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Abstract 
Sleep deprivation has been reported to affect intrinsic brain connectivity, notably reducing 
connectivity in the default mode network. Studies to date have however shown inconsistent 
effects, in many cases lacked monitoring of wakefulness, and largely included young 
participants. We investigated effects of sleep deprivation on intrinsic brain connectivity in young 
and older participants. Participants aged 20–30 (n=30) and 65–75 (n=23) years underwent 
partial sleep deprivation (3h sleep) in a cross-over design, with two 8-minutes eyes-open resting 
state functional magnetic resonance imaging (fMRI) runs in each session, monitored by eye-
tracking. We assessed intrinsic brain connectivity using independent components analysis (ICA) 
as well as seed-region analyses of functional connectivity, and also analysed global signal 
variability, regional homogeneity, and the amplitude of low-frequency fluctuations. Sleep 
deprivation caused increased global signal variability. In our study, changes in investigated 
resting state networks and in regional homogeneity were not statistically significant. Younger 
participants had higher connectivity in most examined networks, as well as higher regional 
homogeneity in areas including anterior and posterior cingulate cortex. In conclusion, we found 
that sleep deprivation caused increased global signal variability. We speculate that this may be 
caused by wake-state instability. 
 
Key words: Sleep, Sleepiness, Resting state, Functional connectivity, Aging 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/073494doi: bioRxiv preprint 

https://doi.org/10.1101/073494
http://creativecommons.org/licenses/by/4.0/


3 
 

 
Introduction 
Background 
Sleep problems are a public health issue affecting about one third of the general population, of 
which about one in three reports serious sleep problems1,2. Impaired or shortened sleep is a risk 
factor for mortality and for a number of diseases3, as well as accidents4. These risks appear to 
be mediated by impaired biological restoration/recovery3. Effects of sleep loss include an 
increasing number of short lapses of attention (microsleeps)5, as well as increased levels of 
EEG alpha and theta activity; slow, rolling eye movements; and increased subjective 
sleepiness6. 
 
Sleepiness is not well defined in terms of functional brain activation. Early studies using total 
sleep deprivation have shown reduced glucose uptake in large areas of the brain, including 
prefrontal and parietal areas7. Intrinsic connectivity, referring to functional connectivity in the 
resting state, i.e. when participants are not presented with any changing stimuli, has been 
investigated in several earlier studies. We have identified 21 earlier reports, based on 14 unique 
datasets8–28. An in-depth review of this earlier literature is beyond the scope of this paper, and 
for this reason we have recently made available online an overview of these reports29. A 
consistent and robust finding is that sleep deprivation caused reduced connectivity within the 
default mode network and reduced anticorrelation to the task-positive network8,10,22. Other 
findings include increased regional homogeneity (ReHo) in different brain areas following sleep 
deprivation9,18, changes in connectivity between the thalamus12 and amygdala13,14 and cortical 
areas. We formulated a number of hypotheses to try to replicate these findings (see below).  
 
It is an interesting question whether reduced connectivity, observed in previous studies, is 
associated with subjective sleepiness, which is a sensitive indicator of sleep loss30. There is 
also a question whether participants in previous studies were able to consistently maintain 
wakefulness during resting state scanning, not least in light of findings by Tagliazucchi and 
Laufs31, showing that about 50% of non-sleep-deprived participants fall asleep within 10 minutes 
of resting state imaging. When the fMRI-based classifier developed by Tagliazucchi was tested 
on data from a sleep deprivation experiment with scanning with eyes open, the probability of 
being awake was estimated at below 50% for the duration of scanning23. Prior studies of 
intrinsic connectivity after sleep deprivation have mainly relied on self-report to rule out episodes 
of falling asleep during scanning29. The role of age has been investigated in only one study of 
sleep deprivation and connectivity, which compared sleep deprivation in young participants to 
an openly available dataset with older participants who had not been sleep deprived27. It 
appears that sleepiness is reduced in older individuals both when sleeping normally and after 
sleep deprivation32. Contrary to intuition, younger individuals seem more susceptible to sleep 
loss in terms of physiological and self-reported sleepiness32. Furthermore, sleep duration 
decreases with age33 and the ability to produce sleep under optimal conditions also falls with 
age34, suggesting that sleep need is reduced. Functional connectivity is generally lower in older 
compared to younger humans, possibly due to structural changes including white matter 
degeneration of vascular genesis35–37. 
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The fMRI global signal during rest has been the topic of controversy as a nuisance regressor. 
Murphy et al.38 reported that global signal regression may introduce artifactual anti-correlations 
between resting state networks (see also Weissenbacher et al.39). Saad et al.40 reported that 
global signal regression may also introduce bias in comparisons between groups and time-
points, and Guo et al.41 reported that global signal regression reduced re-test reliability of 
salience network estimation in 29 older adults scanned with an interval of a year. In this context, 
it deserves to be mentioned that the results from the studies that first showed negative 
correlations between resting state networks, primarily between the default mode and task-
positive networks42,43 have subsequently been reproduced without use of global brain mean 
signal regression (e.g. 44,45). However, recently, the global signal has become a focus for 
interest in itself. Schölvinck et al.46 reported a correlation between spatially widespread BOLD 
signal changes and spontaneous fluctuations in local field potentials in monkeys, mainly in the 
high gamma frequency band.  Furthermore, Wong et al.47 reported that global signal variability 
was decreased by caffeine and furthermore that global signal variability was negatively 
correlated to EEG measures of vigilance48,49. In addition, Fukunaga et al.50 found an increased 
BOLD signal amplitude in those individuals that were asleep at the end of a resting state 
session. These findings suggest that global signal variability is higher in sleepiness. The effect 
of sleep deprivation on global signal variability has been investigated in one previous report, 
which reported increased variability after sleep deprivation, but which did not provide inferential 
statistics for this finding22. 
 
The role of prior sleep, apart from sleep deprivation, may also be of interest in relation to resting 
state connectivity. Killgore et al.51 showed that self-reported shorter sleep duration prior to 
imaging was associated to reduced connectivity. No studies to date have investigated the 
contents of prior sleep with polysomnography, the gold standard for sleep measurement. Both 
sleep fragmentation52 and suppression of N3 ("deep") sleep32 increase physiological sleepiness. 
Partial sleep deprivation (PSD) allowing 2 hours of sleep strongly increase physiological and 
self-reported sleepiness, while PSD allowing 4 hours of sleep only gives marginal increases53. 
Thus, it is an interesting question whether sleep reduction to < 4h causes reduced resting state 
connectivity.  
  
This study investigated intrinsic brain connectivity measures and global signal variability after 
partial sleep deprivation and in relation to PSG and reported sleepiness in the Stockholm 
Sleepy Brain Study 1, a brain imaging study including younger (20-30 years) and older (65-75 
years) healthy volunteers. 
 
Aims 
We aimed to investigate the effects of partial sleep deprivation on intrinsic brain connectivity. 
Specifically, we hypothesised that sleep deprivation would cause 

● decreased connectivity within the default mode (DMN), salience, frontoparietal attention, 
and executive control networks. 

● decreased anticorrelation between DMN and the task-positive network (TPN) during 
resting state. 

● changes in thalamocortical connectivity. 
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● changes in connectivity from amygdala, specifically decreased connectivity between 
amygdala and prefrontal cortex. 

● changes in regional homogeneity 
● increased global signal variability 

Furthermore, we hypothesised that the above-mentioned measures would correlate to PSG 
measures of sleep and to self-rated sleepiness, and that older participants would have lower 
functional connectivity and be less sensitive to sleep deprivation. We also exploratively 
investigated the amplitude of low-frequency fluctuations (ALFF). 
 
Materials and methods 
Study design 
The study was a cross-over comparison between 3 h partial sleep deprivation and full sleep. 
This particular sleep duration was chosen because it appears that clear effects on physiological 
and subjective sleepiness require < 4 h of total sleep time (TST)53, because it is highly relevant 
for sleep problems in the population, and because pilot testing suggested partial sleep 
deprivation would be less likely to cause participants to fall asleep during the experiment 
compared to total sleep deprivation. Participants were randomised to undergo both conditions in 
a counterbalanced order, with an interval of approximately one month. In the interest of 
ecological validity, participants slept in their own homes in both conditions. Sleep was monitored 
using ambulatory polysomnography. In the sleep deprivation condition, participants were 
instructed to go to bed 3 h before the time they would usually get up, and then to get up at that 
time. MRI imaging was performed in the evening following sleep deprivation or normal sleep 
(approximately between 18:00 and 21:00), in order to avoid confounding by circadian 
rhythms54,55. Experimenters at the MRI scanner were blinded to participants’ sleep condition. 
 
The project was preregistered at clinicaltrials.gov 
(https://clinicaltrials.gov/ct2/show/NCT02000076), with a full list of hypotheses and an analysis 
plan available on the open science framework (https://osf.io/zuf7t/). Hypotheses were updated 
in light of new findings reported in the literature after data collection but before data analysis. 
The study was approved by the Regional Ethics Review board of Stockholm (2012/1870-32). All 
participants gave written informed consent. Experiments were performed in accordance with the 
Declaration of Helsinki and applicable local regulations. Methods, data, and technical validation 
have been reported in detail in a previous manuscript56. 
 
Participants 
As described in Nilsonne et al.56, participants were recruited by poster advertising on campus 
sites in Stockholm, on the studentkaninen.se website, and in newspaper ads. Prospective 
participants were screened for inclusion/exclusion criteria using an online form and eligibility 
was confirmed in an interview upon arrival to the scanning site. Criteria for inclusion were, first, 
those required to undergo fMRI procedures and to use the hand-held response box, namely: no 
ferromagnetic items in body, not claustrophobic, not pregnant, no refractive error exceeding 5 
diopters, not color-blind, and right-handed. In addition, participants were required to be 20-30 or 
65-75 years old (inclusive), to have no current or past psychiatric or neurological illness, 
including addiction, to not have hypertension or diabetes, to not use psychoactive or immune-
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modulatory drugs, to not use nicotine every day, and to have a lower habitual daily caffeine 
intake corresponding to 4 cups of coffee at most. A further criterion was to not study, have 
studied, or be occupied in the fields of psychology, behavioural science, or medicine, including 
nursing and other allied fields. The reason for this was that participants with a background in 
psychology might try to “see through” the experimental paradigm, whereas participants with a 
background in medicine may have a less strong emotional response to pictures showing 
needles or injuries, which were used in two of the experiments not reported in the present 
paper. The insomnia severity index (ISI)57,58, the depression subscale of the Hospital Anxiety 
and Depression scale (HADS)59,60 and the Karolinska Sleep Questionnaire (KSQ)61 were used 
to exclude participants with insomnia symptoms, out-of-circadian sleep patterns, or excessive 
snoring (see 2.3). For practical reasons, participants were also required to understand and 
speak Swedish fluently and to live in the greater Stockholm area. Participants were paid 2500 
SEK (approx. 280 Euro/360 USD), subject to tax. They were also offered taxi travel to and from 
the MRI imaging center, in order to avoid traffic incidents following sleep deprivation. 
 
Sleep measures 
As described in Åkerstedt et al. (manuscript in preparation), polysomnography (PSG) recording 
took place in the homes of the participants using a solid state, portable sleep recorder (Embla). 
Standard electrode (silver/silver chloride) montage for EEG sleep recording was used (C3, C4 
referenced to the contralateral mastoid). In addition, two sub-mental electrodes were used for 
electromyography (EMG) and one electrode at each of the outer canthi of the eyes were used 
for electrooculography (EOG). Sleep staging, respiratory and arousal analysis were performed 
according to the classification criteria of the American Academy of Sleep Medicine (AASM) 
using the computer-assisted sleep classification system Somnolyzer 24 × 7 (Anderer et al., 
2005, 2010). To adapt to AASM scoring, F4 was interpolated. Here the terminology N1, N2, and 
N3 is used for sleep stages 1-3. Wake within the total sleep period (WTSP) represents time 
awake between sleep onset and offset and this value is expressed in percent of the total sleep 
period (TSP). Shifts from any of the sleep stages to wake were expressed as awakenings per 
hour. 
 
Experimental task 
Two resting state sessions were performed on each of the two visits to the MRI scanner. The 
first session was in the beginning of scanning, preceded by a 4 min anatomical scan which 
allowed the participants to acclimatize to the scanner environment. The second session was at 
the end of scanning, following approx. 1 hour of experiments using emotional stimuli, which will 
be reported elsewhere. Participants were instructed to look at a fixation cross presented against 
a gray background, presented using goggles (NordicNeuroLab). During scanning, participants 
were monitored by eye-tracking. In case of eye-closures of more than approx. 5 seconds, the 
MRI operator spoke a wake-up call through the participant’s headphones. This happened only 
once in one participant during resting state scanning among all of the included participants. In 
the first run, the resting state acquisition period lasted for 8 minutes with no interruptions. In the 
second run, also of 8 minutes, participants were asked to rate their sleepiness every 2 minutes 
with the Karolinska Sleepiness Scale (KSS)6,30. This is a single-item question with 9 ordinal 
anchored response alternatives. 
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MRI acquisition 
We used a General Electric Discovery 3 T MRI scanner. Echo-planar images were acquired 
using the following settings: flip angle 75, TE 30, TR 2.5 s, field of view 28.8 cm, slice thickness 
3 mm, 49 slices, interleaved bottom → up. T1-weighted anatomical scans were acquired with a 
sagittal BRAVO sequence, field of view 24 cm, slice thickness 1 mm, interleaved bottom → up. 
 
Preprocessing 
To remove task-related interference, volumes scanned during KSS ratings in the second run 
were cut out of the time series, including two volumes before and four after each rating event. 
This procedure removed spikes in the time-series for visual and motor networks, occurring at 
the time of ratings (not shown). We note that a consecutive time-series is not an assumption 
underlying such analyses of connectivity as were performed on these data. Remaining volumes 
were concatenated and in order to balance data, each series was trimmed down to the lowest 
number of remaining scans in any one session, which was 163, corresponding to 7 minutes and 
20 seconds. Data were preprocessed in SPM12 using the DPARSFA toolbox62. Functional 
images were slice time corrected, realigned, normalized using DARTEL63, resampled to 3x3x3 
mm voxel size, spatially smoothed with a 6x6x6 mm kernel, detrended, frequency filtered (0.01-
0.1 Hz), and regressed on nuisance covariates including six motion regressors and gray and 
white matter signal using DARTEL-obtained segmentation. Participants with more than 40 
volumes (25%) with framewise displacement (FD) ≥ 0.5 mm in any run were excluded from 
analysis (n = 15 out of 68, leaving n = 53 for analysis). Remaining volumes with FD ≥ 0.5 mm 
were cut after nuisance regression and interpolated using cubic splines. Unless otherwise 
specified, these data were used for the subsequent analyses. To further reduce the risk of 
motion confounding, FD parameters were carried forward as regressors of no interest in 2nd 
level analyses.  
 
Independent component analysis (ICA) 
ICA was performed using the GIFT toolbox64. Independent components were estimated using 
the Infomax algorithm and the ICASSO approach. Following back-reconstruction using spatio-
temporal regression, components of interest were extracted for each subject. 2nd level analyses 
were performed in SPM12 within a general linear model (GLM) framework. 
 
We performed two sets of ICA analyses. The first set was performed on data preprocessed with 
frequency filtering (as described above), with a gray matter mask derived from DARTEL, and 
with 20 components. One reviewer suggested that the analysis should be repeated without 
frequency filtering, without the gray matter mask, and with 30 components. We report the 30-
component ICA as the main model. 
 
In 2nd level analyses, masks for specific networks were used based on a previously published 
parcellation65, illustrated in supplemental figure 1. We also investigated effects within the whole 
gray substance mask. We did not use network masks derived from the present data, as this 
would introduce a risk of overfitting. 
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Seed-based and cross-correlation analyses 
Seed regions for the default mode network (DMN) and the anticorrelated task-positive network 
(TPN) were based on a previous report on the effect of sleep deprivation on functional 
connectivity10. Seed regions were 9x9x9 mm cubic centered on coordinates reported by De 
Havas et al.10, see supplemental table 1. Time courses were compared within each run using 
the DPARSFA toolbox and the resulting z-statistics were entered into a mixed-effects linear 
regression model with deviation coding for contrasts in R66. In addition, following Shao et al.12, 
we defined a thalamus region of interest (ROI) using the Wake Forest University PickAtlas67–69, 
and following Shao et al.12,13 and Lei et al.14, we selected right and left thalamus ROI:s as well 
as separate ROI:s for the superficial, centromedial, and basolateral amygdala, as defined by 
Amunts et al.70, using the Jülich atlas71–73. Furthermore, at the suggestion of one reviewer, we 
investigated default mode network using seed-based methods. To capture the default mode 
network in a manner that was optimized for the present dataset, we investigated seed regions 
centered on the peak voxel of the posterior midline hub according to the 30-component ICA 
(MNI 0, -58, 15). We tested a spherical seed with radius 4.5 mm and a box seed with 
dimensions 9x9x9 mm. We also tested a set of seed regions defined as those areas where 
either of the two default mode network components from the 30-component ICA showed z > 30. 
 
Regional homogeneity (ReHo) 
Using the DPARSFA toolbox, ReHo was estimated in data preprocessed as described above 
but without smoothing, with cluster size of 27 voxels (3x3x3) and subsequent smoothing. 2nd 
level analysis was performed in SPM12 as described above. 
 
Global signal 
Global signal was estimated using the DPARSFA toolbox from data preprocessed as described 
above including all the steps and with the same gray matter mask generated by DARTEL. For 
each run, global signal variability was determined as the standard deviation of gray matter 
signal during the run, following Wong et al.48,49. Notably, Wong et al. calculated the same 
measure but called it amplitude rather than variability, and we used that terminology in the 
registration of hypotheses. To better approximate a normal distribution, standard deviations 
were log-transformed. Mixed-effects models were then used in R66 to investigate effects of sleep 
deprivation and age group, as well as correlations to putative covariates, with mean framewise 
displacement as a covariate of no interest in order to decrease the influence of head motion on 
estimates. 
 
Amplitude of low-frequency fluctuations (ALFF) 
Amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency 
fluctuations (fALFF) were analysed using the DPARSFA toolbox on preprocessed data after 
nuisance regression but before scrubbing and interpolation, in order to preserve continuity of the 
time-series. For the same reason, the second run in each session was not included in these 
analyses, as these runs had volumes censored. Temporal filtering was not performed before 
ALFF and fALFF analyses, in order to preserve low-frequency fluctuations for analysis. 
 
Availability of data and code 
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Structural and functional imaging data are available at https://openfmri.org/dataset/ds000201/. 
(Note: provisional links to data during review process are provided in the cover letter). Code for 
preprocessing and analysis, SPM results objects and tables are available at 
http://dx.doi.org/10.5281/zenodo.581250. Masks and seed regions are available for visualisation 
and download at http://neurovault.org/collections/LEWNNZLY/. 
 
Results 
Participants 
The final sample consisted of 53 participants (30 young, 23 old), after excluding 15 due to 
excessive motion (8 young, 7 old). Participant characteristics are given in table 1. PSG data for 
the full sample of participants have been reported in Åkerstedt et al. (in preparation), but are 
repeated here for those participants finally included in resting state analyses. 
 

 Condition All Young Old 

Sex (F/M)  29/24 16/14 13/10 

Age (median, range)  26 (20-75) 23 (20-29) 68 (65-75) 

Total sleep time, 
minutes (mean, SD) 

Full sleep 412 (76) 431 (78) 389 (68) 

Sleep deprivation 173 (37) 184 (37) 158 (33) 

REM, % (mean, SD) Full sleep 19.5 (6.9) 19.8 (5.6) 19.2 (8.3) 

Sleep deprivation 15.4 (8.8) 14.4 (6.9) 16.0 (10.0) 

N1, % (mean, SD) Full sleep 18.8 (10.1) 14.4 (6.6) 28.6 (11.1) 

Sleep deprivation 15.6 (9.0) 10.8 (5.8) 20.6 (9.4) 

N2, % (mean, SD) Full sleep 44.1 (7.7) 42.8 (7.7) 45.8 (7.5) 

Sleep deprivation 40.7 (11.8) 35.5 (9.6) 45.4 (12.0) 

N3, % (mean, SD) Full sleep 17.5 (9.6) 23.0 (6.8) 10.4 (8.0) 

Sleep deprivation 28.3 (16.0) 39.3 (9.5) 18.1 (14.3) 

ESS (mean, SD)  8.2 (3.8) 7.4 (2.8) 9.2 (4.6) 

ISI (mean, SD)  9.9 (2.0) 10.1 (2.2) 9.0 (1.3) 
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KSQ sleep quality 
index (mean, SD) 

 5.3 (0.5) 5.3 (0.5) 5.2 (0.5) 

KSQ snoring 
symptom index 
(mean, SD) 

 5.7 (0.4) 5.6 (0.3) 5.5 (0.5) 

Table 1: Participant characteristics and sleep measures.  
 
Measures of sleep and sleepiness 
KSS data for the full sample of participants have been reported in Åkerstedt et al. (in 
preparation), but are repeated here for those participants finally included in resting state 
analyses. Effects of sleep deprivation, age group, and time in scanner on KSS ratings was 
investigated using a mixed-effects regression model. Sleep deprivation caused increased KSS 
(β = 1.88 [95% CI 1.73, 2.03], p < 0.001, figure 1). Young age group was associated to higher 
KSS ratings (1.33 [0.67, 2.00], p < 0.001), as was time in scanner (0.76 per hour [0.60, 0.92], p 
< 0.001, figure 1). 
 

 
Figure 1: KSS ratings. Left: Full sleep condition. Right: Sleep deprivation condition. Data 
have been vertically jittered to aid visualisation. Points in black show KSS ratings made 
in connection to resting state experiments, and points in gray show other KSS ratings. 
Straight lines show linear regressions; dashed lines show loess regressions, for 
visualisation. In most cases, imaging was completed within 90 minutes and data points 
occurring later are mostly due to technical or other interruptions in the experiment, with 
participants exiting the MRI scanner and entering again. 

 
Head motion 
We analysed head motion after scrubbing to verify that it was not a major confounder in 
comparisons between conditions and age groups. The results have been reported for the 
purpose of technical validation in Nilsonne et al.56. Briefly, sleep deprivation did not cause 
considerably more volumes to fall above the threshold for exclusion of framewise displacement 
> 0.5 mm in either run (estimates ≤ 1.2, p:s ≥ 0.2). However, more volumes exceeded the 
threshold in the second run compared to the first in both sleep conditions (estimates ≤ 3.8, p:s ≤ 
0.0001). Older participants did not have more volumes exceeding the threshold in either 
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condition nor session (estimates ≤ 1.0, p:s ≥ 0.35). These analyses suggest that head motion 
was not a major confounder between sleep deprivation and full sleep conditions nor between 
age groups. 
 
Independent component analyses 
We performed 2 sets of ICA analyses; first one with 20 components56, using temporal filtering in 
the preprocessing and a gray matter mask, and secondly one with 30 components, without 
temporal filtering and without the gray matter mask. The two approaches yielded highly similar 
network results (supplemental figure 2). The 30-component analysis yielded 10 components of 
interest, which were further examined in 2nd level modelling for effects of sleep deprivation and 
differences between age groups. Network components not of interest are shown in 
supplemental figure 2.  
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Figure 2: ICA networks of interest. Ten of 30 components (arbitrary numbers) were 
judged to represent the default mode network (DMN), frontoparietal, attention 
(lateralised left and right), and salience networks, and were examined further. Images 
are displayed in neurological convention. Scale is truncated at z = 30 and maps are 
thresholded at z = 1.645. 

 
Sleep deprivation did not cause changes in connectivity within the networks of interest (pFWE < 
0.05). Younger participants showed a pattern of greater connectivity than older participants 
within all networks (figure 3). Older participants showed higher connectivity in small scattered 
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foci (not shown; available at http://doi.org/10.5281/zenodo.581250). Sleep deprivation and age 
group showed no significant interactions.  
 

 
Figure 3: ICA results. Areas within network masks where younger participants showed 
higher functional connectivity compared to older participants (pFWE < 0.005, accounting 
for multiple comparisons; critical t = 5.45).  

 
Cross-correlation analyses of default mode and task-positive networks 
Besides the data-driven ICA approach, we also tested a specific hypothesis-driven set of 
correlations, namely between the default mode network (DMN) and the task-positive network 
(TPN). We used seed regions defined in earlier work on sleep deprivation10 (figure 4). 
 

 
Figure 4: Seed regions for the default mode network (DMN, green) and task-positive 
network (TPN, purple), defined from de Havas et al.10. To verify that the seed regions 
are appropriate for the present dataset, they are superimposed on t-maps for positive 
connectivity (hot colors) and negative connectivity (cool colors) to regions from ICA 
components 18 and 19, representing posterior and anterior DMN (see methods and 
supplementary figures 7 and 8). IPL: inferior parietal lobule. IPS: inferior parietal sulcus. 
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LTC: Lower temporal cortex. PCC: posterior cingulate cortex. dmPFC: dorsomedial 
prefrontal cortex. vmPFC: ventromedial prefrontal cortex. TPJ: temporo-parietal junction. 
 

An overall pattern of correlation between DMN pairs and anticorrelation between DMN nodes 
and ACN nodes was confirmed (figure 5). Sleep deprivation caused no changes surviving 
multiple comparisons correction at pFDR < 0.05, although the pattern of effects was in the 
expected direction, with lower connectivity within the default mode network and reduced 
anticorrelation between the default mode network and the task-positive network (figure 5). Older 
participants showed a pattern of generally lower connectivity, with three default mode network 
node pairs surviving multiple comparisons correction at pFDR < 0.05 (figure 5). For the interaction 
between sleep deprivation and older age, a pattern was observed where older participants 
showed less of the reduced connectivity suggested by the sleep deprivation main effects, 
although again no node pairs surviving multiple comparisons correction at pFDR < 0.05 (figure 5). 
 
Total sleep time was associated with increased connectivity between RIPL and LLTC in the 
interaction between older group and sleep deprivation (0.027, pFDR = 0.04). None of the other 
putative sleep-related covariates listed in the hypotheses (above) correlated significantly to ROI-
based connectivity measures at p < 0.05 after false discovery rate correction for multiple testing 
within each contrast (main effect, interaction with sleep condition, interaction with age group, 
and 3-way interaction). 
 

 
Figure 5: Connectivity results between regions of interest in the default mode network 
and the task-positive network. Associations between time courses from each ROI were 
determined for each run and entered into a mixed-effects model. Thus, the intercept 
represents the overall association between nodes; sleep deprivation represents the main 
effect of sleep deprivation vs full sleep; age group represents the main effect of older vs 
younger age group membership; and the sleep-age group interaction represents the 
interaction effect of sleep deprivation and older age. β is the standardized regression 
coefficient. False discovery rate correction was performed within each of the four sets of 
comparisons, and node pairs where pFDR < 0.05 are indicated with an asterisk (*). 
  

Seed-based analyses of connectivity with thalamus and amygdala, and within the default 
mode network 
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Based on reports of effects of sleep deprivation on connectivity from the thalamus12,22 and 
amygdala13,14, we investigated whether earlier results could be replicated. Seed regions are 
shown in supplemental figures 3 and 4 for thalamus and amygdala, respectively. Functional 
connectivity with the thalamus was exhibited in the anterior and posterior cingulate cortices, the 
occipital cortex, and the cerebellum (supplemental figure 5). Functional connectivity with 
bilateral amygdalae was shown in large parts of the brain, including contralateral amygdala, 
basal ganglia, and cortical areas in all four lobes (supplemental figure 6). Sleep deprivation 
caused no differences in connectivity with thalamus or amygdala seeds exceeding a threshold 
of pFWE = 0.05, nor did any differences between the age groups exceed that threshold. 
 
Following the suggestion of one reviewer, we investigated connectivity within the default mode 
network using seed regions defined from the ICA analysis results in the present dataset. The 
rationale was that this approach would be more sensitive to differences between conditions, 
albeit at increased risk of overfitting leading to reduced external validity. We therefore 
investigated connectivity from one seed region centered on the peak voxel in the posterior 
midline default mode network hub, as well as a seed region set defined by those areas where 
ICA-derived default mode network components showed z > 10. Resulting connectivity maps 
captured key areas of the default mode network (supplemental figure 7). No effects of sleep 
deprivation, age group, nor their interactions were statistically significant. Negative connectivity 
maps from these seeds failed to show expected anticorrelated networks (supplemental figure 7). 
 
Regional homogeneity (ReHo) 
Sleep deprivation did not affect measures of ReHo. Younger participants had higher ReHo in 
areas of the cerebral cortex and basal ganglia, particularly in the medial prefrontal cortex and in 
the superior temporal cortex/insula bilaterally (figure 6). Older participants had higher ReHo 
mainly in areas prone to imaging and motion artifacts, including the orbitofrontal cortex and the 
outer edges of the brain anteriorly and posteriorly. Therefore, and even though framewise 
displacement was included as a 2nd-level regressor of no interest to account for motion 
artifacts, areas with apparently higher ReHo among the elderly may not reflect genuine 
differences in homogeneity of cerebral blood flow. There was no significant interaction between 
age group and sleep condition. 
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Figure 6: Differences in regional homogeneity between younger and older participants. 

 
Global signal 
Global signal was not used as a covariate in our analyses reported above, since global signal 
regression has been identified as a potential source of spurious correlations38,40. However, we 
separately investigated whether sleep deprivation affected the global signal. Our main outcome 
of interest was global signal variability. 
 
We found that sleep deprivation caused higher global signal variability (0.10 [0.03, 0.17], p = 
0.003, figure 7). Global signal variability was lower in older participants (-0.38 [-0.53, -0.23], p < 
0.0001). The interaction between sleep deprivation and older age was -0.11 [-0.24, 0.02], p = 
0.09. We found no notable associations between 15 putative predictors and global signal 
variability (supplemental table 2), except that longer total sleep time (TST) in the sleep deprived 
condition was associated with less global signal variability (-0.01 [-0.01, 0.00], p = 0.01). 
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Figure 7: Global signal variability (standard deviation, transformed using the natural 
logarithm) after sleep deprivation in younger and older participants. Error bars show 95% 
confidence intervals. 
 

Effects of sleep deprivation and age group on the global signal itself, rather than its variability, 
are shown in supplemental figure 9. Sleep deprivation and older age group interacted (106.0 
[46.0, 166.0], p = 0.0006). The main effect of sleep deprivation was -15.1 [-45.1, 14.9], p = 0.32. 
The main effect of older age group was 44.2 [-87.3, 175.8], p = 0.50. We found no strong 
associations between 15 putative predictors and global signal (supplemental table 3). 
 
Amplitude of low-frequency fluctuations 
ALFF and fALFF were investigated exploratively as differences in ALFF following sleep 
deprivation were shown in a recent publication24. We found no significant differences between 
sleep conditions exceeding a threshold of pFWE > 0.05, and only scattered foci in comparisons 
between age groups (results not shown; available at 
http://neurovault.org/collections/LEWNNZLY/). 
 
Discussion 
We found that partial sleep deprivation caused higher global signal variability. We did not find 
other major effects of partial sleep deprivation on measures of intrinsic connectivity, including 
ICA-derived networks; seed-based connectivity in the default mode and task-positive networks, 
and from the thalamus and amygdala to the rest of the brain; ALFF; and ReHo. Older 
participants generally showed less functional connectivity than younger participants. Major 
interactions between age group and sleep deprivation were not observed. 
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Our finding of increased global signal variability has been previously reported in one experiment 
with sleep deprivation, but without inferential statistics22. It is possible that global signal 
variability increased in sleepiness because of the increased propensity to drift in and out of 
sleep (wake-state instability), as the transition to sleep is associated with changes in network 
connectivity74. Our results agree well with the earlier findings that global signal variability is 
decreased by caffeine47 and that global signal variability correlates to EEG measures of 
vigilance48,49. This finding is also consistent with findings by Fukunaga et al.50 that global signal 
variability increased in sleep, and by Kiviniemi et al.75 that midazolam sedation caused 
increased global signal variability. Power et al. reported that effects of respiration, heart rate, 
and movement were associated to global signal variability even after nuisance regression76. 
These findings raise the possible interpretation that changes in wakefulness cause variations in 
respiration and heart rate, which in turn affect the global signal. Thus, it is possible that changes 
in physiological parameters of respiration and circulation are mechanisms rather that 
confounders in the putative association between wakefulness and global signal variability. 
Further research using concomitant EEG and physiological recording during resting state may 
be able to shed light on this hypothesis. 
 
We attempted replications of the analyses performed in Sämann et al.8 and in de Havas et al.10. 
In cross-correlation analyses of the default mode network and the task-positive network, the 
pattern of effect directions was consistent with results reported by de Havas et al.10, showing 
mainly reduced connectivity within the DMN and reduced anticorrelation between the DMN and 
the TPN. Our observed effects were however smaller in magnitude compared to those observed 
by de Havas et al. Against the backdrop of a number of earlier studies with consistent results, 
not all of which reached statistical significance, we view the results of our cross-correlation 
analysis as providing additional support for reduced connectivity within the DMN, and reduced 
anticorrelation between the DMN and the TPN, following sleep deprivation29.  
 
An important difference between our study and several earlier studies is that we acquired 
resting state data with eyes open and with eye-tracking to ensure participants did not fall 
asleep29. If effects in earlier studies were due partly to sleep episodes during scanning, this 
difference in methodology may account for the weaker effects observed here compared to 
certain earlier reports.  
 
In line with previous research37, older participants had lower connectivity within most ICA-
derived networks of interest. Furthermore, we found that older participants had lower regional 
homogeneity (ReHo) in medial prefrontal cortex as well as superior temporal lobes and insula 
bilaterally. To our knowledge, only one study has previously investigated the effect of normal 
aging on ReHo in the resting brain, finding lower ReHo in motor areas77.  
 
In the present study, we used a partial sleep deprivation paradigm, mainly because it has higher 
ecological validity compared with total sleep deprivation. Increased subjective sleepiness in the 
PSD condition confirms that the current protocol successfully induced sleepiness. The KSS 
measure of subjective sleepiness has been closely related to behavioral and physiological 
sleepiness30. KSS levels reached after PSD correspond to those seen during night work or night 
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driving, although not as high as that seen before driving off the road in a driving simulator or 
being taken off the road for sleep related dangerous driving30. Thus, it is possible that the sleep 
manipulation might not have been strong enough to cause alterations in intrinsic connectivity 
measures, for which we found no effects. Thus, one possible conclusion is that partial sleep 
deprivation and the associated moderate sleepiness may not cause changes in intrinsic 
connectivity. 
 
Limitations include the risk of confounding due to head motion, which is expected to cause an 
apparent decrease in long-range connectivity, e.g. within the default mode network78, and an 
increase in short-range connectivity, e.g. regional homogeneity. Although the number of 
excluded volumes due to head motion was not considerably greater in the sleep deprivation 
condition, and although we attempted to correct for motion by regressing out realignment 
parameters, we cannot exclude the possibility of residual effects. Another possible improvement 
would have been to acquire EEG during resting state scans. This could have allowed us to 
identify microsleeps. We do not believe that the wake up-regime used in this study (which was 
almost never activated) prevented microsleeps with eyes open from occurring. Strengths of this 
study include a relatively large sample that includes both younger and older adults, recording of 
PSG and KSS, and monitoring of participants by eye-tracking. 
 
In conclusion, we report that global signal variability was increased by sleep deprivation. We 
speculate that this effects is due to wake-state instability, affecting neural activity as well as 
respiration, heart rate, and head movements. Major effects of sleep deprivation on resting state 
networks were not observed. 
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