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Abstract

As genetic association studies increase in size to 100,000s of individuals, subtle biases may
influence conclusions. One possible bias is “index event bias” (IEB), also called “collider
bias”, caused by the stratification by, or enrichment for, disease status when testing
associations between gene variants and a disease-associated trait. We first provided a
statistical framework for quantifying IEB then identified real examples of IEB in a range of
study and analytical designs. We observed evidence of biased associations for some disease
alleles and genetic risk scores, even in population-based studies. For example, a genetic risk
score consisting of type 2 diabetes variants was associated with lower BMI in 113,203 type 2
diabetes controls from the population based UK Biobank study (-0.010 SDs BMI per allele,
P=5E-4), entirely driven by IEB. Three of 11 individual type 2 diabetes risk alleles, and 10 of
25 hypertension alleles were associated with lower BMI at p<0.05 in UK Biobank when
analyzing disease free individuals only, of which six hypertension alleles remained associated
at p<0.05 after correction for IEB. Our analysis suggested that the associations between
CCND2 and TCF7L2 diabetes risk alleles and BMI could (at least partially) be explained by
IEB. Variants remaining associated after correction may be pleiotropic and include those in
CYP17ALl (allele associated with hypertension risk and lower BMI). In conclusion, IEB may
result in false positive or negative associations in very large studies stratified or strongly

enriched for/against disease cases.
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Introduction

Genome wide association studies (GWAS) in increasingly large sample sizes have resulted in
the identification of many 100s of genetic variants associated with common diseases'. We
assume that the results from GWAS are robust to potential confounding factors and biases
because genetic variants are inherited randomly and not influenced by disease processes
throughout life. These assumptions tend to hold provided population substructure is
accounted for using methods, which are now standard*®. Researchers may also run genetic
association studies in stratified samples *? to reduce the non-genetic variation in the trait and
improve statistical power to detect variants not acting through a disease mechanism.
However, performing an association test between a genetic variant and a continuous trait in a
sample that is stratified, depleted or enriched for a disease outcome (collider) that is
associated with both the genetic variant and the trait can result in paradoxical observations

(Figure 1). Such bias is termed index event bias (IEB) or collider-stratification bias’.

An example of an index event biased association is that between type 2 diabetes risk alleles
and lower BMI observed within diabetes case or control strata®°. In these examples the
strata are enriched (type 2 diabetes cases) or depleted (type 2 diabetes controls) by disease
status. Bias occurs because non-diabetic individuals with a diabetes protective allele are able
to remain normo-glycaemic at higher BMIs than individuals without the protective allele,
whilst individuals with a risk allele will tend to develop diabetes at lower BMIs compared to
those without the risk allele. Considering this type of bias is very important because many
large meta-analytic studies often perform GWAS analyses of traits in samples stratified by,
enriched or depleted for disease status. Such bias can have different impacts on genetic
associations and their interpretation, for example (a) in the case of true (positive) pleiotropy,

the effect of the gene variant on the trait may be masked/reduced by IEB (false negative
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finding); (b) in the case of no pleiotropy, a false (and often counterintuitive) association
between gene variant and trait can be observed (false positive finding); (c) using a genetic
variant as an instrumental variable in a Mendelian randomization analysis could result in
false inferences about causal relationships between the disease and a correlated trait if

estimates of that variants’ effects on the trait are biased.

A research area closely related to IEB is secondary trait analysis in case-control sample
design. Several approaches have been proposed in these settings to estimate the true effect
between a risk factor and a genetic variant in the general population sample™™. Most of
these methods yield unbiased estimators that are robust to model misspecifications and work
for a wide range of noise distributions. In this paper we applied the SPREG program®® to
correct for IEB for real data. Note, however, these methods provide only effect size
estimation, but no insight how the bias explicitly depends on parameters such as (a) the extent
of case-enrichment/depletion; (b) the strength of associations between the SNP, the risk

factor and the collider; and (c) SNPs’ allele frequency.

In this study, we tested the extent to which large genetic association studies may be impacted
by IEB due to inadvertent sample selection leading to enrichment or depletion of disease
cases. We first provided the statistical framework for quantifying IEB in a study, then used a
combination of real and simulated data to: (a) identify and quantify real examples of IEB,
including a single large study (120,000 individuals from the UK Biobank) and a meta-
analysis of independent studies and (b) demonstrate that IEBs can occur in most types of
genetic association study designs, e.g. 1:1 case-control designs to case only and control only
studies, case or control enriched studies and when case status is used as a covariate. The
analytical formula is implemented in an R package and available for download from

http://wp.unil.ch/sgg/files/2016/01/IndexEventBias.zip.
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Material and Methods
Model formulation

We assumed a liability scale disease model, where a genetic variant (G) and a continuous risk
factor (X) influences the development of a disease (). For simplicity the genetic marker was
modeled by a binomially distributed random variable G ~ B(2,q), where q is the allele
frequency of the genetic variant in the general population. The second trait, from now on
referred to as the “continuous risk factor” (X) was allowed to be associated with G and
assumed to follow a standard normal distribution (X |G = g)~ N(y(g9 — 2q),1 — 2y%q(1 -
q)). The disease status is then modeled as

Y={1ifZ>ZO

— ®-1(1—
0if 7 <z wherezyg = &7 (1 —my)

with
(ZIX=x,6=g)~N(a*x+ B*(g—2q),0%),

where 1 is the disease prevalence in the general population; « is the true effect size on the
liability scale of the continuous risk factor (X) on the disease outcome (Y); B is the (risk-

factor independent) effect of the genetic variant (G) on the disease outcome (Y); and g2 =

1— a?— 2B%q(1 — q).
Link between liability scale and logistic models

For simplicity, we derived the explicit analytical formula for IEB estimation for the liability
scale model. This however does not prevent its applicability to parameters derived from the
logistic regression model. By re-parameterizing the models one can reach indistinguishable

properties’’. Namely, we calculate the probability of (Y=0 | X, G) for data simulated from the
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logistic model and optimize the liability scale model parameters such that this probability is
matched as close as possible for each simulated data point. We noticed that the models are
indistinguishable when the parameter optimization is done for a simulated population with
similar disease prevalence to the tested sample. The details of this procedure are given in the

Appendix (section 2.3).
Analytical formula for IEB

The extent of IEB can be analytically derived in the case of the liability scale (probit) disease
model. Assume that disease frequency in the general population is m,, the allele frequencies
of the genotype in pure control and pure case populations are g, and q,, respectively. We
denote the difference between these frequencies by &,. Let us consider now a sample with

frequency of cases. The allele frequency in this sample is

e = qot+ m*(q1 — qo) = qo + m* 4,

IEB occurs when this disease prevalence differs from the general population prevalence ().
When > m,,, we observe an enrichment of cases, while in case of = < m,, we observe an
enrichment of controls. In the Supplementary Text we derived the per-allele linear regression
effect size of G on X in the general case, but here for simplicity we present the formula
assuming y = 0, i.e. that the true underlying effect of the genotype on the risk factor is zero.
We observed that this simplification makes very little difference in practice (Supplementary

Figure 1). By introducing the quantities
oz6=1— 2B%q(1—q)

_ zo — B —2q)

0z|6
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we can express the expectation of the linear regression effect size estimate of G on X as

E[77] a T — T,
Y™ e — ) o (1 — 1)

2q(1 — Q)p(wy) + 2q°p(w,) — 2¢(2p) (5, + %))
0z|6
where ¢() denotes the probability density function (pdf) of the standard Gaussian
distribution. Note that when the disease prevalence matches the general population
prevalence (i.e. m = m,), the expected effect of G on X is unbiased. The formula also shows
that the bias is a second order rational function of the prevalence (rr). For most settings the
quadratic and linear terms of the denominator are small compared to that of the numerator,
thus the bias as a function of the fraction of cases () closely resembles a simple parabolic
function. It is worth noting that the coefficient of the quadratic term (in ) in the numerator

( (P(ZO)6q

- ma) has the opposite sign compared to a, meaning that when X is a risk factor
for the disease the function is a downward looking parabola. This explains why disease risk
alleles can show spurious (and counterintuitive) protective effect on traits positively
correlated with the disease. We also derived a formula for the case when we do not assume

that the true effect is zero; i.e. when there is a true pleiotropy. The full derivation of the

formula can be found in the Appendix (Section 2).

Note that this formula assumes that the true parameters, a, £, 90, 91, 9, T are known. Hence,
its primary purpose is not to estimate the bias from data, but to reveal the intricate

relationship between the true underlying model parameters and the resulting IEB.

We extended the formula to situations when not only the sample is enriched or depleted for a
disease, but also when in addition the continuous risk factor is corrected for the disease

status:
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et (1= ) = B4 @ 9(20) =

qTL’(l - qn) -2 77-'(1 - n)6q2

E7z 1=

The full derivation of this formula is given in the Appendix (Section 3). One can observe that
correcting for disease status yields biased estimates even when the study disease prevalence
agrees with the general population prevalence. In this situation we showed that this formula

simplifies to that of Aschard®.

These analytical formulae for IEB allow us to quantify genetic effects (estimated from real
data) for IEB. The key quantities necessary for the formulae are: (i) the allele frequency of
the genetic variant in control (qo) and disease (g:) populations; (ii) the association effect of
the SNP on the disease status (f); (iii) the effect of the continuous risk factor on the disease
status («); (iv) the disease prevalence in the study population (z) and (v) the general
population disease prevalence (m). Estimating these quantities is out of the scope of this
paper. We use the formula to show the extent of the bias for various realistic parameter

settings informed from large GWAS data..
Data simulation to confirm the analytical formula

To investigate how closely the analytical formula recapitulates true IEB, we simulated data to
create different hypothetical scenarios similar to data used in genetic studies
(Supplementary Figure 2). For one million individuals, we simulated binomially distributed
SNP data (G), a normally distributed continuous risk factor (X) and binary disease status
using the liability threshold model described above. The minor allele frequency (MAF) of
the genetic marker was explored in the range of 0.02, 0.05, 0.1, 0.3 and 0.5; disease
prevalence in the general population was set to 1%, 5% and 10%. The effect of the

continuous risk factor (X) on the disease outcome (Y) was varied in a range equivalent to
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ORs of 1.10 to 4 (1.10, 1.25, 1.50, 1.75, 2, 3 and 4) per 1 standard deviation (SD) increase in
X. The effect (B) of the genetic variant (G) on the disease outcome (Y) was explored for a

range equivalent to odds ratios (OR) of 1.05, 1.2, 1.3, 1.5, 1.8 and 2.

Within each simulated population, we randomly sampled 100,000 controls (individuals with
Y = 0) and ran a linear regression test between the genetic variant G and the continuous risk
factor X. We then performed 100 iterations each time replacing 1,000 random controls
(individuals with Y = 0) with 1,000 random cases (individuals with Y = 1) and ran a linear
regression test between G and X. Using this approach, our first iteration represented a
control-only population of 100,000 unaffected individuals, the 50" iteration a case-control
population of 50,000 controls vs. 50,000 cases and the final, 100" iteration a case-only

population of 100,000 affected individuals.
IEB in real data

To identify and quantify real examples of IEB, we tested how IEB occurs in genetic studies

in 2 different scenarios using different disease outcomes and genetic variants.

(1) We tested whether or not type 2 diabetes risk alleles, acting predominantly through
insulin secretion, have a paradoxical (opposite association) effect on BMI, a strong
continuous risk factor for type 2 diabetes. We selected 11 SNPs associated with type 2
diabetes that have known robust associations with insulin secretion, the intermediate trait
most relevant to diabetes risk *° (Supplementary Table 1). We analysed the 11 SNPs
separately and as a genetic risk score (GRS) in two study types: (i) a single very large
population based study: 120,286 individuals from the first release of genetic data from the
UK Biobank study®® and (ii) a meta-analysis of 4 independent studies: EXTEND® (N =

5,097), GODARTS? (N = 7,128), Generation Scotland Scottish Family Health Study
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(GS:SFHS)?® (N = 8,195) and ARIC** (N = 9,324) with a range of study designs and diabetes
status available (Supplementary Table 2). We tested the association between individual
SNPs and the 11-SNP insulin secretion GRS and BMI in all samples, in all samples adjusted
for type 2 diabetes status, in diabetic cases only and in controls only. We defined type 2
diabetes cases as individuals who had: (1) HbAlc >6.4% and/or fasting glucose >7 mmol/L,
(2) age at diagnosis >35 and <70 years; (3) no need for insulin treatment within 1 year of
diagnosis (except in ARIC). We defined controls as individuals who did not meet any of
these criteria and were not diagnosed with any other types of diabetes. We additionally tested
the association between the CCND2 type 2 diabetes protective allele and BMI as the allele

was recently shown to be associated with higher BMI.

(2) We tested whether or not 26 SNPs robustly associated with systolic blood pressure have a
paradoxical (opposite) effect on BMI, a continuous risk factor for high blood pressure® . We
excluded the variant near SLC39A8 from the GRS as this variant is directly associated with
several traits including BMI?® and HDL-cholesterol?’ levels (Supplementary Table 3). We
analysed the 25 SNPs individually and as a GRS in two study types: (i) a single very large
study: 120,286 individuals from the first release of genetic data from the UK Biobank study?
and (ii) a meta-analysis of 4 independent studies with blood pressure available: GODARTS?
(N = 6643), Generation Scotland Scottish Family Health Study (GS:SFHS)?® (N = 8195),
ARIC* (N= 9,290) and BRIGHT? (N = 1808) (Supplementary Table 2). We tested the
association between the individual SNPs and the 25-SNP blood pressure GRS and BMI in all
samples, in all samples adjusted for hypertension status, in hypertensive cases only and in
normotensive controls only. We defined hypertensive cases as individuals with systolic blood
pressure > 140 mmHg or diastolic blood pressure > 90 mmHg or report use of anti-

hypertensive medications. We defined normotensive controls as individuals with systolic and

diastolic blood pressure below these thresholds, and not on medications.


https://doi.org/10.1101/074781
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074781; this version posted September 12, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Statistical analysis in real data

In the relevant studies, we corrected BMI for age and sex and other covariates (for the UK
Biobank study this included five within UK genetic principal components, genotyping
platform, study center in the UK Biobank study). Residuals were inverse-normal transformed.
In each study, we generated genetic risk scores (GRS) by calculating the number of disease
risk alleles carried by each individual. We then combined the association results using fixed-
effects inverse variance-weighted meta-analysis. To account for IEB we applied the state-of-
the-art method of Lin and Zeng'® (implemented in the software SPREG). This program
needs an estimate of the general population prevalence of the examined diseases. Hence, we
derived an estimate for type 2 diabetes and hypertension prevalence for a general UK sub-
population that has the same joint age- and sex-distribution as the UK Biobank sample. For
this we used sex- and age-group-specific prevalence values from the IDF Atlas *° (10 year
bins) for type 2 diabetes and from the NIH Health Survey for England 2011

[http://digital.nhs.uk/catalogue/PUB09300/HSE2011-Ch3-Hypertension.pdf] (10 year bins)

for hypertension. Then we weighted these prevalence values with the proportion of UK
Biobank participants that fell into each stratum. This yielded prevalence estimates of 10.15%

for type 2 diabetes and 38.43% for hypertension.
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Results

IEB occurs in a range of different genetic association study designs — theory and simulated

data.

Our results from simulated data and theory provided examples of IEBs where the direction of
the association between the genetic risk allele and the risk factor depends on the proportion of
cases and controls in the study. In all scenarios involving a disease risk allele with no real
association to the intermediate risk factor, we observed U-shaped artefactual effect estimates
between the disease risk allele and the risk factor as the proportion of cases moved from 0%
to 100%: first, in a control only situation, IEB occurred where the disease risk alleles were
associated with lower values of the risk factor, there was then no association when the
proportion of cases represented exactly the background population, then an association
between disease risk alleles and higher values of the risk factor, and then back to no
association and finally an association between disease risk alleles and lower values of the risk
factor in case only scenarios (Figure 2 [our theoretical formula]; Supplementary Figure 3
[simulated data]). The extent of the bias is stronger in case only compared to control only
scenarios when the disease frequency is less than 50% (as with most diseases). In the
examples in Figure 2 (and Supplementary Figure 3), we modeled a disease risk allele and a
protective allele with properties similar to those of the type 2 diabetes alleles at TCF7L2 and
CCND2 respectively. We observed spurious associations between the disease alleles and
lower and higher values of the continuous risk factor, depending on the proportion of cases
and despite the lack of a genuine association between the genetic risk allele and the risk
factor. When the examined study population matches the underlying general population in
terms of disease prevalence (5% in case of our example), no bias is observed (Figure 2). It

has been shown that for many scenarios correcting for disease status alleviates the bias®, but
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such correction is clearly of no use in case-only, and control-only designs and it introduces
bias even for samples representative of the general population. Note that in our settings the

bias was not resolved, but often exacerbated by correcting for disease status (Figure 2).

Differences in prevalence for Type 2 diabetes and hypertension in the UK Biobank and

general UK population

Index event bias arises due to differences in the (collider) disease prevalence in the study
population and the matched general population. Hence, it is crucial to derived accurate
estimates for type 2 diabetes and hypertension prevalence for a general UK sub-population
that has the same joint age- and sex-distribution as the UK Biobank. Using data from the IDF
Atlas ?° and the NIH Health Survey for England, we estimated that 10.15% and 38.43% of a
sex- and age-matched sub-population of the UK would be diabetic and hypertensive,
respectively (see Methods). These values clearly differ from the prevalence of type 2 diabetes

(3.4%) and hypertension (55.2%) observed in the UK Biobank.

Individual alleles and genetic risk scores associated with higher risk of type 2 diabetes were

associated with lower BMI in real data

A relatively high ability to secrete insulin may lead to a relative protection from type 2
diabetes but may also lead to higher BMI because insulin has anabolic properties. Studies
may therefore wish to use common variants associated with insulin secretion to test the role
of insulin secretion on BMI. However, there may be a complex relationship because higher
BMI increases diabetes risk. IEB will add to the complexity of interpreting potential overlap
of genetic associations for these phenotypes. We tested 11 variants associated with type 2
diabetes through an insulin secretion mechanism, for potentially spurious associations with
lower levels of the continuous risk factor for type 2 diabetes, BMI. Details of how these

variants were associated with type 2 diabetes in UK Biobank and 4 additional studies are
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given in Supplementary Table 4. Using a total of 4,003 type 2 diabetes cases and 113,203
controls from the UK Biobank, two of the 11 variants were associated with lower BMI in all
individuals (unstratified and unadjusted), three in controls only, three in cases only and five
in all individuals when adjusted for type 2 diabetes status at p<0.05 (Table 1). When meta-
analysing the UK Biobank and four additional studies in the same analysis design as a
GWAS meta-analysis (all individuals together for population based studies, stratified by case
control status for case control studies) two type 2 diabetes risk alleles were associated at
p<0.05 with lower BMI (Supplementary Table 5). In the UK Biobank study, the effect sizes
of type 2 diabetes risk alleles with lower BMI were consistent with IEB (Supplementary
Figure 4). In accordance with our formula, BMI “effect” size estimates were correlated with
the effect estimates for type 2 diabetes; r = -0.85 (p=8E-4), -0.87 (p=4E-4) and -0.87 (p=5E-
4) in controls, cases and all individuals (adjusted for type 2 diabetes status), respectively

(Supplementary Figure 4).

We next reran the SNP-BMI associations, using the statistical software SPREG, which
accounts for IEB'®. Prior to this correction, the risk allele at TCF7L2 was associated with
lower BMI in all scenarios (the overall population as well as stratified and corrected data -
Table 1). After correcting for IEB there was no evidence (at p<0.005; p-value corrected for
multiple testing) for an association between TCF7L2 and lower BMI (Table 1). In contrast,
the type 2 diabetes risk allele at MTNR1B was the only allele associated with higher BMI in
the overall population (p = 0.02); when accounting for IEB it was even more strongly
associated (0.016 SD [0.007, 0.026], P=0.001) (Table 1, Figure 3). The type 2 diabetes
protective allele in CCND2 (conferring the strongest effect on type 2 diabetes; 0.59 OR
[0.48,0.73]; p = 1E-6) had the strongest effect estimate on BMI (0.06 SD [0.03,0.09]; p =
0.0004), which became much weaker after correcting for IEB (0.003 SD [-0.029,0.035]; p =

0.9).
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We next examined a genetic risk score (GRS) for type 2 diabetes. Details of how this GRS
was associated with type 2 diabetes are given in Supplementary Table 4. In the UK Biobank
study, the 11-SNP GRS was not associated with BMI when analysed in all samples combined
(-0.004 SD per allele [-0.010,0.001]; p=0.1; N=119,688; Table 2). In contrast, the 11-SNP
GRS associated with higher risk of type 2 diabetes was associated with lower BMI in all 3 of
the following designs: (i) controls only (-0.010 SD per allele [-0.016,-0.005]; p=5E-4;
N=113,203), (ii) in cases only (-0.036 SD per allele [-0.065,-0.007]; p=0.01; N=4,003) and
(iii) in all individuals when adjusted for type 2 diabetes status (-0.011 SD per allele [-0.017,-
0.006]; p=1E-4; N=117,206; Table 2). In the context of a Mendelian randomization analysis,
these results could be misinterpreted as evidence for the biologically plausible hypothesis that
lower insulin secretion leads to lower BMI. However the associations are consistent with
IEB. Results from a meta-analysis of 4 additional studies (representing a scenario similar to

that of many GWAS meta-analyses) were similar (Table 2 and Figure 4a).

Individual alleles and genetic risk scores associated with higher risk of hypertension were

associated with lower BMI

We next tested whether alleles associated with higher risk of hypertension were paradoxically
associated with lower BMI, a continuous risk factor for hypertension, but with a weaker
effect than that with type 2 diabetes. Such associations could be due to genuine pleiotropic
effects of alleles on hypertension and lower BMI, or due to IEB, or a combination of the two.
We tested 25 variants associated with blood pressure. Details of how these variants were
associated with hypertension in UK Biobank and four additional studies are given in
Supplementary Table 6. Using a total of 65,584 hypertension cases and 53,377 controls
from the UK Biobank, six of the 25 variants were associated with lower BMI in all

individuals (unstratified and unadjusted), 10 in controls only, 10 in cases only and 12 in all
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individuals when adjusted for hypertension status (at p<0.05; Table 3). When meta-analysing
the UK Biobank and four additional studies, in the same analysis design as a GWAS meta-
analysis (all individuals together for population based studies, stratified by case control status
for case control studies), eight hypertension risk alleles were associated at p<0.05 with lower
BMI (Supplementary Table 7). The effect sizes of hypertension risk alleles with lower BMI
were consistent with IEB. As with type 2 diabetes alleles, BMI “effect” sizes were correlated
with the effect size on hypertension: r = -0.38 (p=0.06), -0.58 (p=0.002) and -0.55 (p=0.005)
in controls, cases and all individuals (adjusted for hypertension status), respectively

(Supplementary Figure 5).

Using SPREG, out of the 25 hypertension SNPs only CYP17A1 was associated with lower
BMI in the IEB corrected analysis (-0.028 [-0.044,-0.012]; P=3E-4) and Bonferroni
correction for the number of SNPs tested (Table 3). Five other variants (those in or near
BAT2, CACNB2 (2 variants), CYP1Al, and SH2B3) were associated with lower BMI at
p<0.05 but did not persist after Bonferroni correction. Nevertheless, six variants reaching
IEB-corrected nominally significant P-values is more than the ~1 expected by chance
(enrichment P = 1.69E-4) and suggests variants in some of these genes have pleiotropic
effects with alleles associated with lower BMI and higher risk of hypertension. Consistent
with this evidence of pleiotropy, the variant in SH2B3 is associated with multiple traits

including those related to autoimmunity as well as metabolic traits**,

We next considered a genetic risk score of hypertension SNPs. Details of how this GRS was
associated with hypertension are given in Supplementary Table 6). In the UK Biobank
study, the 25-SNP hypertension GRS was associated with lower BMI in all samples
combined (-0.014 SD per allele [-0.020,-0.008]; p=1E-6; N=119,688) and in all 3 of the

following designs: (i) in controls only (-0.034 SD per allele [-0.043,-0.026]; p=2E-16;
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N=53,377), in cases only (-0.031 SD per allele [-0.039,-0.024]; p=4E-16; N=65,584) and in
all samples when adjusted for hypertension status (-0.033 SD per allele [-0.038,-0.027];
p=7E-31; N=118,961; Table 2). Results from a meta-analysis of 4 studies (representing a

GWAS meta-analysis) were similar (Table 2 and Figure 4b).
Large sample sizes are necessary to observe false positive associations due to IEB

Our analytical formula enabled us to quantify the necessary sample size in order to observe a
false positive association with a continuous risk factor due to IEB at any significance level
alpha with for example, 80% power. The necessary sample size depends on five parameters:
significance level, disease prevalence, strength of association between the genetic risk factor
and the disease, strength of association between the continuous risk factor and the disease and
frequency of the genetic risk allele. We fixed the continuous risk factor-disease association
(OR=2.5 per SD) and tested two MAF scenarios (low, 2% and medium 30%) and two
significance levels (0.05 and 5E-8). The remaining two parameters (SNP-disease association
strength and disease prevalence) we varied freely and computed the minimal sample size
necessary to detect a false association (Figure 5). For example, in analyses stratified by
disease we would need 23,542 cases or 208,267 controls to detect a biased association at p-
value 5x107® with a probability of 80% when the disease risk allele had a frequency of 30%,
the disease prevalence was 10% and a 1 SD higher value of the continuous risk factor was
associated with an odds ratio of 2.5 for the disease. This scenario is similar to that for the risk

allele at TCF7L2 and BMI°,
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Discussion

Our analyses of real and simulated data showed that index event bias will often occur in
genetic association studies but the extent depends on several factors. These factors include
the association strength between the trait being analysed (that we termed the “continuous risk
factor”) and the disease, where the disease is over- or under-represented in the study
population compared to the background population. The other factors are disease prevalence,

sample size, and the effect size and minor allele frequency of the disease associated variant.

Our results go beyond those of previous studies examining index event biases in several
ways. First we provide real examples of likely biased genetic associations in the context of
studies of 100,000s of individuals, including those involving individual variants and
combinations of variants. Second, we provide a formula for quantifying the bias as a function
of key parameters even when only summary level data is provided. We also extended the
work of Aschard et al*®, to test how the combination of correcting for disease status in

disease-enriched or depleted samples can introduce biases.

Our results have important implications for all types of large genetic association studies, and
are especially relevant given that analyses are now possible in 100,000s of individuals, and
rarely will these samples be perfectly representative of the background populations — for
example, even population based studies such as those of Decode and the UK Biobank are
likely not truly representative of the background population in the prevalence of all disease
outcomes. Our analyses of real and simulated data showed that the best study design to avoid
index event biased associations is using all individuals from a population-based study with no
adjustment for disease status. Bias is strongest in case only designs (assuming the disease
frequency is <50%) but it is also observed in control only designs, or in analysis combining

cases and controls and adjusting for disease status (the latter situation is discussed in Aschard
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et al'®). To better understand these observations, we derived an analytical formula that
estimates IEB and confirmed its validity through simulation studies. Our formula indicates
that this bias can be negative or positive depending on the proportion of cases and controls.
The results indicate that this bias cannot be resolved by correcting for disease status as a
covariate. If anything, such correction exacerbates biased effect estimates. Our results also
indicate that the impact of IEB is substantially larger than the bias caused by improper

covariate correction in a disease-representative population (described by Aschard et al'®).

In a meta-analysis it may be difficult to assess the extent to which IEB is contributing to an
association - most existing large scale genetic association studies are mixtures of all types of
study designs, and, for studies of continuous traits (such as BMI, lipid levels or blood
pressure) disease cases and controls are often analysed as separate strata before meta-analysis
with population-based studies, which themselves could be over or under represented with

disease cases.

Our settings for the analytical formula were limited to a liability scale disease model and
normal linear regression applied for the risk trait. By model re-parameterization we extended
it to the logistic disease model and through simulations we saw that it works equally well
(data not shown). These are the most often used models in meta-analytic GWAS studies;

hence we believe that our findings are extremely relevant for almost all GWAS analysis.

Whilst index event biases are likely to exist in many studies, for associations modelling
individual variants the bias is unlikely to cause false positive or false negative associations
unless sample sizes are very large or stratified, strongly depleted of, or enriched for, disease
cases. For example, we tested known common type 2 diabetes variants for association with a
strong risk factor for type 2 diabetes, BMI, in 119,688 UK Biobank individuals (including

4003 type 2 diabetes cases), but only the most strongly associated diabetes variant, that in
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TCF7L2 (odds ratio ~1.4), was associated with lower BMI at p<0.01 in all individuals. The
association between the variant in TCF7L2 and BMI has been the subject of several previous

papers™ %%

and was most recently noted as showing stronger effect estimates in case control
studies®. Here we found only a trend, but no clear statistical evidence that the TCF7L2 variant
is associated with BMI - the associations we did see could be explained by IEB due to a

likely depletion of cases in the UK Biobank study compared to the background population.

The derived analytical formula can serve as guidance for the expected bias in genome-wide
association studies, where only summary level data is known where — to our knowledge — no
other method is applicable. The state-of-the-art tool, SPREG, computed the corrected effect
in ~2 min per SNP, which renders such methods infeasible for large population cohorts with
genome-wide genotype data, as it would take >10 CPU years to apply for millions of

markers.

Accounting for IEB strengthened associations for several individual variants with good prior
evidence for pleiotropic effects on the disease and continuous risk factor. For example, the
type 2 diabetes risk allele at MTN1RB was associated in the UK Biobank with higher BMI
and this result strengthened on correction for IEB — results from previous studies, particularly
those that were not population-based, may have been biased towards the null. This variant has
one of the strongest effects on fasting glucose levels in individuals without diabetes and may
predispose to higher BMI through higher insulin secretion. The hypertension risk allele at
CYP17A1 was previously associated with lower BMI*, and we show here that this is a likely

pleiotropic effect.

Studies examining the joint effect of multiple variants will be more prone to index event
biases than those of single variants. Studies prone to miss-interpretation could include gene-

based tests, and tests of the cumulative effect of variants when using a genetic risk score. For
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example, Mendelian randomization studies often use genetic risk scores as instruments to test
causality of an associated trait with a disease***’. Stratified Mendelian randomization is
recommended when the exposure is binary (e.g. smoking) and hence a causal effect should be
seen only in the exposed stratum®®. Such stratification in some cases could introduce IEB in
the causal estimation®®. Failing to account for IEB could lead to false conclusions about
causality. We explored this potential source of bias using the UK Biobank to assess whether
or not a genetic risk score of insulin secretion (represented by 11 variants associated with
type 2 diabetes through insulin secretion mechanisms) was associated with BMI. An
association between a genetic risk score for poorer insulin secretion and lower BMI could
indicate that insulin secretion causally alters BMI, a plausible hypothesis given that insulin
treatment increases BMI in diabetes®®. However, IEB would also result in an association
between a genetic risk score for poorer insulin secretion (type 2 diabetes risk alleles) and
lower BMI. Whilst we cannot disentangle IEB from a genuine pleiotropic effect IEB is the
more likely explanation given the gradient of stronger effects in cases compared to controls
compared to all individuals (Supplementary Figure 6a). Similar analysis for hypertension
provided evidence that SNPs associated with higher blood pressure are also associated with

lower BMI (Supplementary Figure 6b).

In summary, as genetic association studies reach sizes of 100,000s of individuals, analyses
will be prone to misinterpreting results if they do not account for index event biases.
However, we have provided the statistical framework and its software implementation for

quantifying and correcting for these biases under reasonable assumptions.
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Tables

Table 1. Association between 11 insulin secretion SNPs and BMI (SD) in the UK

Biobank study under 5 scenarios. Corrected statistics are those after correcting for index

event bias using all 119,688 individuals. Note that the numbers of individuals in the “all”

analyses differ slightly because people of uncertain diabetes diagnosis were excluded from

the “All adjusted for type 2 diabetes” analysis.

All adjusted for type

All - Corrected

All Controls Cases 2 diabetes statistics
(N=119,688) (N=113,203) (N=4,003) (N=117,206) (N=119,688)
variantinor jpera  p | BETA P |[BETA P | BETA P BETA P
near gene:
TCF7L2  [-0024 1E-7 | -0033 B8E-13|-0118 1E-7 | -0036  1E-15 | 90101 0.4
THADA  [-0011 01 | -0012 008 [-0060 01 | 0013 005 | 0020 08
CDKN2AB |-0008 02 | -0014 001 |-0018 05 | -0014 0009 | gom3 o8
SLC30A8  [-0005 03 | -0009 005 |-003 02 [ -0009 003 | oo 0.9
CDKAL1  |-0012 001 | -0016 5E-4 [-0048 003 | 0018 1E4 | o062 02
MTNRIB | 0011 002 | 0008 008 | 0004 09 | 0008 008 | goie2 0001
HHEX  |-0005 02 | -0007 009 |-0054 001 | -0009 004 | 00005 09
GCK 0005 03 | -0009 01 [-0009 07 | 0009 01 | 90005 09
PROX1 ~ |-0001 08 | -0002 06 |-0002 09 | -0002 06 | ggozzs 08
ADCYs  |-0002 07 | -0006 02 [0012 06 | 0005 03 | o014 08
DGKB 0003 05 | -0005 02 |-0008 07 | -00056 02 | go021 06
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Table 2. Examples of index event bias observed in real data when using multiple variants in genetic risk scores. BMI was inverse-normal

transformed.
UK Biobank study Meta-analysis of independent studies
Model Samples BETA LCI UCI P N BETA LCI UCI P N
All individuals -0.004 -0.010 0.001 0.14 119,688| 0.001 -0.010 0.013 0.8 30,440
Type 2 diabetes controls | -0.010 -0.016 -0.005 5E-4 113,203| -0.008 -0.019 0.004 0.2 25,039
BMI ~ insulin

Type 2 diabetes cases | -0.036 -0.065 -0.007 0.015 4,003 | -0.037 -0.062 -0.012 0.004 5,396

All individuals adjusted for
type 2 diabetes status

secretion GRS

-0.011 -0.017 -0.006 1E-4 117,206( -0.013 -0.021 -0.005 0.002 30,435

All individuals -0.014 -0.020 -0.008 1E-6 119,688 -0.008 -0.020 0.004 0.2 25,059
Normotensive controls | -0.034 -0.043 -0.026 2E-16 53,377 | -0.014 -0.028 0.000 0.06 18,590

BMI ~blood pressure | o ortensive cases | -0.031  -0.039 -0.024 4E-16 65584 | -0.042 -0.063 -0.021 OE-5 8267

GRS
All individuals adjusted for

. -0.033 -0.038 -0.027 7E-31 118,961| -0.022 -0.034 -0.010 4E-4 25,049
hypertension status
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Table 3. Association between 25 blood pressure SNPs and BMI (SD) in the UK Biobank study
under 5 scenarios. Corrected statistics are those after correcting for index event bias using all
119,688 individuals. Note that the numbers of individuals in the “all” analyses differ slightly
because people of uncertain hypertension diagnosis were excluded from the “All adjusted for

hypertension” analysis.

(N=119,688) (N=53,377) (N=65,584) (N=116.961) (N=119,689)
variantinor | pera p | BETA P | BETA P | BETA P | BETA P
near gene:
ADM 0001 | 09 | 0005 | 06 | 0012 | 01 | -0005 | 04 | ggoog | 0.9
ATP2B1 0002 | 07 | 0012 | 01 | 0011 [ 01 | -0012 | 003 | o038 | 05
BAT2 0013 | 263 | -0014 | 002 | -0016 | 3E3 | -0.015 | 2E-4 | o135 | 0.002
Cl0orfl07 | -0008 | 0.1 | -0012 | 01 | -0.019 | 9E-3 | -0016 | 3E-3 | _90095 | 0.08
CACNB2(3) | 001 | 003 | -002 | 1E3 | -0013 | 0.02 | -0016 | 1E-4 | o100 | 002
CACNB2(5) | -0.012 | 4E-3 | -0023 | 1E-4 | 001 | 0.06 | -0.06 | 85 | o122 | 0.003
CYP17A1 | -0028 | 3E-4 | -0.044 | 4E-5 | 0032 | 263 | -0.038 | 56-7 | _o.0082 | 0.0003
CYP1AL 0011 | 001 | -0017 | 9E-3 | -0.016 | 7E-3 | -0.016 | 2E-4 | o110 | 001
EBF1 0001 | 089 | 0012 | 004 | 0002 [ 07 | -0007 | 01 | o008 | 09
FGF5 0007 | 01 | -0023 | 4E-4 | -0014 | 001 | -0.018 | 35 | o078 | 008
FLJ32810 | -0.008 | 007 | -0014 | 0.03 | -0.016 | 8E-3 | -0.015 | 6E-4 | goosa | 007
FURIN 0 098 | 0008 | 02 | -0008 | 02 | 0008 | 0.07 | 50005 | 09
GNAS 0004 | 05 | -0007 | 05 | -0019 | 002 | -0.014 | 002 | gooa2 | 05
GOSR?2 0001 | 08 | -0011 | 02 | -0003 [ 07 | -0007 | 02 | o012 | os
HFE 0002 | 08 | -0008 | 03 | 0001 | 09 | -0004 | 05 | ggo26 | 06
JAGL 0 095 | 0005 | 04 | -0002 | 08 | 0003 | 04 | 50005 | 09
MECOM 0002 | 07 | -0006 | 03 | 0001 | 09 | -0002 | 06 | goo1s | 07
MOV10 0007 | 0.1 0 097 | 0007 | 03 | 0004 | 04 | ogo79 | o1
MTHFR 0011 | 005 | -0018 | 002 | -0.024 | 1E3 | -0.02L | 7E5 | o110 | 005
NPR3 0004 | 03 | -0001 | 09 | -0.006 | 03 | -0004 | 04 | ggoaz | 03
PLCE1 0001 | 08 0 098 | 0009 | 01 | 0005 | 02 | 90017 | 07
PLEKHA7 | -0.005 | 03 | -0016 | 0.01 | 0002 | 08 | -0006 | 02 | .900a9 | 03
SH28B3 0009 | 003 | -0008 | 02 | -0023 | 2E55 | -0.016 | 4E5 | o093 | 002
TBX5 0003 | 06 | -0004 | 06 | -0008 [ 02 | -0006 | 02 | o031 | o5
ZNF652 0.006 | 0.1 0 098 | 0005 | 04 | 0003 | 05 | goos3 | o1
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Figures

Figure 1. Apparently paradoxical gene-phenotype associations in the context of disease

stratified genetic studies. We simulated genotype, continuous risk factor values and disease

status in a general population sample according to our liability scale model and set the

genetic effect on the risk factor (y) to zero. We observed that the estimated effect of the “B”

allele of a genetic marker on a continuous trait is negative both in cases and controls. Disease

carriers also have higher trait value than controls. However, when combining the two strata

the marker is — as expected — not associated with the trait. The reason for this apparent

paradox is that the proportion of disease risk allele (“B”) carriers is higher in the case group.

Thus when merging cases into the control group the mean trait value of the BB group

increases much more than it does in the other genotype groups. This concept is recognized as

Simpson's paradox“°.
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Figure 2. Enrichment for cases or controls produces spurious associations. We applied
our analytical formula to compute the effect size estimate of a SNP (G) on a continuous risk
factor (X) in the abovementioned liability scale model setting with the true genetic effect on
the risk factor (y) being zero. Enrichment for cases or controls produces spurious evidence of
association between disease risk alleles and a risk factor correlated with the disease
(equivalent to 2.5 OR per SD) in (a) a scenario where a risk allele (MAF 30%) increases risk
with an effect equivalent to an odds ratio of 1.4 (similar to the TCF7L2 type 2 diabetes
scenario™) in two models: unadjusted for disease status [blue curve] and adjusted for disease
status [green curve]. Dashed lines represent 95% confidence interval (CI) around the effect
estimate assuming a population of 100,000 individuals. Panel (b) displays the same curves,
but for a SNP with a rare protective allele (MAF 2%) that reduces risk of disease with an
effect equivalent to an odds ratio of 0.5 (similar to the CCND2 type 2 diabetes scenario®).

Vertical dashed red line at 0.05 indicates the true general population disease prevalence.
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Figure 3. Scatter plot of the observed effect of type 2 diabetes-associated SNPs on BMI
in the total UK Biobank sample vs. the index event bias corrected effect. The effect
corrected for index event bias (shown on the y-axis) was calculated assuming the previously
established 10% population prevalence of type 2 diabetes (my, = 0.10) . Dashed line
represents the identity line, where the two effects are equal. While for most SNPs the
absolute value effect size estimate after IEB correction is reduced, MTNR1B shows increased
effect size upon correction. Only this latter SNP produced a P-value surviving multiple

testing correction (P<0.05/11).
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Figure 4. Index event bias in real data. (a) The genetic risk score (GRS) associated with
higher risk of type 2 diabetes is associated with lower BMI in cases and controls separately
and when combined but adjusted for type 2 diabetes status. (b) The GRS associated with
higher risk of hypertension is associated with lower BMI in hypertensive cases and controls
separately and when combined but adjusted for hypertension status. The x-axis is the effect

size per disease risk allele. The vertical solid line is the null effect.
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Figure 4b
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Figure 5. Power calculation to detect IEB. Using the analytical formula for IEB we derived
the minimal necessary sample size to observe IEB in a study at nominal (alpha=0.05, top
panels) and genome-wide significant level (alpha = 5E-8, bottom panels) with 80% power.
We fixed the disease prevalence in the general population to 10%. The SNP-disease odds
ratio was varied between 1 and 2.3 and the observed population prevalence of the disease was
explored for the full range of 0-100%. The SNP MAF was set to 30% in the left panels and to

2% in right panel.
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Supplementary Figures

Supplementary Figure 1. Expected linear regression effects of G on the continuous risk
factor using the full index event bias formula (see Supplementary Text). All notations and
settings are identical to the ones in Figure 2, except that here the true (G-X) effect varies
between -0.1 and 0.1. One can observe that, in the case-only scenario, the bias is -0.0862, -

0.0645 and -0.0429 when the true (G-X) effect is 0.1, 0 and -0.1, respectively.
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Supplementary Figure 2. Diagram of study design for the simulation analysis.
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Supplementary Figure 3. Enrichment for cases or controls produces spurious
association. Enrichment for cases or controls produces spurious evidence of association
between disease risk alleles and a risk factor correlated with the disease (2.5 OR per SD) in a
scenario (a) where a risk allele (MAF 30%) increases risk with an odds ratio of 1.4 (similar to
the TCF7L2 type 2 diabetes scenario) and (b) where a protective allele (MAF 2%) reduces
risk of disease with an odds ratio of 0.5 (similar to the CCND?2 type 2 diabetes scenario) in
two models: unadjusted for disease status (left) and adjusted for disease status (right. The
grey area represents 95% confidence interval (CI) around the effect estimate. The data is

from simulated population of 100,000 individuals.
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Supplementary Figure 4. Real examples of index event bias. Examples of index event

biased effect of the 11 insulin secretion SNPs on BMI (SD) in the UK Biobank study.
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Supplementary Figure 5. Real examples of index event bias. Examples of index event

biased effect of the 25 blood pressure SNPs on BMI (SD) in the UK Biobank study.
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Supplementary Figure 6. Index event bias in Mendelian randomization studies. (a) Type
2 diabetes (T2D) -> BMI causal effect estimates as a function of type 2 diabetes disease
prevalence. We used the analytical formula for index event bias to perform Mendelian
randomization (MR) using the 11 type 2 diabetes SNPs as instruments in order to derive
estimate for the causal effect of type 2 diabetes on BMI based on parameters obtained from
the UK Biobank data. The formula allowed causal effect estimation for the whole range of
disease prevalences (0-100%). We overlaid the MR estimates obtained from the UK Biobank
(all sample, controls only, cases only) and marked them with black disks. Estimates from all
subsamples indicate significant negative causal effect. However, the comparison to the IEB
curves reveals that the MR estimates from UK Biobank are compatible with pure index event
bias with no causal effect. (b) Same analysis was done for hypertension (HTN) -> BMI
causal effect estimates as a function of hypertension prevalence. This MR used 25
hypertension SNPs as instruments in order to derive estimate for the causal effect of
hypertension on BMI. The comparison to the IEB curves reveals that the MR estimates from
UK Biobank are not compatible with pure index event bias and a distinct negative causal

effect is detectable.
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Supplementary Tables

Supplementary Table 1. The 11 SNPs associated with type 2 diabetes through insulin

secretion'®. *EFFECT_ALLELE = Impaired insulin secretion allele.

SNP LOCUS CHR | POSITION | BUILD | EFFECT OTHER
ALLELE* ALLELE
rs7903146 TCF7L2 10 114748339 | b36 T C
rs10965250 | CDKN2A/B 9 22123284 b36 G A
rs11899863 | THADA 2 43472323 b36 C T
rs10440833 | CDKAL1 6 20796100 b36 A T
rs5015480 HHEX/IDE 10 94455539 b36 C T
rs3802177 SLC30A8 8 118254206 | b36 G A
rs4607517 GCK 7 44202193 b36 A G
rs2191349 DGKB/TMEM195 | 7 15030834 b36 T G
rs10830963 | MTNR1B 11 92348358 b36 G C
rs340874 PROX1 1 212225879 | b36 C T
rs11708067 | ADCY5 3 124548468 | b36 A G
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Supplementary Table 2. Summary details and relevant characteristics.

Vaiable Statistics UK Biobank ARIC BRIGHT EXTEND Generation GoDARTS
Scotland

Age N 120,286 9324 1,851 5,242 14,064 7,128

mean (sd) 57 (7.9) 54 (5.7) 57 (11.2) 57 (14.8) 49 (15.1) 59 (11.8)
Sex Males/Females 56,936/ 63,350 4,396/ 4,928 777/ 1,173 2,237/ 3,005 5,784/ 8,280 3,267/ 3,861
BMI (kg/m?) N 119688 9324 1,897 5,242 13,968 7,071

mean (sd) 28 (4.8) 27 (4.8) 27 (3.8) 27 (5.2) 27 (5.4) 29 (5.5)
Type 2 diabetes N cases/N controls 4,040/ 113,735 810/ 8,514 NA 1,084/ 4,158 434 /9,282 3,382/ 3,746
Hypertension N cases/N controls 65,976/ 53,567 1,980/ 7,310 1897/0 NA 2,056/ 11,972 3,030/ 3,392
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Supplementary Table 3. 25 SNPs associated with

*EFFECT_ALLELE = Blood pressure increasing allele.

systolic blood pressure®.

SNP LOCUS CHR | POSITION | BUILD | EFFECT ALLELE* | OTHER ALLELE
rs7129220 ADM 11 10,307,114 36 A G
rs17249754 | ATP2B1 12 88,584,717 36 G A
rs805303 BAT2/BAT5 6 31,724,345 36 G A
rs4590817 C100rf107 10 63,137,559 36 G C
rs1813353 CACNB2(3)) 10 18,747,454 36 T C
rs4373814 CACNB2(5)) 10 18,459,978 36 C G
rs11191548 | CYP17A1/NT5C2 10 104,836,168 | 36 T C
rs1378942 CYP1A1/ULK3 15 72,864,420 36 C A
rs11953630 | EBF1 157,777,980 | 36 C T
rs1458038 FGF5 4 81,383,747 36 T C
rs633185 FLJ32810/TMEM133 | 11 100,098,748 | 36 Cc G
rs2521501 FURIN/FES 15 89,238,392 36 T A
rs6015450 GNAS/EDN3 20 57,184,512 36 G A
rs17608766 | GOSR2 17 42,368,270 36 C T
rs1799945 HFE 6 26,199,158 36 G C
rs1327235 JAG1 20 10,917,030 36 G A
rs419076 MECOM 3 170,583,580 | 36 T C
rs2932538 MOV10 1 113,018,066 | 36 G A
rs17367504 | MTHFR/NPPB 1 11,785,365 36 A G
rs1173771 NPR3/C50rf23 5 32,850,785 36 G A
rs932764 PLCE1l 10 95,885,930 36 G A
rs381815 PLEKHA7 11 16,858,844 36 T C
rs3184504 SH2B3 12 110,368,991 | 36 T C
rs10850411 | TBX5/TBX3 12 113,872,179 | 36 T C
rs12940887 | ZNF652 17 44,757,806 36 T C
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Supplementary Table 4. The effect of 11 insulin secretion SNPs, BMI and the insulin
secretion genetic risk score on risk of type 2 diabetes. OR: odds ration; LCI: lower

confidence interval; UCI: upper confidence interval; P: p-value; N: total sample size.
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UK Biobank study

Additional studies

Meta-analyses of all studies

EXPOSURE OR LCI UcCl P N OR | LCI [ UCI |P N OR | LCI [UCI |P N

TCF7L2 1.40 1.34 1.47 3E-45 117688 | 1.36 | 1.29 | 1.43 | 7E-30 30725 | 1.38 | 1.34 | 143 | 1E-75 148413
THADA 1.16 1.08 1.26 2E-4 117688 | 1.19 | 1.09 | 1.30 | 0.0002 | 25668 | 1.17 | 1.11 | 1.24 | 7E-8 143356
CDKN2AB 1.21 1.14 1.29 3E-9 117688 | 1.13 | 1.05 | 1.20 | 0.0005 | 28940 | 1.17 | 1.12 | 1.23 | 6E-12 146628
SLC30A8 1.13 1.08 1.19 1E-8 117688 | 1.17 | 1.11 | 1.23 | 2E-8 28959 | 1.15 | 111 | 119 | 1E-14 146647
CDKAL1 1.16 1.10 1.22 6E-9 117688 | 1.09 | 1.04 | 1.15 | 0.0008 | 30734 |1.12 |1.08 | 1.16 | 3E-10 148422
MTNR1B 111 1.06 1.17 2E-5 117688 | 1.10 | 1.04 | 1.16 | 0.0009 | 30466 | 1.11 | 1.07 | 1.15 | 8E-08 148154
HHEX 1.14 1.09 1.20 1E-8 117688 | 1.07 | 1.02 | 1.12 | 0.01 30738 | 1.10 | 1.07 | 1.14 | 9E-09 148426
GCK 1.12 1.06 1.19 9E-5 117688 | 1.09 | 1.01 | 1.16 | 0.02 25662 | 1.11 | 1.06 | 1.16 | 0.000006 | 143350
PROX1 1.08 1.03 1.13 0.001 117688 | 1.07 | 1.01 | 1.13 | 0.01 23883 | 1.08 | 1.04 | 1.12 | 0.00006 141571
ADCY5 1.05 1.00 111 0.05 117688 | 1.12 | 1.06 | 1.20 | 0.0001 | 25657 | 1.08 | 1.04 | 1.12 | 0.0002 143345
DGKB 1.12 1.07 1.17 1E-6 117688 | 097 | 092 | 1.02 | 0.2 21091 | 1.05 | 102 | 1.09 | 0.003 138779
BMI (per SD) 2.47 2.39 2.55 0 117120 (230 | 221 | 238 | O 34974 | 239 | 234 | 245 |0 152094
Insulin  secretion | 1.24 121 1.28 TE-44 117688 | 1.19 | 1.15 | 1.23 | 2E-23 30486 | 1.22 | 1.19 | 1.25 | 2E-72 148174

genetic risk score
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Supplementary Table 5. Association between 11 insulin secretion SNPs and BMI (SD).
Result is from the meta-analysis of the UK Biobank (all individuals unstratified and
unadjusted) and 4 additional studies: Generation Scotland (all individuals unstratified and
unadjusted), GoDarts (cases and controls analysed as strata), EXTEND (cases and controls
analysed as strata) and ARIC (all individuals unstratified and unadjusted). LCI: lower

confidence interval; UCI: upper confidence interval; P: p-value.

OUTCOME BETA LCI UCl P
TCF7L2 -0.027 -0.035 -0.019 6E-11
THADA -0.008 -0.020 0.004 0.2
CDKN2AB -0.009 -0.019 0.000 0.06
SLC30A8 -0.008 -0.016 0.000 0.05
CDKAL1 -0.010 -0.018 -0.002 0.02
MTNR1B 0.010 0.002 0.018 0.02
HHEX -0.004 -0.011 0.003 0.2
GCK -0.006 -0.016 0.003 0.2
PROX1 -0.001 -0.008 0.006 0.8
ADCY5 -0.005 -0.013 0.003 0.2
DGKB -0.002 -0.009 0.006 0.7
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Supplementary Table 6. The effect of 25 blood pressure SNPs, BMI and the blood
pressure genetic risk score on risk of hypertension. OR: odds ration; LCI: lower

confidence interval; UCI: upper confidence interval; P: p-value; N: total sample size.
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UK Biobank study

Additional studies

Meta-analyses of all studies

EXPOSURE OR LCI |UCl |P N OR LCI juUCl |P N OR | LCI |UCI |P N

FGF5 111 |1.08 | 113 |5E-25 119504 | 1.12 | 1.07 |1.18 | 5E-07 29508 111 | 1.09 |1.14 | 6E-25 149012
MTHFR 111 | 1.09 |1.14 | 5E-20 119504 | 1.11 | 105 |1.18 | 0.0002 | 29567 111 | 1.09 |1.13 | 6E-23 149071
CYP17Al 110 |1.06 |1.13 |2E-8 119504 | 1.14 | 106 |1.23 | 0.0006 | 29579 111 | 1.07 | 114 | 2E-11 149083
GNAS 1.09 106 | 112 |1E-10 119504 | 1.12 | 106 |1.19 | 0.0002 | 29570 110 | 1.07 112 |1E-12 149074
ATP2B1 1.09 | 106 |111 |2E-12 119504 | 1.13 | 105 |1.21 | 0.0008 | 23163 1.09 | 1.07 |112 | 1E-15 142667
FURIN 1.08 |1.06 |1.10 | 2E-15 119504 | 1.08 | 1.02 |1.13 | 0.003 25434 1.08 | 1.06 |1.10 | 5E-18 144938
FLJ32810 1.08 |1.06 |1.10 |1E-14 119504 | 1.10 | 105 |1.15 | 0.0001 | 25243 1.08 | 1.06 |1.10 | 2E-19 144747
NPR3 1.08 |1.06 | 110 | 2E-18 119504 | 1.06 | 102 |1.11 | 0.005 25532 1.08 | 1.06 |1.10 | 9E-18 145036
CACNB2_3 1.07 |1.05 |1.09 |6E-14 119504 |1.06 | 101 |1.12 |0.03 23162 1.07 | 1.05 |1.09 | 1E-13 142666
SH2B3 1.07 | 1.05 |1.09 |3E-15 119504 | 1.00 | 095 |1.05 |0.95 19118 1.06 | 1.04 |1.08 | 2E-11 138622
GOSR2 1.06 |1.04 |1.09 |1E-6 119504 | 1.10 | 103 |1.16 | 0.002 29578 1.06 | 1.04 |1.09 | 1E-8 149082
ADM 1.06 |1.03 |109 |2E-5 119504 | 1.05 | 098 |112 |0.1 29512 1.06 | 1.03 | 1.09 | 0.00002 | 149016
EBF1 1.06 |1.04 | 108 | 2E-10 119504 |1.06 | 101 |1.11 |o0.01 25460 1.06 | 1.04 |1.08 |5E-11 144964
HFE 1.06 |1.04 | 109 |4E-7 119504 | 1.07 | 101 |1.13 |0.02 29486 1.06 | 1.04 |1.08 | 9E-8 148990
CYP1Al 1.05 |1.03 |1.07 |3E-8 119504 | 1.09 | 104 |1.14 |0.0001 | 29577 1.06 | 1.04 | 1.07 | 9E-10 149081
C100rf107 1.06 |1.04 |1.09 |2E-7 119504 | 1.00 | 094 |1.05 |09 29463 1.05 | 1.03 | 1.07 | 9E-6 148967
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MECOM 1.04 | 1.02 1.06 | 1E-5 119504 |1.06 |1.01 |1.11 |O0.01 23162 104 |1.02 | 1.06 | 4E-6 142666
MOV10 1.04 | 1.02 1.06 | 3E-4 119504 | 1.05 |1.00 |1.10 | 0.06 29575 1.04 |1.02 | 1.06 | 0.00001 | 149079
ZNF652 1.04 | 1.02 1.06 | 3E-5 119504 | 1.03 | 099 |107 |02 29577 1.04 |1.02 | 1.06 | 0.00003 | 149081
CACNB2_5 1.03 1.02 1.05 | 1E4 119504 |1.05 |1.00 |1.11 | 0.05 23106 1.03 | 1.02 | 1.05 | 0.00001 | 142610
TBX5 1.03 1.01 1.05 | 0.006 119504 | 1.02 | 097 |106 |05 29516 1.03 | 1.01 | 1.05 | 0.003 149020
PLCE1l 1.03 1.01 1.05 | 3E4 119504 |1.01 | 097 |105 |O0.6 29519 1.03 | 1.01 | 1.04 | 0.004 149023
JAG1 1.03 1.01 1.04 | 0.005 119504 | 1.02 | 097 |106 |05 25532 1.03 | 1.01 | 1.04 | 0.00007 | 145036
PLEKHA7Y 1.02 1.00 | 1.04 | 0.06 119504 | 1.04 | 098 | 110 |O0.2 23161 1.02 | 1.00 | 1.04 | 0.02 142665
BAT?2 1.01 1.00 |1.03 |01 119504 | 1.02 | 098 | 106 |O0.3 29563 101 |1.00 |1.03 0.1 149067
BMI (per SD) 1.63 1.61 165 |0 118923 | 157 | 152 |1.62 | 2E-190 | 29575 162 | 1.60 | 1.64 | <E-200 148498
Hypertension

genetic risk 1.20 1.18 121 8E-180 | 119504 | 1.20 1.16 1.24 7E-31 25053 120 | 119 | 121 | 6E-207 144557

score
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Supplementary Table 7. Association between 25 blood pressure SNPs and BMI (SD).
Result is from the meta-analysis of the UK Biobank (all individuals unstratified and
unadjusted) and 4 additional studies: Generation Scotland (all individuals unstratified and
unadjusted) EXTEND (all individuals unstratified and unadjusted), BRIGHT (cases only) and
ARIC (all individuals unstratified and unadjusted). LCI: lower confidence interval; UCI:

upper confidence interval; P: p-value.

OUTCOME BETA LCI UcCl P
FGF5 -0.002 -0.010 0.006 0.6
MTHFR -0.008 -0.018 0.002 0.1
CYP17Al -0.025 -0.039 -0.012 0.0003
GNAS -0.004 -0.015 0.007 0.5
ATP2B1 -0.003 -0.013 0.007 0.5
FURIN -0.002 -0.010 0.006 0.6
FLJ32810 -0.009 -0.017 0.000 0.04
NPR3 0.004 -0.004 0.012 0.3
CACNB2_3 -0.009 -0.017 -0.001 0.04
SH2B3 -0.010 -0.017 -0.002 0.01
GOSR2 -0.002 -0.013 0.008 0.7
ADM -0.002 -0.014 0.009 0.7
EBF1 -0.001 -0.009 0.006 0.7
HFE 0.001 -0.009 0.011 0.9
CYP1Al1 -0.012 -0.020 -0.004 0.002
C100rf107 -0.006 -0.016 0.004 0.2
MECOM 0.001 -0.007 0.008 0.8
MOV10 0.008 0.000 0.016 0.06
ZNF652 0.009 0.001 0.016 0.02
CACNB2_5 -0.010 -0.017 -0.002 0.01
TBX5 -0.004 -0.012 0.004 0.4
PLCE1 -0.003 -0.011 0.004 0.4
JAG1 -0.002 -0.009 0.006 0.6
PLEKHA7 -0.005 -0.014 0.003 0.2
BAT2 -0.012 -0.020 -0.005 0.002



https://doi.org/10.1101/074781
http://creativecommons.org/licenses/by-nc-nd/4.0/

