

1 Determining the factors driving selective effects of new nonsynonymous
2 mutations

3
4 *Christian D. Huber^{1,*}, Bernard Kim¹, Clare D. Marsden¹, Kirk E. Lohmueller^{1,2,3,*}*
5
6

7 **Affiliations:**

8 ¹ Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
9 90095, USA.

10 ² Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA
11 90095, USA.

12 ³ Department of Human Genetics, David Geffen School of Medicine, University of California,
13 Los Angeles, CA 90095, USA.

14
15 *** To whom correspondence should be addressed:**

16 Christian D. Huber
17 Department of Ecology and Evolutionary Biology
18 University of California, Los Angeles
19 621 Charles E. Young Drive South
20 Los Angeles, CA 90095-1606
21 Phone: (310)-825-7636
22 Fax: (310)-206-0484
23 chuber53@ucla.edu

24
25 Kirk E. Lohmueller
26 Department of Ecology and Evolutionary Biology
27 University of California, Los Angeles
28 621 Charles E. Young Drive South
29 Los Angeles, CA 90095-1606
30 Phone: (310)-825-7636
31 Fax: (310)-206-0484
32 klohmueler@ucla.edu

33
34 **Running title:** What factors determine selection coefficients?

35 **Keywords:** distribution of fitness effects; mutational robustness; protein folding; Fisher's
36 Geometrical Model; Poisson Random Field; cost of complexity

37 **The distribution of fitness effects (DFE) of new mutations is a fundamental parameter in**
38 **evolutionary genetics¹⁻³. While theoretical models have emphasized the importance of**
39 **distinct biological factors, such as protein folding⁴, back mutations⁵, species complexity^{6,7},**
40 **and mutational robustness⁸ at determining the DFE, it remains unclear which of these**
41 **models can describe the DFE in natural populations. Here, we show that the theoretical**
42 **models make distinct predictions about how the DFE will differ between species. We**
43 **further show that humans have a higher proportion of strongly deleterious mutations than**
44 ***Drosophila melanogaster*. Comparing four categories of theoretical models, only Fisher's**
45 **Geometrical Model (FGM) is consistent with our data. FGM assumes that multiple**
46 **phenotypes are under stabilizing selection, with the number of phenotypes defining a**
47 **complexity of the organism. It suggests that long-term population size and cost of**
48 **complexity drive the evolution of the DFE, with many implications for evolutionary and**
49 **medical genomics.**

50

51 **Main text**

52

53 The distribution of fitness effects (DFE) is a fundamental parameter in evolutionary
54 genetics because it quantifies the amount of deleterious, neutral, and adaptive genetic variation in
55 a population³. Despite the importance and considerable study of the DFE¹⁻³, the biological
56 factors determining the DFE in different species remain elusive. Several theoretical models
57 propose different mechanisms for the evolution of the DFE^{4-6,8,9}. While each of these models has
58 a reasonable theoretical basis as well as some support from experimental evolution studies or
59 microbial studies, which model best explains differences in the DFE between species has not yet
60 been determined. Nor have these models been tested with genetic variation data from natural
61 populations in higher organisms. Although experimental evolution studies in laboratory
62 organisms might more closely match the assumptions of the models being tested, natural
63 populations may provide different qualitative results due to increased resolution to measure
64 weakly deleterious mutations and unnatural selection pressure in the laboratory^{1,10}.

65 Importantly, the five theoretical models for the evolution of the DFE predict that the DFE
66 will differ between species with different levels of organismal complexity and long-term
67 population size (Fig. 1). Here we leverage this prediction to test which theoretical model best
68 explains the evolution of the DFE by comparing the DFE in natural population of humans and
69 *Drosophila*. To do this, we utilized polymorphism data of a sample of 112 individuals from
70 Yoruba in Ibadan, Nigeria (YRI) from the 1000 Genomes project¹¹ and 197 African *Drosophila*
71 *melanogaster* lines from the *Drosophila* Population Genomics Project¹². We summarize the
72 polymorphism data by the folded site frequency spectrum (SFS), which represents the number of
73 variants at different minor allele frequencies in the sample (Supplementary Fig. 1A). Because
74 population history can also affect patterns of polymorphism, we first use the synonymous SFS to
75 estimate demographic models separately in each species. We infer that the population size of
76 YRI and *Drosophila* expanded 2.3-fold 5,500 generations ago and 2.7-fold 500,000 generations
77 ago, respectively (Supplementary Table 1). Note that demographic estimates from synonymous
78 sites are biased by selection on linked sites¹³, but that this bias does not affect performance of the
79 DFE estimation¹⁴ (see Methods).

80

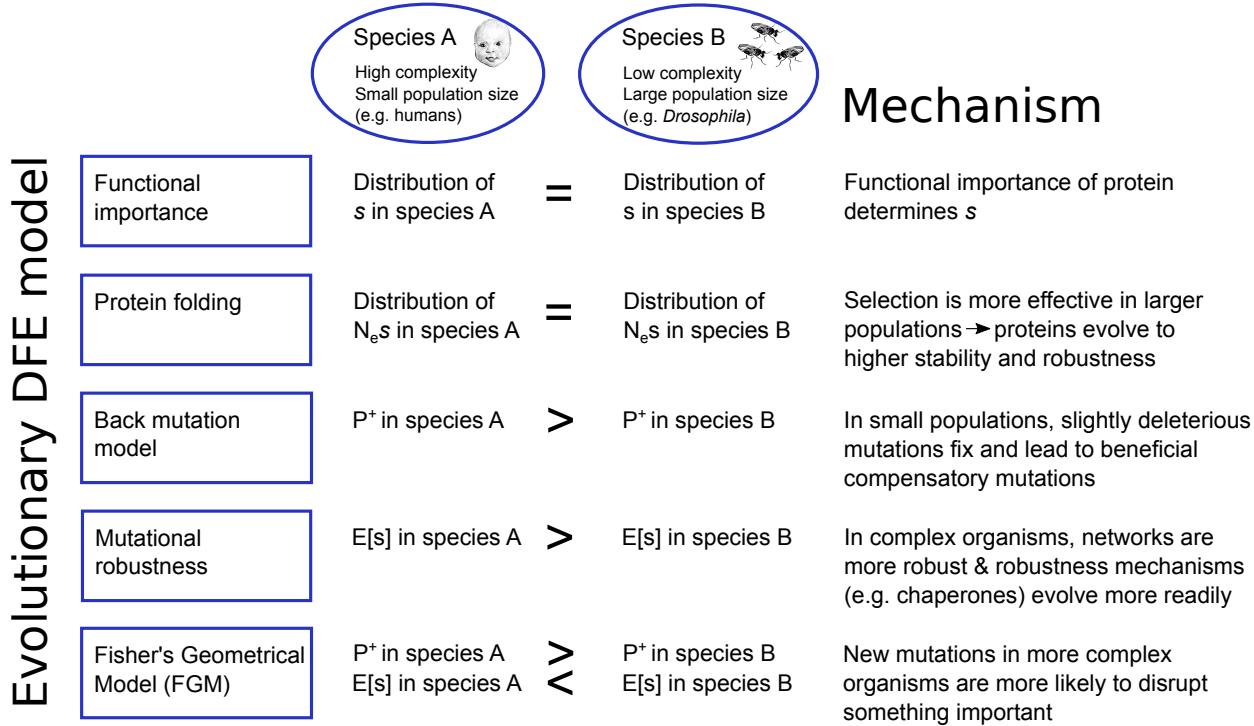


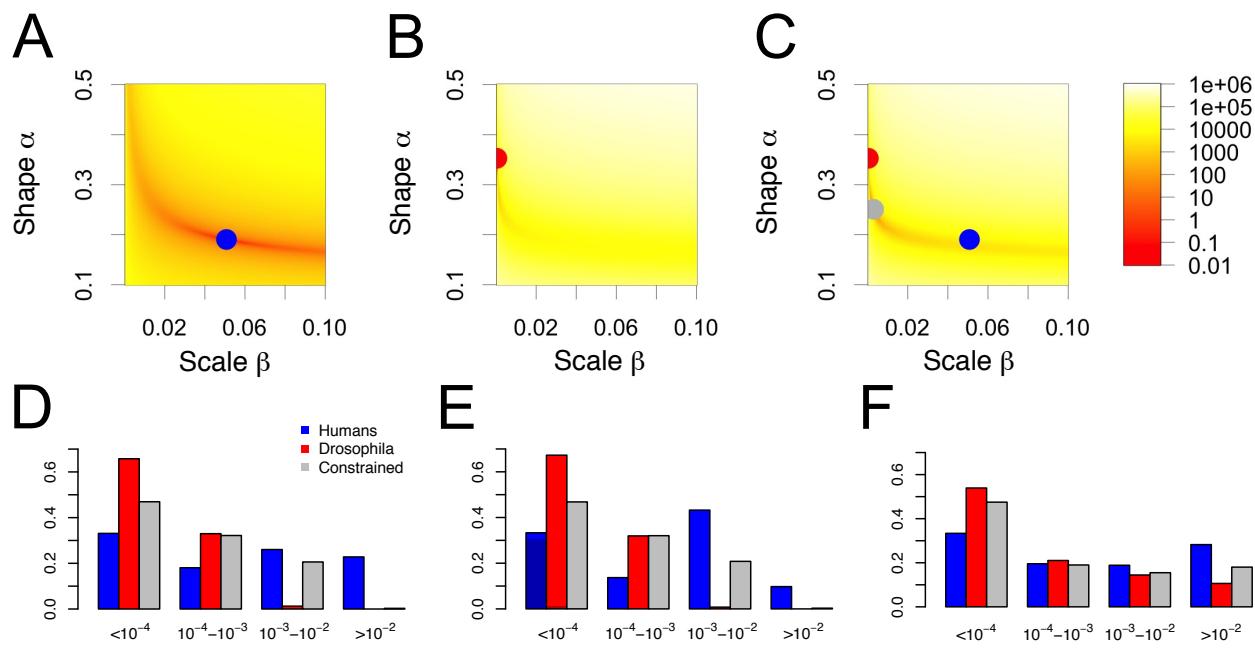
Figure 1. Overview of main predictions of five theoretical models regarding DFE differences between two species. Here, P^+ is the proportion of slightly beneficial mutations, $E[s]$ is the average selection coefficient, and N_e is the effective population size. Note that more negative (i.e. lower) $E[s]$ implies more strongly deleterious mutations. Subscript A refers to species A, subscript B refers to species B. See Supplementary Note 2 for more details.

81
82

83
84
85
86
87

Conditional on the estimated demographic parameters, we estimate the DFE for new nonsynonymous mutations in both species using the nonsynonymous SFS. In short, our approach utilizes the fact that more deleterious mutations segregate in lower numbers and at lower frequencies than less deleterious or neutral mutations. Thus, we do not directly quantify the deleteriousness of any specific mutation, but indirectly summarize the fitness effects over many sites by estimating the parameters of a DFE that fits the SFS. It was shown that as long as the demographic parameters estimated from the synonymous data can fit the synonymous SFS, then the inference of the DFE for the nonsynonymous sites remains unbiased, even when the true data include background selection, population growth, and non-modeled population structure¹⁴⁻¹⁶. Here, we compare the estimates of the DFE from the two species in a novel likelihood ratio test framework that accounts for differences in recent demographic history between the two species (see Methods). Briefly, we assume that the DFE follows a gamma distribution, and find that a model where each species has its own shape and scale parameters fits the SFSs for the two species significantly better than a model where the parameters are constrained to be the same across both species (Likelihood Ratio Test (LRT) statistic $\Lambda=920$; $df=2$, $P<10^{-16}$). This result holds even when making different assumptions about the mutation rate, selection on synonymous sites, as well as when omitting singleton variants (Supplementary Note 1; Supplementary Table 2; Supplementary Table 3). Examination of the maximum likelihood gamma distribution shows that *Drosophila* has a much higher proportion of weakly deleterious and nearly neutral mutations with selection coefficient s (a measure of the relative fitness effect of a mutation) $> -10^{-4}$ than do

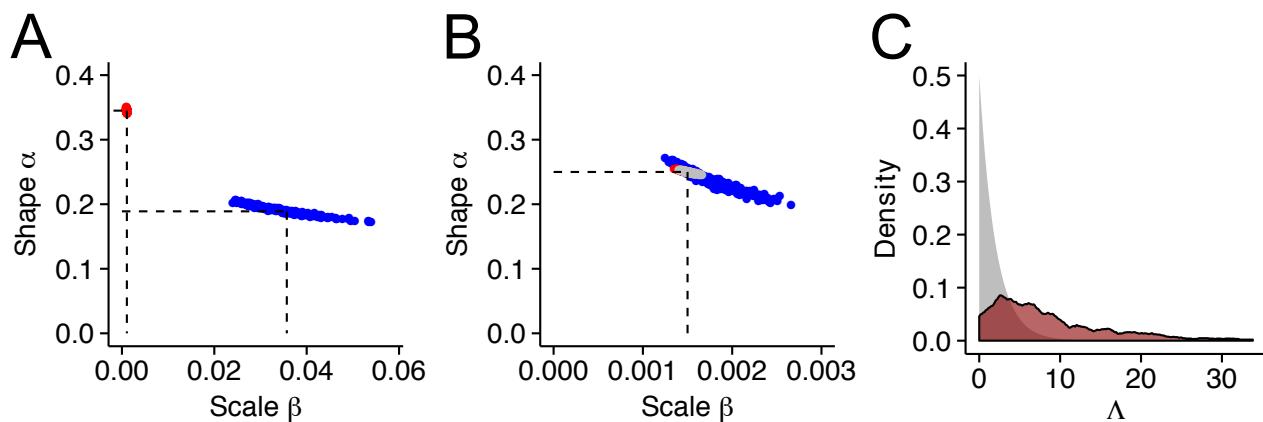
108 humans (Fig. 2D). The proportion of strongly deleterious mutations with $s < -10^{-3}$ is significantly
 109 larger in humans (55%) than in *Drosophila* (5%). Thus, our results provide statistical support for
 110 humans and *Drosophila* having different DFEs (of s) that cannot be explained by differences in
 111 population size or demography between the species. To evaluate the robustness of our finding to
 112 the assumed functional form of the DFE, we tested a range of different distributions other than
 113 the gamma or log-normal, as well as a nonparametric discretized distribution. We consistently
 114 find that mutations are on average more deleterious in humans than in *Drosophila*
 115 (Supplementary Note 1, Supplementary Fig. 8, Supplementary Fig. 14, and Supplementary Table
 116 4).
 117



118
 119 **Figure 2. Testing the null hypothesis of the same distribution of s in both species.** The log-likelihood
 120 surface for the shape and scale parameters of a gamma-distributed DFE(s) for (A) humans, (B)
 121 *Drosophila*, and (C) both datasets combined (constrained model). Colors from yellow to red indicate the
 122 difference in log-likelihood of that set of parameter values compared to the MLE (see color scale). E.g.
 123 orange indicates parameters ~ 100 log-likelihood units below the MLE. Proportions of mutations for
 124 various ranges of $|s|$ are computed from the estimated (D) gamma distribution, (E) mixture of gamma
 125 distribution with neutral point mass, and (F) log-normal distribution. The grey bars indicate the
 126 proportions under the null hypothesis of the same distribution of s in both species (constrained model).
 127 Darker colors in (E) reflect the estimated proportions of neutral mutations.
 128

129 Because a variety of demographic, statistical, and numerical biases can confound LRTs
 130 using the SFS, we evaluated the performance of our statistical approach by analyzing simulated
 131 datasets. Specifically, we performed forward-in-time simulations that include realistic levels of
 132 linkage disequilibrium and background selection (Supplementary Note 1). When we estimated
 133 the DFE from the simulations of the full model, the estimates were unbiased (Fig. 3A,B). This
 134 suggests that the size change model fit to synonymous polymorphisms successfully controls for
 135 the effects of background selection (Supplementary Fig. 3; see also ref.¹³). As expected, the null
 136 distribution of Λ derived from simulations under the constrained model is broader than the chi-
 137

138 square distribution with two degrees of freedom (Fig. 3C). However, all of the 300 Λ values that
139 we simulated were smaller than 34, suggesting the probability of seeing a Λ value bigger than
140 920 is substantially less than 0.33% under the null. Since selective sweeps were suggested to be a
141 major determinant of genetic diversity in *Drosophila*¹⁷, we also examined the effect of recurrent
142 selective sweeps on our inference. In line with other studies¹⁴, we found that selective sweeps do
143 not significantly bias our DFE estimates when correcting for the effect of demography using the
144 observed SFS at neutral sites (Supplementary Fig. 9 and Supplementary Note 1). In summary, a
145 combination of confounding factors cannot account for our findings of different DFEs between
146 human and *Drosophila* (see also Supplementary Note 1).
147



148
149
150 **Figure 3. Estimates of the shape and scale parameters of a gamma DFE from 300 simulations of**
151 **human (blue) and *Drosophila* (red) data.** (A) Estimates from simulations under the alternative
152 hypothesis (H1), i.e. assuming maximum likelihood parameters in both species (dashed lines). Results
153 show that we can retrieve the right parameters. (B) Estimates from simulations under the null hypothesis
154 (H0), i.e. assuming a single set of parameters in both species (dashed lines). In grey are the estimation
155 results using data from both species simultaneously, assuming H0 is correct. Results show that, under H0,
156 we correctly retrieve the same set of parameters for both species. (C) The expected (grey) and simulated
157 (dark red) null distribution of the test statistic $\Lambda = -2 \cdot \log(L_{\text{Constrained},\text{max}}/L_{\text{Full},\text{max}})$ for testing the null
158 hypothesis of no difference in shape and scale parameters between humans and *Drosophila*.
159

160 Next we tested whether differences in the DFE between species vary across functional
161 categories of genes. First, when restricting our analysis to a strict ortholog set, the significant
162 difference in the DFE between humans and *Drosophila* remained ($\Lambda = 7,369$, $p < 10^{-16}$). Further,
163 the parameter estimates were very similar between the two sets of genes (Supplementary Fig.
164 5A, Supplementary Table 2, Supplementary Table 3). To examine the effect of gene expression
165 on the DFE, we classify genes into sets with different gene expression profiles (Supplementary
166 Fig. 1B; Supplementary Fig. 2; see Methods). Overall, we found that, though the shape
167 parameter varies between tissue specific and broadly expressed genes, the average selection
168 coefficient $E[s]$ is about 50-80 fold more negative for humans than for *Drosophila*, regardless of
169 the overall expression level or tissue specificity of the genes (Supplementary Fig. 12A). These
170 results suggest that although the DFE may vary across genes with distinct expression profiles,
171 differences in expression alone are insufficient to account for the observed differences in the
172 DFE between the two species.

173 Having established that common confounders and differences in gene expression cannot
174 account for the differences in the DFE between species, we next examined which of the four

175 theoretical models can explain the differences. The first model, the protein stability model,
176 predicts that much of the selection pressure involves maintaining the thermodynamic stability of
177 proteins. This model predicts that the distribution of N_{es} is gamma distributed¹⁸ and independent
178 of the effective population size (N_e) when at equilibrium⁴ (see Supplementary Note 2 for specific
179 assumptions). Thus, this model predicts that N_{es} is the same across taxa. However, in contrast to
180 this prediction, we found that a model with different N_{es} distributions in each species fit the data
181 significantly better than a model where N_{es} was constrained to be the same in both species ($\Lambda =$
182 22,000, $p < 10^{-16}$; Supplementary Fig. 4; Supplementary Fig. 6), consistent with previous
183 results¹⁶. Comparing this LRT statistic to the null distribution obtained from forward simulations
184 similar to those discussed above suggests that such a large LRT statistic is highly incompatible
185 with a model that assumes the same gamma (or lognormal) N_{es} distribution in both species ($p <$
186 0.0033). Thus, our data do not support protein stability models as the driving force in the
187 evolution of the DFE between species.

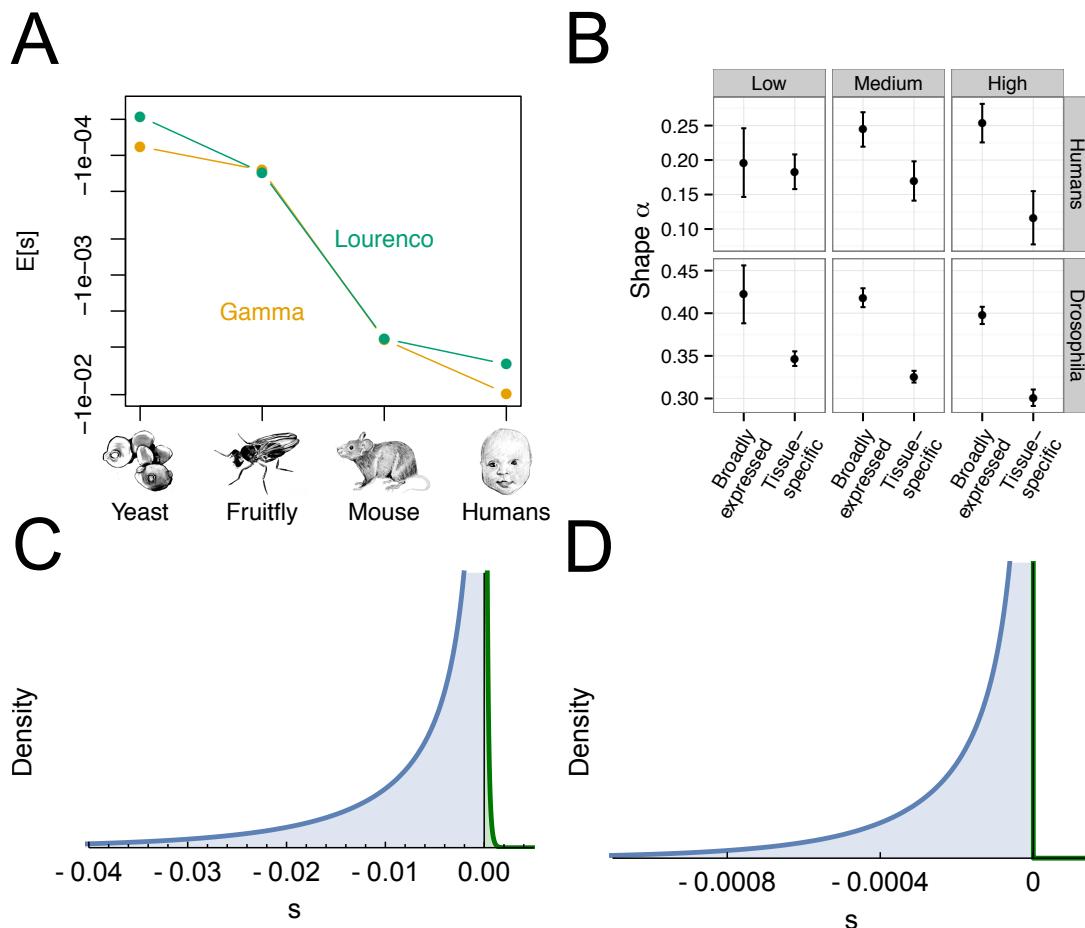
188 The second model, the back-mutation model, predicts that there is a category of weakly
189 advantageous mutations that restore fitness after deleterious mutations become fixed¹⁹. The back-
190 mutation model predicts that in small populations, the proportion of slightly beneficial mutations
191 is greater than in large populations, because more slightly deleterious mutations can become
192 fixed in small populations, leading to more opportunities for new beneficial back mutations
193 (Supplementary Note 2). Using this logic, Piganeau and Eyre-Walker²⁰ (see also Rice et al.⁵)
194 derived a formula for the equilibrium DFE as a function of population size. When we estimate
195 the parameters in the model from our data in our framework, we found an unrealistically large
196 effective population size in *Drosophila* (5.2×10^{19}). Further, we inferred distinct parameters of the
197 effect size distribution (the distribution of $|s|$) in the two species (Supplementary Table 4) such
198 that the average effect size $E[|s|]$ of a mutation in humans is about 80 fold larger than in
199 *Drosophila*, which is inconsistent with the predictions of the back-mutation model (see also
200 Supplementary Fig. 8B). Although the Piganeau and Eyre-Walker model fits well within both
201 species, it falls short in providing an evolutionary or mechanistic explanation for a large
202 difference in $E[|s|]$ between species.

203 The third model, the mutational robustness model, postulates that more robust, or
204 complex, organisms have, on average, less deleterious mutations^{6,8}. Here, more complex
205 organisms have a greater ability to compensate and buffer the effects of deleterious mutations
206 (Supplementary Note 2). Note that complexity can be hard to define and quantify in a
207 biologically and evolutionarily meaningful way. However, a number of biological factors
208 suggest humans are more complex than *Drosophila*. Such factors include a larger number of
209 genes, a larger number of proteins and protein-protein interactions²¹, and likely also a larger
210 number of cell types²² in humans than in *Drosophila*. Mutational robustness model predict
211 greater mutational robustness in humans than in *Drosophila* because of the higher complexity
212 and the smaller effective population size of humans compared to *Drosophila*. However,
213 inconsistent with this prediction, we have shown that humans have a 50-80 fold more negative
214 value of $E[s]$ than *Drosophila*, and a larger proportion of strongly deleterious mutations with $s <$
215 -0.001 (Fig. 2D-F). Further, robustness models predict that less pleiotropic mutations are more
216 deleterious, since the smaller effective complexity of such mutations impedes the evolution of
217 robustness²³. Assuming that broadly expressed genes are more pleiotropic than tissue-specific
218 genes, we observe that tissue-specific genes have less negative estimates of $E[s]$ than broadly
219 expressed genes (Supplementary Fig. 12A). In other words, more pleiotropic mutations tend to
220 be more deleterious. This finding is inconsistent with predictions from the robustness models.

221 However, while our results suggest that mutational robustness mechanisms are not the main
222 driver of differences in the DFE across species, this finding is not necessarily at odds with
223 previous work on these models. The clearest empirical evidence for an increase of mutational
224 robustness by selection comes from experimental evolution studies of viruses and bacteria^{24,25}.
225 Viruses and bacteria have large mutation rates and population sizes. The specific mechanism that
226 promotes robustness in such organisms may not be applicable to higher organisms with smaller
227 population mutation rates²⁶. Our results suggest that if mutational robustness mechanisms play a
228 role in shaping the DFE of higher organisms, they do not compensate for other factors that
229 increase the deleteriousness of mutations in humans compared to *Drosophila*.

230 The fourth model, Fisher's Geometric Model (FGM) represents phenotypes as points in a
231 multidimensional phenotype space and fitness is a decreasing function of the distance to the
232 optimal phenotype⁶. The dimensionality of the phenotype space is termed "complexity". FGM
233 makes three predictions that we test with our data (Supplementary Note 2). The first prediction is
234 that more complex organisms, like humans, have more deleterious mutations than *Drosophila*,
235 since mutations are more likely to disrupt something important in a complex organism than in a
236 simple one²⁷ (see Supplementary Note 3 for assumptions that go into this prediction). Indeed,
237 this prediction is well supported by our data because the average selection coefficient $E[s]$ is
238 estimated to be 50-80 times more negative in humans than in *Drosophila*. To further validate this
239 finding in a larger phylogenetic context, we analyzed polymorphism data from mouse (*Mus*
240 *musculus castaneus*) and yeast (*Saccharomyces paradoxus*). Although sample size is one order
241 of magnitude smaller, we replicate the pattern of increasing deleteriousness of mutations with
242 increasing complexity (Fig. 4A, Supplementary Table 5). Second, smaller populations are
243 predicted to have a larger proportion of beneficial mutations due to increased fixation of
244 deleterious mutations in smaller populations when populations are in equilibrium (drift load²⁸).
245 Note that population size here refers to long-term effective population size, thus it could be
246 affected by background selection and selective sweeps as well as demographic processes. To test
247 this prediction, we estimated the parameters for the DFE based on FGM. Formulas have been
248 derived for the DFE assuming the population is at an arbitrary distance from the optimal
249 phenotype (eq. 8 of Lourenço et al.²⁸ and eq. 5 in Martin and Lenormand⁷), or assuming
250 mutation-selection-drift equilibrium (eq. 15 of Lourenço et al.²⁸). We found that the equilibrium
251 DFE fits just as well or better than the non-equilibrium versions (Supplementary Table 4),
252 suggesting that in both populations, most genes are close to equilibrium and that the DFE is a
253 function of $N_{e, \text{long-term}}$. Further, in humans, the equilibrium Lourenço DFE shows a significantly
254 better fit over the plain gamma DFE (Supplementary Table 4), with a $N_{e, \text{long-term}}$ of 2100 (95%
255 CI: 1653 - 2546). Note that this value of $N_{e, \text{long-term}}$ is of the same order of magnitude as the
256 ancestral population size estimated from synonymous sites (6,600). This is surprising since the
257 estimate of $N_{e, \text{long-term}}$ is not based on neutral diversity, but on the degree of maladaptation due to
258 drift load that results in some proportion of beneficial compensatory mutations in the DFE. Thus,
259 it is estimated from the predicted effect of drift load on the nonsynonymous SFS and likely
260 reflects a much larger time-span than the estimate from the synonymous SFS. In *Drosophila*,
261 fitting the equilibrium Lourenço model led to a similar fit as the plain gamma DFE
262 (Supplementary Table 4). Further, the large $N_{e, \text{long-term}}$ (8.4×10^7) estimated here is also similar to
263 that estimated from the neutral synonymous sites (2.8×10^6). The fact that long-term population
264 sizes inferred under FGM are consistent with previous estimates from genetic variation data
265 suggests that this prediction of FGM is satisfied by our data. Third, FGM predicts that more
266 pleotropic mutations will show smaller variation in s . As before, we use gene expression breath

267 as a proxy for pleiotropy. We found that the shape parameter (α) of the gamma distribution is
268 smaller for tissue-specific genes than for broadly expressed genes (Fig. 4B). The shape
269 parameter is inversely related to the coefficient of variation (CV) of the selection coefficient:
270 $CV(s)=1/\sqrt{\alpha}$. Thus, the smaller shape parameter indicates a larger $CV(s)$ and is consistent
271 with the idea that mutations in tissue-specific genes are less pleiotropic than in broadly expressed
272 genes. Similar conclusions were derived by explicitly estimating pleiotropy from fitting the
273 Lourenço DFE to the data (Supplementary Fig. 13).
274



275
276 **Figure 4. Empirical support for FGM.** (A) Both under the gamma DFE and the Lourenço et al.²⁸ DFE,
277 estimated average deleteriousness of mutations increases as a function of organismal complexity. (B) The
278 shape parameter of the gamma DFE depends on the breadth of gene expression. Tissue-specific genes
279 have a smaller shape parameter (α) than broadly expressed genes, indicating less pleiotropy in tissue-
280 specific genes. (C,D) By fitting the DFE of Lourenço et al. we can model slightly beneficial mutations in
281 the DFE (green) that are thought to compensate for fixed deleterious mutations in small population size
282 species. We find support for a larger proportion of slightly beneficial mutations in the DFE of (A) humans
283 than in (B) *Drosophila*.
284

285 In sum, all three predictions made by FGM are supported by our data. We conclude that
286 FGM is a viable model to explain differences in the DFE between species and genes. Under this
287 model, species complexity as well as distance of the population to the fitness optimum,
288 modulated by long-term population size, are the key drivers of the DFE of new amino-acid

289 mutations. Note that many essential elements of protein evolution are captured by FGM²⁹, where
290 many molecular phenotypes (not just protein stability) are under stabilizing selection³⁰. Thus,
291 although we reject a simple protein stability model determining the DFE, this should not be taken
292 to mean that general principles of protein evolution do not play a role in determining the DFE.
293

Our findings have implications for important aspects of evolutionary genetics. First,
294 FGM allows us to estimate the proportion of new mutations that are adaptive. When assuming
295 FGM, we estimate that 15% of new nonsynonymous mutations in humans are beneficial. The
296 majority (96%) of these beneficial mutations have small selection coefficients, with $s < 0.0005$
297 (Fig. 4C). In *Drosophila*, however, the model including positive selection had a similar fit as the
298 plain gamma DFE (Supplementary Table 4), and only 1.5% of new mutations are beneficial (Fig.
299 4D). This finding appears to be at odds with previous studies of adaptive evolution in these two
300 species. The proportion of amino acid substitutions that fixed due to positive selection was
301 estimated to be larger in *Drosophila* (50%) than in humans (10-20%), using a McDonald-
302 Kreitman (MK) approach^{2,31}. More generally, our results suggest that inferences of the amount of
303 adaptive evolution considering fixed substitutions may be fundamentally and qualitatively
304 different from those considering new mutations. Additionally, the amount of positive selection in
305 the human genome has been recently debated^{32,33}. After controlling for background selection,
306 Enard et al.³² found that, in humans, estimates of the amount of adaptive evolution from MK
307 approaches may be severe underestimates. Their results instead argue that there may be many
308 small-scale adaptive steps in humans, i.e. many weak selective sweeps that are only detectable
309 when averaging across many instances. Such a mode of adaptation is in fact predicted by FGM
310 for organisms with high complexity³⁴, but see ref.³⁵.

Second, a varying DFE over phylogenetic timescales has implications for understanding
311 the overdispersed molecular clock³⁶. The substitution rate of deleterious mutations relative to the
312 rate of neutral evolution is a function of the compound parameter $N_e s$ ³⁷. Thus, not only
313 phylogenetic changes in N_e but also changes in s may contribute to overdispersion. Our results
314 suggest that changes in the distribution of s are coupled with changes in population size and
315 complexity. For example, the larger complexity of humans is supposed to reduce the
316 nonsynonymous divergence along the human lineage to lower values than what would be
317 expected from the two orders of magnitude population size difference to *Drosophila*. Accurate
318 characterization of the DFE from many species across the tree of life will enable a direct test of
319 the contribution of changing DFEs to the dispersion of the molecular clock.
320

Lastly, our results have implications for assessing the biological function of sequences
321 using evolutionary information. The comparative genomics paradigm postulates that biologically
322 important regions of the genome are constrained across long evolutionary times³⁸. This implies
323 that s for a particular sequence is determined by the biological importance of the sequence and
324 that s remains constant over time. If, as our work suggests, selection coefficients change over
325 time as a consequence of species complexity and long-term population size, this could result in
326 important sequences not showing the prototypical signatures of conservation, leading to such
327 sequences being missed by comparative approaches. Further, it suggests that complexity and
328 population size are important factors to consider when deciding which species to utilize in future
329 comparative genomic studies.
330

331
332
333

Acknowledgments

334 We thank Bridgett vonHoldt, Tanya Phung and Sebastian Matuszewski for comments that
335 greatly improved the manuscript, Toni I. Gossmann for providing access to site frequency
336 spectrum data from *Mus musculus castaneus* and *Saccharomyces paradoxus*, and Maria T. Huber
337 for the drawings in Fig. 1 and 4. C.D.H., C.D.M., and K.E.L. were supported by a Searle Scholars
338 Fellowship and an Alfred P. Sloan Research Fellowship in Computational & Molecular Biology
339 to K.E.L.

340

341 **Author Contributions**

342

343 Conceptualization, C.D.H. and K.E.L.; Methodology, C.D.H. and K.E.L.; Software, C.D.H. and
344 B.K.; Validation, C.D.H. and B.K.; Formal Analysis, C.D.H.; Resources, K.E.L.; Data Curation,
345 C.D.M. and B.K.; Writing – Original Draft, C.D.H. and K.E.L.; Writing – Review & Editing,
346 C.D.H., B.K., C.D.M., and K.E.L.; Visualization, C.D.H.; Supervision, K.E.L.

347

348 **Competing Financial Interests**

349

350 The authors declare no competing financial interests.

351

352 **References**

353

- 354 1. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. *Nat. Rev. Genet.* **8**, 610–618 (2007).
- 355 2. Boyko, A. R. *et al.* Assessing the evolutionary impact of amino acid mutations in the human genome. *PLoS Genet.* **4**, e1000083 (2008).
- 356 3. Loewe, L. & Hill, W. G. The population genetics of mutations: good, bad and indifferent. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **365**, 1153–1167 (2010).
- 357 4. Goldstein, R. A. Population size dependence of fitness effect distribution and substitution rate probed by biophysical model of protein thermostability. *Genome Biol. Evol.* **5**, 1584–1593 (2013).
- 358 5. Rice, D. P., Good, B. H. & Desai, M. M. The evolutionarily stable distribution of fitness effects. *Genetics* **200**, 321–329 (2015).
- 359 6. Tenaillon, O. The utility of Fisher’s geometric model in evolutionary genetics. *Annu. Rev. Ecol. Evol. Syst.* **45**, 179–201 (2014).
- 360 7. Martin, G. & Lenormand, T. A general multivariate extension of Fisher’s geometrical model and the distribution of mutation fitness effects across species. *Evol. Int. J. Org. Evol.* **60**, 893–907 (2006).
- 361 8. Siegal, M. L. & Leu, J.-Y. On the nature and evolutionary impact of phenotypic robustness mechanisms. *Annu. Rev. Ecol. Evol. Syst.* **45**, 495–517 (2014).
- 362 9. Kimura, M. & Ohta, T. On some principles governing molecular evolution. *Proc. Natl. Acad. Sci. U. S. A.* **71**, 2848–2852 (1974).
- 363 10. Loewe, L. A framework for evolutionary systems biology. *BMC Syst. Biol.* **3**, 27 (2009).
- 364 11. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56–65 (2012).
- 365 12. Lack, J. B. *et al.* The *Drosophila* genome nexus: a population genomic resource of 623 *Drosophila melanogaster* genomes, including 197 from a single ancestral range population. *Genetics* **199**, 1229–1241 (2015).

380 13. Messer, P. W. & Petrov, D. A. Frequent adaptation and the McDonald-Kreitman test. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 8615–8620 (2013).

381 14. Tataru, P., Mollion, M., Glemin, S. & Bataillon, T. Inference of distribution of fitness effects
382 and proportion of adaptive substitutions from polymorphism data. *bioRxiv* 062216 (2016).
383 doi:10.1101/062216

384 15. Kim, B. Y., Huber, C. D. & Lohmueller, K. E. Inference of the distribution of selection
385 coefficients for new nonsynonymous mutations using large samples. (2016).

386 16. Keightley, P. D. & Eyre-Walker, A. Joint inference of the distribution of fitness effects of
387 deleterious mutations and population demography based on nucleotide polymorphism
388 frequencies. *Genetics* **177**, 2251–2261 (2007).

389 17. Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive natural selection in the
390 *Drosophila* genome? *PLoS Genet.* **5**, (2009).

391 18. Serohijos, A. W. R. & Shakhnovich, E. I. Contribution of selection for protein folding
392 stability in shaping the patterns of polymorphisms in coding region. *Mol Biol Evol* **31**, 165–
393 176 (2014).

394 19. Charlesworth, J. & Eyre-Walker, A. The other side of the nearly neutral theory, evidence of
395 slightly advantageous back-mutations. *Proc. Natl. Acad. Sci.* **104**, 16992–16997 (2007).

396 20. Piganeau, G. & Eyre-Walker, A. Estimating the distribution of fitness effects from DNA
397 sequence data: implications for the molecular clock. *Proc. Natl. Acad. Sci.* **100**, 10335–
398 10340 (2003).

399 21. Stumpf, M. P. H. et al. Estimating the size of the human interactome. *Proc. Natl. Acad. Sci.*
400 **105**, 6959–6964 (2008).

401 22. Valentine, J. W., Collins, A. G. & Meyer, C. P. Morphological complexity increase in
402 metazoans. *Paleobiology* **20**, 131–142 (1994).

403 23. Gros, P.-A. & Tenaillon, O. Selection for chaperone-like mediated genetic robustness at low
404 mutation rate: impact of drift, epistasis and complexity. *Genetics* **182**, 555–564 (2009).

405 24. Masel, J. & Maughan, H. Mutations leading to loss of sporulation ability in *Bacillus subtilis*
406 are sufficiently frequent to favor genetic canalization. *Genetics* **175**, 453–457 (2007).

407 25. Montville, R., Froissart, R., Remold, S. K., Tenaillon, O. & Turner, P. E. Evolution of
408 mutational robustness in an RNA virus. *PLoS Biol* **3**, e381 (2005).

409 26. Bloom, J. D. et al. Evolution favors protein mutational robustness in sufficiently large
410 populations. *BMC Biol.* **5**, 29 (2007).

411 27. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during
412 adaptive evolution. *Evolution* **52**, 935–949 (1998).

413 28. Lourenço, J., Galtier, N. & Glémis, S. Complexity, pleiotropy, and the fitness effect of
414 mutations. *Evol. Int. J. Org. Evol.* **65**, 1559–1571 (2011).

415 29. Weinreich, D. M. & Knies, J. L. Fisher's geometric model of adaptation meets the functional
416 synthesis: data on pairwise epistasis for fitness yields insights into the shape and size of
417 phenotype space. *Evol. Int. J. Org. Evol.* **67**, 2957–2972 (2013).

418 30. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space:
419 a biophysical view of protein evolution. *Nat. Rev. Genet.* **6**, 678–687 (2005).

420 31. Eyre-Walker, A. & Keightley, P. D. Estimating the rate of adaptive molecular evolution in
421 the presence of slightly deleterious mutations and population size change. *Mol. Biol. Evol.*
422 **26**, 2097–2108 (2009).

423 32. Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide signals of positive selection in
424 human evolution. *Genome Res.* **24**, 885–895 (2014).

425

426 33. Hernandez, R. D. *et al.* Classic selective sweeps were rare in recent human evolution.
427 *Science* **331**, 920–924 (2011).

428 34. Lourenço, J. M., Glémin, S. & Galtier, N. The rate of molecular adaptation in a changing
429 environment. *Mol. Biol. Evol.* **30**, 1292–1301 (2013).

430 35. Matuszewski, S., Hermission, J. & Kopp, M. Fisher's geometric model with a moving
431 optimum. *Evol. Int. J. Org. Evol.* **68**, 2571–2588 (2014).

432 36. Bromham, L. & Penny, D. The modern molecular clock. *Nat. Rev. Genet.* **4**, 216–224 (2003).

433 37. Lanfear, R., Kokko, H. & Eyre-Walker, A. Population size and the rate of evolution. *Trends
434 Ecol. Evol.* **29**, 33–41 (2014).

435 38. Alföldi, J. & Lindblad-Toh, K. Comparative genomics as a tool to understand evolution and
436 disease. *Genome Res.* **23**, 1063–1068 (2013).

437

438 **Online Methods**

439 **Data**

440 We used published next generation sequencing data sets to extract the synonymous and
441 nonsynonymous SFS. For humans, we used the sample of 112 individuals from Yoruba in
442 Ibadan, Nigeria (YRI) from the 1000 Genomes Project¹¹. We downloaded the 1000 Genomes
443 phase 3 dataset from the 1000 Genomes ftp site
(<ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/>, accessed Sept 2014). Using information in the
444 sample information PED file, related individuals were removed and for each trio or family group
445 only the mother and father were used. The SNPs were also filtered for whether they were within
446 the exome capture array region and in the strict mask part of the human genome, as defined by
447 the 1000 Genomes Project. The genotypes of YRI individuals were extracted and annotated
448 using the SeattleSeq annotation pipeline
(<http://snp.gs.washington.edu/SeattleSeqAnnotation138/>). For *Drosophila melanogaster*, we
449 used the DPGP phase 3 data of a sample of 197 lines originating from Zambia, Africa¹². We
450 accessed whole genome genotype data for the 197 genomes from the Pool lab
(<http://johnpool.net/genomes.html>). These data were provided in non-standard vcf format (vcf
451 sites file, downloaded August 2014), therefore we first converted these to a standard vcf format
452 with the BDGP5.75 genome as the reference using a custom python script. We then merged all
453 the individual vcf files and removed any sites with evidence of identity by descent or admixture
454 using the masking package provided by the Pool lab. Only the 2L, 2R, 3L and 3R chromosome
455 arms were used in our analyses. We then conducted variant annotation using SnpEff v3.6 using
456 the BDGP5.75 database.

460 We filtered both datasets for sites with sample size > 99 and down-sampled all sites with
461 larger sample size than 100 to a sample size of 100 using the hypergeometric probability
462 distribution. Further, we selected only sites that were in exons and computed an exon length
463 $L_{\text{exon},i}$ for each gene i . The nonsynonymous and synonymous sequence length (L_{NS}, L_S) depends
464 on the transition/transversion ratio and CpG mutational bias. We assumed a
465 transition:transversion ratio of 2:1 in *Drosophila*^{39,40} and 3:1 for human exons^{41,42}. Further, we
466 assumed a 10x mutational bias at CpG sites in humans, but no such effect in *Drosophila*⁴³. This
467 leads to multipliers of $L_{\text{NS}} = 2.85 \times L_S$ in *Drosophila*, and $L_{\text{NS}} = 2.31 \times L_S$ in humans. We
468 calculated the synonymous and nonsynonymous SFS, and the respective sequence lengths ($L_{\text{NS},i}$,
469 $L_{S,i}$), for each gene i . For all further inference, we used the folded SFS to avoid correcting for

470 misidentification of the ancestral state. Ancestral misidentification could lead to unwanted and
471 difficult to control biases⁴⁴.

472 To study the effect of gene expression on the DFE, we used two recent gene expression
473 datasets from humans⁴⁵ and *Drosophila*⁴⁶ that provide mRNA expression level estimates in 27
474 and 29 different tissues, respectively. For both datasets, we transformed the ‘fragments per
475 kilobase of exon per million fragments’ (FPKMs) by computing $\log(\text{FPKM}+1)$ and quantile
476 normalizing this value over all tissues using ‘normalize.quantiles’ of the R package
477 ‘preprocessCore’, resulting in an expression level S. We computed τ as a measure of tissue
478 specificity for each gene: $\tau = \sum_{j=1}^n 1 - \frac{\log(S_j)}{\log(S_{\max})(n-1)}$. Here, n is the number of tissues, S_j is the
479 expression level in tissue j and S_{\max} is the largest expression level over all tissues. We used τ to
480 classify genes as tissue specific ($\tau > 0.6$) or broadly expressed ($\tau < 0.4$). We further classified
481 genes as low ($\bar{S} < 2$), intermediate ($2 < \bar{S} < 3$) and highly expressed ($\bar{S} > 3$), where $\bar{S} =$
482 $\sum S_j / n$. This classification leads to strongly different gene expression profiles between classes
483 (Supplementary Fig. 2), but still enough data in every class to be able to reliably estimate the
484 DFE ($\theta_s > 100$ in humans and $\theta_s > 900$ in *Drosophila*).

485 To infer the DFE in *Mus musculus castaneus* (mouse) and *Saccharomyces paradoxus*
486 (yeast), we used the synonymous and nonsynonymous SFS data from Gossmann et al.⁴⁷. Our
487 estimates of proportions of mutations in different $N_e s$ bins (Supplementary Fig. 10) are
488 concordant with what has been reported previously⁴⁷⁻⁴⁹. We then used mutation rate estimates
489 for yeast⁵⁰ and mouse⁵¹, respectively, to estimate N_e and transform the DFE from $N_e s$ to s .
490

491 **Estimating demography and DFE**

492 We used the software $\delta\alpha\delta\iota$ ⁵² to infer the parameters of a single size change model using the
493 synonymous site frequency spectrum (SFS) under the Poisson Random Field framework⁵³. In
494 this framework, the multinomial likelihood quantifies how well the empirical SFS fits to an
495 expected SFS that is derived from specific demographic parameters⁵². Assume that Θ_D is a vector
496 of demographic parameters (i.e., time and strength of a population size change), X_i is the count
497 of SNPs with frequency i, P_i is the proportion of SNPs at frequency i, θ is the population
498 mutation rate, and n is the sample size. The distribution of allele frequency q in the population
499 ($g[q|\Theta_D]$) can be computed by numerically solving the diffusion approximation to the Wright-
500 Fisher model, and can also incorporate selection^{2,52,54}. We used $\delta\alpha\delta\iota$ ⁵² to numerically
501 approximate $g[q|\Theta_D]$. Further, the expected number of SNPs at frequency i in a sample of size n
502 is $E[X_i|\Theta_D, \theta] = \theta \int_0^1 \binom{n}{i} q^i (1-q)^{n-i} g(q|\Theta_D) dq$. The relative proportion of SNPs at
503 frequency i can then be calculated as $P_i(\Theta_D) = \frac{E[X_i|\Theta_D, \theta]}{\sum_{j=1}^{n-1} E[X_j|\Theta_D, \theta]}$, and the formula for the
504 multinomial likelihood is $L(\Theta_D) = \prod_{i=1}^{n-1} P_i^{X_i}$. To derive the maximum likelihood estimate of Θ_D
505 ($\widehat{\Theta_D}$) we maximized $L(\Theta_D)$.

506 We used the Poisson likelihood instead of the multinomial likelihood to estimate the
507 vector of parameters of the DFE (Θ_{DFE}). We found that this strongly improves the precision of
508 the scale parameter of the gamma distribution compared to using the multinomial likelihood
509 since the Poisson likelihood uses information from both the absolute number of SNPs as well as
510 the curvature of the SFS^{2,15}. Note however that we do not make use of fixed differences to an
511 outgroup. Including information from fixed differences hardly improves inferring the DFE of
512 deleterious mutations⁵⁵, which are the main focus of our paper. The likelihood of Θ_{DFE} was thus

513 calculated as $L(\Theta_{DFE} | \Theta_D, \theta) = \prod_{i=1}^{n-1} \frac{E(X_i | \Theta_D, \Theta_{DFE}, \theta)^{X_i}}{X_i!} e^{-E(X_i | \Theta_D, \Theta_{DFE}, \theta)}$. We set Θ_D here to the
514 maximum likelihood estimates of the demographic parameters $\widehat{\Theta_D}$, and θ to the nonsynonymous
515 population mutation rate $\theta_{NS} = 4N_e \mu L_{NS}$. We estimated θ_{NS} from θ_S by accounting for the
516 difference in synonymous and nonsynonymous sequence length.

517 The formula of the Poisson likelihood depends on $E(X_i | \Theta_D, \Theta_{DFE}, \theta)$, i.e. on the expected
518 SFS given the demography, θ_{NS} and some distribution of $N_e s$ with parameters Θ_{DFE} . However,
519 $\delta\text{a}\delta\text{i}$ only allows computing the expected SFS $E(X_i | \Theta_D, N_e s, \theta)$ for a single selection coefficient
520 $N_e s$ (and some arbitrary demography). Thus, we extend $\delta\text{a}\delta\text{i}$'s functionality by computing the
521 expected SFS for a grid of 1000 $N_e s$ values on an exponentially distributed grid between -15000
522 and -10^{-4} . This set of site frequency spectra is further used to calculate the expected SFS for an
523 arbitrary distribution of $N_e s$ values. This is done by numerically integrating over the respective
524 spectra weighted by the gamma distribution. The numerical integration was done using the
525 'numpy.trapz' function as implemented in $\delta\text{a}\delta\text{i}$. Due to numerical instabilities for strongly
526 skewed distributions, we did not integrate all the way towards 0, but computed the weight of $N_e s$
527 values between -10^{-4} and 0 and added the product of this weight with the neutral SFS to the
528 expected SFS. Mutations with $N_e s < -15000$ are expected not to contribute to the SFS since they
529 are strongly selected against. Our approach allows us to estimate the parameters of any arbitrary
530 distribution of $N_e s$ values. We implemented the gamma distribution, log-normal distribution, the
531 formula of Piganeau and Eyre-Walker²⁰, eq. 7, assuming gamma distributed effect sizes, and the
532 formula of Lourenço et al.²⁸, eq. 15. The formula of Lourenço et al.²⁸ provides an explicit
533 solution to the DFE for Fisher's geometrical model under fitness equilibrium. It is a function of
534 three parameters: population size, effect size, and the average number of phenotypes affected by
535 a mutation (pleiotropy). The DFE of Lourenço et al.²⁸ and Piganeau and Eyre-Walker²⁰ are
536 distributions with some proportion of slightly beneficial mutations. In models with some
537 proportion of beneficial mutations, those mutations are expected to segregate in the population
538 and thus influence both the shape of the SFS and the absolute number of SNPs. We use this
539 expectation to infer the full DFE (beneficial plus deleterious mutations) from the SFS, similar to
540 Tataru et al.¹⁴. To do this, we also integrate over beneficial mutations with $N_e s$ from 0 to 15000.
541 Numerical optimization is used to find the parameters of the DFE distribution that maximize the
542 poisson likelihood. For this optimization step, we use the BFGS algorithm as implemented in the
543 'optimize.fmin_bfgs' function of scipy. To avoid finding local optima, we repeated every
544 estimation approach (for both the simulations and the real data) from 50 uniformly distributed
545 random starting parameters. Standard errors were based on the Hessian matrix of the log-
546 likelihood function, numerically computed at the maximum likelihood estimates using the
547 'Hessian.hessian' function of $\delta\text{a}\delta\text{i}$ ⁵². They were computed as the square root of the diagonal
548 elements of the inverse of the negative Hessian matrix⁵⁶. Confidence intervals were
549 approximated as plus/minus two times the standard errors, except where specified otherwise.

550 Note that population genetic methods for estimating the DFE from the SFS can only
551 estimate the composite parameter of selection coefficient s with effective population size N_e ,
552 since the effect of selection on the SFS depends on $N_e s$ and not s alone. However, the distribution
553 of s can be derived from the distribution of $N_e s$ by scaling it by $1/N_e$ (e.g. multiplying the scale
554 parameter of a gamma distribution of $N_e s$ by $1/N_e$). Fitting the demographic model to the
555 synonymous SFS provided an estimate of $\theta_S = 4N_e \mu L_S$ for synonymous sites, where μ is the
556 neutral per base-pair mutation rate and L_S is the synonymous sequence length. Using this
557 formula, we estimated N_e by setting the neutral mutation rate to either 2.5×10^{-8} for humans and

558 1.5x10⁻⁹ for *Drosophila* (phylogenetic estimates⁵⁷⁻⁵⁹) or to 1.5x10⁻⁸ for humans and 3x10⁻⁹ for
559 *Drosophila* (current estimates^{58,60,61}). Note that when partitioning our data into different gene
560 categories and estimating the DFE for each category separately, we also allow for a different
561 ancestral N_e and demography estimates in those categories to control for different levels of
562 background selection in different genomic regions^{62,63}.
563

564 Statistical test for different DFEs between two species

565 We used the SFS from polymorphism data from two species, A ($X_{i,A}$) and B ($X_{j,B}$), to test
566 whether the DSE differs between those two species. First, we estimated the demographic model
567 parameters of both species ($\Theta_{D,A}, \Theta_{D,B}$) as outlined above. Second, we assumed that the DFE in
568 both species follows a gamma distribution with the shape parameter α and scale parameter β .
569 We used a Poisson composite likelihood function, where the SFS at nonsynonymous SNPs in
570 species A is treated as being independent of that from species B, which is reasonable for
571 distantly related species with little incomplete lineage sorting⁵⁵. Then, the likelihood function for
572 the parameters is:

$$L(\alpha_A, \beta_A, \alpha_B, \beta_B | \Theta_{D,A}, \Theta_{D,B}) \\ = \prod_{i=1}^{n-1} \frac{E(X_{i,A} | \alpha_A, \beta_A, \Theta_{D,A}, \theta_A)^{X_{i,A}}}{X_{i,A}!} e^{-E(X_{i,A} | \alpha_A, \beta_A, \Theta_{D,A}, \theta_A)} \prod_{j=1}^{m-1} \frac{E(X_{j,B} | \alpha_B, \beta_B, \Theta_{D,B}, \theta_B)^{X_{j,B}}}{X_{j,B}!} e^{-E(X_{j,B} | \alpha_B, \beta_B, \Theta_{D,B}, \theta_B)}$$

573
574 Here, n and m are the sample size of species A and species B, respectively. We will test whether
575 the shape (α) and scale (β) parameters in species A differ from those in species B. To do this, we
576 propose the following likelihood ratio test (LRT):

$$\Lambda = \frac{L(\widehat{\alpha_A} = \alpha_B, \widehat{\beta_A} = \beta_B | \widehat{\Theta_{D,A}}, \widehat{\Theta_{D,B}})}{L(\widehat{\alpha_A}, \widehat{\alpha_B}, \widehat{\beta_A}, \widehat{\beta_B} | \widehat{\Theta_{D,A}}, \widehat{\Theta_{D,B}})}$$

577
578 The null hypothesis (constrained model) is that $\alpha_A = \alpha_B$ and $\beta_A = \beta_B$. The full model allows for
579 $\alpha_A \neq \alpha_B$ and $\beta_A \neq \beta_B$. We optimized the likelihood function under both the null and full models
580 as outlined above. Importantly, in all cases, we conditioned on the demographic parameters in
581 each population, thus accounting for differences in population history. Asymptotically, Λ
582 follows a chi-square distribution with 2 degrees of freedom, due to the two additional free
583 parameters in the full model compared to the constrained model. Simulations were used to test
584 how well the usual asymptotic theory applies in this situation. The test is not limited to
585 comparing the parameters of a gamma distribution of two species, but can be extended to any
586 DFE distribution (e.g. log-normal), and any number of species, in a straightforward way. The
587 degree of freedom of the chi-square null distribution is p^*k-p , where p is the number of
588 parameters of the distribution, and k is the number of species.
589

590 Forward simulations

591 To compute the null distribution of the likelihood ratio test statistic, Λ , we performed forward
592 simulations under the estimated demographic models for humans and *Drosophila*. Selection
593 coefficients for nonsynonymous mutations were drawn from a gamma distribution with shape
594 and scale parameters estimated from the constrained model (i.e., $\alpha_H = \alpha_D$ and $\beta_H = \beta_D$). We
595 assume a spatial distribution of selected elements that reflects the empirical distribution of
596 coding and conserved non-coding (CNC) sequence in the genome. Further, we simulate varying

597 recombination across the genomes that is based on empirical high-resolution recombination
598 maps^{64,65}. Mutations in CNC regions are assumed to be selected with gamma distributed
599 selection coefficients taken from Torgerson et al.⁶⁶ for humans and Casillas et al.⁶⁷ for
600 *Drosophila*. The exon element ranges were taken from GENCODE v14⁶⁸ for humans and
601 BDGP 6.79 FlyBase gene annotation⁶⁹ for *Drosophila*. To define CNC ranges in both species,
602 we used predicted conserved elements by phastCons⁷⁰, downloaded from the UCSC genome
603 browser. All forward simulations were carried out using the simulation software 'SLiM'⁷¹. For
604 both species, we simulated under a single size change model with the empirically estimated
605 parameters (Supplementary Table 1). Since *Drosophila* has a prohibitively large population size
606 for forward simulations, we simulated both species with an ancestral effective population size of
607 10,000 and scaled mutation rate, recombination rate, selection coefficients and demographic
608 parameters accordingly⁷². To assess power, we performed a different set of simulations assuming
609 the gamma DFE parameter estimates from the full model (Supplementary Table 2).

610 Further, to allow quasi genome-wide simulations, we followed a bootstrapping approach
611 by first simulating 1000 x 7 Mb large regions that were selected randomly from the respective
612 genome. We then selected a centered 3 Mb window from the simulated 7 Mb region and
613 discharged the rest of the sequence to remove edge effects, notably the lower strength of
614 background selection at the edges⁷³. From those 1000 x 3 Mb regions, we resampled until we
615 arrive at a full genome data set, i.e. synonymous and nonsynonymous SFS that are similar in size
616 to the actual data. That way, we simulated data of 300 independent genomes. In both species, the
617 simulations resulted in considerable amounts of background selection, with average reduction in
618 neutral diversity in the 7Mb region of 10% in humans and 12% in *Drosophila*. For each
619 simulated genome data we first estimated the demographic model from the synonymous SFS and
620 then the DFE parameters from the nonsynonymous SFS conditional on the estimated
621 demographic parameters.

622

623 **References**

624

- 625 39. Keightley, P. D. *et al.* Analysis of the genome sequences of three *Drosophila melanogaster*
626 spontaneous mutation accumulation lines. *Genome Res.* **19**, 1195–1201 (2009).
- 627 40. Poh, Y.-P., Ting, C.-T., Fu, H.-W., Langley, C. H. & Begun, D. J. Population genomic
628 analysis of base composition evolution in *Drosophila melanogaster*. *Genome Biol. Evol.* **4**,
629 1245–1255 (2012).
- 630 41. Bainbridge, M. N. *et al.* Targeted enrichment beyond the consensus coding DNA sequence
631 exome reveals exons with higher variant densities. *Genome Biol.* **12**, R68 (2011).
- 632 42. Wang, J., Raskin, L., Samuels, D. C., Shyr, Y. & Guo, Y. Genome measures used for quality
633 control are dependent on gene function and ancestry. *Bioinformatics* **31**, 318–323 (2015).
- 634 43. Arndt, P. F. & Hwa, T. Identification and measurement of neighbor-dependent nucleotide
635 substitution processes. *Bioinformatics* **21**, 2322–2328 (2005).
- 636 44. Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Context dependence, ancestral
637 misidentification, and spurious signatures of natural selection. *Mol. Biol. Evol.* **24**, 1792–
638 1800 (2007).
- 639 45. Fagerberg, L. *et al.* Analysis of the human tissue-specific expression by genome-wide
640 integration of transcriptomics and antibody-based proteomics. *Mol. Cell. Proteomics* **13**,
641 397–406 (2014).

46. Li, J. J., Huang, H., Bickel, P. J. & Brenner, S. E. Comparison of *D. melanogaster* and *C. elegans* developmental stages, tissues, and cells by modENCODE RNA-seq data. *Genome Res.* **24**, 1086–1101 (2014).

47. Gossmann, T. I., Keightley, P. D. & Eyre-Walker, A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. *Genome Biol. Evol.* **4**, 658–667 (2012).

48. Koufopanou, V., Lomas, S., Tsai, I. J. & Burt, A. Estimating the fitness effects of new mutations in the wild yeast *Saccharomyces paradoxus*. *Genome Biol. Evol.* **7**, 1887–1895 (2015).

49. Kousathanas, A. & Keightley, P. D. A comparison of models to infer the distribution of fitness effects of new mutations. *Genetics* **193**, 1197–1208 (2013).

50. Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of *Saccharomyces cerevisiae*. *PLOS Genet* **1**, e5 (2005).

51. Uchimura, A. et al. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. *Genome Res.* **25**, 1125–1134 (2015).

52. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. *PLoS Genet* **5**, e1000695 (2009).

53. Sawyer, S. A. & Hartl, D. L. Population genetics of polymorphism and divergence. *Genetics* **132**, 1161–1176 (1992).

54. Williamson, S. H. et al. Simultaneous inference of selection and population growth from patterns of variation in the human genome. *Proc. Natl. Acad. Sci.* **102**, 7882–7887 (2005).

55. Lawrie, D. S. & Petrov, D. A. Comparative population genomics: power and principles for the inference of functionality. *Trends Genet.* **30**, 133–139 (2014).

56. Pawitan, Y. *In All Likelihood: Statistical Modelling And Inference Using Likelihood*. (Oxford University Press, Usa, 2013).

57. Li, H. & Stephan, W. Inferring the demographic history and rate of adaptive substitution in *Drosophila*. *PLoS Genet* **2**, e166 (2006).

58. Ségurel, L., Wyman, M. J. & Przeworski, M. Determinants of mutation rate variation in the human germline. *Annu. Rev. Genomics Hum. Genet.* **15**, 47–70 (2014).

59. Sharp, P. M. & Li, W.-H. On the rate of DNA sequence evolution in *Drosophila*. *J. Mol. Evol.* **28**, 398–402 (1989).

60. Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a *Drosophila melanogaster* full-sib family. *Genetics* **196**, 313–320 (2014).

61. Keightley, P. D. et al. Estimation of the spontaneous mutation rate in *Heliconius melpomene*. *Mol. Biol. Evol.* **32**, 239–243 (2015).

62. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures of natural selection in hominid evolution. *PLoS Genet* **5**, e1000471 (2009).

63. Comeron, J. M. Background selection as baseline for nucleotide variation across the *Drosophila* genome. *PLoS Genet* **10**, e1004434 (2014).

64. Comeron, J. M., Ratnappan, R. & Bailin, S. The many landscapes of recombination in *Drosophila melanogaster*. *PLoS Genet* **8**, e1002905 (2012).

65. Kong, A. et al. Fine-scale recombination rate differences between sexes, populations and individuals. *Nature* **467**, 1099–1103 (2010).

688 66. Torgerson, D. G. *et al.* Evolutionary processes acting on candidate cis-regulatory regions in
689 humans inferred from patterns of polymorphism and divergence. *PLoS Genet* **5**, e1000592
690 (2009).

691 67. Casillas, S., Barbadilla, A. & Bergman, C. M. Purifying selection maintains highly
692 conserved noncoding sequences in *Drosophila*. *Mol. Biol. Evol.* **24**, 2222–2234 (2007).

693 68. Harrow, J. *et al.* GENCODE: the reference human genome annotation for the ENCODE
694 Project. *Genome Res.* **22**, 1760–1774 (2012).

695 69. dos Santos, G. *et al.* FlyBase: introduction of the *Drosophila melanogaster* Release 6
696 reference genome assembly and large-scale migration of genome annotations. *Nucleic Acids
697 Res.* **43**, D690–D697 (2015).

698 70. Siepel, A. *et al.* Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
699 genomes. *Genome Res.* **15**, 1034–1050 (2005).

700 71. Messer, P. W. SLiM: simulating evolution with selection and linkage. *Genetics* **194**, 1037–
701 1039 (2013).

702 72. Aberer, A. J. & Stamatakis, A. Rapid forward-in-time simulation at the chromosome and
703 genome level. *BMC Bioinformatics* **14**, 216 (2013).

704 73. Nordborg, M., Charlesworth, B. & Charlesworth, D. The effect of recombination on
705 background selection. *Genet. Res.* **67**, 159–174 (1996).