studies in stratified samples 
1,2

 to reduce the non-genetic variation in the trait and 

improve statistical power to detect variants not acting through a disease mechanism. 

However, performing an association test between a genetic variant and a continuous trait in a 

sample that is stratified, depleted or enriched for a disease outcome (collider) that is 

associated with both the genetic variant and the trait can result in paradoxical observations 

(Figure 1). Such bias is termed index event bias (IEB) or collider-stratification bias
7
.  

An example of an index event biased association is that between type 2 diabetes risk alleles 

and lower BMI observed within diabetes case or control strata
8-10

. In these examples the 

strata are enriched (type 2 diabetes cases) or depleted (type 2 diabetes controls) by disease 

status. Bias occurs because non-diabetic individuals with a diabetes protective allele are able 

to remain normo-glycaemic at higher BMIs than individuals without the protective allele, 

whilst individuals with a risk allele will tend to develop diabetes at lower BMIs compared to 

those without the risk allele. Considering this type of bias is very important because many 

large meta-analytic studies often perform GWAS analyses of traits in samples stratified by, 

enriched or depleted for disease status. Such bias can have different impacts on genetic 

associations and their interpretation, for example (a) in the case of true (positive) pleiotropy, 

the effect of the gene variant on the trait may be masked/reduced by IEB (false negative 
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finding); (b) in the case of no pleiotropy, a false (and often counterintuitive) association 

between gene variant and trait can be observed (false positive finding); (c) using a genetic 

variant as an instrumental variable in a Mendelian randomization analysis could result in 

false inferences about causal relationships between the disease and a correlated trait if 

estimates of that variants’ effects on the trait are biased.  

A research area closely related to IEB is secondary trait analysis in case-control sample 

design. Several approaches have been proposed in these settings to estimate the true effect 

between a risk factor and a genetic variant in the general population sample
11-16

. Most of 

these methods yield unbiased estimators that are robust to model misspecifications and work 

for a wide range of noise distributions. In this paper we applied the SPREG program
16

 to 

correct for IEB for real data. Note, however, these methods provide only effect size 

estimation, but no insight how the bias explicitly depends on parameters such as (a) the extent 

of case-enrichment/depletion; (b) the strength of associations between the SNP, the risk 

factor and the collider; and (c) SNPs’ allele frequency.  

In this study, we tested the extent to which large genetic association studies may be impacted 

by IEB due to inadvertent sample selection leading to enrichment or depletion of disease 

cases. We first provided the statistical framework for quantifying IEB in a study, then used a 

combination of real and simulated data to: (a) identify and quantify real examples of IEB, 

including a single large study (120,000 individuals from the UK Biobank) and a meta-

analysis of independent studies and (b) demonstrate that IEBs can occur in most types of 

genetic association study designs, e.g. 1:1 case-control designs to case only and control only 

studies, case or control enriched studies and when case status is used as a covariate. The 

analytical formula is implemented in an R package and available for download from 

http://wp.unil.ch/sgg/files/2016/01/IndexEventBias.zip.  
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Material and Methods  

Model formulation 

We assumed a liability scale disease model, where a genetic variant (𝐺) and a continuous risk 

factor (𝑋) influences the development of a disease (Y). For simplicity the genetic marker was 

modeled by a binomially distributed random variable 𝐺 ~ 𝐵(2, 𝑞) , where 𝑞  is the allele 

frequency of the genetic variant in the general population. The second trait, from now on 

referred to as the “continuous risk factor” (𝑋) was allowed to be associated with 𝐺  and 

assumed to follow a standard normal distribution (𝑋 |𝐺 = 𝑔)~ 𝑁(𝛾(𝑔 − 2𝑞), 1 − 2𝛾2𝑞(1 −

𝑞)). The disease status is then modeled as 

𝑌 = {
1 𝑖𝑓 𝑍 > 𝑧0

 0 𝑖𝑓 𝑍 ≤ 𝑧0 
 where 𝑧0 =  Φ−1 (1 − 𝜋0) 

with 

(𝑍|𝑋 = 𝑥, 𝐺 = 𝑔) ~ 𝑁(𝛼 ∗ 𝑥 +  𝛽 ∗ (𝑔 − 2𝑞), 𝜎2), 

where 𝜋0 is the disease prevalence in the general population; 𝛼 is the true effect size on the 

liability scale of the continuous risk factor (𝑋) on the disease outcome (𝑌); 𝛽 is the (risk-

factor independent) effect of the genetic variant (𝐺) on the disease outcome (𝑌); and 𝜎2 =

1 − 𝛼2 −  2𝛽2𝑞(1 − 𝑞).  

Link between liability scale and logistic models 

For simplicity, we derived the explicit analytical formula for IEB estimation for the liability 

scale model. This however does not prevent its applicability to parameters derived from the 

logistic regression model. By re-parameterizing the models one can reach indistinguishable 

properties
17

. Namely, we calculate the probability of (Y=0 | X, G) for data simulated from the 
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logistic model and optimize the liability scale model parameters such that this probability is 

matched as close as possible for each simulated data point. We noticed that the models are 

indistinguishable when the parameter optimization is done for a simulated population with 

similar disease prevalence to the tested sample. The details of this procedure are given in the 

Appendix (section 2.3). 

Analytical formula for IEB 

The extent of IEB can be analytically derived in the case of the liability scale (probit) disease 

model. Assume that disease frequency in the general population is 𝜋0, the allele frequencies 

of the genotype in pure control and pure case populations are 𝑞0 and 𝑞1, respectively. We 

denote the difference between these frequencies by 𝛿𝑞. Let us consider now a sample with 𝜋 

frequency of cases.  The allele frequency in this sample is  

𝑞𝜋 =  𝑞0 +  𝜋 ∗ (𝑞1  −  𝑞0) = 𝑞0  +  𝜋 ∗ 𝛿𝑞 

IEB occurs when this disease prevalence differs from the general population prevalence (𝜋0). 

When 𝜋 > 𝜋0, we observe an enrichment of cases, while in case of 𝜋 < 𝜋0, we observe an 

enrichment of controls. In the Supplementary Text we derived the per-allele linear regression 

effect size of G on X in the general case, but here for simplicity we present the formula 

assuming 𝛾 = 0, i.e. that the true underlying effect of the genotype on the risk factor is zero. 

We observed that this simplification makes very little difference in practice (Supplementary 

Figure 1). By introducing the quantities 

𝜎𝑍|𝐺
2 = 1 −  2𝛽2𝑞(1 − 𝑞) 

𝑤𝑗 =  
𝑧0 − 𝛽(𝑗 − 2𝑞)

𝜎𝑍|𝐺
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we can express the expectation of the linear regression effect size estimate of 𝐺 on 𝑋 as  

𝐸[𝛾𝜋̂] ≈
𝛼

2𝑞𝝅(1 − 𝑞𝝅)
.

𝝅 − 𝜋0

𝜋0(1 − 𝜋0)
(

2𝑞(1 − 𝑞)𝜑(𝑤1) + 2𝑞2𝜑(𝑤2) − 2𝜑(𝑧0)(𝝅𝛿𝑞 + 𝑞0)

𝜎𝑍|𝐺
) 

where 𝜑()  denotes the probability density function (pdf) of the standard Gaussian 

distribution. Note that when the disease prevalence matches the general population 

prevalence (i.e. 𝜋 = 𝜋0), the expected effect of 𝐺 on 𝑋 is unbiased. The formula also shows 

that the bias is a second order rational function of the prevalence (𝜋). For most settings the 

quadratic and linear terms of the denominator are small compared to that of the numerator, 

thus the bias as a function of the fraction of cases (𝜋) closely resembles a simple parabolic 

function. It is worth noting that the coefficient of the quadratic term (in 𝜋) in the numerator 

(−
𝜑(𝑧0)𝛿𝑞

𝜎𝑍|𝐺 𝜋0(1−𝜋0)
𝛼) has the opposite sign compared to 𝛼, meaning that when 𝑋 is a risk factor 

for the disease the function is a downward looking parabola. This explains why disease risk 

alleles can show spurious (and counterintuitive) protective effect on traits positively 

correlated with the disease. We also derived a formula for the case when we do not assume 

that the true effect is zero; i.e. when there is a true pleiotropy. The full derivation of the 

formula can be found in the Appendix (Section 2). 

Note that this formula assumes that the true parameters, 𝛼, 𝛽, 𝑞0, 𝑞1, 𝑞, 𝜋0 are known. Hence, 

its primary purpose is not to estimate the bias from data, but to reveal the intricate 

relationship between the true underlying model parameters and the resulting IEB. 

We extended the formula to situations when not only the sample is enriched or depleted for a 

disease, but also when in addition the continuous risk factor is corrected for the disease 

status: 
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𝐸[𝛾𝜋̂
(𝐶)] =

𝛾𝜋𝑞𝜋(1 − 𝑞𝜋) − 𝛿𝑞 𝛼 𝜑(𝑧0)
𝜋(1 − 𝜋)

𝜋0(1 − 𝜋0)

𝑞𝜋(1 − 𝑞𝜋) −  2 𝜋(1 − 𝜋)𝛿𝑞
2  

The full derivation of this formula is given in the Appendix (Section 3). One can observe that 

correcting for disease status yields biased estimates even when the study disease prevalence 

agrees with the general population prevalence. In this situation we showed that this formula 

simplifies to that of Aschard
18

. 

These analytical formulae for IEB allow us to quantify genetic effects (estimated from real 

data) for IEB. The key quantities necessary for the formulae are: (i) the allele frequency of 

the genetic variant in control (q0) and disease (q1) populations; (ii) the association effect of 

the SNP on the disease status (β); (iii) the effect of the continuous risk factor on the disease 

status (α); (iv) the disease prevalence in the study population (π) and (v) the general 

population disease prevalence (π0). Estimating these quantities is out of the scope of this 

paper. We use the formula to show the extent of the bias for various realistic parameter 

settings informed from large GWAS data..  

Data simulation to confirm the analytical formula 

To investigate how closely the analytical formula recapitulates true IEB, we simulated data to 

create different hypothetical scenarios similar to data used in genetic studies 

(Supplementary Figure 2). For one million individuals, we simulated binomially distributed 

SNP data (G), a normally distributed continuous risk factor (X) and binary disease status 

using the liability threshold model described above.  The minor allele frequency (MAF) of 

the genetic marker was explored in the range of 0.02, 0.05, 0.1, 0.3 and 0.5; disease 

prevalence in the general population was set to 1%, 5% and 10%. The effect of the 

continuous risk factor (𝑋) on the disease outcome (𝑌) was varied in a range equivalent to 
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ORs of 1.10 to 4 (1.10, 1.25, 1.50, 1.75, 2, 3 and 4) per 1 standard deviation (SD) increase in 

𝑋. The effect (𝛽) of the genetic variant (𝐺) on the disease outcome (𝑌) was explored for a 

range equivalent to odds ratios (OR) of 1.05, 1.2, 1.3, 1.5, 1.8 and 2. 

Within each simulated population, we randomly sampled 100,000 controls (individuals with 

𝑌 = 0) and ran a linear regression test between the genetic variant 𝐺 and the continuous risk 

factor 𝑋 . We then performed 100 iterations each time replacing 1,000 random controls 

(individuals with 𝑌 = 0) with 1,000 random cases (individuals with 𝑌 = 1) and ran a linear 

regression test between 𝐺  and 𝑋 . Using this approach, our first iteration represented a 

control-only population of 100,000 unaffected individuals, the 50
th

 iteration a case-control 

population of 50,000 controls vs. 50,000 cases and the final, 100
th

 iteration a case-only 

population of 100,000 affected individuals.  

IEB in real data  

To identify and quantify real examples of IEB, we tested how IEB occurs in genetic studies 

in 2 different scenarios using different disease outcomes and genetic variants. 

(1) We tested whether or not type 2 diabetes risk alleles, acting predominantly through 

insulin secretion, have a paradoxical (opposite association) effect on BMI, a strong 

continuous risk factor for type 2 diabetes. We selected 11 SNPs associated with type 2 

diabetes that have known robust associations with insulin secretion, the intermediate trait 

most relevant to diabetes risk 
19

 (Supplementary Table 1). We analysed the 11 SNPs 

separately and as a genetic risk score (GRS) in two study types: (i) a single very large 

population based study: 120,286 individuals from the first release of genetic data from the 

UK Biobank study
20

 and (ii) a meta-analysis of 4 independent studies: EXTEND
21

 (N = 

5,097), GoDARTS
22

 (N = 7,128), Generation Scotland Scottish Family Health Study 
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(GS:SFHS)
23

  (N = 8,195) and ARIC
24

 (N = 9,324) with a range of study designs and diabetes 

status available (Supplementary Table 2). We tested the association between individual 

SNPs and the 11-SNP insulin secretion GRS and BMI in all samples, in all samples adjusted 

for type 2 diabetes status, in diabetic cases only and in controls only. We defined type 2 

diabetes cases as individuals who had: (1) HbA1c >6.4% and/or fasting glucose >7 mmol/L, 

(2) age at diagnosis >35 and <70 years; (3) no need for insulin treatment within 1 year of 

diagnosis (except in ARIC). We defined controls as individuals who did not meet any of 

these criteria and were not diagnosed with any other types of diabetes. We additionally tested 

the association between the CCND2 type 2 diabetes protective allele and BMI as the allele 

was recently shown to be associated with higher BMI. 

(2) We tested whether or not 26 SNPs robustly associated with systolic blood pressure have a 

paradoxical (opposite) effect on BMI, a continuous risk factor for high blood pressure
25

 . We 

excluded the variant near SLC39A8 from the GRS as this variant is directly associated with 

several traits including BMI
26

 and HDL-cholesterol
27

 levels (Supplementary Table 3). We 

analysed the 25 SNPs individually and as a GRS in two study types: (i) a single very large 

study: 120,286 individuals from the first release of genetic data from the UK Biobank study
20

 

and (ii) a meta-analysis of 4 independent studies with blood pressure available: GoDARTS
22

 

(N = 6643), Generation Scotland Scottish Family Health Study (GS:SFHS)
23

  (N = 8195), 

ARIC
24

 (N= 9,290) and BRIGHT
28

 (N = 1808) (Supplementary Table 2).  We tested the 

association between the individual SNPs and the 25-SNP blood pressure GRS and BMI in all 

samples, in all samples adjusted for hypertension status, in hypertensive cases only and in 

normotensive controls only. We defined hypertensive cases as individuals with systolic blood 

pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg or report use of anti-

hypertensive medications. We defined normotensive controls as individuals with systolic and 

diastolic blood pressure below these thresholds, and not on medications. 
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Statistical analysis in real data 

In the relevant studies, we corrected BMI for age and sex and other covariates (for the UK 

Biobank study this included five within UK genetic principal components, genotyping 

platform, study center in the UK Biobank study). Residuals were inverse-normal transformed. 

In each study, we generated genetic risk scores (GRS) by calculating the number of disease 

risk alleles carried by each individual. We then combined the association results using fixed-

effects inverse variance-weighted meta-analysis. To account for IEB we applied the state-of-

the-art method of Lin and Zeng
16

 (implemented in the software SPREG).  This program 

needs an estimate of the general population prevalence of the examined diseases. Hence, we 

derived an estimate for type 2 diabetes and hypertension prevalence for a general UK sub-

population that has the same joint age- and sex-distribution as the UK Biobank sample. For 

this we used sex- and age-group-specific prevalence values from the IDF Atlas 
29

 (10 year 

bins) for type 2 diabetes and from the NIH Health Survey for England 2011 

[http://digital.nhs.uk/catalogue/PUB09300/HSE2011-Ch3-Hypertension.pdf] (10 year bins) 

for hypertension. Then we weighted these prevalence values with the proportion of UK 

Biobank participants that fell into each stratum. This yielded prevalence estimates of 10.15% 

for type 2 diabetes and 38.43% for hypertension. 
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Results  

IEB occurs in a range of different genetic association study designs – theory and simulated 

data. 

Our results from simulated data and theory provided examples of IEBs where the direction of 

the association between the genetic risk allele and the risk factor depends on the proportion of 

cases and controls in the study. In all scenarios involving a disease risk allele with no real 

association to the intermediate risk factor, we observed U-shaped artefactual effect estimates 

between the disease risk allele and the risk factor as the proportion of cases moved from 0% 

to 100%: first, in a control only situation, IEB occurred where the disease risk alleles were 

associated with lower values of the risk factor, there was then no association when the 

proportion of cases represented exactly the background population, then an association 

between disease risk alleles and higher values of the risk factor, and then back to no 

association and finally an association between disease risk alleles and lower values of the risk 

factor in case only scenarios (Figure 2 [our theoretical formula]; Supplementary Figure 3 

[simulated data]). The extent of the bias is stronger in case only compared to control only 

scenarios when the disease frequency is less than 50% (as with most diseases). In the 

examples in Figure 2 (and Supplementary Figure 3), we modeled a disease risk allele and a 

protective allele with properties similar to those of the type 2 diabetes alleles at TCF7L2 and 

CCND2 respectively. We observed spurious associations between the disease alleles and 

lower and higher values of the continuous risk factor, depending on the proportion of cases 

and despite the lack of a genuine association between the genetic risk allele and the risk 

factor. When the examined study population matches the underlying general population in 

terms of disease prevalence (5% in case of our example), no bias is observed (Figure 2). It 

has been shown that for many scenarios correcting for disease status alleviates the bias
15

, but 
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such correction is clearly of no use in case-only, and control-only designs and it introduces 

bias even for samples representative of the general population. Note that in our settings the 

bias was not resolved, but often exacerbated by correcting for disease status (Figure 2). 

Differences in prevalence for Type 2 diabetes and hypertension in the UK Biobank and 

general UK population 

Index event bias arises due to differences in the (collider) disease prevalence in the study 

population and the matched general population. Hence, it is crucial to derived accurate 

estimates for type 2 diabetes and hypertension prevalence for a general UK sub-population 

that has the same joint age- and sex-distribution as the UK Biobank. Using data from the IDF 

Atlas 
29

 and the NIH Health Survey for England, we estimated that  10.15% and 38.43% of a 

sex- and age-matched sub-population of the UK would be diabetic and hypertensive, 

respectively (see Methods). These values clearly differ from the prevalence of type 2 diabetes 

(3.4%) and hypertension (55.2%) observed in the UK Biobank. 

Individual alleles and genetic risk scores associated with higher risk of type 2 diabetes were 

associated with lower BMI in real data 

A relatively high ability to secrete insulin may lead to a relative protection from type 2 

diabetes but may also lead to higher BMI because insulin has anabolic properties. Studies 

may therefore wish to use common variants associated with insulin secretion to test the role 

of insulin secretion on BMI. However, there may be a complex relationship because higher 

BMI increases diabetes risk. IEB will add to the complexity of interpreting potential overlap 

of genetic associations for these phenotypes.  We tested 11 variants associated with type 2 

diabetes through an insulin secretion mechanism, for potentially spurious associations with 

lower levels of the continuous risk factor for type 2 diabetes, BMI. Details of how these 

variants were associated with type 2 diabetes in UK Biobank and 4 additional studies are 
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given in Supplementary Table 4. Using a total of 4,003 type 2 diabetes cases and 113,203 

controls from the UK Biobank, two of the 11 variants were associated with lower BMI in all 

individuals (unstratified and unadjusted), three in controls only, three in cases only and five 

in all individuals when adjusted for type 2 diabetes status at p<0.05 (Table 1). When meta-

analysing the UK Biobank and four additional studies in the same analysis design as a 

GWAS meta-analysis (all individuals together for population based studies, stratified by case 

control status for case control studies) two type 2 diabetes risk alleles were associated at 

p<0.05 with lower BMI (Supplementary Table 5). In the UK Biobank study, the effect sizes 

of type 2 diabetes risk alleles with lower BMI were consistent with IEB (Supplementary 

Figure 4). In accordance with our formula, BMI “effect” size estimates were correlated with 

the effect estimates for type 2 diabetes; r = -0.85 (p=8E-4), -0.87 (p=4E-4) and -0.87 (p=5E-

4) in controls, cases and all individuals (adjusted for type 2 diabetes status), respectively 

(Supplementary Figure 4).  

We next reran the SNP-BMI associations, using the statistical software SPREG, which 

accounts for IEB
16

. Prior to this correction, the risk allele at TCF7L2 was associated with 

lower BMI in all scenarios (the overall population as well as stratified and corrected data - 

Table 1). After correcting for IEB there was no evidence (at p<0.005; p-value corrected for 

multiple testing) for an association between TCF7L2 and lower BMI (Table 1). In contrast, 

the type 2 diabetes risk allele at MTNR1B was the only allele associated with higher BMI in 

the overall population (p = 0.02); when accounting for IEB it was even more strongly 

associated (0.016 SD [0.007, 0.026], P=0.001) (Table 1, Figure 3). The type 2 diabetes 

protective allele in CCND2 (conferring the strongest effect on type 2 diabetes; 0.59 OR 

[0.48,0.73]; p = 1E-6) had the strongest effect estimate on BMI (0.06 SD [0.03,0.09]; p = 

0.0004), which became much weaker after correcting for IEB (0.003 SD [-0.029,0.035]; p = 

0.9).  
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We next examined a genetic risk score (GRS) for type 2 diabetes. Details of how this GRS 

was associated with type 2 diabetes are given in Supplementary Table 4. In the UK Biobank 

study, the 11-SNP GRS was not associated with BMI when analysed in all samples combined 

(-0.004 SD per allele [-0.010,0.001]; p=0.1; N=119,688; Table 2). In contrast, the 11-SNP 

GRS associated with higher risk of type 2 diabetes was associated with lower BMI in all 3 of 

the following designs: (i) controls only (-0.010 SD per allele [-0.016,-0.005]; p=5E-4; 

N=113,203), (ii) in cases only (-0.036 SD per allele [-0.065,-0.007]; p=0.01; N=4,003) and 

(iii) in all individuals when adjusted for type 2 diabetes status (-0.011 SD per allele [-0.017,-

0.006]; p=1E-4; N=117,206; Table 2). In the context of a Mendelian randomization analysis, 

these results could be misinterpreted as evidence for the biologically plausible hypothesis that 

lower insulin secretion leads to lower BMI. However the associations are consistent with 

IEB. Results from a meta-analysis of 4 additional studies (representing a scenario similar to 

that of many GWAS meta-analyses) were similar (Table 2 and Figure 4a).  

Individual alleles and genetic risk scores associated with higher risk of hypertension were 

associated with lower BMI  

We next tested whether alleles associated with higher risk of hypertension were paradoxically 

associated with lower BMI, a continuous risk factor for hypertension, but with a weaker 

effect than that with type 2 diabetes. Such associations could be due to genuine pleiotropic 

effects of alleles on hypertension and lower BMI, or due to IEB, or a combination of the two. 

We tested 25 variants associated with blood pressure. Details of how these variants were 

associated with hypertension in UK Biobank and four additional studies are given in 

Supplementary Table 6. Using a total of 65,584 hypertension cases and 53,377 controls 

from the UK Biobank, six of the 25 variants were associated with lower BMI in all 

individuals (unstratified and unadjusted), 10 in controls only, 10 in cases only and 12 in all 
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individuals when adjusted for hypertension status (at p<0.05; Table 3). When meta-analysing 

the UK Biobank and four additional studies, in the same analysis design as a GWAS meta-

analysis (all individuals together for population based studies, stratified by case control status 

for case control studies), eight hypertension risk alleles were associated at p<0.05 with lower 

BMI (Supplementary Table 7). The effect sizes of hypertension risk alleles with lower BMI 

were consistent with IEB. As with type 2 diabetes alleles, BMI “effect” sizes were correlated 

with the effect size on hypertension: r = -0.38 (p=0.06), -0.58 (p=0.002) and -0.55 (p=0.005) 

in controls, cases and all individuals (adjusted for hypertension status), respectively 

(Supplementary Figure 5).  

Using SPREG, out of the 25 hypertension SNPs only CYP17A1 was associated with lower 

BMI in the IEB corrected analysis (-0.028 [-0.044,-0.012]; P=3E-4) and Bonferroni 

correction for the number of SNPs tested (Table 3). Five other variants (those in or near 

BAT2, CACNB2 (2 variants), CYP1A1, and SH2B3) were associated with lower BMI at 

p<0.05 but did not persist after Bonferroni correction. Nevertheless, six variants reaching 

IEB-corrected nominally significant P-values is more than the ~1 expected by chance 

(enrichment P = 1.69E-4) and suggests variants in some of these genes have pleiotropic 

effects with alleles associated with lower BMI and higher risk of hypertension. Consistent 

with this evidence of pleiotropy, the variant in SH2B3 is associated with multiple traits 

including those related to autoimmunity as well as metabolic traits
30-32

.  

We next considered a genetic risk score of hypertension SNPs. Details of how this GRS was 

associated with hypertension are given in Supplementary Table 6). In the UK Biobank 

study, the 25-SNP hypertension GRS was associated with lower BMI in all samples 

combined (-0.014 SD per allele [-0.020,-0.008]; p=1E-6; N=119,688) and in all 3 of the 

following designs: (i) in controls only (-0.034 SD per allele [-0.043,-0.026]; p=2E-16; 
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N=53,377), in cases only (-0.031 SD per allele [-0.039,-0.024]; p=4E-16; N=65,584) and in 

all samples when adjusted for hypertension status (-0.033 SD per allele [-0.038,-0.027]; 

p=7E-31; N=118,961; Table 2). Results from a meta-analysis of 4 studies (representing a 

GWAS meta-analysis) were similar (Table 2 and Figure 4b). 

Large sample sizes are necessary to observe false positive associations due to IEB 

Our analytical formula enabled us to quantify the necessary sample size in order to observe a 

false positive association with a continuous risk factor due to IEB at any significance level 

alpha with for example, 80% power. The necessary sample size depends on five parameters: 

significance level, disease prevalence, strength of association between the genetic risk factor 

and the disease, strength of association between the continuous risk factor and the disease and 

frequency of the genetic risk allele. We fixed the continuous risk factor-disease association 

(OR=2.5 per SD) and tested two MAF scenarios (low, 2% and medium 30%) and two 

significance levels (0.05 and 5E-8). The remaining two parameters (SNP-disease association 

strength and disease prevalence) we varied freely and computed the minimal sample size 

necessary to detect a false association (Figure 5). For example, in analyses stratified by 

disease we would need 23,542 cases or 208,267 controls to detect a biased association at p-

value 5x10
-8

 with a probability of 80% when the disease risk allele had a frequency of 30%, 

the disease prevalence was 10% and a 1 SD higher value of the continuous risk factor was 

associated with an odds ratio of 2.5 for the disease. This scenario is similar to that for the risk 

allele at TCF7L2 and BMI
10

.  
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Discussion  

Our analyses of real and simulated data showed that index event bias will often occur in 

genetic association studies but the extent depends on several factors. These factors include 

the association strength between the trait being analysed (that we termed the “continuous risk 

factor”) and the disease, where the disease is over- or under-represented in the study 

population compared to the background population. The other factors are disease prevalence, 

sample size, and the effect size and minor allele frequency of the disease associated variant. 

Our results go beyond those of previous studies examining index event biases in several 

ways. First we provide real examples of likely biased genetic associations in the context of 

studies of 100,000s of individuals, including those involving individual variants and 

combinations of variants. Second, we provide a formula for quantifying the bias as a function 

of key parameters even when only summary level data is provided. We also extended the 

work of Aschard et al
18

, to test how the combination of correcting for disease status in 

disease-enriched or depleted samples can introduce biases. 

Our results have important implications for all types of large genetic association studies, and 

are especially relevant given that analyses are now possible in 100,000s of individuals, and 

rarely will these samples be perfectly representative of the background populations – for 

example, even population based studies such as those of Decode and the UK Biobank are 

likely not truly representative of the background population in the prevalence of all disease 

outcomes. Our analyses of real and simulated data showed that the best study design to avoid 

index event biased associations is using all individuals from a population-based study with no 

adjustment for disease status. Bias is strongest in case only designs (assuming the disease 

frequency is <50%) but it is also observed in control only designs, or in analysis combining 

cases and controls and adjusting for disease status (the latter situation is discussed in Aschard 
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et al
18

). To better understand these observations, we derived an analytical formula that 

estimates IEB and confirmed its validity through simulation studies. Our formula indicates 

that this bias can be negative or positive depending on the proportion of cases and controls. 

The results indicate that this bias cannot be resolved by correcting for disease status as a 

covariate. If anything, such correction exacerbates biased effect estimates. Our results also 

indicate that the impact of IEB is substantially larger than the bias caused by improper 

covariate correction in a disease-representative population (described by Aschard et al
18

). 

In a meta-analysis it may be difficult to assess the extent to which IEB is contributing to an 

association - most existing large scale genetic association studies are mixtures of all types of 

study designs, and, for studies of continuous traits (such as BMI, lipid levels or blood 

pressure) disease cases and controls are often analysed as separate strata before meta-analysis 

with population-based studies, which themselves could be over or under represented with 

disease cases.  

Our settings for the analytical formula were limited to a liability scale disease model and 

normal linear regression applied for the risk trait. By model re-parameterization we extended 

it to the logistic disease model and through simulations we saw that it works equally well 

(data not shown). These are the most often used models in meta-analytic GWAS studies; 

hence we believe that our findings are extremely relevant for almost all GWAS analysis. 

Whilst index event biases are likely to exist in many studies, for associations modelling 

individual variants the bias is unlikely to cause false positive or false negative associations 

unless sample sizes are very large or stratified, strongly depleted of, or enriched for, disease 

cases. For example, we tested known common type 2 diabetes variants for association with a 

strong risk factor for type 2 diabetes, BMI, in 119,688 UK Biobank individuals (including 

4003 type 2 diabetes cases), but only the most strongly associated diabetes variant, that in 
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TCF7L2 (odds ratio ~1.4), was associated with lower BMI at p<0.01 in all individuals. The 

association between the variant in TCF7L2 and BMI has been the subject of several previous 

papers
1,8,33

 and was most recently noted as showing stronger effect estimates in case control 

studies
1
. Here we found only a trend, but no clear statistical evidence that the TCF7L2 variant 

is associated with BMI - the associations we did see could be explained by IEB due to a 

likely depletion of cases in the UK Biobank study compared to the background population.  

The derived analytical formula can serve as guidance for the expected bias in genome-wide 

association studies, where only summary level data is known where – to our knowledge – no 

other method is applicable. The state-of-the-art tool, SPREG, computed the corrected effect 

in ~2 min per SNP, which renders such methods infeasible for large population cohorts with 

genome-wide genotype data, as it would take >10 CPU years to apply for millions of 

markers.   

Accounting for IEB strengthened associations for several individual variants with good prior 

evidence for pleiotropic effects on the disease and continuous risk factor. For example, the 

type 2 diabetes risk allele at MTN1RB was associated in the UK Biobank with higher BMI 

and this result strengthened on correction for IEB – results from previous studies, particularly 

those that were not population-based, may have been biased towards the null. This variant has 

one of the strongest effects on fasting glucose levels in individuals without diabetes and may 

predispose to higher BMI through higher insulin secretion. The hypertension risk allele at 

CYP17A1 was previously associated with lower BMI
1
, and we show here that this is a likely 

pleiotropic effect.  

Studies examining the joint effect of multiple variants will be more prone to index event 

biases than those of single variants. Studies prone to miss-interpretation could include gene-

based tests, and tests of the cumulative effect of variants when using a genetic risk score. For 
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example, Mendelian randomization studies often use genetic risk scores as instruments to test 

causality of an associated trait with a disease
34-37

. Stratified Mendelian randomization is 

recommended when the exposure is binary (e.g. smoking) and hence a causal effect should be 

seen only in the exposed stratum
38

. Such stratification in some cases could introduce IEB in 

the causal estimation
38

. Failing to account for IEB could lead to false conclusions about 

causality. We explored this potential source of bias using the UK Biobank to assess whether 

or not a genetic risk score of insulin secretion (represented by 11 variants associated with 

type 2 diabetes through insulin secretion mechanisms) was associated with BMI. An 

association between a genetic risk score for poorer insulin secretion and lower BMI could 

indicate that insulin secretion causally alters BMI, a plausible hypothesis given that insulin 

treatment increases BMI in diabetes
39

. However, IEB would also result in an association 

between a genetic risk score for poorer insulin secretion (type 2 diabetes risk alleles) and 

lower BMI. Whilst we cannot disentangle IEB from a genuine pleiotropic effect IEB is the 

more likely explanation given the gradient of stronger effects in cases compared to controls 

compared to all individuals (Supplementary Figure 6a). Similar analysis for hypertension 

provided evidence that SNPs associated with higher blood pressure are also associated with 

lower BMI (Supplementary Figure 6b).  

In summary, as genetic association studies reach sizes of 100,000s of individuals, analyses 

will be prone to misinterpreting results if they do not account for index event biases. 

However, we have provided the statistical framework and its software implementation for 

quantifying and correcting for these biases under reasonable assumptions.  
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Tables  

Table 1. Association between 11 insulin secretion SNPs and BMI (SD) in the UK 

Biobank study under 5 scenarios. Corrected statistics are those after correcting for index 

event bias using all 119,688 individuals. Note that the numbers of individuals in the “all” 

analyses differ slightly because people of uncertain diabetes diagnosis were excluded from 

the “All adjusted for type 2 diabetes” analysis. 

 
All  

(N=119,688) 

Controls  

(N=113,203) 

Cases  

(N=4,003) 

All adjusted for type 

2 diabetes 

(N=117,206) 

All - Corrected 

statistics 

(N=119,688) 

Variant in or 

near gene: 
BETA P BETA P BETA P BETA P BETA P 

TCF7L2 -0.024 1E-7 -0.033 8E-13 -0.118 1E-7 -0.036 1E-15 -0.0101 0.04 

THADA -0.011 0.1 -0.012 0.08 -0.060 0.1 -0.013 0.05 -0.0020 0.8 

CDKN2AB -0.008 0.2 -0.014 0.01 -0.018 0.5 -0.014 0.009 -0.0013 0.8 

SLC30A8 -0.005 0.3 -0.009 0.05 -0.034 0.2 -0.009 0.03 -0.0008 0.9 

CDKAL1 -0.012 0.01 -0.016 5E-4 -0.048 0.03 -0.018 1E-4 -0.0062 0.2 

MTNR1B 0.011 0.02 0.008 0.08 0.004 0.9 0.008 0.08 0.0162 0.001 

HHEX -0.005 0.2 -0.007 0.09 -0.054 0.01 -0.009 0.04 0.0005 0.9 

GCK -0.005 0.3 -0.009 0.1 -0.009 0.7 -0.009 0.1 -0.0005 0.9 

PROX1 -0.001 0.8 -0.002 0.6 -0.002 0.9 -0.002 0.6 0.0023 0.6 

ADCY5 -0.002 0.7 -0.006 0.2 0.012 0.6 -0.005 0.3 -0.0014 0.8 

DGKB -0.003 0.5 -0.005 0.2 -0.008 0.7 -0.005 0.2 0.0021 0.6 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2016. ; https://doi.org/10.1101/074781doi: bioRxiv preprint 

https://doi.org/10.1101/074781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Table 2. Examples of index event bias observed in real data when using multiple variants in genetic risk scores. BMI was inverse-normal 

transformed.  

  UK Biobank study Meta-analysis of independent studies 

Model Samples BETA LCI UCI P N BETA LCI UCI P N 

BMI ~ insulin 

secretion GRS 

All individuals -0.004 -0.010 0.001 0.14 119,688 0.001 -0.010 0.013 0.8 30,440 

Type 2 diabetes controls -0.010 -0.016 -0.005 5E-4 113,203 -0.008 -0.019 0.004 0.2 25,039 

Type 2 diabetes cases -0.036 -0.065 -0.007 0.015 4,003 -0.037 -0.062 -0.012 0.004 5,396 

All individuals adjusted for 

type 2 diabetes status 
-0.011 -0.017 -0.006 1E-4 117,206 -0.013 -0.021 -0.005 0.002 30,435 

BMI ~ blood pressure 

GRS 

All individuals -0.014 -0.020 -0.008 1E-6 119,688 -0.008 -0.020 0.004 0.2 25,059 

Normotensive controls -0.034 -0.043 -0.026 2E-16 53,377 -0.014 -0.028 0.000 0.06 18,590 

Hypertensive cases -0.031 -0.039 -0.024 4E-16 65,584 -0.042 -0.063 -0.021 9E-5 8,267 

All individuals adjusted for 

hypertension status 
-0.033 -0.038 -0.027 7E-31 118,961 -0.022 -0.034 -0.010 4E-4 25,049 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2016. ; https://doi.org/10.1101/074781doi: bioRxiv preprint 

https://doi.org/10.1101/074781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Table 3. Association between 25 blood pressure SNPs and BMI (SD) in the UK Biobank study 

under 5 scenarios. Corrected statistics are those after correcting for index event bias using all 

119,688 individuals. Note that the numbers of individuals in the “all” analyses differ slightly 

because people of uncertain hypertension diagnosis were excluded from the “All adjusted for 

hypertension” analysis. 

 
All 

(N=119,688) 

Controls  

(N= 53,377) 

Cases 

(N=65,584) 

All adjusted for 

hypertension 

(N=118,961) 

All - Corrected 

statistics 

(N=119,688) 

Variant in or 

near gene: 
BETA P BETA P BETA P BETA P BETA P 

ADM 0.001 0.9 0.005 0.6 -0.012 0.1 -0.005 0.4 0.0009 0.9 

ATP2B1 -0.002 0.7 -0.012 0.1 -0.011 0.1 -0.012 0.03 -0.0038 0.5 

BAT2 -0.013 2E-3 -0.014 0.02 -0.016 3E-3 -0.015 2E-4 -0.0135 0.002 

C10orf107 -0.008 0.1 -0.012 0.1 -0.019 9E-3 -0.016 3E-3 -0.0095 0.08 

CACNB2(3’) -0.01 0.03 -0.02 1E-3 -0.013 0.02 -0.016 1E-4 -0.0100 0.02 

CACNB2(5’) -0.012 4E-3 -0.023 1E-4 -0.01 0.06 -0.016 8E-5 -0.0122 0.003 

CYP17A1 -0.028 3E-4 -0.044 4E-5 -0.032 2E-3 -0.038 5E-7 -0.0282 0.0003 

CYP1A1 -0.011 0.01 -0.017 9E-3 -0.016 7E-3 -0.016 2E-4 -0.0110 0.01 

EBF1 -0.001 0.89 -0.012 0.04 -0.002 0.7 -0.007 0.1 -0.0008 0.9 

FGF5 -0.007 0.1 -0.023 4E-4 -0.014 0.01 -0.018 3E-5 -0.0078 0.08 

FLJ32810 -0.008 0.07 -0.014 0.03 -0.016 8E-3 -0.015 6E-4 -0.0084 0.07 

FURIN 0 0.98 -0.008 0.2 -0.008 0.2 -0.008 0.07 -0.0005 0.9 

GNAS -0.004 0.5 -0.007 0.5 -0.019 0.02 -0.014 0.02 -0.0042 0.5 

GOSR2 -0.001 0.8 -0.011 0.2 -0.003 0.7 -0.007 0.2 -0.0012 0.8 

HFE 0.002 0.8 -0.008 0.3 -0.001 0.9 -0.004 0.5 0.0026 0.6 

JAG1 0 0.95 -0.005 0.4 -0.002 0.8 -0.003 0.4 -0.0005 0.9 

MECOM 0.002 0.7 -0.006 0.3 0.001 0.9 -0.002 0.6 0.0016 0.7 

MOV10 0.007 0.1 0 0.97 0.007 0.3 0.004 0.4 0.0079 0.1 

MTHFR -0.011 0.05 -0.018 0.02 -0.024 1E-3 -0.021 7E-5 -0.0110 0.05 

NPR3 0.004 0.3 -0.001 0.9 -0.006 0.3 -0.004 0.4 0.0042 0.3 

PLCE1 -0.001 0.8 0 0.98 -0.009 0.1 -0.005 0.2 -0.0017 0.7 

PLEKHA7 -0.005 0.3 -0.016 0.01 0.002 0.8 -0.006 0.2 -0.0049 0.3 

SH2B3 -0.009 0.03 -0.008 0.2 -0.023 2E-5 -0.016 4E-5 -0.0093 0.02 

TBX5 -0.003 0.6 -0.004 0.6 -0.008 0.2 -0.006 0.2 -0.0031 0.5 

ZNF652 0.006 0.1 0 0.98 0.005 0.4 0.003 0.5 0.0063 0.1 
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Figures 

Figure 1. Apparently paradoxical gene-phenotype associations in the context of disease 

stratified genetic studies. We simulated genotype, continuous risk factor values and disease 

status in a general population sample according to our liability scale model and set the 

genetic effect on the risk factor (𝛾) to zero. We observed that the estimated effect of the “B” 

allele of a genetic marker on a continuous trait is negative both in cases and controls. Disease 

carriers also have higher trait value than controls. However, when combining the two strata 

the marker is – as expected – not associated with the trait. The reason for this apparent 

paradox is that the proportion of disease risk allele (“B”) carriers is higher in the case group. 

Thus when merging cases into the control group the mean trait value of the BB group 

increases much more than it does in the other genotype groups. This concept is recognized as 

Simpson's paradox
40

.  
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Figure 2. Enrichment for cases or controls produces spurious associations. We applied 

our analytical formula to compute the effect size estimate of a SNP (G) on a continuous risk 

factor (X) in the abovementioned liability scale model setting with the true genetic effect on 

the risk factor (𝛾) being zero. Enrichment for cases or controls produces spurious evidence of 

association between disease risk alleles and a risk factor correlated with the disease 

(equivalent to 2.5 OR per SD) in (a) a scenario where a risk allele (MAF 30%) increases risk 

with an effect equivalent to an odds ratio of 1.4 (similar to the TCF7L2 type 2 diabetes 

scenario
10

) in two models: unadjusted for disease status [blue curve] and adjusted for disease 

status [green curve]. Dashed lines represent 95% confidence interval (CI) around the effect 

estimate assuming a population of 100,000 individuals. Panel (b) displays the same curves, 

but for a SNP with a rare protective allele (MAF 2%) that reduces risk of disease with an 

effect equivalent to an odds ratio of 0.5 (similar to the CCND2 type 2 diabetes scenario
9
). 

Vertical dashed red line at 0.05 indicates the true general population disease prevalence.  
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Figure 3. Scatter plot of the observed effect of type 2 diabetes-associated SNPs on BMI 

in the total UK Biobank sample vs. the index event bias corrected effect. The effect 

corrected for index event bias (shown on the y-axis) was calculated assuming the previously 

established 10% population prevalence of type 2 diabetes (𝜋0 = 0.10) . Dashed line 

represents the identity line, where the two effects are equal. While for most SNPs the 

absolute value effect size estimate after IEB correction is reduced, MTNR1B shows increased 

effect size upon correction. Only this latter SNP produced a P-value surviving multiple 

testing correction (P<0.05/11).  
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Figure 4. Index event bias in real data. (a) The genetic risk score (GRS) associated with 

higher risk of type 2 diabetes is associated with lower BMI in cases and controls separately 

and when combined but adjusted for type 2 diabetes status. (b) The GRS associated with 

higher risk of hypertension is associated with lower BMI in hypertensive cases and controls 

separately and when combined but adjusted for hypertension status. The x-axis is the effect 

size per disease risk allele. The vertical solid line is the null effect. 
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Figure 5. Power calculation to detect IEB. Using the analytical formula for IEB we derived 

the minimal necessary sample size to observe IEB in a study at nominal (alpha=0.05, top 

panels) and genome-wide significant level (alpha = 5E-8, bottom panels) with 80% power. 

We fixed the disease prevalence in the general population to 10%. The SNP-disease odds 

ratio was varied between 1 and 2.3 and the observed population prevalence of the disease was 

explored for the full range of 0-100%. The SNP MAF was set to 30% in the left panels and to 

2% in right panel. 
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Supplementary Figures  

Supplementary Figure 1.  Expected linear regression effects of G on the continuous risk 

factor using the full index event bias formula (see Supplementary Text). All notations and 

settings are identical to the ones in Figure 2, except that here the true (G-X) effect varies 

between -0.1 and 0.1. One can observe that, in the case-only scenario, the bias is -0.0862, -

0.0645 and -0.0429 when the true (G-X) effect is 0.1, 0 and -0.1, respectively. 
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Supplementary Figure 2. Diagram of study design for the simulation analysis. 
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Supplementary Figure 3. Enrichment for cases or controls produces spurious 

association. Enrichment for cases or controls produces spurious evidence of association 

between disease risk alleles and a risk factor correlated with the disease (2.5 OR per SD) in a 

scenario (a) where a risk allele (MAF 30%) increases risk with an odds ratio of 1.4 (similar to 

the TCF7L2 type 2 diabetes scenario) and (b) where a protective allele (MAF 2%) reduces 

risk of disease with an odds ratio of 0.5 (similar to the CCND2 type 2 diabetes scenario) in 

two models: unadjusted for disease status (left) and adjusted for disease status (right. The 

grey area represents 95% confidence interval (CI) around the effect estimate. The data is 

from simulated population of 100,000 individuals. 
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Supplementary Figure 4. Real examples of index event bias. Examples of index event 

biased effect of the 11 insulin secretion SNPs on BMI (SD) in the UK Biobank study.   

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2016. ; https://doi.org/10.1101/074781doi: bioRxiv preprint 

https://doi.org/10.1101/074781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Supplementary Figure 5. Real examples of index event bias. Examples of index event 

biased effect of the 25 blood pressure SNPs on BMI (SD) in the UK Biobank study.   
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Supplementary Figure 6. Index event bias in Mendelian randomization studies. (a) Type 

2 diabetes (T2D) -> BMI causal effect estimates as a function of type 2 diabetes disease 

prevalence. We used the analytical formula for index event bias to perform Mendelian 

randomization (MR) using the 11 type 2 diabetes SNPs as instruments in order to derive 

estimate for the causal effect of type 2 diabetes  on BMI based on parameters obtained from 

the UK Biobank data. The formula allowed causal effect estimation for the whole range of 

disease prevalences (0-100%). We overlaid the MR estimates obtained from the UK Biobank 

(all sample, controls only, cases only) and marked them with black disks. Estimates from all 

subsamples indicate significant negative causal effect. However, the comparison to the IEB 

curves reveals that the MR estimates from UK Biobank are compatible with pure index event 

bias with no causal effect. (b) Same analysis was done for hypertension (HTN) -> BMI 

causal effect estimates as a function of hypertension prevalence. This MR used 25 

hypertension SNPs as instruments in order to derive estimate for the causal effect of 

hypertension on BMI. The comparison to the IEB curves reveals that the MR estimates from 

UK Biobank are not compatible with pure index event bias and a distinct negative causal 

effect is detectable. 
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Supplementary Tables 

Supplementary Table 1. The 11 SNPs associated with type 2 diabetes through insulin 

secretion
19

. *EFFECT_ALLELE = Impaired insulin secretion allele. 

SNP LOCUS CHR POSITION BUILD EFFECT 

ALLELE* 

OTHER 

ALLELE 

rs7903146 TCF7L2 10 114748339 b36 T C 

rs10965250 CDKN2A/B 9 22123284 b36 G A 

rs11899863 THADA 2 43472323 b36 C T 

rs10440833 CDKAL1 6 20796100 b36 A T 

rs5015480 HHEX/IDE 10 94455539 b36 C T 

rs3802177 SLC30A8 8 118254206 b36 G A 

rs4607517 GCK 7 44202193 b36 A G 

rs2191349 DGKB/TMEM195 7 15030834 b36 T G 

rs10830963 MTNR1B 11 92348358 b36 G C 

rs340874 PROX1 1 212225879 b36 C T 

rs11708067 ADCY5 3 124548468 b36 A G 
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Supplementary Table 2. Summary details and relevant characteristics. 

Vaiable Statistics UK Biobank ARIC BRIGHT  EXTEND Generation 

Scotland 

GoDARTS 

Age N 

mean (sd) 

120,286 

57 (7.9) 

9324                       

54 (5.7) 

1,851 

57 (11.2) 

5,242 

57 (14.8) 

14,064 

49 (15.1) 

7,128 

59 (11.8) 

Sex Males/Females 56,936/ 63,350 4,396/ 4,928 777/ 1,173 2,237/ 3,005 5,784/ 8,280 3,267/ 3,861 

BMI (kg/m
2
) N 

mean (sd) 

119688 

28 (4.8) 

9324                         

27 (4.8) 

1,897 

27 (3.8) 

5,242 

27 (5.2) 

13,968 

27 (5.4) 

7,071 

29 (5.5) 

Type 2 diabetes N cases/N controls 4,040/ 113,735 810/ 8,514 NA 1,084/ 4,158 434 / 9,282 3,382/ 3,746 

Hypertension N cases/N controls 65,976/ 53,567 1,980/ 7,310 1897 / 0 NA 2,056/ 11,972 3,030/ 3,392 
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Supplementary Table 3. 25 SNPs associated with systolic blood pressure
25

. 

*EFFECT_ALLELE = Blood pressure increasing allele. 

SNP LOCUS CHR POSITION BUILD EFFECT ALLELE* OTHER ALLELE 

rs7129220 ADM 11 10,307,114 36 A G 

rs17249754 ATP2B1 12 88,584,717 36 G A 

rs805303 BAT2/BAT5 6 31,724,345 36 G A 

rs4590817 C10orf107 10 63,137,559 36 G C 

rs1813353 CACNB2(3′) 10 18,747,454 36 T C 

rs4373814 CACNB2(5′) 10 18,459,978 36 C G 

rs11191548 CYP17A1/NT5C2 10 104,836,168 36 T C 

rs1378942 CYP1A1/ULK3 15 72,864,420 36 C A 

rs11953630 EBF1 5 157,777,980 36 C T 

rs1458038 FGF5 4 81,383,747 36 T C 

rs633185 FLJ32810/TMEM133 11 100,098,748 36 C G 

rs2521501 FURIN/FES 15 89,238,392 36 T A 

rs6015450 GNAS/EDN3 20 57,184,512 36 G A 

rs17608766 GOSR2 17 42,368,270 36 C T 

rs1799945 HFE 6 26,199,158 36 G C 

rs1327235 JAG1 20 10,917,030 36 G A 

rs419076 MECOM 3 170,583,580 36 T C 

rs2932538 MOV10 1 113,018,066 36 G A 

rs17367504 MTHFR/NPPB 1 11,785,365 36 A G 

rs1173771 NPR3/C5orf23 5 32,850,785 36 G A 

rs932764 PLCE1 10 95,885,930 36 G A 

rs381815 PLEKHA7 11 16,858,844 36 T C 

rs3184504 SH2B3 12 110,368,991 36 T C 

rs10850411 TBX5/TBX3 12 113,872,179 36 T C 

rs12940887 ZNF652 17 44,757,806 36 T C 
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Supplementary Table 4. The effect of 11 insulin secretion SNPs, BMI and the insulin 

secretion genetic risk score on risk of type 2 diabetes. OR: odds ration; LCI: lower 

confidence interval; UCI: upper confidence interval; P: p-value; N: total sample size. 
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  UK Biobank study Additional studies Meta-analyses of all studies 

EXPOSURE OR LCI UCI P N OR LCI UCI P N OR LCI UCI P N 

TCF7L2 1.40 1.34 1.47 3E-45 117688 1.36 1.29 1.43 7E-30 30725 1.38 1.34 1.43 1E-75 148413 

THADA 1.16 1.08 1.26 2E-4 117688 1.19 1.09 1.30 0.0002 25668 1.17 1.11 1.24 7E-8 143356 

CDKN2AB 1.21 1.14 1.29 3E-9 117688 1.13 1.05 1.20 0.0005 28940 1.17 1.12 1.23 6E-12 146628 

SLC30A8 1.13 1.08 1.19 1E-8 117688 1.17 1.11 1.23 2E-8 28959 1.15 1.11 1.19 1E-14 146647 

CDKAL1 1.16 1.10 1.22 6E-9 117688 1.09 1.04 1.15 0.0008 30734 1.12 1.08 1.16 3E-10 148422 

MTNR1B 1.11 1.06 1.17 2E-5 117688 1.10 1.04 1.16 0.0009 30466 1.11 1.07 1.15 8E-08 148154 

HHEX 1.14 1.09 1.20 1E-8 117688 1.07 1.02 1.12 0.01 30738 1.10 1.07 1.14 9E-09 148426 

GCK 1.12 1.06 1.19 9E-5 117688 1.09 1.01 1.16 0.02 25662 1.11 1.06 1.16 0.000006 143350 

PROX1 1.08 1.03 1.13 0.001 117688 1.07 1.01 1.13 0.01 23883 1.08 1.04 1.12 0.00006 141571 

ADCY5 1.05 1.00 1.11 0.05 117688 1.12 1.06 1.20 0.0001 25657 1.08 1.04 1.12 0.0002 143345 

DGKB 1.12 1.07 1.17 1E-6 117688 0.97 0.92 1.02 0.2 21091 1.05 1.02 1.09 0.003 138779 

BMI (per SD) 2.47 2.39 2.55 0 117120 2.30 2.21 2.38 0 34974 2.39 2.34 2.45 0 152094 

Insulin secretion  

genetic risk score 

1.24 1.21 1.28 7E-44 117688 1.19 1.15 1.23 2E-23 30486 1.22 1.19 1.25 2E-72 148174 
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Supplementary Table 5. Association between 11 insulin secretion SNPs and BMI (SD). 

Result is from the meta-analysis of the UK Biobank (all individuals unstratified and 

unadjusted) and 4 additional studies: Generation Scotland (all individuals unstratified and 

unadjusted), GoDarts (cases and controls analysed as strata), EXTEND (cases and controls 

analysed as strata) and ARIC (all individuals unstratified and unadjusted). LCI: lower 

confidence interval; UCI: upper confidence interval; P: p-value. 

OUTCOME BETA LCI UCI P 

TCF7L2 -0.027 -0.035 -0.019 6E-11 

THADA -0.008 -0.020 0.004 0.2 

CDKN2AB -0.009 -0.019 0.000 0.06 

SLC30A8 -0.008 -0.016 0.000 0.05 

CDKAL1 -0.010 -0.018 -0.002 0.02 

MTNR1B 0.010 0.002 0.018 0.02 

HHEX -0.004 -0.011 0.003 0.2 

GCK -0.006 -0.016 0.003 0.2 

PROX1 -0.001 -0.008 0.006 0.8 

ADCY5 -0.005 -0.013 0.003 0.2 

DGKB -0.002 -0.009 0.006 0.7 
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Supplementary Table 6. The effect of 25 blood pressure SNPs, BMI and the blood 

pressure genetic risk score on risk of hypertension. OR: odds ration; LCI: lower 

confidence interval; UCI: upper confidence interval; P: p-value; N: total sample size. 
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 UK Biobank study Additional studies Meta-analyses of all studies 

EXPOSURE OR LCI UCI P N OR LCI UCI P N OR LCI UCI P N 

FGF5 1.11 1.08 1.13 5E-25 119504 1.12 1.07 1.18 5E-07 29508 1.11 1.09 1.14 6E-25 149012 

MTHFR 1.11 1.09 1.14 5E-20 119504 1.11 1.05 1.18 0.0002 29567 1.11 1.09 1.13 6E-23 149071 

CYP17A1 1.10 1.06 1.13 2E-8 119504 1.14 1.06 1.23 0.0006 29579 1.11 1.07 1.14 2E-11 149083 

GNAS 1.09 1.06 1.12 1E-10 119504 1.12 1.06 1.19 0.0002 29570 1.10 1.07 1.12 1 E-12 149074 

ATP2B1 1.09 1.06 1.11 2E-12 119504 1.13 1.05 1.21 0.0008 23163 1.09 1.07 1.12 1E-15 142667 

FURIN 1.08 1.06 1.10 2E-15 119504 1.08 1.02 1.13 0.003 25434 1.08 1.06 1.10 5E-18 144938 

FLJ32810 1.08 1.06 1.10 1E-14 119504 1.10 1.05 1.15 0.0001 25243 1.08 1.06 1.10 2E-19 144747 

NPR3 1.08 1.06 1.10 2E-18 119504 1.06 1.02 1.11 0.005 25532 1.08 1.06 1.10 9E-18 145036 

CACNB2_3 1.07 1.05 1.09 6E-14 119504 1.06 1.01 1.12 0.03 23162 1.07 1.05 1.09 1E-13 142666 

SH2B3 1.07 1.05 1.09 3E-15 119504 1.00 0.95 1.05 0.95 19118 1.06 1.04 1.08 2E-11 138622 

GOSR2 1.06 1.04 1.09 1E-6 119504 1.10 1.03 1.16 0.002 29578 1.06 1.04 1.09 1E-8 149082 

ADM 1.06 1.03 1.09 2E-5 119504 1.05 0.98 1.12 0.1 29512 1.06 1.03 1.09 0.00002 149016 

EBF1 1.06 1.04 1.08 2E-10 119504 1.06 1.01 1.11 0.01 25460 1.06 1.04 1.08 5E-11 144964 

HFE 1.06 1.04 1.09 4E-7 119504 1.07 1.01 1.13 0.02 29486 1.06 1.04 1.08 9E-8 148990 

CYP1A1 1.05 1.03 1.07 3E-8 119504 1.09 1.04 1.14 0.0001 29577 1.06 1.04 1.07 9E-10 149081 

C10orf107 1.06 1.04 1.09 2E-7 119504 1.00 0.94 1.05 0.9 29463 1.05 1.03 1.07 9E-6 148967 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2016. ; https://doi.org/10.1101/074781doi: bioRxiv preprint 

https://doi.org/10.1101/074781
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

MECOM 1.04 1.02 1.06 1E-5 119504 1.06 1.01 1.11 0.01 23162 1.04 1.02 1.06 4E-6 142666 

MOV10 1.04 1.02 1.06 3E-4 119504 1.05 1.00 1.10 0.06 29575 1.04 1.02 1.06 0.00001 149079 

ZNF652 1.04 1.02 1.06 3E-5 119504 1.03 0.99 1.07 0.2 29577 1.04 1.02 1.06 0.00003 149081 

CACNB2_5 1.03 1.02 1.05 1E-4 119504 1.05 1.00 1.11 0.05 23106 1.03 1.02 1.05 0.00001 142610 

TBX5 1.03 1.01 1.05 0.006 119504 1.02 0.97 1.06 0.5 29516 1.03 1.01 1.05 0.003 149020 

PLCE1 1.03 1.01 1.05 3E-4 119504 1.01 0.97 1.05 0.6 29519 1.03 1.01 1.04 0.004 149023 

JAG1 1.03 1.01 1.04 0.005 119504 1.02 0.97 1.06 0.5 25532 1.03 1.01 1.04 0.00007 145036 

PLEKHA7 1.02 1.00 1.04 0.06 119504 1.04 0.98 1.10 0.2 23161 1.02 1.00 1.04 0.02 142665 

BAT2 1.01 1.00 1.03 0.1 119504 1.02 0.98 1.06 0.3 29563 1.01 1.00 1.03 0.1 149067 

BMI (per SD) 1.63 1.61 1.65 0 118923 1.57 1.52 1.62 2E-190 29575 1.62 1.60 1.64 <E-200 148498 

Hypertension  

genetic risk 

score 

1.20 1.18 1.21 8E-180 119504 1.20 1.16 1.24 7E-31 25053 1.20 1.19 1.21 6E-207 144557 
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Supplementary Table 7. Association between 25 blood pressure SNPs and BMI (SD). 

Result is from the meta-analysis of the UK Biobank (all individuals unstratified and 

unadjusted) and 4 additional studies: Generation Scotland (all individuals unstratified and 

unadjusted) EXTEND (all individuals unstratified and unadjusted), BRIGHT (cases only) and 

ARIC (all individuals unstratified and unadjusted). LCI: lower confidence interval; UCI: 

upper confidence interval; P: p-value. 

OUTCOME BETA LCI UCI P 

FGF5 -0.002 -0.010 0.006 0.6 

MTHFR -0.008 -0.018 0.002 0.1 

CYP17A1 -0.025 -0.039 -0.012 0.0003 

GNAS -0.004 -0.015 0.007 0.5 

ATP2B1 -0.003 -0.013 0.007 0.5 

FURIN -0.002 -0.010 0.006 0.6 

FLJ32810 -0.009 -0.017 0.000 0.04 

NPR3 0.004 -0.004 0.012 0.3 

CACNB2_3 -0.009 -0.017 -0.001 0.04 

SH2B3 -0.010 -0.017 -0.002 0.01 

GOSR2 -0.002 -0.013 0.008 0.7 

ADM -0.002 -0.014 0.009 0.7 

EBF1 -0.001 -0.009 0.006 0.7 

HFE 0.001 -0.009 0.011 0.9 

CYP1A1 -0.012 -0.020 -0.004 0.002 

C10orf107 -0.006 -0.016 0.004 0.2 

MECOM 0.001 -0.007 0.008 0.8 

MOV10 0.008 0.000 0.016 0.06 

ZNF652 0.009 0.001 0.016 0.02 

CACNB2_5 -0.010 -0.017 -0.002 0.01 

TBX5 -0.004 -0.012 0.004 0.4 

PLCE1 -0.003 -0.011 0.004 0.4 

JAG1 -0.002 -0.009 0.006 0.6 

PLEKHA7 -0.005 -0.014 0.003 0.2 

BAT2 -0.012 -0.020 -0.005 0.002 
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