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9 Abstract

10 Motivation: Protein contacts contain key information for the understanding of protein structure and
11 function and thus, contact prediction from sequence is an important problem. Recently exciting
12 progress has been made on this problem, but the predicted contacts for proteins without many sequence

13 homologs is still of low quality and not extremely useful for de novo structure prediction.

14 Method: This paper presents a new deep learning method that predicts contacts by integrating both
15  evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural
16 network formed by two deep residual neural networks. The first residual network conducts a series of
17 1-dimensional convolutional transformation of sequential features; the second residual network
18 conducts a series of 2-dimensional convolutional transformation of pairwise information including
19 output of the first residual network, EC information and pairwise potential. By using very deep residual
20 networks, we can accurately model contact occurring patterns and complex sequence-structure
21 relationship and thus, obtain high-quality contact prediction regardless of how many sequence

22 homologs are available for proteins in question.

23 Results: Our method greatly outperforms existing methods and leads to much more accurate
24 contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398
25 membrane proteins, the average top L long-range prediction accuracy obtained our method, one
26 representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30,
27 respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICQOV is
28 0.77,0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without
29 any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that
30 using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them,
31 respectively. Our contact-assisted models also have much better quality than template-based models
32 especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5

33  for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for
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34 only 10 of them. Further, even if trained by only non-membrane proteins, our deep learning method
35  works very well on membrane protein contact prediction. In the recent blind CAMEQO benchmark, our
36  fully-automated web server implementing this method successfully folded 5 targets with a new fold and
37 only 0.3L-2.3L effective sequence homologs, including one f protein of 182 residues, one a+f protein
38 of 125 residues, one o protein of 140 residues, one o protein of 217 residues and one o/f of 260

39 residues.

40  Availability: http://raptorx.uchicago.edu/ContactMap/

41 Author Summary

42 Protein contact prediction and contact-assisted folding has made good progress due to direct
43 evolutionary coupling analysis (DCA). However, DCA is effective on only some proteins with a very
44 large number of sequence homologs. To further improve contact prediction, we borrow ideas from deep
45 learning, which has recently revolutionized object recognition, speech recognition and the GO game.
46 Our deep learning method can model complex sequence-structure relationship and high-order
47 correlation (i.e., contact occurring patterns) and thus, improve contact prediction accuracy greatly. Our
48 test results show that our method greatly outperforms the state-of-the-art methods regardless how many
49  sequence homologs are available for a protein in question. Ab initio folding guided by our predicted
50 contacts may fold many more test proteins than the other contact predictors. Our contact-assisted 3D
51  models also have much better quality than homology models built from the training proteins, especially
52 for membrane proteins. One interesting finding is that even trained with only soluble proteins, our
53 method performs very well on membrane proteins. Recent blind test in CAMEO confirms that our

54 method can fold large proteins with a new fold and only a small number of sequence homologs.
55 Introduction

56  De novo protein structure prediction from sequence alone is one of most challenging problems in
57 computational biology. Recent progress has indicated that some correctly-predicted long-range contacts
58 may allow accurate topology-level structure modeling (1) and that direct evolutionary coupling
59 analysis (DCA) of multiple sequence alignment (MSA) may reveal some long-range native contacts for
60 proteins and protein-protein interactions with a large number of sequence homologs (2, 3). Therefore,
61 contact prediction and contact-assisted protein folding has recently gained much attention in the
62 community. However, for many proteins especially those without many sequence homologs, the
63 predicted contacts by the state-of-the-art predictors such as CCMpred (4), PSICOV (5), Evfold (6),
64 pImMDCA(7), Gremlin(8), MetaPSICOV (9) and CoinDCA (10) are still of low quality and insufficient
65  for accurate contact-assisted protein folding (11,12). This motivates us to develop a better contact
66 prediction method, especially for proteins without a large number of sequence homologs. In this paper
67  we define that two residues form a contact if they are spatially proximal in the native structure, i.e., the
68 Euclidean distance of their C; atoms less than 8A (13).

69 Existing contact prediction methods roughly belong to two categories: evolutionary coupling analysis
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70 (ECA) and supervised machine learning. ECA predicts contacts by identifying co-evolved residues in a
71 protein, such as EVfold (6), PSICOV (5), CCMpred (4), Gremlin (8), pImDCA and others (14-16).
72 However, DCA usually needs a large number of sequence homologs to be effective (10, 17).
73 Supervised machine learning predicts contacts from a variety of information, e.g., SVMSEQ (18),
74 CMAPpro (13), PconsC2 (17), MetaPSICOV (9), PhyCMAP (19) and CoinDCA-NN (10). Meanwhile,
75 PconsC2 uses a 5-layer supervised learning architecture (17); CoinDCA-NN and MetaPSICOV employ
76  a 2-layer neural network (9). CMAPpro uses a neural network with more layers, but its performance
77  saturates at about 10 layers. Some supervised methods such as MetaPSICOV and CoinDCA-NN
78 outperform ECA on proteins without many sequence homologs, but their performance is still limited by

79 their shallow architectures.

80 To further improve supervised learning methods for contact prediction, we borrow ideas from very
81 recent breakthrough in computer vision. In particular, we have greatly improved contact prediction by
82  developing a brand-new deep learning model called residual neural network (20) for contact prediction.
83  Deep learning is a powerful machine learning technique that has revolutionized image classification
84 (21, 22) and speech recognition (23). In 2015, ultra-deep residual neural networks (24) demonstrated
85 superior performance in several computer vision challenges (similar to CASP) such as image
86 classification and object recognition (25). If we treat a protein contact map as an image, then protein
87 contact prediction is kind of similar to (but not exactly same as) pixel-level image labeling, so some
88  techniques effective for image labeling may also work for contact prediction. However, there are some
89 important differences between image labeling and contact prediction. First, in computer vision
90 community, image-level labeling (i.e., classification of a single image) has been extensively studied,
91 but there are much fewer studies on pixel-level image labeling (i.e., classification of an individual
92 pixel). Second, in many image classification scenarios, image size is resized to a fixed value, but we
93 cannot resize a contact map since we need to do prediction for every residue pair (equivalent to an
94 image pixel). Third, contact prediction has much more complex input features (including both
95  sequential and pairwise features) than image labeling. Fourth, the ratio of contacts in a protein is very
96  small (<2%). That is, the number of positive and negative labels in contact prediction is extremely

97 unbalanced.

98 In this paper we present a very deep residual neural network for contact prediction. Such a network can
99 capture very complex sequence-contact relationship and high-order contact correlation. We train this
100 deep neural network using a subset of proteins with solved structures and then test its performance on
101 public data including the CASP (26, 27) and CAMEO (28) targets as well as many membrane proteins.
102 Our experimental results show that our method yields much better accuracy than existing methods and
103  also result in much more accurate contact-assisted folding. The deep learning method described here

104  will also be useful for the prediction of protein-protein and protein-RNA interfacial contacts.
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105 Results

106 Deep learning model for contact prediction

sequence profile and coevolutioninfo, LxI % (3 + 3n)
predicted structures pairwise potential
) Ay
Merge
e +
@ LXLX3n 2d conv
1d conv pairwise feature
1d derived from 2
Residual ee e convoluted -
Network sequential [ XX} Residual

MNetwork

feature

1d conv

2d conv

conversion of 2d conv

sequential to
pairwise feature J -

convoluted sequential
features

predicted contact map

107

108 Figure 1. llustration of our deep learning model for contact prediction. Meanwhile, L is the sequence

109 length of one protein under prediction.

110 Fig. 1 illustrates our deep neural network model for contact prediction (29). Different from previous
111 supervised learning approaches(9, 13) for contact prediction that employ only a small number of
112 hidden layers (i.e., a shallow architecture), our deep neural network employs dozens of hidden layers.
113 By using a very deep architecture, our model can automatically learn the complex relationship between
114 sequence information and contacts and also model the interdependency among contacts and thus,
115 improve contact prediction (17). Our model consists of two major modules, each being a residual
116 neural network. The first module conducts a series of 1-dimensional (1D) convolutional
117 transformations of sequential features (sequence profile, predicted secondary structure and solvent
118 accessibility). The output of this 1D convolutional network is converted to a 2-dimensional (2D) matrix
119 by an operation similar to outer product and then fed into the 2" module together with pairwise
120  features (i.e., co-evolution information, pairwise contact and distance potential). The 2" module is a
121 2D residual network that conducts a series of 2D convolutional transformations of its input. Finally, the
122 output of the 2D convolutional network is fed into a logistic regression, which predicts the probability
123 of any two residues form a contact. In addition, each convolutional layer is also preceded by a simple
124 nonlinear transformation called rectified linear unit (30). Mathematically, the output of 1D residual
125 network is just a 2D matrix with dimension L>m where m is the number of new features (or hidden
126 neurons) generated by the last convolutional layer of the network. Biologically, this 1D residual

127 network learns the sequential context of a residue. By stacking multiple convolution layers, the
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128 network can learn information in a very large sequential context. The output of a 2D convolutional
129 layer has dimension L>L>n where n is the number of new features (or hidden neurons) generated by
130  this layer for one residue pair. The 2D residual network mainly learns contact occurring patterns or
131 high-order residue correlation (i.e., 2D context of a residue pair). The number of hidden neurons may

132 vary at each layer.

133 Our test data includes the 150 Pfam families described in (5), 105 CASP11 test proteins (31), 398
134 membrane proteins (Supplementary Table 1) and 76 CAMEO hard targets released from 10/17/2015 to
135  04/09/2016 (Supplementary Table 2). The tested methods include PSICOV (5), Evfold (6), CCMpred
136 (4), pImDCA(7), Gremlin(8), and MetaPSICOV (9). The former 5 methods employs pure DCA while
137 MetaPSICOV (9) is a supervised learning method that performed the best in CASP11 (31). All the
138 programs are run with parameters set according to their respective papers. We cannot evaluate PconsC2
139  (17) since we failed to obtain any results from its web server. PconsC2 did not outperform
140 MetaPSICOV in CASP11 (31), so it may suffice to just compare our method with MetaPSICOV.

141  Overall Performance

142 We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) predicted contacts where L is protein sequence
143 length (10). We define that a contact is short-, medium- and long-range when the sequence distance of
144 the two residues in a contact falls into [6, 11], [12, 23], and =24, respectively. The prediction
145  accuracy is defined as the percentage of native contacts among the top L/k predicted contacts. When
146  there are no L/k native (short- or medium-range) contacts, we replace the denominator by L/k in
147 calculating accuracy. This may make the short- and medium-range accuracy look small although it is

148  easier to predict short- and medium-range contacts than long-range ones.

149 Table 1. Contact prediction accuracy on the 150 Pfam families.

Method Medium

L5 L2 L L/10 L5 L2 L L/10 L5 L2
EVfold 050 040 026 017 064 052 034 022 074 068 053 039

PSICOV 058 043 026 017 065 051 032 020 0.77 070 052 037
CCMpred 065 050 029 019 073 060 037 023 082 076 062 045
066 050 029 019 072 060 036 022 081 076 061 044
066 051 030 019 074 060 037 023 082 076 063 046
Vel (elola 082 070 045 027 083 073 052 033 092 087 074 058

Ol At 093 081 051 030 093 086 062 038 098 096 089 0.74

150 Table 2. Contact prediction accuracy on 105 CASP11 test proteins.

L/10 L5 L2 L L/10 L/ L2 L L/10 L/ L2 L

EVfold 025 021 015 012 033 027 019 013 037 033 025 0.19

PSICOV 029 023 015 012 034 027 018 013 038 033 025 0.19
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CCMpred 035 028 017 012 040 032 021 014 043 039 031 023
032 026 017 012 039 031 021 014 042 038 030 0.23
035 027 017 012 040 031 021 014 044 040 031 023
Vel (ool 0.69 058 039 025 069 059 042 028 060 054 045 0.35

O Al 082 070 046 028 085 076 055 035 081 077 068 055

151 Table 3. Contact prediction accuracy on 76 past CAMEO hard targets.

L/10

L/10 L5 L2

EVfold 017 013 011 0.09 023 019 013 010 025 022 017 013
PSICOV 020 015 011 0.08 024 019 013 0.09 025 023 018 0.13
CCMpred 022 016 011 0.09 027 022 014 010 030 026 020 0.15
023 018 012 009 027 022 014 010 030 026 020 0.15
021 017 011 0.8 027 022 014 010 031 026 020 0.15
Vel [eloa 056 047 031 020 053 045 032 022 047 042 033 025

Ol anEleiy 0.67 057 037 023 069 061 042 028 069 065 055 042

152 Table 4. Contact prediction accuracy on 398 membrane proteins.

Method Medium

EVfold
PSICOV
CCMpred

MetaPSICOV

Our method

153

154 As shown in Tables 1-4, our method outperforms all tested DCA methods and MetaPSICOV by a very
155 large margin on the 4 test sets regardless of how many top predicted contacts are evaluated and no
156 matter whether the contacts are short-, medium- or long-range. These results also show that two
157  supervised learning methods greatly outperform the pure DCA methods and the three
158 pseudo-likelihood DCA methods pImDCA, Gremlin and CCMpred perform similarly, but outperform
159 PSICOV (Gaussian model) and Evfold (maximum-entropy method). The advantage of our method is
160  the smallest on the 150 Pfam families because many of them have a pretty large number of sequence
161 homologs. In terms of top L long-range contact accuracy on the CASP11 set, our method exceeds
162 CCMpred and MetaPSICOV by 0.32 and 0.20, respectively. On the 76 CAMEO hard targets, our
163 method exceeds CCMpred and MetaPSICOV by 0.27 and 0.17, respectively. On the 398 membrane
6
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164  protein set, our method exceeds CCMpred and MetaPSICOV by 0.26 and 0.17, respectively. Our
165 method uses a subset of protein features used by MetaPSICOV, but performs much better than
166 MetaPSICOV due to our deep architecture and that we predict contacts of a protein simultaneously.

167 Since the Pfam set is relatively easy, we will not analyze it any more in the following sections.

168  Prediction accuracy with respect to the number of sequence homologs
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Figure 2. Top L/5 accuracy of our method (green), CCMpred (blue) and MetaPSICOV (red) with

respect to the amount of homologous information measured by In(Meff). The accuracy on the union of
the 105 CASP and 76 CAMEO targets is displayed in (A) medium-range and (B) long-range. The
accuracy on the membrane protein set is displayed in (C) medium-range and (D) long-range.

169  To examine the performance of our method with respect to the amount of homologous information
170  available for a protein under prediction, we measure the effective number of sequence homologs in
171 multiple sequence alignment (MSA) by Meff (19), which can be roughly interpreted as the number of
172 non-redundant sequence homologs when 70% sequence identity is used as cutoff to remove
173 redundancy (see Method for its formula). A protein with a smaller Meff has less homologous
174 information. We divide all the test proteins into 10 bins according to In(Meff) and then calculate the
175 average accuracy of proteins in each bin. We merge the first 3 bins for the membrane protein set since

176  they have a small number of proteins.

177 Fig. 2 shows that the top L/5 contact prediction accuracy increases with respect to Meff, i.e., the
178 number of effective sequence homologs, and that our method outperforms both MetaPSICOV and
179 CCMpred regardless of Meff. Our long-range prediction accuracy is even better when In(Meff)<7
180 (equivalently Meff<1100), i.e., when the protein under prediction does not have a very large number of
181 non-redundant sequence homologs. Our method has a large advantage over the other methods even

182  when Meff is very big (>8000). This indicates that our method indeed benefits from some extra

7
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183 information such as inter-contact correlation or high-order residue correlation, which is orthogonal to

184  pairwise co-evolution information.
185  Contact-assisted protein folding

186  One of the important goals of contact prediction is to perform contact-assisted protein folding (11). To
187  testif our contact prediction can lead to better 3D structure modeling than the others, we build structure
188  models for all the test proteins using the top predicted contacts as restraints of ab initio folding. For
189  each test protein, we feed the top predicted contacts as restraints into the CNS suite (32) to generate 3D
190 models. We measure the quality of a 3D model by a superposition-dependent score TMscore (33) ,
191  which ranges from 0 to 1, with 0 indicating the worst and 1 the best, respectively. We also measure the
192 quality of a 3D model by a superposition-independent score IDDT, which ranges from 0 to 100, with 0
193  indicating the worst and 100 the best, respectively.
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Figure 3. Quality comparison of top 1 contact-assisted models generated by our method, CCMpred and
MetaPSICOV on the 105 CASP11 targets (red square), 76 CAMEO targets (blue diamond) and 398
membrane protein targets (green triangle), respectively. (A) and (B): comparison between our method

(X-axis) and CCMpred (Y-axis) in terms of TMscore and IDDT, respectively. (C) and (D): comparison

between our method (X-axis) and MetaPSICOV (Y-axis) in terms of TMscore and IDDT, respectively.
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IDDT is scaled to between 0 and 1.

194 Fig. 3 shows that our predicted contacts can generate much better 3D models than CCMpred and
195 MetaPSICOV. On average, our 3D models are better than MetaPSICOV and CCMpred by ~0.12
196  TMscore unit and ~0.15 unit, respectively. When the top 1 models are evaluated, the average TMscore
197  obtained by CCMpred, MetaPSICOV, and our method is 0.333, 0.377, and 0.518, respectively on the
198 CASP dataset. The average IDDT of CCMpred, MetaPSICOV and our method is 31.7, 34.1 and 41.8,
199 respectively. On the 76 CAMEO targets, the average TMsore of CCMpred, MetaPSICOV and our
200 method is 0.256, 0.305 and 0.407, respectively. The average IDDT of CCMpred, MetaPSICOV and our
201 method is 31.8, 35.4 and 40.2, respectively. On the membrane protein set, the average TMscore of
202 CCMpred, MetaPSICOV and our method is 0.354, 0.387, and 0.493, respectively. The average IDDT
203 of CCMpred, MetaPSICOV and our method is 38.1, 40.5 and 47.8, respectively. Same trend is
204 observed when the best of top 5 models are evaluated (Supplementary Figure 1). On the CASP set, the
205  average TMscore of the models generated by CCMpred, MetaPSICOV, and our method is 0.352, 0.399,
206  and 0.543, respectively. The average IDDT of CCMpred, MetaPSICOV and our method is 32.3, 34.9
207  and 42.4, respectively. On the 76 CAMEO proteins, the average TMscore of CCMpred, MetaPSICQOV,
208 and our method is 0.271, 0.334, and 0.431, respectively. The average IDDT of CCMpred,
209 MetaPSICOV and our method is 32.4, 36.1 and 40.9, respectively. On the membrane protein set, the
210 average TMscore of CCMpred, MetaPSICOV, and our method is 0.385, 0.417, and 0.516, respectively.
211 The average IDDT of CCMpred, MetaPSICOV and our method is 38.9, 41.2 and 48.5, respectively. In
212 particular, when the best of top 5 models are considered, our predicted contacts can result in correct
213  folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while MetaPSICOV- and CCMpred-predicted

214 contacts can do so for only 79 and 62 of them, respectively.

215 Our method also generates much better contact-assisted models for the test proteins without many
216 non-redundant sequence homologs. When the 219 of 579 test proteins with Meff<500 are evaluated, the
217 average TMscore of the top 1 models generated by our predicted contacts for the CASP11, CAMEO
218 and membrane sets is 0.426, 0.365, and 0.397, respectively. By contrast, the average TMscore of the
219 top 1 models generated by CCMpred-predicted contacts for the CASP11, CAMEO and membrane sets
220 is 0.236, 0.214, and 0.241, respectively. The average TMscore of the top 1 models generated by
221 MetaPSICOV-predicted contacts for the CASP11, CAMEO and membrane sets is 0.292, 0.272, and
222 0.274, respectively.

223  Contact-assisted models vs. template-based models

224 To compare the quality of our contact-assisted models and template-based models (TBMs), we built
225  TBMs for all the test proteins using our training proteins as candidate templates. To generate TBMs for
226  atest protein, we first run HHblits (with the UniProt20_2016 library) to generate an HMM file for the
227  test protein, then run HHsearch with this HMM file to search for the best templates among the 6767
228  training proteins, and finally run MODELLER to build a TBM from each of the top 5 templates. Fig. 4

229  shows the head-to-head comparison between our top 1 contact-assisted models and the top 1 TBMs on

9
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230  these three test sets in terms of both TMscore and IDDT. The average IDDT of our top 1
231 contact-assisted models is 45.7 while that of top 1 TBMs is only 20.7. When only the first models are
232 evaluated, our contact-assisted models for the 76 CAMEDO test proteins have an average TMscore 0.407
233 while the TBMs have an average TMscore 0.317. On the 105 CASP11 test proteins, the average
234 TMscore of our contact-assisted models is 0.518 while that of the TBMs is only 0.393. On the 398
235 membrane proteins, the average TMscore of our contact-assisted models is 0.493 while that of the
236  TBMs is only 0.149. Same trend is observed when top 5 models are compared (see Supplementary
237 Figure 2). The average IDDT of our top 5 contact-assisted models is 46.4 while that of top 5 TBMs is
238 only 24.0. On the 76 CAMEO test proteins, the average TMscore of our contact-assisted models is
239  0.431 while that of the TBMs is only 0.366. On the 105 CASP11 test proteins, the average TMscore of
240  our contact-assisted models is 0.543 while that of the TBMs is only 0.441. On the 398 membrane
241 proteins, the average TMscore of our contact-assisted models is 0.516 while that of the TBMs is only
242  0.187. The low quality of TBMs further confirms that there is little redundancy between our training
243  and test proteins (especially membrane proteins). This also indicates that our deep model does not
244 predict contacts by simply copying from training proteins. That is, our method can predict contacts for

245 a protein with a new fold.

Topl Model

0.9 09

Topl Model

0.8 i 08

07

+ CAMEO + CAMEO

= CASP11 = CASP11

membrange

membrane

01

TMscore of our contact-assisted models
IDDT score of our contact-assisted models

o 01 02z 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1

TMscore of template-based models IDDT score of template-based models

Figure 4. Comparison between our contact-assisted models of the three test sets and their

template-based models in terms of (A) TMscore and (B) IDDT score. The top 1 models are evaluated.

246

247  Further, when the best of top 5 models are considered for all the methods, our contact-assisted models
248 have TMscore>0.5 for 24 of the 76 CAMEO targets while TBMs have TMscore>0.5 for only 18 of
249  them. Our contact-assisted models have TMscore >0.5 for 67 of the 105 CASP11 targets while TBMs
250 have TMscore>0.5 for only 44 of them. Our contact-assisted models have TMscore>0.5 for 208 of the
251 398 membrane proteins while TBMs have TMscore >0.5 for only 10 of them. Our contact-assisted
252 models for membrane proteins are much better than their TBMs because there is little similarity
253  between the 6767 training proteins and the 398 test membrane proteins. When the 219 test proteins

254  with <500 non-redundant sequence homologs are evaluated, the average TMscore of the TBMs is 0.254

10


https://doi.org/10.1101/073239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/073239; this version posted November 28, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

255  while that of our contact-assisted models is 0.421. Among these 219 proteins, our contact-assisted
256 models have TMscore>0.5 for 72 of them while TBMs have TMscore>0.5 for only 17 of them.

257  The above results imply that 1) when a query protein has no close templates, our contact-assisted
258  modeling may work better than template-based modeling; 2) contact-assisted modeling shall be
259 particularly useful for membrane proteins; and 3) our deep learning model does not predict contacts by
260 simply copying contacts from the training proteins since our predicted contacts may result in much
261 better 3D models than homology modeling.

262  Blind test in CAMEO

263  We have implemented our algorithm as a fully-automated contact prediction web server
264 (http://raptorx.uchicago.edu/ContactMap/) and in September 2016 started to blindly test it through the
265  weekly live benchmark CAMEO (http://www.cameo3d.org/). CAMEO is operated by the Schwede

266  group, with whom we have never collaborated. CAMEO can be interpreted as a fully-automated CASP,

267 but has a smaller number (>20) of participating servers since many CASP-participating servers are not
268  fully automated and thus, cannot handle the large number of test targets used by CAMEO. Nevertheless,
269 the CAMEO participants include some well-known servers such as Robetta(34), Phyre(35),
270 RaptorX(36), Swiss-Model(37) and HHpred(38). Meanwhile Robetta employs both ab initio folding
271 and template-based modeling while the latter four employ mainly template-based modeling. Every
272 weekend CAMEO sends test sequences to participating servers for prediction and then evaluates 3D
273 models collected from servers. The test proteins used by CAMEO have no publicly available native

274 structures until CAMEO finishes collecting models from participating servers.

275  During the past 2 months (9/3/2016 to 10/31/2016), CAMEO in total released 41 hard targets
276 (Supplementary Table 3). Although classified as hard by CAMEO, some of them may have
277 distantly-related templates. Table 5 lists the contact prediction accuracy of our server in the blind
278 CAMEDO test as compared to the other methods. Again, our method outperforms the others by a very
279 large margin no matter how many contacts are evaluated. The CAMEO evaluation of our
280 contact-assisted 3D models is available at the CAMEO web site. You will need to register CAMEO in
281  order to see all the detailed results of our contact server (ID: server60). Although our server currently
282 build 3D models using only top predicted contacts without any force fields and fragment assembly
283 procedures, our server predicts 3D models with TMscore>0.5 for 28 of the 41 targets and TMscore>0.6
284  for 16 of them. The average TMscore of the best of top 5 models built from the contacts predicted by
285 our server, CCMpred and MetaPSICOV is 0.535, 0.316 and 0.392, respectively. See Fig. 5 for the
286 detailed comparison of the 3D models generated by our server, CCMpred and MetaPSICOV. Our
287  server has also successfully folded 4 targets with a new fold plus one released in November 2016
288  (5flgB). See Table 6 for a summary of our prediction results of these targets and the below subsections
289  for a detailed analysis. Among these targets, 5f5pH is particularly interesting since it has a sequence
290  homolog in PDB but adopting a different conformation. That is, any template-based techniques cannot

291 obtain a good prediction for this target.
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292 Table 5. Contact prediction accuracy on 41 recent CAMEO hard targets.

Method Medium

EVfold

PSICOV

CCMpred
MetaPSICOV
Our server
293
09 09
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07 + CAMEO_41 . + CAMEO_41
g 2
E 05 +* + '—: 05 b F—
2 04 e 2 02 s " I
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Figure 5. Quality comparison (measured by TMscore) of contact-assisted models generated by our
server, CCMpred and MetaPSICOV on the 41 CAMEO hard targets. (A) our server (X-axis) vs.
CCMpred and (B) our server (X-axis) vs. MetaPSICOV.
294

295  Table 6. A summary of our blind prediction results on 5 CAMEO hard targets with a new fold.

Target | CAMEO ID Type | Len | Meff | Method RMSD(A) | TMscore
2nc8A | 2016-09-10_00000002_1 | B 182 | 250 | Our server 6.5 0.61
Best of the others | 12.18 0.47
5dcjA | 2016-09-17_00000018_1 | a+p | 125 | 180 | Our server 7.9 0.52
Best of the others | 10.0 0.53
5djeB | 2016-09-24_00000052_1 | a 140 | 330 | Our server 581 0.65
Best of the others | 14.98 0.34
5f5pH | 2016-10-15_00000047_1 | a 217 | 65 Our server 4.21 0.71
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Best of the others | >40.0 0.48
5flgB | 2016-11-12_00000046_1 | o/f | 260 | 113 | Our server 7.12 0.61
Best of the others | 16.9 0.25

296

297  Among these 41 hard targets, there are five multi-domain proteins: 5idoA, 5ShmqgF, 5b86B, 5b2gG and
298 5cylH. Table 7 shows that the average contact prediction accuracy of our method on these 5
299  multi-domain proteins is much better than the others. For multi-domain proteins, we use a
300  superposition-independent score IDDT instead of TMscore to measure the quality of a 3D model. As
301  shown in Table 8, the 3D models built by our server from predicted contacts have much better IDDT
302  score than those built from CCMpred and MetaPSICOV.

303  Table 7. The average contact prediction accuracy of our method and the others on 5 multi-domain
304  proteins among the 41 CAMEO hard targets.

Method Medium

L/10 L5 L2 L

L/10 L5 L2
EVfold 017 013 0.09 0.07 018 012 008 0.06 054 040 026 0.18
PSICOV 027 018 010 007 026 017 011 007 062 049 031 020
029 023 011 0.07 032 022 011 0.08 066 051 034 022
030 024 012 008 032 022 012 007 067 052 036 023
CCMpred 030 023 012 0.08 032 022 012 008 066 051 035 0.23
\VaeiEielelal 052 037 021 014 032 026 016 011 072 058 041 0.26

Ol Ay 0.74 058 033 019 068 055 033 020 09 091 076 057

305
306  Table 8. The IDDT score of the 3D models built for the 5 multi-domain proteins using predicted
307 contacts.

Targets | Length |CCMpred|MetaPSICOV| Our

5idoA 512 23.67 24.24 36.83
5hmqF 637 24.84 2591 33.16
5b86B 600 29.88 32.85 42.58
5b29G 364 28.52 30.47 47.91
5cylH 370 22.21 23.37 30.62

308 Study of CAMEO target 2nc8A (CAMEO ID: 2016-09-10_00000002_1, PDB ID:2nc8)

309 On September 10, 2016, CAMEO released two hard test targets for structure prediction. Our contact
310  server successfully folded the hardest one (PDB ID: 2nc8), a mainly  protein of 182 residues. Table 9
311  shows that our server produced a much better contact prediction than CCMpred and MetaPSICOV.
312 CCMpred has very low accuracy since HHblits detected only ~250 non-redundant sequence homologs

313 for this protein, i.e., its Meff=250. Fig. 6 shows the predicted contact maps and their overlap with the
13
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native. MetaPSICQV fails to predict many long-range contacts while CCMpred introduces too many

false positives.

Table 9. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and
CCMpred on the CAMEO target 2nc8A.

Long-range accuracy Medium-range accuracy
L L/2 L/5 L/10 | L L/2 L/5 L/10
Our method 0.764 | 0.923 | 0.972 | 1.0 0.450 | 0.769 | 0.972 | 1.0
MetaPSICOV | 0.258 | 0.374 | 0.556 | 0.667 | 0.390 | 0.626 | 0.806 | 0.944
CCMpred 0.165 | 0.231 | 0.389 | 0.333 | 0.148 | 0.187 | 0.167 | 0.222

150 -

100 -

50 -

CCMpred MetaPSICOV

0 50 100 150 o 50 100 150

(A) (B)

Figure 6. Overlap between top L/2 predicted contacts (in red or green) and the native (in grey). Red
(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our
prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle).

The 3D model submitted by our contact server has TMscore 0.570 (As of September 16, 2016, our
server submits only one 3D model for each test protein) and the best of our top 5 models has TMscore
0.612 and RMSD 6.5A. Fig. 7 shows that the beta strands of our predicted model (red) matches well
with the native (blue). To examine the superimposition of our model with its native structure from
various angles, please see http://raptorx.uchicago.edu/DeepAlign/75097011/. By contrast, the best of
top 5 models built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.206
and 0.307, respectively, and RMSD 15.8A and 14.2A, respectively. The best TMscore obtained by the

other CAMEO-participating servers is only 0.47 (Fig. 8). Three top-notch servers HHpred, RaptorX
and Robetta only submitted models with TMscore<0.30. According to Xu and Zhang (39), a 3D model

with TMscore<0.5 is unlikely to have a correct fold while a model with TMscore>0.6 surely has a
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330 correct fold. That is, our contact server predicted a correct fold for this test protein while the others
331  failed to.

332 This test protein represents almost a novel fold. Our in-house structural homolog search tool
333 DeepSearch(40) cannot identify structurally very similar proteins in PDB70 (created right before
334  September 10, 2016) for this test protein. PDB70 is a set of representative structures in PDB, in which
335  any two share less than 70% sequence identity. DeepSearch

336 returned two weakly similar proteins 4kx7A and 4g2aA,
337  which have TMscore 0.521 and 0.535 with the native
338  structure of the test protein, respectively, and TMscore
339  0.465 and 0.466 with our best model, respectively. This is
340  consistent with the fact that none of the template-based
341 servers in CAMEO submitted a model with TMscore>0.5.

342 We cannot find structurally similar proteins in PDB70 for
343 our best model either; the best TMscore between PDB70
344 and our best model is only 0.480. That is, the models

Figure 7. Superimposition between our
predicted model (red) and its native
structure (blue) for the CAMEO test
protein (PDB ID 2nc8 and chain A).

345 predicted by our method are not simply copied from the

346 solved structures in PDB, and our method can indeed fold a

347 relatively large B protein with a novel fold.

Resp. time Cowv. Avg. CAD- Model
(%) IDDT IDDT IDDT- Avg. IDDT- QScore QScore  Score  GDT_HA RMSD GDC Conf. MaxSub TMScore
Server Name Predictions®  (hh:mm:ss) From To @ @ Ca BS@®  BSdetails® @ details @ @ L] (<] i ] e e
Server 60 ¥ Model 1 00:51:19 1 182 100 4276 5039 - - - - 048 26.46 769 36.04 050 0.37 0.57
Server 56 Model 1 20:53:42 1 162 100 3581 4306 - - - - 043 19.68 1218 2765 080 028 047
Server 58 Model 1 20:54:33 1 182 100 3581 43.06 - - - - 043 19.88 12.18 2765 0.80 028 047
RaptorX Model 1 01:17:35 1 182 100 2873 3274 - - - - 0.41 12.57 17.55 16.32 065 0.16 0.30
Server 57 0 Model 1 205044 1 182 100 2864 3307 - - . . 039 1243 1354 1868 073 017 036
Server 45 Model 1 01:51:45 1 182 100 2845 3288 - - - - 043 19.01 2183 2286 065 023 0.36
Robetta Model 1 51:20:57 10 182 95 2833 3262 - - - - 045 10.23 2510 151 050 012 0.21
HHpredB Model 1 12:14:59 1 182 100 2370 2837 - - - - 0.40 12.87 2072 1616 085 017 0.30
Princeton_TEMPLATE Model 1 01:02:52 1 182 100 2338 2709 - - - - 0.38 9.94 2355 M.52 059 012 0.24
SPARKS-X Model 1 00:12:47 1 182 100 23.08 2626 - - - - 0.37 760 19.12 889 052 0.09 0.20
Server 55 Model 1 00:28:24 1 182 100 2238 2578 - - - - 0.39 760 2365 7.81 0.67 0.08 0.20
348 RBO Aleph Model 1 65:29:29 1 182 100 2152 2378 - - - - 035 599 2090 686 080 007 017

349 Figure 8. The list of CAMEO-participating servers (only 12 of 20 are displayed) and their model
350  scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web
351 Server.

352  Study of CAMEO target 5dcjA (CAMEO ID: 2016-09-17_00000018_1, PDB ID:5dcj)

353  This target was released by CAMEO on September 17, 2016. It is an o+ sandwich protein of 125
354 residues. The four beta sheets of this protein are wrapped by one and three alpha helixes at two sides.
355  Table 10 shows that our server produced a much better contact prediction than CCMpred and
356 MetaPSICOV. Specifically, the contact map predicted by our method has L/2 long-range accuracy
357  0.645 while that by CCMpred and MetaPSICOV has L/2 accuracy only 0.05 and 0.194, respectively.
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358 CCMpred has very low accuracy since HHblits can only find ~180 non-redundant sequence homologs
359  for this protein, i.e., its Meff=180. Fig. 9 shows the predicted contact maps and their overlap with the
360  native. Both CCMpred and metaPSICOV failed to predict some long-range contacts.

361  Table 10. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and
362  CCMpred on the CAMEO target 5dcjA.

Long range Medium range
L L/2 L/5 | L/10 L L/2 L/5 | L/10
Our method | 0.456 | 0.645 | 0.88 | 0.833 | 0.36 | 0.645 | 0.92 | 1.0
metaPSICOV | 0.144 | 0.194 | 0.32 | 0.25 | 0.344 | 0532 | 0.8 | 1.0
CCMpred 0.05 | 0.05 | 0.08 | 0.08 0.1 |0.129 | 0.12 | 0.25

363
1200, I ‘ . ‘ I . ‘ 1 120,
100 - 100
80 |- 80
60 60
40 40
20 20
CCMpred i . metaPSICOV
0 2‘0 4‘0 ﬁb SIO 160 l;(x)x OO 26 4‘0 6‘0 Sb 160 léO
(A) (B)
Figure 9. Overlap between top L/2 predicted contacts (in red or green) and the native (in grey). Red
(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our
prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the
comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle).
364

365  The first 3D model submitted by our contact server has TMscore 0.50 and the best of our 5 models has
366  TMscore 0.52 and RMSD 7.9A. The best of top 5 models built by CNS from CCMpred- and
367 MetaPSICOV-predicted contacts have TMscore 0.243 and 0.361, respectively. Fig. 10(A) shows that all
368  the beta strands and the three surrounding alpha helices of our predicted model (in red) matches well
369  with the native structure (blue), while the models from CCMpred (Fig.10(B)) and MetaPSICOV
370 (Fig.10(C)) do not have a correct fold. To examine the superimposition of our model with its native

371  structure from various angles, please see http://raptorx.uchicago.edu/DeepAlign/92913404/ .
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(A)

Figure 10. Superimposition between the predicted models (red) and the native structure (blue) for the
CAMEQ  test protein (PDB ID 5dcj and chain A). The models are built by CNS from the contacts
predicted by (A) our method, (B) CCMpred, and (C) MetaPSICOV.

372

373 In terms of TMscore, our models have comparable quality to Robetta, but better than the other servers
374 (Fig. 11). In terms of IDDT-Ca score, our models are better than all the others. In particular, our
375 method produced better models than the popular homology modeling server HHpredB and our own

376  template-based modeling server RaptorX, which submitted models with TMscore<0.45.

377 This test protein represents a novel fold. Searching through PDB70 created right before September 17,
378 2016 by our in-house structural homolog search tool DeepSearch cannot identify structurally similar
379 proteins for this test protein. The most structurally similar proteins are 3Ir5A and 5SereA, which have
380 TMscore 0.431 and 0.45 with the test protein, respectively. This is consistent with the fact that none of
381  the template-based servers in CAMEO can predict a good model for this test protein. By contrast, our

382  contact-assisted model has TMscore 0.52, which is higher than all the template-based models.

Resp. time Cov. Avg QScore  CAD- Model
(%) IDOT IDDT IDDT-  Avg. IDDT-BS QScore  details Score GDT_HA RMSD GDC Conf. MaxSub TMScore
Server Name Predictions® (hhmmss) From To @ @ Ca BS@ detais @ ] (3] (:] o (:] o o o
Server 60 ¥ Model 1 11:38:06 1 125 100 4788 5713 4345 CPS1:.043(1.00) - - 051 2797 893 3276 050 0.35 0.50
Robetta v Model 1 11:58:59 1 125 100 4812 5458 4979 CPS1.0.50(1.00) - - 053 2966 1039 36.80 0.90 0.41 0.50
Server 56 Model 1 21:07:50 1 125 100 4612 5312 39.74 CPS1:.040(1.00) - - 0.51 28.39 10.06 3481 0.96 0.38 0.48
Server 58 Model 1 21:06:20 1 125 100 46.12 5312 39.74 CPS1:.0.40(1.00) - - 0.51 28.39 10.06 3481 0.96 0.38 0.48
RaptorX [#/ Model 1 10:28:22 1 125 100 4512 5042 3820 CPS1:.038(1.00) - - 051 2691 1010 3271 065 032 0.45
Princeton_TEMPLATE Model 1 04:55:5 1 125 100 4432 5033 3768 CPS1:.0.38(1.00) - - 047 2373 1069 3145 0.50 0.33 0.45
Server 45 Model 1 10:53:53 1 125 100 4439 4991 3588 CPS1:.0.36(1.00) - - 0.51 26.70 1197 3312 064 0.34 0.46
SPARKS-X Model 1 00:46:54 1 125 100 4267 4920 36.24 CPS1:.0.36(1.00) - - 049 2564 11.71 3224 054 0.33 0.45
HHpredB Model 1 80:54:59 1 125 100 4256 4888 3732 CPS1:.037(1.00) - - 049 2627 1162 3221 089 0.33 0.45
Server 55 Model 1 00:08:10 1 125 100 4214 4844 3660 CPS1:.0.37(1.00) - - 050 2627 10.16 3185 0.88 0.33 0.45
Server 54 Model 1 00:00:57 3 121 95 4229 4843 37.01 CPS1:.0.37(1.00) - - 050 2648 1013 3175 0.89 0.33 045
SWISS-MODEL Model 1 00:01:06 3 121 95 4193 4831 34.95 CPS1:.0.35(1.00) - - 049 2733 1015 31.78 0.90 0.33 0.45
Server 48 Model 1 00:02:00 3 121 95 4193 4831 3490 CPS1:.0.35(1.00) - - 049 2733 1015 3178 0.90 0.33 0.45
383 IntFOLD3-TS Model 1 22:08:20 1 125 100 4267 48.00 3851 CPS1:.0.39(1.00) - - 047 2542 1187 3096 0.74 0.31 0.44

384  Figure 11. The list of CAMEO-participating servers (only 14 of 20 are displayed) and their model
385  scores, sorted by IDDT-Ca. The rightmost column displays the TMscore of submitted models. Server60

386 is our contact web server.
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387  Study of CAMEO target 5djeB (CAMEO ID: 2016-09-24_00000052_1, PDB ID: 5dje)

388  This target was released on September 24, 2016. It is an alpha protein of 140 residues with a novel fold.
389  Table 11 shows that our server produced a much better contact prediction than CCMpred and
390 MetaPSICOV. Specifically, the contact map predicted by our method has L/5 and L/10 long-range
391  accuracy 50.0% and 71.4%, respectively, while that by CCMpred and MetaPSICOV has L/5 and L/10
392  accuracy less than 30%. CCMpred has low accuracy since HHblits can only find ~330 non-redundant
393  sequence homologs for this protein, i.e., its Meff=330. Fig. 12 shows the predicted contact maps and
394 their overlap with the native. Both CCMpred and metaPSICOV failed to predict some long-range
395 contacts.

396  Table 11. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and
397 CCMpred on the CAMEOQ target 5djeB.

Long range accuracy Medium range accuracy
L L/2 L/5 L/10 L L/2 L/5 L/10
Our method | 0.300 | 0.357 | 0.500 | 0.714 | 0.186 | 0.229 | 0.357 | 0.357
metaPSICOV | 0.193 | 0.200 | 0.286 | 0.286 | 0.100 | 0.143 | 0.214 | 0.286
CCMpred 0.079 | 0.114 | 0.107 | 0.214 | 0.036 | 0.029 | 0.071 | 0.143

398
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Figure 12. Overlap between top L/2 predicted contacts (in red and green) and the native (in grey). Red

(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our
prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle).

399

400  The first 3D model submitted by our contact server has TMscore 0.65, while the best of our 5 models

401 has TMscore 0.65 and RMSD 5.6A. By contrast, the best of top 5 models built by CNS from
18
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402 CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.404 and 0.427, respectively. Fig.
403 13(A) shows that all the four alpha helices of our predicted model (in red) matches well with the native
404  structure (blue), while the models from CCMpred (Fig. 13(B)) and MetaPSICOV (Fig. 13(C)) fail to
405 predict the 3" long helix correctly. To examine the superimposition of our model with its native

406  structure from various angles, please see http://raptorx.uchicago.edu/DeepAlign/26652330/. Further, all

407 other CAMEOQO registered servers, including the top-notch servers such as HHpred, RaptorX,
408 SPARKS-X, and RBO Aleph (template-based and ab initio folding) only submitted models with
409  TMscore<<0.35, i.e., failed to predict a correct fold (Fig. 14).

(C)

Figure 13. Superimposition between the predicted models (red) and the native structure (blue) for the
CAMEO test protein (PDB ID 5dje and chain B). The models are built by CNS from the contacts
predicted by (A) our method, (B) CCMpred, and (C) MetaPSICOV.

410

411 This test protein represents a novel fold. Searching through PDB70 created right before September 24,
412 2016 by our in-house structural homolog search tool DeepSearch cannot identify structurally similar
413 proteins for this test protein. The most structurally similar proteins are 1u7lA and 4x5uA, which have
414  TMscore 0.439 and 0.442 with the test protein, respectively. This is consistent with the fact that none of
415  the template-based CAMEO-participating servers predicted a good model for this test protein. By
416 contrast, our contact-assisted model has TMscore 0.65, much better than all the template-based models.
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Server Name Predictions® (hhmmss) Fom @ @ @ Ca  BS®  BSdelais® © etais® @ @ e e o o )

Server60 ¢ Model 1 192014 1 140 100 5443 6822 - - : 060 3603 581 4519 050 051 065
RaptorX _ Model 1 145024 1 140 100 3359 4223 - : - 053 1893 1888 1998 071 022 034

Model 1 533420 1 140 100 4085 5035 - 056 1857 1498 1837 050 019 0.31

417 Server 46 Model 1 00:03:45 86 127 30 927 12.47 0.17 16.18 1145 1477 092

418 Figure 14. The list of CAMEO-participating servers (only 15 of 20 are displayed) and their model
419 scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web
420 Server.

421  Study of CAMEO target 5f5pH (CAMEO ID: 2016-10-15_00000047_1, PDB ID: 5f5p)

422 On October 15, 2016, our contact web server successfully folded a very hard and also
423  interesting CAMEO target (PDB ID: 5f5pH, CAMEOQ ID: 2016-10-15_00000047_1). This
424  target is an alpha protein of 217 residues with four helices. Table 12 shows that our server
425  produced a much better long-range contact prediction than CCMpred and MetaPSICOV.
426  Specifically, our contact prediction has L/5 and L/10 long-range accuracy 76.7% and 95.2%,
427  respectively, while MetaPSICOV has L/5 and L/10 accuracy less than 40%. CCMpred has
428  very low accuracy since this target has only ~65 non-redundant sequence homologs, i.e., its
429 Meff=65. The three methods have low L/k (k=1, 2) medium-range accuracy because there are fewer
430 than L/k native medium-range contacts while we use L/k as the denominator in calculating accuracy.
431  Asshown in Fig. 15, CCMpred predicts too many false positives while MetaPSICOV predicts

432  very few correct long-range contacts.

433 Table 12. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and
434 CCMpred on the CAMEO target 5f5pH.

Long-range accuracy Medium-range accuracy
L L/2 L/5 L/10 L L/2 L/5 L/10
Our server 0.382 | 0.602 | 0.767 | 0.952 | 0.041 | 0.083 | 0.209 | 0.381
metaPSICOV | 0.161 | 0.250 | 0.326 | 0.476 | 0.041 | 0.083 | 0.163 | 0.190
CCMpred 0.032 | 0.037 | 0.047 | 0.048 | 0.009 | 0.019 | 0.023 | 0.032

435
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Figure 15. Overlap between top L/2 predicted contacts (in red and green) and the native (in grey). Red
(green) dots indicate correct (incorrect) prediction. The left picture shows the comparison between our

prediction (in upper-left triangle) and CCMpred (in lower-right triangle) and the right picture shows the

comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle).

436

437 Our submitted 3D model has TMscore 0.71 and RMSD 4.21A. By contrast, the best of top 5 models
438 built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.280 and 0.472,
439 respectively. Fig. 16(A) shows that our predicted model (in red) match well with the native structure
440 (blue), while the model from CCMpred (Fig. 16(B)) is completely wrong and the model from
441 MetaPSICOV (Fig. 16(C)) fails to place the 1% and 4™ helices correctly. Please see
442 http://raptorx.uchicago.edu/DeepAlign/14544627/ for the animated superimposition of our model with

443 its native structure. As shown in the ranking list (Fig. 17), all the other CAMEO-participating servers,
444 including Robetta, HHpred, RaptorX, SPARKS-X, and RBO Aleph (template-based and ab initio
445  folding) only submitted models with TMscore<<0.48 and RMSD>43.82A. Our contact server is the
446 only one that predicted a correct fold for this target.
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(A) (B) (C)

Figure 16. Superimposition between the predicted models (red) and the native structure (blue) for the
CAMEDO target 5f5pH. The models are built by CNS from the contacts predicted by (A) our method,
(B) CCMpred, and (C) MetaPSICOV.

447
Resp. time Cov. Avg CAD-
(%) IDDT IDDT IDDT-BS Avg IDDT-BS QScore QScore Score GDT_HA RMSD GDC Model MaxSub TMScore

Server Name Predictions® (hh:mm:ss) From To @ (i ] ca © details @ o details @ @ ] (:] ] Con’. @ @
Server 60 ¢ Model 1 08:54:54 1 217 100 62.05 7462 - - - - 0.66 34.80 4 46.75 0.50 0.51 0.71
Server 55 Model 1 04:57:59 1 217 100 4669 5325 - - - - 0.67 36.40 4995 3759 058 043 048
SWISS-MODEL Model 1 00:00:55 10 189 82 4662 5311 - - - - 0.66 36.55 5009 3753 060 0.43 048
Server 54 Model 1 04:33:36 10 189 82 4662 53.11 - - - - 0.66 36.55 0.43 0.48
Server 46 Model 1 03:38:25 10 189 82 46.43 5318 - - - - 0.66 36.99 0.44 048
Server 48 Model 1 00:03:54 10 189 82 46.43 5318 - - - - 0.66 36.99 044 048
Server 0 Model 1 00:31:28 10 189 82 4568 5307 - - - - 065 36.70 5010 3730 065 0.43 047
Phyre2 Model 1 00:36:56 12 189 82 43.44 5259 - - - - 0.66 36.11 50.40 37.07 0.50 0.43 0.47
Server 19 Model 1 32:52:37 1 217 100 46.45 5413 - - - - 0.65 30.70 4465 3358 060 0.38 0.46
RapiorX « Model 1 11:27:06 1 217 100 4371 5240 - - - - 0.62 27.34 5041 3175 060 0.36 0.44
Server 61 Model 1 00:08:19 10 189 82 4547 5290 - - - - 0.66 3143 4927 3178 056 035 043
Server 64 Model 1 00:22:11 10 189 82 4547 5290 - - - - 0.66 3143 49.27 3178 0.56 035 043
Server 65 Model 1 00:10:21 10 189 82 4547 5290 - - - - 0.66 3143 4927 3178 056 0.35 043
Robetfta ¥ Model 1 22°40:39 1 217 100 4501 5284 - - - - 064 3041 4382 3163 089 035 042
448 MAT Model 1 17:10:05 10 189 82 4445 5248 - - - - 064 2456 4817 2762 052 029 039

449 Figure 17. The list of CAMEO-participating servers (only 15 of 20 are displayed) and their model
450 scores. The rightmost column displays the TMscore of submitted models. Server60 is our contact web
451 server.

452  To make sure our best model is not simply copied from the database of solved structures, we search our
453 best model against PDB70 created right before October 15, 2016 using our in-house structural homolog
454  search tool DeepSearch, which yields two weakly similar proteins 2yfaA and 4k1pA. They have
455  TMscore 0.536 and 0.511 with our best model, respectively. This implies that our model is not simply

456 copied from a solved structure in PDB.

457  We ran BLAST on this target against PDB70 and surprisingly, found one protein 3thfA with E-value
458 3E-16 and sequence identity 35%. In fact, 3thfA and 5f5pH are two SD2 proteins from Drosophila and
459 Human(41), respectively. Although homologous, they adopt different conformations and

460  oligomerizations. In particular, 3thfA is a dimer and each monomer adopts a fold consisting of three
22
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461  segmented anti-parallel coiled-coil(42), whereas 5f5pH is a monomer that consists of two segmented
462  antiparallel coiled-coils(41). Superimposing the Human SD2 monomer onto the Drosophila SD2 dimer
463  shows that the former structure was located directly in between the two structurally identical halves of
464  the latter structure (see Fig. 18(A)). That is, if our method predicts the contacts of 5f5pH by simply
465 copying from 3thfA, it would produce a wrong 3D model. By contrast, all the other
466 CAMEO-participating servers produced a wrong prediction for this target by using 3thfA as the
467  template.

468 Since SD2 protein may have conformational change when docking with Rock SBD protein, we check
469 if the Drosophila SD2 monomer would change to a similar fold as the Human SD2 monomer or not.
470  According to(41), the Human SD2 adopts a similar fold no matter whether it docks with the Rock SBD
471 or not. According to (42), although the Drosophila SD2 dimer may have conformational change in the
472 presence of Rock, the change only occurs in the hinge regions, but not at the adjacent identical halves.
473  That is, even conformational change happens, the Drosophila SD2 monomer would not resemble the
474 Human SD2 monomer (Fig. 18(B)).

(@ orosophila SD2 (chain A)
) Drosophila SD2 (chain B)

() Human s02
(SBD-SD2 complex)

Observed Conformation Hypothesized Conformation

7=,
:
1

n @
$ ¢ —_—>
sD2 sp2
7 Half-Dimer sD2 Half-Dimer sD2
Half-Di Rock-SBD i
Hingé helix C LR Half-Dimer

Figure 18. (A) Structure superimposition of Drosophila SD2 and Human SD2. (B) Conformation
change of Drosophila SD2 in binding with Rock-SBD.

475  Study of CAMEO target 5flgB (CAMEO ID: 2016-11-12_00000046_1, PDB ID: 5flgB)

476 This target was released by CAMEO on November 12, 2016 and not included in the abovementioned
477 41 CAMEDO hard targets. This target is a unique o/p protein with 260 residues. Table 13 shows that our
478  server produced a much better (long-range) contact prediction than CCMpred and MetaPSICOV. In
479 particular, our predicted contact map has L, L/2, L/5 and L/10 long-range accuracy 71.1%, 86.1%, 96.1%
480  and 100.0%, respectively, while CCMpred- and MetaPSICOV-predicted contacts have long-range
481  accuracy less than 35% since there are only ~113 effective sequence homologs for this protein, i.e., its
482 Meff=113. Fig. 19 shows that both CCMpred and MetaPSICOV generated many false positive contact

483 predictions and failed to predict long-range contacts.

484  Table 13. The long- and medium-range contact prediction accuracy of our method, MetaPSICOV and
485 CCMpred on the CAMEO target 5flgB.

Long-range accuracy Medium-range accuracy
L L/2 L/5 L/10 L L/2 L/5 L/10
Our server 0.711 0.861 0.961 1.00 0.331 0.500 0.750 0.808
MetaPSICOV 0.208 0.262 0.269 0.288 0.242 0.285 0.442 0.615
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CCMpred 0.165 0.184 0.308 0.346 0.150 0.215 0.346 0.385

486
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CCMpred metaPSICOV
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Figure 19. Overlap between predicted contacts (in red and green) and the native (in grey). Red (green)
dots indicate correct (incorrect) prediction. Top L/2 predicted contacts by each method are shown. The
left picture shows the comparison between our prediction (in upper-left triangle) and CCMpred (in
lower-right triangle) and the right picture shows the comparison between our prediction (in upper-left
triangle) and MetaPSICOV (in lower-right triangle).

487  The 3D model submitted by our contact server has TMscore 0.61 and RMSD 7.12A. The best of top 5
488 models built by CNS from CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.240 and
489  0.267, respectively. Fig. 20 shows that our method correctly modeled the overall fold, while CCMpred
490 and MetaPSICOV failed. To examine the superimposition of our model with its native structure from

491 various angles, please see http://raptorx.uchicago.edu/DeepAlign/12043612/. Furthermore, all the other

492 CAMEO-participating servers, including the top-notch servers Robetta, HHpred, RaptorX, SPARKS-X,
493  and RBO Aleph (template-based and ab initio folding), only submitted models with TMscore<<0.25
494 and RMSD>16.90A (Fig. 21). A 3D model with TMscore less than 0.25 does not have the correct fold
495 while a model with TMscore=0.6 very likely has a correct fold. That is, our contact server predicted a

496 correct fold for this target while the others failed to.

() (®) ©
Figure 20. Superimposition between the predicted models (red) and the native structure (blue) for the
CAMEQ test protein 5flgB. The models are built by CNS from the contacts predicted by (A) our
method, (B) CCMpred, and (C) MetaPSICOV.
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497

498  This test protein has a novel fold. Searching through PDB70 created right before November 12, 2016
499 by our in-house structural homolog search tool DeepSearch cannot identify any similar structures. The
500 most structurally similar proteins returned by DeepSearch are 2fb5A and 5dwmA, which have TMscore
501 0.367 and 0.355 with the native structure of this target, respectively. This is consistent with the fact that
502  all the other CAMEO-participating servers failed to predict a correct fold for this target.

Avg Qscore | cAD Model
o (%) IDDT IDDT IDDT-  Avg. IDDT-BS QScore  detalls  Score GDT_HA RMSD GDC  Cont
Co  BS®  details © ) o °o o o e o o e

Server 60 » Model 1 23:01:01 1 260 100 40.26 48.52 49.57 PMLS:0.39(1.00) - - 0.46 2153 742 3236 050 0.30 0.61
PML1:0.40(1.00)
MG4.0 781 00)
ANP2:0.33(1.00)
ANFE:0.29(1.00)
MGE 0 77(1.00)

Server 56 [¥] Model 1 25:20:28 1 260 100 2325 2804 4232 PML6027(100) - - 0a7 714 2273 83s 075 007 024
PML1.0.27(1.00)
MEG4:0.77(1.00)
ANP2:0 24(1.00)
ANPE:0.23(1.00)
MGE:0.75(1.00)

Princeton_TEMPLATE Model 1 01:24:35 1 260 100  20.05 24.37 | 39.67

503
504  Figure 21. The list of CAMEO-participating servers (only 5 of 26 are displayed) and their model

505  scores. The rightmost column displays the model TMscore. Server60 is our contact web server.
506 Conclusion and Discussion

507 In this paper we have presented a new deep (supervised) learning method that can greatly improve
508 protein contact prediction. Our method distinguishes itself from previous supervised learning methods
509 in that we employ a concatenation of two deep residual neural networks to model sequence-contact
510 relationship, one for modeling of sequential features (i.e., sequence profile, predicted secondary
511 structure and solvent accessibility) and the other for modeling of pairwise features (e.g., coevolution
512 information). Ultra-deep residual network is the latest breakthrough in computer vision and has
513 demonstrated the best performance in the computer vision challenge tasks (similar to CASP) in 2015.
514 Our method is also unique in that we predict all contacts of a protein simultaneously, which allows us
515  to easily model high-order residue correlation. By contrast, existing supervised learning methods
516 predict if two residues form a contact or not independent of the other residue pairs. Our (blind) test
517 results show that our method dramatically improves contact prediction, exceeding currently the best
518 methods (e.g., CCMpred, Evfold, PSICOV and MetaPSICOV) by a very large margin. Even without
519 using any force fields and fragment assembly, ab initio folding using our predicted contacts as
520 restraints can yield 3D structural models of correct fold for many test proteins. Further, our
521  experimental results also show that our contact-assisted models are much better than template-based
522 models built from the training proteins of our deep model. We expect that our contact prediction
523 methods can help reveal much more biological insights for those protein families without solved

524 structures and close structural homologs.

25


https://doi.org/10.1101/073239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/073239; this version posted November 28, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

525 Our method outperforms ECA due to a couple of reasons. First, ECA predicts contacts using
526 information only in a single protein family, while our method learns sequence-structure relationship
527  from thousands of protein families. Second, ECA considers only pairwise residue correlation, while our
528  deep architecture can capture high-order residue correlation (or contact occurring patterns) very well.
529 Our method uses a subset of protein features used by MetaPSICOV, but performs much better than
530 MetaPSICOV mainly because we explicitly model contact patterns (or high-order correlation), which is
531  enabled by predicting contacts of a single protein simultaneously. MetaPSICOV employs a 2-stage
532 approach. The 1% stage predicts if there is a contact between a pair of residues independent of the other
533 residues. The 2" stage considers the correlation between one residue pair and its neighboring pairs, but
534 not in a very good way. In particular, the prediction errors in the 1% stage of MetaPSICOV cannot be
535  corrected by the 2" stage since two stages are trained separately. By contrast, we train all 2D
536 convolution layers simultaneously (each layer is equivalent to one stage) so that later stages can correct
537 prediction errors in early stages. In addition, a deep network can model much higher-order correlation

538  and thus, capture information in a much larger context.

539 Our deep model does not predict contact maps by simply recognizing them from PDB, as evidenced by
540 our experimental settings and results. First, we employ a strict criterion to remove redundancy so that
541 there are no training proteins with sequence identity >25% or BLAST E-value <0.1 with any test
542 proteins. Second, our contact-assisted models also have better quality than homology models, so it is
543 unlikely that our predicted contact maps are simply copied from the training proteins. Third, our deep
544 model trained by only non-membrane proteins works very well on membrane proteins. By contrast, the
545  homology models built from the training proteins for the membrane proteins have very low quality.
546 Their average TMscore is no more than 0.17, which is the expected TMscore of any two
547 randomly-chosen proteins. Finally, the blind CAMEO test indicates that our method successfully
548 folded several targets with a new fold (e.g., 5f5pH).

549 We have studied the impact of different input features. First of all, the co-evolution strength produced
550 by CCMpred is the most important input features. Without it, the top L/10 long-range prediction
551  accuracy may drop by 0.15 for soluble proteins and more for membrane proteins. The larger
552 performance degradation for membrane proteins is mainly because information learned from sequential
553  features of soluble proteins is not useful for membrane proteins. The depth of our deep model is equally
554 important, as evidenced by the fact that our deep method has much better accuracy than MetaPSICOV
555 although we use a subset of protein features used by MetaPSICOV. Our test shows that a deep model
556  with 9 and 30 layers have top L/10 accuracy ~0.1 and ~0.03 worse than a 60-layer model, respectively.
557  This suggests that it is very important to model contact occurring patterns (i.e., high-order residue
558 correlation) by a deep architecture. The pairwise contact potential and mutual information may impact
559  the accuracy by 0.02-0.03. The secondary structure and solvent accessibility may impact the accuracy
560 by 0.01-0.02.

561  An interesting finding is that although our training set contains only ~100 membrane proteins, our
562 model works well for membrane proteins, much better than CCMpred and MetaPSICOV. Even without
26
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563 using any membrane proteins in our training set, our deep models have almost the same accuracy on
564 membrane proteins as those trained with membrane proteins. This implies that the sequence-structure
565  relationship learned by our model from non-membrane proteins can generalize well to membrane
566 protein contact prediction. We are going to study if we can further improve contact prediction accuracy

567 of membrane proteins by including many more membrane proteins in the training set.

568  We may further improve contact prediction accuracy by enlarging the training set. First, the latest
569 PDB25 has more than 10,000 proteins, which can provide many more training proteins than what we
570  are using now. Second, when removing redundancy between training and test proteins, we may relax
571  the BLAST E-value cutoff to 0.001 or simply drop it. This will improve the top L/k (k=1,2,5,10)
572 contact prediction accuracy by 1-3% and accordingly the quality of the resultant 3D models by
573  0.01-0.02 in terms of TMscore. We may also improve the 3D model quality by combining our predicted
574  contacts with energy function and fragment assembly. For example, we may feed our predicted contacts
575  to Rosetta to build 3D models. Compared to CNS, Rosetta makes use of energy function and more
576 local structural restraints through fragment assembly and thus, shall result in much better 3D models.
577 Finally, instead of predicting contacts, our deep learning model actually can predict inter-residue
578 distance distribution (i.e., distance matrix), which provides finer-grained information than contact maps

579 and thus, shall benefit 3D structure modeling more than predicted contacts.

580 Our model achieves pretty good performance when using around 60-70 convolutional layers. A natural
581  question to ask is can we further improve prediction accuracy by using many more convolutional layers?
582 In computer vision, it has been shown that a 1001-layer residual neural network can yield better
583  accuracy for image-level classification than a 100-layer network (but no result on pixel-level labeling is
584 reported). Currently we cannot apply more than 100 layers to our model due to insufficient memory of
585 a GPU card (12G). We plan to overcome the memory limitation by extending our training algorithm to
586 run on multiple GPU cards. Then we will train a model with hundreds of layers to see if we can further

587 improve prediction accuracy or not.
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588 Method

589  Deep learning model details

590 Residual network blocks. Our network consists of two

591  residual neural networks, each in turn consisting of some X

592 residual blocks concatenated together. Fig. 22 shows an l

593  example of a residual block consisting of 2 convolution [ Activation Layer ]
594 layers and 2 activation layers. In this figure, X, and X, Convoluion Layer
595  are the input and output of the block, respectively. The J,

596  activation layer conducts a simple nonlinear [ Activation Layer |

597  transformation of its input without using any parameters.

| Convolution Layer |

!

599  transformation. Let f(X;) denote the result of X, going

598  Here we use the ReLU activation function (30) for such a

600 through the two activation layers and the two convolution v
. . . X
601 layers. Then, X1 is equal to X, + f(X;). That is, X is a I+1

602  combination of X, and its nonlinear transformation. Since | Figure 22. A building block of our
603  f(X) is equal to the difference between X, and X, fis | residual network with X; and X.; being
604 called residual function and this network called residual | jnput and output, respectively. Each
605  network. In the first residual network, X, and X.. | plock consists of two convolution layers

606  represent sequential features and have dimension L>0 and | and two activation layers.

607 L>n,.q, respectively, where L is protein sequence length
608 and n, (n+1) can be interpreted as the number of features or hidden neurons at each position (i.e.,
609 residue). In the 2" residual network, X; and X, represent pairwise features and have dimension L <L
610 xn;and L < Lxny, respectively, where n; (n;+1) can be interpreted as the number of features or hidden
611 neurons at one position (i.e., residue pair). Typically, we enforce n;< ny,; since one position at a higher
612 level is supposed to carry more information. When n, < ny,4, in calculating X, + f(X;) we shall pad zeros
613  to X, so that it has the same dimension as X,.; . To speed up training, we also add a batch normalization
614  layer (43) before each activation layer, which normalizes its input to have mean 0 and standard
615 deviation 1. The filter size (i.e., window size) used by a 1D convolution layer is 17 while that used by a
616 2D convolution layer is 3>3 or 5>5. By stacking many residual blocks together, even if at each
617 convolution layer we use a small window size, our network can model very long-range
618 interdependency between input features and contacts as well as the long-range interdependency
619 between two different residue pairs. We fix the depth (i.e., the number of convolution layers) of the 1D
620 residual network to 6, but vary the depth of the 2D residual network. Our experimental results show
621  that with ~60 hidden neurons at each position and ~60 convolution layers for the 2™ residual network,
622 our model can yield pretty good performance. Note that it has been shown that for image classification
623  a convolutional neural network with a smaller window size but many more layers usually outperforms
624  anetwork with a larger window size but fewer layers. Further, a 2D convolutional neural network with

625  a smaller window size also has a smaller number of parameters than a network with a larger window
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626  size. See https://github.com/KaimingHe/deep-residual-networks for some existing implementations of
627 2D residual neural network. However, they assume an input of fixed dimension, while our network

628 needs to take variable-length proteins as input.

629 Our deep learning method for contact prediction is unique in at least two aspects. First, our model
630  employs two multi-layer residual neural networks, which have not been applied to contact prediction
631  before. Residual neural networks can pass both linear and nonlinear information from end to end (i.e.,
632  from the initial input to the final output). Second, we do contact prediction on the whole contact map
633 by treating it as an individual image. In contrast, previous supervised learning methods separate the
634  prediction of one residue pair from the others. By predicting contacts of a protein simultaneously, we
635 can easily model long-range contact correlation and high-order residue correlation and long-range

636  correlation between a contact and input features.

637 Convolutional operation. Existing deep learning development toolkits such as Theano
638  (http://deeplearning.net/software/theano/) and Tensorflow (https://www.tensorflow.org/) have provided
639 an API (application programming interface) for convolutional operation so that we do not need to

640 implement it by ourselves. See http://deeplearning.net/tutorial/lenet.html and

641 https://www.nervanasys.com/convolutional-neural-networks/ for a good tutorial of convolutional

642 network. Please also see (44) for a detailed account of 1D convolutional network with application to
643 protein sequence labeling. Roughly, a 1D convolution operation is de facto matrix-vector multiplication
644  and 2D convolution can be interpreted similarly. Let X and Y (with dimensions Lxm and L>n,
645  respectively) be the input and output of a 1D convolutional layer, respectively. Let the window size be
646 2w+1 and s=(2w+1)m. The convolutional operator that transforms X to Y can be represented as a 2D
647 matrix with dimension n>s, denoted as C. C is protein length-independent and each convolutional layer
648 may have a different C. Let X; be a submatrix of X centered at residue i (1< i <L) with dimension
649 (2w+1)>m, and Y; be the i-th row of Y. We may calculate Y; by first flattening X; to a vector of length s
650 and then multiplying C and the flattened X;.

651 Conversion of sequential features to pairwise features. We convert the output of the first module of
652 our model (i.e., the 1-d residual neural network) to a 2D representation using an operation similar to
653 outer product. Simply speaking, let v={vy, v, ..., vi, ..., v} be the final output of the first module
654  where L is protein sequence length and v; is a feature vector storing the output information for residue i.
655  For a pair of residues i and j, we concatenate v; , V(.jy, and v; to a single vector and use it as one input
656 feature of this residue pair. The input features for this pair also include mutual information, the EC

657 information calculated by CCMpred and pairwise contact potential (45, 46).

658 Loss function. We use maximum-likelihood method to train model parameters. That is, we maximize
659  the occurring probability of the native contacts (and non-contacts) of the training proteins. Therefore,
660  the loss function is defined as the negative log-likelihood averaged over all the residue pairs of the
661  training proteins. Since the ratio of contacts among all the residue pairs is very small, to make the
662 training algorithm converge fast, we assign a larger weight to the residue pairs forming a contact. The

663  weight is assigned such that the total weight assigned to contacts is approximately 1/8 of the number of
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664 non-contacts in the training set.

665 Regularization and optimization. To prevent overfitting, we employ L,-norm regularization to reduce
666  the parameter space. That is, we want to find a set of parameters with a small L, norm to minimize the
667 loss function, so the final objective function to be minimized is the sum of loss function and the L,
668 norm of the model parameters (multiplied by a regularization factor). We use a stochastic gradient
669  descent algorithm to minimize the objective function. It takes 20-30 epochs (each epoch scans through
670  all the training proteins exactly once) to obtain a very good solution. The whole algorithm is

671 implemented by Theano (47) and mainly runs on GPU.

672 Training and dealing with proteins of different lengths. Our network can take as input
673 variable-length proteins. We train our deep network in a minibatch mode, which is routinely used in
674  deep learning. That is, at each iteration of our training algorithm, we use a minibatch of proteins to
675 calculate gradient and update the model parameters. A minibatch may have one or several proteins. We
676  sort all training proteins by length and group proteins of similar lengths into minibatches. Considering
677 that most proteins have length up to 600 residues, proteins in a minibatch often have the same length.
678 In the case that they do not, we add zero padding to shorter proteins. Our convolutional operation is
679 protein-length independent, so two different minibatches are allowed to have different protein lengths.
680 We have tested minibatches with only a single protein or with several proteins. Both work well.

681 However, it is much easier to implement minibatches with only a single protein.

682 Since our network can take as input variable-length lengths, we do not need to cut a long protein into
683  segments in predicting contact maps. Instead we predict contacts in the whole chain simultaneously.
684  There is no need to use zero padding when only a single protein is predicted in a batch. Zero padding is

685 needed only when several proteins of different lengths are predicted in a batch.
686  Training and test data

687 Our test data includes the 150 Pfam families (5), 105 CASP11 test proteins, 76 hard CAMEO test
688 proteins released in 2015 (Supplementary Table 1) and 398 membrane proteins (Supplementary Table
689 2). All test membrane proteins have length no more than 400 residues and any two membrane proteins
690  share less than 40% sequence identity. For the CASP test proteins, we use the official domain

691  definitions, but we do not parse a CAMEO or membrane protein into domains.

692 Our training set is a subset of PDB25 created in February 2015, in which any two proteins share less
693  than 25% sequence identity. We exclude a protein from the training set if it satisfies one of the
694  following conditions: (i) sequence length smaller than 26 or larger than 700, (ii) resolution worse than
695 2.5A, (iii) has domains made up of multiple protein chains, (iv) no DSSP information, and (v) there is
696 inconsistency between its PDB, DSSP and ASTRAL sequences (48). To remove redundancy with the
697 test sets, we exclude any training proteins sharing >25% sequence identity or having BLAST E-value
698  <0.1 with any test proteins. In total there are 6767 proteins in our training set, from which we have
699  trained 7 different models. For each model, we randomly sampled ~6000 proteins from the training set

700  to train the model and used the remaining proteins to validate the model and determine the
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701 hyper-parameters (i.e., regularization factor). The final model is the average of these 7 models.
702  Protein features

703  We use similar but fewer protein features as MetaPSICOV. In particular, the input features include
704 protein sequence profile (i.e., position-specific scoring matrix), predicted 3-state secondary structure
705  and 3-state solvent accessibility, direct co-evolutionary information generated by CCMpred, mutual
706 information and pairwise potential (45, 46). To derive these features, we need to generate MSA
707 (multiple sequence alignment). For a training protein, we run PSI-BLAST (with E-value 0.001 and 3
708 iterations) to search the NR (non-redundant) protein sequence database dated in October 2012 to find
709 its sequence homologs, and then build its MSA and sequence profile and predict other features (i.e.,
710  secondary structure and solvent accessibility). Sequence profile is represented as a 2D matrix with
711 dimension L>20 where L is the protein length. Predicted secondary structure is represented as a 2D
712 matrix with dimension L>3 (each entry is a predicted score or probability), so is the predicted solvent
713 accessibility. Concatenating them together, we have a 2D matrix with dimension L>26, which is the

714 input of our 1D residual network.

715 For a test protein, we generate four different MSAs by running HHblits (38) with 3 iterations and
716 E-value set to 0.001 and 1, respectively, to search through the uniprot20 HMM library released in
717 November 2015 and February 2016. From each individual MSA, we derive one sequence profile and
718 employ our in-house tool RaptorX-Property (49) to predict the secondary structure and solvent
719  accessibility accordingly. That is, for each test protein we generate 4 sets of input features and
720  accordingly 4 different contact predictions. Then we average these 4 predictions to obtain the final
721 contact prediction. This averaged contact prediction is about 1-2% better than that predicted from a
722 single set of features (detailed data not shown). Although currently there are quite a few packages that
723 can generate direct evolutionary coupling information, we only employ CCMpred to do so because it
724 runs fast on GPU (4).

725  Programs to compare and evaluation metrics

726 We compare our method with PSICOV (5), Evfold (6), CCMpred (4), pImDCA, Gremlin, and
727 MetaPSICOV (9). The first 5 methods conduct pure DCA while MetaPSICOV employs supervised
728 learning. MetaPSICOV (9) performed the best in CASP11 (31). CCMpred, pImDCA, Gremlin perform
729  similarly, but better than PSICOV and Evfold. All the programs are run with parameters set according
730  to their respective papers. We evaluate the accuracy of the top L/k (k=10, 5, 2, 1) predicted contacts
731 where L is protein sequence length. The prediction accuracy is defined as the percentage of native
732 contacts among the top L/k predicted contacts. We also divide contacts into three groups according to
733 the sequence distance of two residues in a contact. That is, a contact is short-, medium- and long-range

734 when its sequence distance falls into [6, 11], [12, 23], and =24, respectively.

735 Calculation of Meff

736 Meff measures the amount of homologous information in an MSA (multiple sequence alignment). It
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737 can be interpreted as the number of non-redundant sequence homologs in an MSA when 70% sequence
738 identity is used as cutoff. To calculate Meff, we first calculate the sequence identity between any two
739  proteins in the MSA. Let a binary variable S;; denote the similarity between two protein sequences i and
740  j. S is equal to 1 if and only if the sequence identity between i and j is at least 70%. For a protein i, we
741 calculate the sum of S over all the proteins (including itself) in the MSA and denote it as S;. Finally,

742 we calculate Meff as the sum of 1/S; over all the protein sequences in this MSA.
743 3D model construction by contact-assisted folding

744  We use a similar approach as described in (11) to build the 3D models of a test protein by feeding
745 predicted contacts and secondary structure to the Crystallography & NMR System (CNS) suite (32).
746  We predict secondary structure using our in-house tool RaptorX-Property (49) and then convert it to
747  distance, angle and h-bond restraints using a script in the Confold package (11). For each test protein,
748  we choose top 2L predicted contacts (L is sequence length) no matter whether they are short-, medium-
749 or long-range and then convert them to distance restraints. That is, a pair of residues predicted to form a
750 contact is assumed to have distance between 3.5A and 8.0 A. In current implementation, we do not use
751 any force fields to help with folding. We generate twenty 3D structure models using CNS and select top
752 5 models by the NOE score yielded by CNS(32). The NOE score mainly reflects the degree of violation
753 of the model against the input constraints (i.e., predicted secondary structure and contacts). The lower
754 the NOE score, the more likely the model has a higher quality. When CCMpred- and
755 MetaPSICOV-predicted contacts are used to build 3D models, we also use the secondary structure

756 predicted by RaptorX-Property to warrant a fair comparison.
757  Template-based modeling (TBM) of the test proteins

758  To generate template-based models (TBMs) for a test protein, we first run HHblits (with the
759 UniProt20_2016 library) to generate an HMM file for the test protein, then run HHsearch with this
760 HMM file to search for the best templates among the 6767 training proteins of our deep learning model,
761 and finally run MODELLER to build a TBM from each of the top 5 templates.
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