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Abstract 9 

Motivation: Protein contacts contain key information for the understanding of protein structure and 10 

function and thus, contact prediction from sequence is an important problem. Recently exciting 11 

progress has been made on this problem, but the predicted contacts for proteins without many sequence 12 

homologs is still of low quality and not extremely useful for de novo structure prediction.  13 

Method: This paper presents a new deep learning method that predicts contacts by integrating both 14 

evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural 15 

network formed by two deep residual neural networks. The first residual network conducts a series of 16 

1-dimensional convolutional transformation of sequential features; the second residual network 17 

conducts a series of 2-dimensional convolutional transformation of pairwise information including 18 

output of the first residual network, EC information and pairwise potential. By using very deep residual 19 

networks, we can accurately model contact occurring patterns and complex sequence-structure 20 

relationship and thus, obtain high-quality contact prediction regardless of how many sequence 21 

homologs are available for proteins in question.  22 

Results: Our method greatly outperforms existing methods and leads to much more accurate 23 

contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 24 

membrane proteins, the average top L long-range prediction accuracy obtained our method, one 25 

representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, 26 

respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 27 

0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without 28 

any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that 29 

using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, 30 

respectively. Our contact-assisted models also have much better quality than template-based models 31 

especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 32 

for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for 33 
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only 10 of them. Further, even if trained by only non-membrane proteins, our deep learning method 34 

works very well on membrane protein contact prediction. In the recent blind CAMEO benchmark, our 35 

fully-automated web server implementing this method successfully folded 5 targets with a new fold and 36 

only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein 37 

of 125 residues, one α protein of 140 residues, one α protein of 217 residues and one α/β of 260 38 

residues. 39 

Availability: http://raptorx.uchicago.edu/ContactMap/  40 

Author Summary 41 

Protein contact prediction and contact-assisted folding has made good progress due to direct 42 

evolutionary coupling analysis (DCA). However, DCA is effective on only some proteins with a very 43 

large number of sequence homologs. To further improve contact prediction, we borrow ideas from deep 44 

learning, which has recently revolutionized object recognition, speech recognition and the GO game. 45 

Our deep learning method can model complex sequence-structure relationship and high-order 46 

correlation (i.e., contact occurring patterns) and thus, improve contact prediction accuracy greatly. Our 47 

test results show that our method greatly outperforms the state-of-the-art methods regardless how many 48 

sequence homologs are available for a protein in question. Ab initio folding guided by our predicted 49 

contacts may fold many more test proteins than the other contact predictors. Our contact-assisted 3D 50 

models also have much better quality than homology models built from the training proteins, especially 51 

for membrane proteins. One interesting finding is that even trained with only soluble proteins, our 52 

method performs very well on membrane proteins. Recent blind test in CAMEO confirms that our 53 

method can fold large proteins with a new fold and only a small number of sequence homologs. 54 

Introduction 55 

De novo protein structure prediction from sequence alone is one of most challenging problems in 56 

computational biology. Recent progress has indicated that some correctly-predicted long-range contacts 57 

may allow accurate topology-level structure modeling (1) and that direct evolutionary coupling 58 

analysis (DCA) of multiple sequence alignment (MSA) may reveal some long-range native contacts for 59 

proteins and protein-protein interactions with a large number of sequence homologs (2, 3). Therefore, 60 

contact prediction and contact-assisted protein folding has recently gained much attention in the 61 

community. However, for many proteins especially those without many sequence homologs, the 62 

predicted contacts by the state-of-the-art predictors such as CCMpred (4), PSICOV (5), Evfold (6), 63 

plmDCA(7), Gremlin(8), MetaPSICOV (9) and CoinDCA (10) are still of low quality and insufficient 64 

for accurate contact-assisted protein folding (11,12). This motivates us to develop a better contact 65 

prediction method, especially for proteins without a large number of sequence homologs. In this paper 66 

we define that two residues form a contact if they are spatially proximal in the native structure, i.e., the 67 

Euclidean distance of their Cβ atoms less than 8Å (13).  68 

Existing contact prediction methods roughly belong to two categories: evolutionary coupling analysis 69 
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(ECA) and supervised machine learning. ECA predicts contacts by identifying co-evolved residues in a 70 

protein, such as EVfold (6), PSICOV (5), CCMpred (4), Gremlin (8), plmDCA and others (14-16). 71 

However, DCA usually needs a large number of sequence homologs to be effective (10, 17). 72 

Supervised machine learning predicts contacts from a variety of information, e.g., SVMSEQ (18), 73 

CMAPpro (13), PconsC2 (17), MetaPSICOV (9), PhyCMAP (19) and CoinDCA-NN (10). Meanwhile, 74 

PconsC2 uses a 5-layer supervised learning architecture (17); CoinDCA-NN and MetaPSICOV employ 75 

a 2-layer neural network (9). CMAPpro uses a neural network with more layers, but its performance 76 

saturates at about 10 layers. Some supervised methods such as MetaPSICOV and CoinDCA-NN 77 

outperform ECA on proteins without many sequence homologs, but their performance is still limited by 78 

their shallow architectures.  79 

To further improve supervised learning methods for contact prediction, we borrow ideas from very 80 

recent breakthrough in computer vision. In particular, we have greatly improved contact prediction by 81 

developing a brand-new deep learning model called residual neural network (20) for contact prediction. 82 

Deep learning is a powerful machine learning technique that has revolutionized image classification 83 

(21, 22) and speech recognition (23). In 2015, ultra-deep residual neural networks (24) demonstrated 84 

superior performance in several computer vision challenges (similar to CASP) such as image 85 

classification and object recognition (25). If we treat a protein contact map as an image, then protein 86 

contact prediction is kind of similar to (but not exactly same as) pixel-level image labeling, so some 87 

techniques effective for image labeling may also work for contact prediction. However, there are some 88 

important differences between image labeling and contact prediction. First, in computer vision 89 

community, image-level labeling (i.e., classification of a single image) has been extensively studied, 90 

but there are much fewer studies on pixel-level image labeling (i.e., classification of an individual 91 

pixel). Second, in many image classification scenarios, image size is resized to a fixed value, but we 92 

cannot resize a contact map since we need to do prediction for every residue pair (equivalent to an 93 

image pixel). Third, contact prediction has much more complex input features (including both 94 

sequential and pairwise features) than image labeling. Fourth, the ratio of contacts in a protein is very 95 

small (<2%). That is, the number of positive and negative labels in contact prediction is extremely 96 

unbalanced.  97 

In this paper we present a very deep residual neural network for contact prediction. Such a network can 98 

capture very complex sequence-contact relationship and high-order contact correlation. We train this 99 

deep neural network using a subset of proteins with solved structures and then test its performance on 100 

public data including the CASP (26, 27) and CAMEO (28) targets as well as many membrane proteins. 101 

Our experimental results show that our method yields much better accuracy than existing methods and 102 

also result in much more accurate contact-assisted folding. The deep learning method described here 103 

will also be useful for the prediction of protein-protein and protein-RNA interfacial contacts. 104 
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Results 105 

Deep learning model for contact prediction 106 

 107 

Figure 1. Illustration of our deep learning model for contact prediction. Meanwhile, L is the sequence 108 

length of one protein under prediction.  109 

Fig. 1 illustrates our deep neural network model for contact prediction (29). Different from previous 110 

supervised learning approaches(9, 13) for contact prediction that employ only a small number of 111 

hidden layers (i.e., a shallow architecture), our deep neural network employs dozens of hidden layers. 112 

By using a very deep architecture, our model can automatically learn the complex relationship between 113 

sequence information and contacts and also model the interdependency among contacts and thus, 114 

improve contact prediction (17). Our model consists of two major modules, each being a residual 115 

neural network. The first module conducts a series of 1-dimensional (1D) convolutional 116 

transformations of sequential features (sequence profile, predicted secondary structure and solvent 117 

accessibility). The output of this 1D convolutional network is converted to a 2-dimensional (2D) matrix 118 

by an operation similar to outer product and then fed into the 2
nd

 module together with pairwise 119 

features (i.e., co-evolution information, pairwise contact and distance potential). The 2
nd

 module is a 120 

2D residual network that conducts a series of 2D convolutional transformations of its input. Finally, the 121 

output of the 2D convolutional network is fed into a logistic regression, which predicts the probability 122 

of any two residues form a contact. In addition, each convolutional layer is also preceded by a simple 123 

nonlinear transformation called rectified linear unit (30). Mathematically, the output of 1D residual 124 

network is just a 2D matrix with dimension L×m where m is the number of new features (or hidden 125 

neurons) generated by the last convolutional layer of the network. Biologically, this 1D residual 126 

network learns the sequential context of a residue. By stacking multiple convolution layers, the 127 
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network can learn information in a very large sequential context. The output of a 2D convolutional 128 

layer has dimension L×L×n where n is the number of new features (or hidden neurons) generated by 129 

this layer for one residue pair. The 2D residual network mainly learns contact occurring patterns or 130 

high-order residue correlation (i.e., 2D context of a residue pair). The number of hidden neurons may 131 

vary at each layer. 132 

Our test data includes the 150 Pfam families described in (5), 105 CASP11 test proteins (31), 398 133 

membrane proteins (Supplementary Table 1) and 76 CAMEO hard targets released from 10/17/2015 to 134 

04/09/2016 (Supplementary Table 2). The tested methods include PSICOV (5), Evfold (6), CCMpred 135 

(4), plmDCA(7), Gremlin(8), and MetaPSICOV (9). The former 5 methods employs pure DCA while 136 

MetaPSICOV (9) is a supervised learning method that performed the best in CASP11 (31). All the 137 

programs are run with parameters set according to their respective papers. We cannot evaluate PconsC2 138 

(17) since we failed to obtain any results from its web server. PconsC2 did not outperform 139 

MetaPSICOV in CASP11 (31), so it may suffice to just compare our method with MetaPSICOV.  140 

Overall Performance 141 

We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) predicted contacts where L is protein sequence 142 

length (10). We define that a contact is short-, medium- and long-range when the sequence distance of 143 

the two residues in a contact falls into [6, 11], [12, 23], and ≥24, respectively. The prediction 144 

accuracy is defined as the percentage of native contacts among the top L/k predicted contacts. When 145 

there are no L/k native (short- or medium-range) contacts, we replace the denominator by L/k in 146 

calculating accuracy. This may make the short- and medium-range accuracy look small although it is 147 

easier to predict short- and medium-range contacts than long-range ones. 148 

Table 1. Contact prediction accuracy on the 150 Pfam families. 149 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.50 0.40 0.26 0.17 0.64 0.52 0.34 0.22 0.74 0.68 0.53 0.39 

PSICOV 0.58 0.43 0.26 0.17 0.65 0.51 0.32 0.20 0.77 0.70 0.52 0.37 

CCMpred 0.65 0.50 0.29 0.19 0.73 0.60 0.37 0.23 0.82 0.76 0.62 0.45 

plmDCA 0.66 0.50 0.29 0.19 0.72 0.60 0.36 0.22 0.81 0.76 0.61 0.44 

Gremlin 0.66 0.51 0.30 0.19 0.74 0.60 0.37 0.23 0.82 0.76 0.63 0.46 

MetaPSICOV 0.82 0.70 0.45 0.27 0.83 0.73 0.52 0.33 0.92 0.87 0.74 0.58 

Our method 0.93 0.81 0.51 0.30 0.93 0.86 0.62 0.38 0.98 0.96 0.89 0.74 

Table 2. Contact prediction accuracy on 105 CASP11 test proteins.  150 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.25 0.21 0.15 0.12 0.33 0.27 0.19 0.13 0.37 0.33 0.25 0.19 

PSICOV 0.29 0.23 0.15 0.12 0.34 0.27 0.18 0.13 0.38 0.33 0.25 0.19 
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CCMpred 0.35 0.28 0.17 0.12 0.40 0.32 0.21 0.14 0.43 0.39 0.31 0.23 

plmDCA 0.32 0.26 0.17 0.12 0.39 0.31 0.21 0.14 0.42 0.38 0.30 0.23 

Gremlin 0.35 0.27 0.17 0.12 0.40 0.31 0.21 0.14 0.44 0.40 0.31 0.23 

MetaPSICOV 0.69 0.58 0.39 0.25 0.69 0.59 0.42 0.28 0.60 0.54 0.45 0.35 

Our method 0.82 0.70 0.46 0.28 0.85 0.76 0.55 0.35 0.81 0.77 0.68 0.55 

Table 3. Contact prediction accuracy on 76 past CAMEO hard targets. 151 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.17 0.13 0.11 0.09 0.23 0.19 0.13 0.10 0.25 0.22 0.17 0.13 

PSICOV 0.20 0.15 0.11 0.08 0.24 0.19 0.13 0.09 0.25 0.23 0.18 0.13 

CCMpred 0.22 0.16 0.11 0.09 0.27 0.22 0.14 0.10 0.30 0.26 0.20 0.15 

plmDCA 0.23 0.18 0.12 0.09 0.27 0.22 0.14 0.10 030 0.26 0.20 0.15 

Gremlin 0.21 0.17 0.11 0.08 0.27 0.22 0.14 0.10 0.31 0.26 0.20 0.15 

MetaPSICOV 0.56 0.47 0.31 0.20 0.53 0.45 0.32 0.22 0.47 0.42 0.33 0.25 

Our method 0.67 0.57 0.37 0.23 0.69 0.61 0.42 0.28 0.69 0.65 0.55 0.42 

Table 4. Contact prediction accuracy on 398 membrane proteins. 152 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.16 0.13 0.09 0.07 0.28 0.22 0.13 0.09 0.44 0.37 0.26 0.18 

PSICOV 0.22 0.16 0.10 0.07 0.29 0.21 0.13 0.09 0.42 0.34 0.23 0.16 

CCMpred 0.27 0.19 0.11 0.08 0.36 0.26 0.15 0.10 0.52 0.45 0.31 0.21 

plmDCA 0.26 0.18 0.11 0.08 0.35 0.25 0.14 0.09 0.51 0.42 0.29 0.20 

Gremlin 0.27 0.19 0.11 0.07 0.37 0.26 0.15 0.10 0.52 0.45 0.32 0.21 

MetaPSICOV 0.45 0.35 0.22 0.14 0.49 0.40 0.27 0.18 0.61 0.55 0.42 0.30 

Our method 0.60 0.46 0.27 0.16 0.66 0.53 0.33 0.22 0.78 0.73 0.62 0.47 

 153 

As shown in Tables 1-4, our method outperforms all tested DCA methods and MetaPSICOV by a very 154 

large margin on the 4 test sets regardless of how many top predicted contacts are evaluated and no 155 

matter whether the contacts are short-, medium- or long-range. These results also show that two 156 

supervised learning methods greatly outperform the pure DCA methods and the three 157 

pseudo-likelihood DCA methods plmDCA, Gremlin and CCMpred perform similarly, but outperform 158 

PSICOV (Gaussian model) and Evfold (maximum-entropy method). The advantage of our method is 159 

the smallest on the 150 Pfam families because many of them have a pretty large number of sequence 160 

homologs. In terms of top L long-range contact accuracy on the CASP11 set, our method exceeds 161 

CCMpred and MetaPSICOV by 0.32 and 0.20, respectively. On the 76 CAMEO hard targets, our 162 

method exceeds CCMpred and MetaPSICOV by 0.27 and 0.17, respectively. On the 398 membrane 163 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2016. ; https://doi.org/10.1101/073239doi: bioRxiv preprint 

https://doi.org/10.1101/073239
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

protein set, our method exceeds CCMpred and MetaPSICOV by 0.26 and 0.17, respectively. Our 164 

method uses a subset of protein features used by MetaPSICOV, but performs much better than 165 

MetaPSICOV due to our deep architecture and that we predict contacts of a protein simultaneously. 166 

Since the Pfam set is relatively easy, we will not analyze it any more in the following sections. 167 

Prediction accuracy with respect to the number of sequence homologs 168 

 

Figure 2. Top L/5 accuracy of our method (green), CCMpred (blue) and MetaPSICOV (red) with 

respect to the amount of homologous information measured by ln(Meff). The accuracy on the union of 

the 105 CASP and 76 CAMEO targets is displayed in (A) medium-range and (B) long-range. The 

accuracy on the membrane protein set is displayed in (C) medium-range and (D) long-range. 

To examine the performance of our method with respect to the amount of homologous information 169 

available for a protein under prediction, we measure the effective number of sequence homologs in 170 

multiple sequence alignment (MSA) by Meff (19), which can be roughly interpreted as the number of 171 

non-redundant sequence homologs when 70% sequence identity is used as cutoff to remove 172 

redundancy (see Method for its formula). A protein with a smaller Meff has less homologous 173 

information. We divide all the test proteins into 10 bins according to ln(Meff) and then calculate the 174 

average accuracy of proteins in each bin. We merge the first 3 bins for the membrane protein set since 175 

they have a small number of proteins. 176 

Fig. 2 shows that the top L/5 contact prediction accuracy increases with respect to Meff, i.e., the 177 

number of effective sequence homologs, and that our method outperforms both MetaPSICOV and 178 

CCMpred regardless of Meff. Our long-range prediction accuracy is even better when ln(Meff)≤7 179 

(equivalently Meff<1100), i.e., when the protein under prediction does not have a very large number of 180 

non-redundant sequence homologs. Our method has a large advantage over the other methods even 181 

when Meff is very big (>8000). This indicates that our method indeed benefits from some extra 182 
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information such as inter-contact correlation or high-order residue correlation, which is orthogonal to 183 

pairwise co-evolution information. 184 

Contact-assisted protein folding 185 

One of the important goals of contact prediction is to perform contact-assisted protein folding (11). To 186 

test if our contact prediction can lead to better 3D structure modeling than the others, we build structure 187 

models for all the test proteins using the top predicted contacts as restraints of ab initio folding. For 188 

each test protein, we feed the top predicted contacts as restraints into the CNS suite (32) to generate 3D 189 

models. We measure the quality of a 3D model by a superposition-dependent score TMscore (33) , 190 

which ranges from 0 to 1, with 0 indicating the worst and 1 the best, respectively. We also measure the 191 

quality of a 3D model by a superposition-independent score lDDT, which ranges from 0 to 100, with 0 192 

indicating the worst and 100 the best, respectively. 193 

 

Figure 3. Quality comparison of top 1 contact-assisted models generated by our method, CCMpred and 

MetaPSICOV on the 105 CASP11 targets (red square), 76 CAMEO targets (blue diamond) and 398 

membrane protein targets (green triangle), respectively. (A) and (B): comparison between our method 

(X-axis) and CCMpred (Y-axis) in terms of TMscore and lDDT, respectively. (C) and (D): comparison 

between our method (X-axis) and MetaPSICOV (Y-axis) in terms of TMscore and lDDT, respectively. 
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lDDT is scaled to between 0 and 1. 

Fig. 3 shows that our predicted contacts can generate much better 3D models than CCMpred and 194 

MetaPSICOV. On average, our 3D models are better than MetaPSICOV and CCMpred by ~0.12 195 

TMscore unit and ~0.15 unit, respectively. When the top 1 models are evaluated, the average TMscore 196 

obtained by CCMpred, MetaPSICOV, and our method is 0.333, 0.377, and 0.518, respectively on the 197 

CASP dataset. The average lDDT of CCMpred, MetaPSICOV and our method is 31.7, 34.1 and 41.8, 198 

respectively. On the 76 CAMEO targets, the average TMsore of CCMpred, MetaPSICOV and our 199 

method is 0.256, 0.305 and 0.407, respectively. The average lDDT of CCMpred, MetaPSICOV and our 200 

method is 31.8, 35.4 and 40.2, respectively. On the membrane protein set, the average TMscore of 201 

CCMpred, MetaPSICOV and our method is 0.354, 0.387, and 0.493, respectively. The average lDDT 202 

of CCMpred, MetaPSICOV and our method is 38.1, 40.5 and 47.8, respectively. Same trend is 203 

observed when the best of top 5 models are evaluated (Supplementary Figure 1). On the CASP set, the 204 

average TMscore of the models generated by CCMpred, MetaPSICOV, and our method is 0.352, 0.399, 205 

and 0.543, respectively. The average lDDT of CCMpred, MetaPSICOV and our method is 32.3, 34.9 206 

and 42.4, respectively. On the 76 CAMEO proteins, the average TMscore of CCMpred, MetaPSICOV, 207 

and our method is 0.271, 0.334, and 0.431, respectively. The average lDDT of CCMpred, 208 

MetaPSICOV and our method is 32.4, 36.1 and 40.9, respectively. On the membrane protein set, the 209 

average TMscore of CCMpred, MetaPSICOV, and our method is 0.385, 0.417, and 0.516, respectively. 210 

The average lDDT of CCMpred, MetaPSICOV and our method is 38.9, 41.2 and 48.5, respectively. In 211 

particular, when the best of top 5 models are considered, our predicted contacts can result in correct 212 

folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while MetaPSICOV- and CCMpred-predicted 213 

contacts can do so for only 79 and 62 of them, respectively. 214 

Our method also generates much better contact-assisted models for the test proteins without many 215 

non-redundant sequence homologs. When the 219 of 579 test proteins with Meff≤500 are evaluated, the 216 

average TMscore of the top 1 models generated by our predicted contacts for the CASP11, CAMEO 217 

and membrane sets is 0.426, 0.365, and 0.397, respectively. By contrast, the average TMscore of the 218 

top 1 models generated by CCMpred-predicted contacts for the CASP11, CAMEO and membrane sets 219 

is 0.236, 0.214, and 0.241, respectively. The average TMscore of the top 1 models generated by 220 

MetaPSICOV-predicted contacts for the CASP11, CAMEO and membrane sets is 0.292, 0.272, and 221 

0.274, respectively. 222 

Contact-assisted models vs. template-based models 223 

To compare the quality of our contact-assisted models and template-based models (TBMs), we built 224 

TBMs for all the test proteins using our training proteins as candidate templates. To generate TBMs for 225 

a test protein, we first run HHblits (with the UniProt20_2016 library) to generate an HMM file for the 226 

test protein, then run HHsearch with this HMM file to search for the best templates among the 6767 227 

training proteins, and finally run MODELLER to build a TBM from each of the top 5 templates. Fig. 4 228 

shows the head-to-head comparison between our top 1 contact-assisted models and the top 1 TBMs on 229 
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these three test sets in terms of both TMscore and lDDT. The average lDDT of our top 1 230 

contact-assisted models is 45.7 while that of top 1 TBMs is only 20.7. When only the first models are 231 

evaluated, our contact-assisted models for the 76 CAMEO test proteins have an average TMscore 0.407 232 

while the TBMs have an average TMscore 0.317. On the 105 CASP11 test proteins, the average 233 

TMscore of our contact-assisted models is 0.518 while that of the TBMs is only 0.393. On the 398 234 

membrane proteins, the average TMscore of our contact-assisted models is 0.493 while that of the 235 

TBMs is only 0.149. Same trend is observed when top 5 models are compared (see Supplementary 236 

Figure 2). The average lDDT of our top 5 contact-assisted models is 46.4 while that of top 5 TBMs is 237 

only 24.0. On the 76 CAMEO test proteins, the average TMscore of our contact-assisted models is 238 

0.431 while that of the TBMs is only 0.366. On the 105 CASP11 test proteins, the average TMscore of 239 

our contact-assisted models is 0.543 while that of the TBMs is only 0.441. On the 398 membrane 240 

proteins, the average TMscore of our contact-assisted models is 0.516 while that of the TBMs is only 241 

0.187. The low quality of TBMs further confirms that there is little redundancy between our training 242 

and test proteins (especially membrane proteins). This also indicates that our deep model does not 243 

predict contacts by simply copying from training proteins. That is, our method can predict contacts for 244 

a protein with a new fold. 245 

 

Figure 4. Comparison between our contact-assisted models of the three test sets and their 

template-based models in terms of (A) TMscore and (B) lDDT score. The top 1 models are evaluated. 

 246 

Further, when the best of top 5 models are considered for all the methods, our contact-assisted models 247 

have TMscore>0.5 for 24 of the 76 CAMEO targets while TBMs have TMscore>0.5 for only 18 of 248 

them. Our contact-assisted models have TMscore >0.5 for 67 of the 105 CASP11 targets while TBMs 249 

have TMscore>0.5 for only 44 of them. Our contact-assisted models have TMscore>0.5 for 208 of the 250 

398 membrane proteins while TBMs have TMscore >0.5 for only 10 of them. Our contact-assisted 251 

models for membrane proteins are much better than their TBMs because there is little similarity 252 

between the 6767 training proteins and the 398 test membrane proteins. When the 219 test proteins 253 

with ≤500 non-redundant sequence homologs are evaluated, the average TMscore of the TBMs is 0.254 254 
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while that of our contact-assisted models is 0.421. Among these 219 proteins, our contact-assisted 255 

models have TMscore>0.5 for 72 of them while TBMs have TMscore>0.5 for only 17 of them. 256 

The above results imply that 1) when a query protein has no close templates, our contact-assisted 257 

modeling may work better than template-based modeling; 2) contact-assisted modeling shall be 258 

particularly useful for membrane proteins; and 3) our deep learning model does not predict contacts by 259 

simply copying contacts from the training proteins since our predicted contacts may result in much 260 

better 3D models than homology modeling. 261 

Blind test in CAMEO 262 

We have implemented our algorithm as a fully-automated contact prediction web server 263 

(http://raptorx.uchicago.edu/ContactMap/) and in September 2016 started to blindly test it through the 264 

weekly live benchmark CAMEO (http://www.cameo3d.org/). CAMEO is operated by the Schwede 265 

group, with whom we have never collaborated. CAMEO can be interpreted as a fully-automated CASP, 266 

but has a smaller number (>20) of participating servers since many CASP-participating servers are not 267 

fully automated and thus, cannot handle the large number of test targets used by CAMEO. Nevertheless, 268 

the CAMEO participants include some well-known servers such as Robetta(34), Phyre(35), 269 

RaptorX(36), Swiss-Model(37) and HHpred(38). Meanwhile Robetta employs both ab initio folding 270 

and template-based modeling while the latter four employ mainly template-based modeling. Every 271 

weekend CAMEO sends test sequences to participating servers for prediction and then evaluates 3D 272 

models collected from servers. The test proteins used by CAMEO have no publicly available native 273 

structures until CAMEO finishes collecting models from participating servers.  274 

During the past 2 months (9/3/2016 to 10/31/2016), CAMEO in total released 41 hard targets 275 

(Supplementary Table 3). Although classified as hard by CAMEO, some of them may have 276 

distantly-related templates. Table 5 lists the contact prediction accuracy of our server in the blind 277 

CAMEO test as compared to the other methods. Again, our method outperforms the others by a very 278 

large margin no matter how many contacts are evaluated. The CAMEO evaluation of our 279 

contact-assisted 3D models is available at the CAMEO web site. You will need to register CAMEO in 280 

order to see all the detailed results of our contact server (ID: server60). Although our server currently 281 

build 3D models using only top predicted contacts without any force fields and fragment assembly 282 

procedures, our server predicts 3D models with TMscore>0.5 for 28 of the 41 targets and TMscore>0.6 283 

for 16 of them. The average TMscore of the best of top 5 models built from the contacts predicted by 284 

our server, CCMpred and MetaPSICOV is 0.535, 0.316 and 0.392, respectively. See Fig. 5 for the 285 

detailed comparison of the 3D models generated by our server, CCMpred and MetaPSICOV. Our 286 

server has also successfully folded 4 targets with a new fold plus one released in November 2016 287 

(5flgB). See Table 6 for a summary of our prediction results of these targets and the below subsections 288 

for a detailed analysis. Among these targets, 5f5pH is particularly interesting since it has a sequence 289 

homolog in PDB but adopting a different conformation. That is, any template-based techniques cannot 290 

obtain a good prediction for this target. 291 
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Table 5. Contact prediction accuracy on 41 recent CAMEO hard targets. 292 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.20 0.15 0.11 0.08 0.25 0.19 0.12 0.09 0.33 0.29 0.21 0.15 

PSICOV 0.21 0.16 0.11 0.08 0.26 0.20 0.11 0.08 0.33 0.30 0.21 0.15 

plmDCA 0.26 0.19 0.12 0.09 0.28 0.23 0.13 0.09 0.38 0.33 0.24 0.17 

Gremlin 0.25 0.18 0.12 0.08 0.29 0.22 0.13 0.09 0.37 0.34 0.25 0.17 

CCMpred 0.24 0.18 0.12 0.08 0.29 0.22 0.13 0.09 0.37 0.34 0.24 0.17 

MetaPSICOV 0.53 0.43 0.27 0.17 0.51 0.42 0.28 0.19 0.60 0.54 0.40 0.30 

Our server 0.67 0.52 0.32 0.20 0.68 0.58 0.38 0.24 0.82 0.75 0.62 0.46 

 293 

 

Figure 5. Quality comparison (measured by TMscore) of contact-assisted models generated by our 

server, CCMpred and MetaPSICOV on the 41 CAMEO hard targets. (A) our server (X-axis) vs. 

CCMpred and (B) our server (X-axis) vs. MetaPSICOV. 

 294 

Table 6. A summary of our blind prediction results on 5 CAMEO hard targets with a new fold.  295 

Target CAMEO ID Type Len Meff Method RMSD(Å) TMscore 

2nc8A 2016-09-10_00000002_1 β 182 250 Our server 6.5 0.61 

Best of the others  12.18 0.47 

5dcjA 

 

2016-09-17_00000018_1 α+β 125 180 Our server 7.9 0.52 

Best of the others 10.0 0.53 

5djeB 

 

2016-09-24_00000052_1 α 140 330 Our server 5.81 0.65 

Best of the others  14.98 0.34 

5f5pH 2016-10-15_00000047_1 α 217 65 Our server 4.21 0.71 
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 Best of the others >40.0 0.48 

5flgB 2016-11-12_00000046_1 α/β 260 113 Our server 7.12 0.61 

Best of the others 16.9 0.25 

 296 

Among these 41 hard targets, there are five multi-domain proteins: 5idoA, 5hmqF, 5b86B, 5b2gG and 297 

5cylH. Table 7 shows that the average contact prediction accuracy of our method on these 5 298 

multi-domain proteins is much better than the others. For multi-domain proteins, we use a 299 

superposition-independent score lDDT instead of TMscore to measure the quality of a 3D model. As 300 

shown in Table 8, the 3D models built by our server from predicted contacts have much better lDDT 301 

score than those built from CCMpred and MetaPSICOV. 302 

Table 7. The average contact prediction accuracy of our method and the others on 5 multi-domain 303 

proteins among the 41 CAMEO hard targets. 304 

Method Short Medium Long 

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L 

EVfold 0.17 0.13 0.09 0.07 0.18 0.12 0.08 0.06 0.54 0.40 0.26 0.18 

PSICOV 0.27 0.18 0.10 0.07 0.26 0.17 0.11 0.07 0.62 0.49 0.31 0.20 

plmDCA 0.29 0.23 0.11 0.07 0.32 0.22 0.11 0.08 0.66 0.51 0.34 0.22 

Gremlin 0.30 0.24 0.12 0.08 0.32 0.22 0.12 0.07 0.67 0.52 0.36 0.23 

CCMpred 0.30 0.23 0.12 0.08 0.32 0.22 0.12 0.08 0.66 0.51 0.35 0.23 

MetaPSICOV 0.52 0.37 0.21 0.14 0.32 0.26 0.16 0.11 0.72 0.58 0.41 0.26 

Our method 0.74 0.58 0.33 0.19 0.68 0.55 0.33 0.20 0.96 0.91 0.76 0.57 

 305 

Table 8. The lDDT score of the 3D models built for the 5 multi-domain proteins using predicted 306 

contacts. 307 

Targets Length CCMpred MetaPSICOV Our 

5idoA 512 23.67 24.24 36.83 

5hmqF 637 24.84 25.91 33.16 

5b86B 600 29.88 32.85 42.58 

5b2gG 364 28.52 30.47 47.91 

5cylH 370 22.21 23.37 30.62 

Study of CAMEO target 2nc8A (CAMEO ID: 2016-09-10_00000002_1, PDB ID:2nc8) 308 

On September 10, 2016, CAMEO released two hard test targets for structure prediction. Our contact 309 

server successfully folded the hardest one (PDB ID: 2nc8), a mainly β protein of 182 residues. Table 9 310 

shows that our server produced a much better contact prediction than CCMpred and MetaPSICOV. 311 

CCMpred has very low accuracy since HHblits detected only ~250 non-redundant sequence homologs 312 

for this protein, i.e., its Meff=250. Fig. 6 shows the predicted contact maps and their overlap with the 313 
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native. MetaPSICOV fails to predict many long-range contacts while CCMpred introduces too many 314 

false positives. 315 

Table 9. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 316 

CCMpred on the CAMEO target 2nc8A. 317 

 Long-range accuracy Medium-range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.764  0.923 0.972 1.0   0.450  0.769  0.972  1.0 

MetaPSICOV 0.258  0.374 0.556  0.667 0.390  0.626  0.806  0.944 

CCMpred 0.165  0.231 0.389  0.333 0.148  0.187  0.167  0.222 

 318 

 

Figure 6. Overlap between top L/2 predicted contacts (in red or green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 319 

The 3D model submitted by our contact server has TMscore 0.570 (As of September 16, 2016, our 320 

server submits only one 3D model for each test protein) and the best of our top 5 models has TMscore 321 

0.612 and RMSD 6.5Å. Fig. 7 shows that the beta strands of our predicted model (red) matches well 322 

with the native (blue). To examine the superimposition of our model with its native structure from 323 

various angles, please see http://raptorx.uchicago.edu/DeepAlign/75097011/. By contrast, the best of 324 

top 5 models built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.206 325 

and 0.307, respectively, and RMSD 15.8Å and 14.2Å, respectively. The best TMscore obtained by the 326 

other CAMEO-participating servers is only 0.47 (Fig. 8). Three top-notch servers HHpred, RaptorX 327 

and Robetta only submitted models with TMscore≤0.30. According to Xu and Zhang (39), a 3D model 328 

with TMscore<0.5 is unlikely to have a correct fold while a model with TMscore≥0.6 surely has a 329 
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correct fold. That is, our contact server predicted a correct fold for this test protein while the others 330 

failed to.  331 

This test protein represents almost a novel fold. Our in-house structural homolog search tool 332 

DeepSearch(40) cannot identify structurally very similar proteins in PDB70 (created right before 333 

September 10, 2016) for this test protein. PDB70 is a set of representative structures in PDB, in which 334 

any two share less than 70% sequence identity. DeepSearch 335 

returned two weakly similar proteins 4kx7A and 4g2aA, 336 

which have TMscore 0.521 and 0.535 with the native 337 

structure of the test protein, respectively, and TMscore 338 

0.465 and 0.466 with our best model, respectively. This is 339 

consistent with the fact that none of the template-based 340 

servers in CAMEO submitted a model with TMscore>0.5. 341 

We cannot find structurally similar proteins in PDB70 for 342 

our best model either; the best TMscore between PDB70 343 

and our best model is only 0.480. That is, the models 344 

predicted by our method are not simply copied from the 345 

solved structures in PDB, and our method can indeed fold a 346 

relatively large β protein with a novel fold. 347 

 348 

Figure 8. The list of CAMEO-participating servers (only 12 of 20 are displayed) and their model 349 

scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web 350 

server. 351 

Study of CAMEO target 5dcjA (CAMEO ID: 2016-09-17_00000018_1, PDB ID:5dcj) 352 

This target was released by CAMEO on September 17, 2016. It is an α+β sandwich protein of 125 353 

residues. The four beta sheets of this protein are wrapped by one and three alpha helixes at two sides. 354 

Table 10 shows that our server produced a much better contact prediction than CCMpred and 355 

MetaPSICOV. Specifically, the contact map predicted by our method has L/2 long-range accuracy 356 

0.645 while that by CCMpred and MetaPSICOV has L/2 accuracy only 0.05 and 0.194, respectively. 357 

 

Figure 7. Superimposition between our 

predicted model (red) and its native 

structure (blue) for the CAMEO test 

protein (PDB ID 2nc8 and chain A). 
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CCMpred has very low accuracy since HHblits can only find ~180 non-redundant sequence homologs 358 

for this protein, i.e., its Meff=180. Fig. 9 shows the predicted contact maps and their overlap with the 359 

native. Both CCMpred and metaPSICOV failed to predict some long-range contacts. 360 

Table 10. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 361 

CCMpred on the CAMEO target 5dcjA. 362 

 Long range  Medium range  

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.456 0.645 0.88 0.833 0.36 0.645 0.92 1.0 

metaPSICOV 0.144 0.194 0.32 0.25 0.344 0.532 0.8 1.0 

CCMpred 0.05 0.05 0.08 0.08 0.1 0.129 0.12 0.25 

 363 

 

Figure 9. Overlap between top L/2 predicted contacts (in red or green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 364 

The first 3D model submitted by our contact server has TMscore 0.50 and the best of our 5 models has 365 

TMscore 0.52 and RMSD 7.9Å. The best of top 5 models built by CNS from CCMpred- and 366 

MetaPSICOV-predicted contacts have TMscore 0.243 and 0.361, respectively. Fig. 10(A) shows that all 367 

the beta strands and the three surrounding alpha helices of our predicted model (in red) matches well 368 

with the native structure (blue), while the models from CCMpred (Fig.10(B)) and MetaPSICOV 369 

(Fig.10(C)) do not have a correct fold. To examine the superimposition of our model with its native 370 

structure from various angles, please see http://raptorx.uchicago.edu/DeepAlign/92913404/ . 371 
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Figure 10. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO test protein (PDB ID 5dcj and chain A). The models are built by CNS from the contacts 

predicted by (A) our method, (B) CCMpred, and (C) MetaPSICOV. 

 372 

In terms of TMscore, our models have comparable quality to Robetta, but better than the other servers 373 

(Fig. 11). In terms of lDDT-Cα score, our models are better than all the others. In particular, our 374 

method produced better models than the popular homology modeling server HHpredB and our own 375 

template-based modeling server RaptorX, which submitted models with TMscore≤0.45. 376 

This test protein represents a novel fold. Searching through PDB70 created right before September 17, 377 

2016 by our in-house structural homolog search tool DeepSearch cannot identify structurally similar 378 

proteins for this test protein. The most structurally similar proteins are 3lr5A and 5ereA, which have 379 

TMscore 0.431 and 0.45 with the test protein, respectively. This is consistent with the fact that none of 380 

the template-based servers in CAMEO can predict a good model for this test protein. By contrast, our 381 

contact-assisted model has TMscore 0.52, which is higher than all the template-based models.  382 

 383 

Figure 11. The list of CAMEO-participating servers (only 14 of 20 are displayed) and their model 384 

scores, sorted by lDDT-Cα. The rightmost column displays the TMscore of submitted models. Server60 385 

is our contact web server. 386 
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Study of CAMEO target 5djeB (CAMEO ID: 2016-09-24_00000052_1, PDB ID: 5dje) 387 

This target was released on September 24, 2016. It is an alpha protein of 140 residues with a novel fold. 388 

Table 11 shows that our server produced a much better contact prediction than CCMpred and 389 

MetaPSICOV. Specifically, the contact map predicted by our method has L/5 and L/10 long-range 390 

accuracy 50.0% and 71.4%, respectively, while that by CCMpred and MetaPSICOV has L/5 and L/10 391 

accuracy less than 30%. CCMpred has low accuracy since HHblits can only find ~330 non-redundant 392 

sequence homologs for this protein, i.e., its Meff=330. Fig. 12 shows the predicted contact maps and 393 

their overlap with the native. Both CCMpred and metaPSICOV failed to predict some long-range 394 

contacts. 395 

Table 11. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 396 

CCMpred on the CAMEO target 5djeB. 397 

 Long range accuracy Medium range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our method 0.300 0.357 0.500 0.714 0.186 0.229 0.357 0.357 

metaPSICOV 0.193 0.200 0.286 0.286 0.100 0.143 0.214 0.286 

CCMpred 0.079 0.114 0.107 0.214 0.036 0.029 0.071 0.143 

 398 

 

Figure 12. Overlap between top L/2 predicted contacts (in red and green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 399 

The first 3D model submitted by our contact server has TMscore 0.65, while the best of our 5 models 400 

has TMscore 0.65 and RMSD 5.6Å. By contrast, the best of top 5 models built by CNS from 401 
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CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.404 and 0.427, respectively. Fig. 402 

13(A) shows that all the four alpha helices of our predicted model (in red) matches well with the native 403 

structure (blue), while the models from CCMpred (Fig. 13(B)) and MetaPSICOV (Fig. 13(C)) fail to 404 

predict the 3
rd

 long helix correctly. To examine the superimposition of our model with its native 405 

structure from various angles, please see http://raptorx.uchicago.edu/DeepAlign/26652330/. Further, all 406 

other CAMEO registered servers, including the top-notch servers such as HHpred, RaptorX, 407 

SPARKS-X, and RBO Aleph (template-based and ab initio folding) only submitted models with 408 

TMscore≤0.35, i.e., failed to predict a correct fold (Fig. 14). 409 

 

Figure 13. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO test protein (PDB ID 5dje and chain B). The models are built by CNS from the contacts 

predicted by (A) our method, (B) CCMpred, and (C) MetaPSICOV. 

 410 

This test protein represents a novel fold. Searching through PDB70 created right before September 24, 411 

2016 by our in-house structural homolog search tool DeepSearch cannot identify structurally similar 412 

proteins for this test protein. The most structurally similar proteins are 1u7lA and 4x5uA, which have 413 

TMscore 0.439 and 0.442 with the test protein, respectively. This is consistent with the fact that none of 414 

the template-based CAMEO-participating servers predicted a good model for this test protein. By 415 

contrast, our contact-assisted model has TMscore 0.65, much better than all the template-based models. 416 
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 417 

Figure 14. The list of CAMEO-participating servers (only 15 of 20 are displayed) and their model 418 

scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web 419 

server. 420 

Study of CAMEO target 5f5pH (CAMEO ID: 2016-10-15_00000047_1, PDB ID: 5f5p) 421 

On October 15, 2016, our contact web server successfully folded a very hard and also 422 

interesting CAMEO target (PDB ID: 5f5pH, CAMEO ID: 2016-10-15_00000047_1). This 423 

target is an alpha protein of 217 residues with four helices. Table 12 shows that our server 424 

produced a much better long-range contact prediction than CCMpred and MetaPSICOV. 425 

Specifically, our contact prediction has L/5 and L/10 long-range accuracy 76.7% and 95.2%, 426 

respectively, while MetaPSICOV has L/5 and L/10 accuracy less than 40%. CCMpred has 427 

very low accuracy since this target has only ~65 non-redundant sequence homologs, i.e., its 428 

Meff=65. The three methods have low L/k (k=1, 2) medium-range accuracy because there are fewer 429 

than L/k native medium-range contacts while we use L/k as the denominator in calculating accuracy. 430 

As shown in Fig. 15, CCMpred predicts too many false positives while MetaPSICOV predicts 431 

very few correct long-range contacts. 432 

Table 12. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 433 

CCMpred on the CAMEO target 5f5pH. 434 

 Long-range accuracy Medium-range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our server 0.382 0.602 0.767 0.952 0.041 0.083 0.209 0.381 

metaPSICOV 0.161 0.250 0.326 0.476 0.041 0.083 0.163 0.190 

CCMpred 0.032 0.037 0.047 0.048 0.009 0.019 0.023 0.032 

 435 
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Figure 15. Overlap between top L/2 predicted contacts (in red and green) and the native (in grey). Red 

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our 

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the 

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle). 

 436 

Our submitted 3D model has TMscore 0.71 and RMSD 4.21Å. By contrast, the best of top 5 models 437 

built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.280 and 0.472, 438 

respectively. Fig. 16(A) shows that our predicted model (in red) match well with the native structure 439 

(blue), while the model from CCMpred (Fig. 16(B)) is completely wrong and the model from 440 

MetaPSICOV (Fig. 16(C)) fails to place the 1
st
 and 4

th
 helices correctly. Please see 441 

http://raptorx.uchicago.edu/DeepAlign/14544627/ for the animated superimposition of our model with 442 

its native structure. As shown in the ranking list (Fig. 17), all the other CAMEO-participating servers, 443 

including Robetta, HHpred, RaptorX, SPARKS-X, and RBO Aleph (template-based and ab initio 444 

folding) only submitted models with TMscore≤0.48 and RMSD>43.82Å. Our contact server is the 445 

only one that predicted a correct fold for this target. 446 
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Figure 16. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO target 5f5pH. The models are built by CNS from the contacts predicted by (A) our method, 

(B) CCMpred, and (C) MetaPSICOV. 

 447 

 448 

Figure 17. The list of CAMEO-participating servers (only 15 of 20 are displayed) and their model 449 

scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web 450 

server. 451 

To make sure our best model is not simply copied from the database of solved structures, we search our 452 

best model against PDB70 created right before October 15, 2016 using our in-house structural homolog 453 

search tool DeepSearch, which yields two weakly similar proteins 2yfaA and 4k1pA. They have 454 

TMscore 0.536 and 0.511 with our best model, respectively. This implies that our model is not simply 455 

copied from a solved structure in PDB. 456 

We ran BLAST on this target against PDB70 and surprisingly, found one protein 3thfA with E-value 457 

3E-16 and sequence identity 35%. In fact, 3thfA and 5f5pH are two SD2 proteins from Drosophila and 458 

Human(41), respectively. Although homologous, they adopt different conformations and 459 

oligomerizations. In particular, 3thfA is a dimer and each monomer adopts a fold consisting of three 460 
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segmented anti-parallel coiled-coil(42), whereas 5f5pH is a monomer that consists of two segmented 461 

antiparallel coiled-coils(41). Superimposing the Human SD2 monomer onto the Drosophila SD2 dimer 462 

shows that the former structure was located directly in between the two structurally identical halves of 463 

the latter structure (see Fig. 18(A)). That is, if our method predicts the contacts of 5f5pH by simply 464 

copying from 3thfA, it would produce a wrong 3D model. By contrast, all the other 465 

CAMEO-participating servers produced a wrong prediction for this target by using 3thfA as the 466 

template. 467 

Since SD2 protein may have conformational change when docking with Rock SBD protein, we check 468 

if the Drosophila SD2 monomer would change to a similar fold as the Human SD2 monomer or not. 469 

According to(41), the Human SD2 adopts a similar fold no matter whether it docks with the Rock SBD 470 

or not. According to (42), although the Drosophila SD2 dimer may have conformational change in the 471 

presence of Rock, the change only occurs in the hinge regions, but not at the adjacent identical halves. 472 

That is, even conformational change happens, the Drosophila SD2 monomer would not resemble the 473 

Human SD2 monomer (Fig. 18(B)). 474 

 

Figure 18. (A) Structure superimposition of Drosophila SD2 and Human SD2. (B) Conformation 

change of Drosophila SD2 in binding with Rock-SBD. 

Study of CAMEO target 5flgB (CAMEO ID: 2016-11-12_00000046_1, PDB ID: 5flgB) 475 

This target was released by CAMEO on November 12, 2016 and not included in the abovementioned 476 

41 CAMEO hard targets. This target is a unique α/β protein with 260 residues. Table 13 shows that our 477 

server produced a much better (long-range) contact prediction than CCMpred and MetaPSICOV. In 478 

particular, our predicted contact map has L, L/2, L/5 and L/10 long-range accuracy 71.1%, 86.1%, 96.1% 479 

and 100.0%, respectively, while CCMpred- and MetaPSICOV-predicted contacts have long-range 480 

accuracy less than 35% since there are only ~113 effective sequence homologs for this protein, i.e., its 481 

Meff=113. Fig. 19 shows that both CCMpred and MetaPSICOV generated many false positive contact 482 

predictions and failed to predict long-range contacts. 483 

Table 13. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and 484 

CCMpred on the CAMEO target 5flgB. 485 

 Long-range accuracy Medium-range accuracy 

 L L/2 L/5 L/10 L L/2 L/5 L/10 

Our server 0.711 0.861 0.961 1.00 0.331 0.500 0.750 0.808 

MetaPSICOV 0.208 0.262 0.269 0.288 0.242 0.285 0.442 0.615 
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CCMpred 0.165 0.184 0.308 0.346 0.150 0.215 0.346 0.385 

 486 

  

Figure 19. Overlap between predicted contacts (in red and green) and the native (in grey). Red (green) 

dots indicate correct (incorrect) prediction. Top L/2 predicted contacts by each method are shown. The 

left picture shows the comparison between our prediction (in upper-left triangle) and CCMpred (in 

lower-right triangle) and the right picture shows the comparison between our prediction (in upper-left 

triangle) and MetaPSICOV (in lower-right triangle). 

The 3D model submitted by our contact server has TMscore 0.61 and RMSD 7.12Å. The best of top 5 487 

models built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.240 and 488 

0.267, respectively. Fig. 20 shows that our method correctly modeled the overall fold, while CCMpred 489 

and MetaPSICOV failed. To examine the superimposition of our model with its native structure from 490 

various angles, please see http://raptorx.uchicago.edu/DeepAlign/12043612/. Furthermore, all the other 491 

CAMEO-participating servers, including the top-notch servers Robetta, HHpred, RaptorX, SPARKS-X, 492 

and RBO Aleph (template-based and ab initio folding), only submitted models with TMscore≤0.25 493 

and RMSD>16.90Å (Fig. 21). A 3D model with TMscore less than 0.25 does not have the correct fold 494 

while a model with TMscore≥0.6 very likely has a correct fold. That is, our contact server predicted a 495 

correct fold for this target while the others failed to. 496 

 

(A) 

 

(B) 

 

(C) 

Figure 20. Superimposition between the predicted models (red) and the native structure (blue) for the 

CAMEO test protein 5flgB. The models are built by CNS from the contacts predicted by (A) our 

method, (B) CCMpred, and (C) MetaPSICOV. 
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 497 

This test protein has a novel fold. Searching through PDB70 created right before November 12, 2016 498 

by our in-house structural homolog search tool DeepSearch cannot identify any similar structures. The 499 

most structurally similar proteins returned by DeepSearch are 2fb5A and 5dwmA, which have TMscore 500 

0.367 and 0.355 with the native structure of this target, respectively. This is consistent with the fact that 501 

all the other CAMEO-participating servers failed to predict a correct fold for this target.  502 

 503 

Figure 21. The list of CAMEO-participating servers (only 5 of 26 are displayed) and their model 504 

scores. The rightmost column displays the model TMscore. Server60 is our contact web server. 505 

Conclusion and Discussion 506 

In this paper we have presented a new deep (supervised) learning method that can greatly improve 507 

protein contact prediction. Our method distinguishes itself from previous supervised learning methods 508 

in that we employ a concatenation of two deep residual neural networks to model sequence-contact 509 

relationship, one for modeling of sequential features (i.e., sequence profile, predicted secondary 510 

structure and solvent accessibility) and the other for modeling of pairwise features (e.g., coevolution 511 

information). Ultra-deep residual network is the latest breakthrough in computer vision and has 512 

demonstrated the best performance in the computer vision challenge tasks (similar to CASP) in 2015. 513 

Our method is also unique in that we predict all contacts of a protein simultaneously, which allows us 514 

to easily model high-order residue correlation. By contrast, existing supervised learning methods 515 

predict if two residues form a contact or not independent of the other residue pairs. Our (blind) test 516 

results show that our method dramatically improves contact prediction, exceeding currently the best 517 

methods (e.g., CCMpred, Evfold, PSICOV and MetaPSICOV) by a very large margin. Even without 518 

using any force fields and fragment assembly, ab initio folding using our predicted contacts as 519 

restraints can yield 3D structural models of correct fold for many test proteins. Further, our 520 

experimental results also show that our contact-assisted models are much better than template-based 521 

models built from the training proteins of our deep model. We expect that our contact prediction 522 

methods can help reveal much more biological insights for those protein families without solved 523 

structures and close structural homologs.  524 
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Our method outperforms ECA due to a couple of reasons. First, ECA predicts contacts using 525 

information only in a single protein family, while our method learns sequence-structure relationship 526 

from thousands of protein families. Second, ECA considers only pairwise residue correlation, while our 527 

deep architecture can capture high-order residue correlation (or contact occurring patterns) very well. 528 

Our method uses a subset of protein features used by MetaPSICOV, but performs much better than 529 

MetaPSICOV mainly because we explicitly model contact patterns (or high-order correlation), which is 530 

enabled by predicting contacts of a single protein simultaneously. MetaPSICOV employs a 2-stage 531 

approach. The 1
st
 stage predicts if there is a contact between a pair of residues independent of the other 532 

residues. The 2
nd

 stage considers the correlation between one residue pair and its neighboring pairs, but 533 

not in a very good way. In particular, the prediction errors in the 1
st
 stage of MetaPSICOV cannot be 534 

corrected by the 2
nd

 stage since two stages are trained separately. By contrast, we train all 2D 535 

convolution layers simultaneously (each layer is equivalent to one stage) so that later stages can correct 536 

prediction errors in early stages. In addition, a deep network can model much higher-order correlation 537 

and thus, capture information in a much larger context. 538 

Our deep model does not predict contact maps by simply recognizing them from PDB, as evidenced by 539 

our experimental settings and results. First, we employ a strict criterion to remove redundancy so that 540 

there are no training proteins with sequence identity >25% or BLAST E-value <0.1 with any test 541 

proteins. Second, our contact-assisted models also have better quality than homology models, so it is 542 

unlikely that our predicted contact maps are simply copied from the training proteins. Third, our deep 543 

model trained by only non-membrane proteins works very well on membrane proteins. By contrast, the 544 

homology models built from the training proteins for the membrane proteins have very low quality. 545 

Their average TMscore is no more than 0.17, which is the expected TMscore of any two 546 

randomly-chosen proteins. Finally, the blind CAMEO test indicates that our method successfully 547 

folded several targets with a new fold (e.g., 5f5pH). 548 

We have studied the impact of different input features. First of all, the co-evolution strength produced 549 

by CCMpred is the most important input features. Without it, the top L/10 long-range prediction 550 

accuracy may drop by 0.15 for soluble proteins and more for membrane proteins. The larger 551 

performance degradation for membrane proteins is mainly because information learned from sequential 552 

features of soluble proteins is not useful for membrane proteins. The depth of our deep model is equally 553 

important, as evidenced by the fact that our deep method has much better accuracy than MetaPSICOV 554 

although we use a subset of protein features used by MetaPSICOV. Our test shows that a deep model 555 

with 9 and 30 layers have top L/10 accuracy ~0.1 and ~0.03 worse than a 60-layer model, respectively. 556 

This suggests that it is very important to model contact occurring patterns (i.e., high-order residue 557 

correlation) by a deep architecture. The pairwise contact potential and mutual information may impact 558 

the accuracy by 0.02-0.03. The secondary structure and solvent accessibility may impact the accuracy 559 

by 0.01-0.02. 560 

An interesting finding is that although our training set contains only ~100 membrane proteins, our 561 

model works well for membrane proteins, much better than CCMpred and MetaPSICOV. Even without 562 
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using any membrane proteins in our training set, our deep models have almost the same accuracy on 563 

membrane proteins as those trained with membrane proteins. This implies that the sequence-structure 564 

relationship learned by our model from non-membrane proteins can generalize well to membrane 565 

protein contact prediction. We are going to study if we can further improve contact prediction accuracy 566 

of membrane proteins by including many more membrane proteins in the training set.  567 

We may further improve contact prediction accuracy by enlarging the training set. First, the latest 568 

PDB25 has more than 10,000 proteins, which can provide many more training proteins than what we 569 

are using now. Second, when removing redundancy between training and test proteins, we may relax 570 

the BLAST E-value cutoff to 0.001 or simply drop it. This will improve the top L/k (k=1,2,5,10) 571 

contact prediction accuracy by 1-3% and accordingly the quality of the resultant 3D models by 572 

0.01-0.02 in terms of TMscore. We may also improve the 3D model quality by combining our predicted 573 

contacts with energy function and fragment assembly. For example, we may feed our predicted contacts 574 

to Rosetta to build 3D models. Compared to CNS, Rosetta makes use of energy function and more 575 

local structural restraints through fragment assembly and thus, shall result in much better 3D models. 576 

Finally, instead of predicting contacts, our deep learning model actually can predict inter-residue 577 

distance distribution (i.e., distance matrix), which provides finer-grained information than contact maps 578 

and thus, shall benefit 3D structure modeling more than predicted contacts. 579 

Our model achieves pretty good performance when using around 60-70 convolutional layers. A natural 580 

question to ask is can we further improve prediction accuracy by using many more convolutional layers? 581 

In computer vision, it has been shown that a 1001-layer residual neural network can yield better 582 

accuracy for image-level classification than a 100-layer network (but no result on pixel-level labeling is 583 

reported). Currently we cannot apply more than 100 layers to our model due to insufficient memory of 584 

a GPU card (12G). We plan to overcome the memory limitation by extending our training algorithm to 585 

run on multiple GPU cards. Then we will train a model with hundreds of layers to see if we can further 586 

improve prediction accuracy or not.  587 
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Method 588 

Deep learning model details  589 

Residual network blocks. Our network consists of two 590 

residual neural networks, each in turn consisting of some 591 

residual blocks concatenated together. Fig. 22 shows an 592 

example of a residual block consisting of 2 convolution 593 

layers and 2 activation layers. In this figure, Xl and Xl+1 594 

are the input and output of the block, respectively. The 595 

activation layer conducts a simple nonlinear 596 

transformation of its input without using any parameters. 597 

Here we use the ReLU activation function (30) for such a 598 

transformation. Let f(Xl) denote the result of Xl going 599 

through the two activation layers and the two convolution 600 

layers. Then, Xl+1 is equal to Xl + f(Xl). That is, Xl+1 is a 601 

combination of Xl and its nonlinear transformation. Since 602 

f(Xl) is equal to the difference between Xl+1 and Xl, f is 603 

called residual function and this network called residual 604 

network. In the first residual network, Xl and Xl+1 605 

represent sequential features and have dimension L×nl and 606 

L×nl+1, respectively, where L is protein sequence length 607 

and nl (nl+1) can be interpreted as the number of features or hidden neurons at each position (i.e., 608 

residue). In the 2
nd

 residual network, Xl and Xl+1 represent pairwise features and have dimension L × L 609 

× nl and L × L× nl+1, respectively, where nl (nl+1) can be interpreted as the number of features or hidden 610 

neurons at one position (i.e., residue pair). Typically, we enforce nl ≤ nl+1 since one position at a higher 611 

level is supposed to carry more information. When nl < nl+1, in calculating Xl + f(Xl) we shall pad zeros 612 

to Xl so that it has the same dimension as Xl+1 . To speed up training, we also add a batch normalization 613 

layer (43) before each activation layer, which normalizes its input to have mean 0 and standard 614 

deviation 1. The filter size (i.e., window size) used by a 1D convolution layer is 17 while that used by a 615 

2D convolution layer is 3×3 or 5×5. By stacking many residual blocks together, even if at each 616 

convolution layer we use a small window size, our network can model very long-range 617 

interdependency between input features and contacts as well as the long-range interdependency 618 

between two different residue pairs. We fix the depth (i.e., the number of convolution layers) of the 1D 619 

residual network to 6, but vary the depth of the 2D residual network. Our experimental results show 620 

that with ~60 hidden neurons at each position and ~60 convolution layers for the 2
nd

 residual network, 621 

our model can yield pretty good performance. Note that it has been shown that for image classification 622 

a convolutional neural network with a smaller window size but many more layers usually outperforms 623 

a network with a larger window size but fewer layers. Further, a 2D convolutional neural network with 624 

a smaller window size also has a smaller number of parameters than a network with a larger window 625 

 

Figure 22. A building block of our 

residual network with Xl and Xl+1 being 

input and output, respectively. Each 

block consists of two convolution layers 

and two activation layers.  
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size. See https://github.com/KaimingHe/deep-residual-networks for some existing implementations of 626 

2D residual neural network. However, they assume an input of fixed dimension, while our network 627 

needs to take variable-length proteins as input. 628 

Our deep learning method for contact prediction is unique in at least two aspects. First, our model 629 

employs two multi-layer residual neural networks, which have not been applied to contact prediction 630 

before. Residual neural networks can pass both linear and nonlinear information from end to end (i.e., 631 

from the initial input to the final output). Second, we do contact prediction on the whole contact map 632 

by treating it as an individual image. In contrast, previous supervised learning methods separate the 633 

prediction of one residue pair from the others. By predicting contacts of a protein simultaneously, we 634 

can easily model long-range contact correlation and high-order residue correlation and long-range 635 

correlation between a contact and input features. 636 

Convolutional operation. Existing deep learning development toolkits such as Theano 637 

(http://deeplearning.net/software/theano/) and Tensorflow (https://www.tensorflow.org/) have provided 638 

an API (application programming interface) for convolutional operation so that we do not need to 639 

implement it by ourselves. See http://deeplearning.net/tutorial/lenet.html and 640 

https://www.nervanasys.com/convolutional-neural-networks/ for a good tutorial of convolutional 641 

network. Please also see (44) for a detailed account of 1D convolutional network with application to 642 

protein sequence labeling. Roughly, a 1D convolution operation is de facto matrix-vector multiplication 643 

and 2D convolution can be interpreted similarly. Let X and Y (with dimensions L×m and L×n, 644 

respectively) be the input and output of a 1D convolutional layer, respectively. Let the window size be 645 

2w+1 and s=(2w+1)m. The convolutional operator that transforms X to Y can be represented as a 2D 646 

matrix with dimension n×s, denoted as C. C is protein length-independent and each convolutional layer 647 

may have a different C. Let Xi be a submatrix of X centered at residue i (1≤ i ≤L) with dimension 648 

(2w+1)×m, and Yi be the i-th row of Y. We may calculate Yi by first flattening Xi to a vector of length s 649 

and then multiplying C and the flattened Xi. 650 

Conversion of sequential features to pairwise features. We convert the output of the first module of 651 

our model (i.e., the 1-d residual neural network) to a 2D representation using an operation similar to 652 

outer product. Simply speaking, let v={v1, v2, …, vi, …, vL} be the final output of the first module 653 

where L is protein sequence length and vi is a feature vector storing the output information for residue i. 654 

For a pair of residues i and j, we concatenate vi , v(i+j)/2 and vj to a single vector and use it as one input 655 

feature of this residue pair. The input features for this pair also include mutual information, the EC 656 

information calculated by CCMpred and pairwise contact potential (45, 46). 657 

Loss function. We use maximum-likelihood method to train model parameters. That is, we maximize 658 

the occurring probability of the native contacts (and non-contacts) of the training proteins. Therefore, 659 

the loss function is defined as the negative log-likelihood averaged over all the residue pairs of the 660 

training proteins. Since the ratio of contacts among all the residue pairs is very small, to make the 661 

training algorithm converge fast, we assign a larger weight to the residue pairs forming a contact. The 662 

weight is assigned such that the total weight assigned to contacts is approximately 1/8 of the number of 663 
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non-contacts in the training set. 664 

Regularization and optimization. To prevent overfitting, we employ L2-norm regularization to reduce 665 

the parameter space. That is, we want to find a set of parameters with a small L2 norm to minimize the 666 

loss function, so the final objective function to be minimized is the sum of loss function and the L2 667 

norm of the model parameters (multiplied by a regularization factor). We use a stochastic gradient 668 

descent algorithm to minimize the objective function. It takes 20-30 epochs (each epoch scans through 669 

all the training proteins exactly once) to obtain a very good solution. The whole algorithm is 670 

implemented by Theano (47) and mainly runs on GPU. 671 

Training and dealing with proteins of different lengths. Our network can take as input 672 

variable-length proteins. We train our deep network in a minibatch mode, which is routinely used in 673 

deep learning. That is, at each iteration of our training algorithm, we use a minibatch of proteins to 674 

calculate gradient and update the model parameters. A minibatch may have one or several proteins. We 675 

sort all training proteins by length and group proteins of similar lengths into minibatches. Considering 676 

that most proteins have length up to 600 residues, proteins in a minibatch often have the same length. 677 

In the case that they do not, we add zero padding to shorter proteins. Our convolutional operation is 678 

protein-length independent, so two different minibatches are allowed to have different protein lengths. 679 

We have tested minibatches with only a single protein or with several proteins. Both work well. 680 

However, it is much easier to implement minibatches with only a single protein. 681 

Since our network can take as input variable-length lengths, we do not need to cut a long protein into 682 

segments in predicting contact maps. Instead we predict contacts in the whole chain simultaneously. 683 

There is no need to use zero padding when only a single protein is predicted in a batch. Zero padding is 684 

needed only when several proteins of different lengths are predicted in a batch.  685 

Training and test data  686 

Our test data includes the 150 Pfam families (5), 105 CASP11 test proteins, 76 hard CAMEO test 687 

proteins released in 2015 (Supplementary Table 1) and 398 membrane proteins (Supplementary Table 688 

2). All test membrane proteins have length no more than 400 residues and any two membrane proteins 689 

share less than 40% sequence identity. For the CASP test proteins, we use the official domain 690 

definitions, but we do not parse a CAMEO or membrane protein into domains.  691 

Our training set is a subset of PDB25 created in February 2015, in which any two proteins share less 692 

than 25% sequence identity. We exclude a protein from the training set if it satisfies one of the 693 

following conditions: (i) sequence length smaller than 26 or larger than 700, (ii) resolution worse than 694 

2.5Å, (iii) has domains made up of multiple protein chains, (iv) no DSSP information, and (v) there is 695 

inconsistency between its PDB, DSSP and ASTRAL sequences (48). To remove redundancy with the 696 

test sets, we exclude any training proteins sharing >25% sequence identity or having BLAST E-value 697 

<0.1 with any test proteins. In total there are 6767 proteins in our training set, from which we have 698 

trained 7 different models. For each model, we randomly sampled ~6000 proteins from the training set 699 

to train the model and used the remaining proteins to validate the model and determine the 700 
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hyper-parameters (i.e., regularization factor). The final model is the average of these 7 models. 701 

Protein features 702 

We use similar but fewer protein features as MetaPSICOV. In particular, the input features include 703 

protein sequence profile (i.e., position-specific scoring matrix), predicted 3-state secondary structure 704 

and 3-state solvent accessibility, direct co-evolutionary information generated by CCMpred, mutual 705 

information and pairwise potential (45, 46). To derive these features, we need to generate MSA 706 

(multiple sequence alignment). For a training protein, we run PSI-BLAST (with E-value 0.001 and 3 707 

iterations) to search the NR (non-redundant) protein sequence database dated in October 2012 to find 708 

its sequence homologs, and then build its MSA and sequence profile and predict other features (i.e., 709 

secondary structure and solvent accessibility). Sequence profile is represented as a 2D matrix with 710 

dimension L×20 where L is the protein length. Predicted secondary structure is represented as a 2D 711 

matrix with dimension L×3 (each entry is a predicted score or probability), so is the predicted solvent 712 

accessibility. Concatenating them together, we have a 2D matrix with dimension L×26, which is the 713 

input of our 1D residual network.  714 

For a test protein, we generate four different MSAs by running HHblits (38) with 3 iterations and 715 

E-value set to 0.001 and 1, respectively, to search through the uniprot20 HMM library released in 716 

November 2015 and February 2016. From each individual MSA, we derive one sequence profile and 717 

employ our in-house tool RaptorX-Property (49) to predict the secondary structure and solvent 718 

accessibility accordingly. That is, for each test protein we generate 4 sets of input features and 719 

accordingly 4 different contact predictions. Then we average these 4 predictions to obtain the final 720 

contact prediction. This averaged contact prediction is about 1-2% better than that predicted from a 721 

single set of features (detailed data not shown). Although currently there are quite a few packages that 722 

can generate direct evolutionary coupling information, we only employ CCMpred to do so because it 723 

runs fast on GPU (4). 724 

Programs to compare and evaluation metrics 725 

We compare our method with PSICOV (5), Evfold (6), CCMpred (4), plmDCA, Gremlin, and 726 

MetaPSICOV (9). The first 5 methods conduct pure DCA while MetaPSICOV employs supervised 727 

learning. MetaPSICOV (9) performed the best in CASP11 (31). CCMpred, plmDCA, Gremlin perform 728 

similarly, but better than PSICOV and Evfold. All the programs are run with parameters set according 729 

to their respective papers. We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) predicted contacts 730 

where L is protein sequence length. The prediction accuracy is defined as the percentage of native 731 

contacts among the top L/k predicted contacts. We also divide contacts into three groups according to 732 

the sequence distance of two residues in a contact. That is, a contact is short-, medium- and long-range 733 

when its sequence distance falls into [6, 11], [12, 23], and ≥24, respectively.  734 

Calculation of Meff  735 

Meff measures the amount of homologous information in an MSA (multiple sequence alignment). It 736 
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can be interpreted as the number of non-redundant sequence homologs in an MSA when 70% sequence 737 

identity is used as cutoff. To calculate Meff, we first calculate the sequence identity between any two 738 

proteins in the MSA. Let a binary variable Sij denote the similarity between two protein sequences i and 739 

j. Sij is equal to 1 if and only if the sequence identity between i and j is at least 70%. For a protein i, we 740 

calculate the sum of Sij over all the proteins (including itself) in the MSA and denote it as Si. Finally, 741 

we calculate Meff as the sum of 1/Si over all the protein sequences in this MSA.  742 

3D model construction by contact-assisted folding 743 

We use a similar approach as described in (11) to build the 3D models of a test protein by feeding 744 

predicted contacts and secondary structure to the Crystallography & NMR System (CNS) suite (32). 745 

We predict secondary structure using our in-house tool RaptorX-Property (49) and then convert it to 746 

distance, angle and h-bond restraints using a script in the Confold package (11). For each test protein, 747 

we choose top 2L predicted contacts (L is sequence length) no matter whether they are short-, medium- 748 

or long-range and then convert them to distance restraints. That is, a pair of residues predicted to form a 749 

contact is assumed to have distance between 3.5Å and 8.0 Å. In current implementation, we do not use 750 

any force fields to help with folding. We generate twenty 3D structure models using CNS and select top 751 

5 models by the NOE score yielded by CNS(32). The NOE score mainly reflects the degree of violation 752 

of the model against the input constraints (i.e., predicted secondary structure and contacts). The lower 753 

the NOE score, the more likely the model has a higher quality. When CCMpred- and 754 

MetaPSICOV-predicted contacts are used to build 3D models, we also use the secondary structure 755 

predicted by RaptorX-Property to warrant a fair comparison. 756 

Template-based modeling (TBM) of the test proteins 757 

To generate template-based models (TBMs) for a test protein, we first run HHblits (with the 758 

UniProt20_2016 library) to generate an HMM file for the test protein, then run HHsearch with this 759 

HMM file to search for the best templates among the 6767 training proteins of our deep learning model, 760 

and finally run MODELLER to build a TBM from each of the top 5 templates. 761 
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