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The distribution of fitness effects (DFE) of new mutations is a fundamental parameter in
evolutionary genetics' °. While theoretical models have emphasized the importance of
distinct biological factors, such as protein folding’, back mutations’, species complexity®’,
and mutational robustness® at determining the DFE, it remains unclear which of these
models can describe the DFE in natural populations. Here, we show that the theoretical
models make distinct predictions about how the DFE will differ between species. We
further show that humans have a higher proportion of strongly deleterious mutations than
Drosophila melanogaster. Comparing four categories of theoretical models, only Fisher’s
Geometrical Model (FGM) is consistent with our data. FGM assumes that multiple
phenotypes are under stabilizing selection, with the number of phenotypes defining a
complexity of the organism. It suggests that long-term population size and cost of
complexity drive the evolution of the DFE, with many implications for evolutionary and
medical genomics.

Main text

The distribution of fitness effects (DFE) is a fundamental parameter in evolutionary
genetics because it quantifies the amount of deleterious, neutral, and adaptive genetic variation in
a population’. Despite the importance and considerable study of the DFE', the biological
factors determining the DFE in different species remain elusive. Several theoretical models
propose different mechanisms for the evolution of the DFE***’. While each of these models has
a reasonable theoretical basis as well as some support from experimental evolution studies or
microbial studies, which model best explains differences in the DFE between species has not yet
been determined. Nor have these models been tested with genetic variation data from natural
populations in higher organisms. Although experimental evolution studies in laboratory
organisms might more closely match the assumptions of the models being tested, natural
populations may provide different qualitative results due to increased resolution to measure
weakly deleterious mutations and unnatural selection pressure in the laboratory’ '’

Importantly, the five theoretical models for the evolution of the DFE predict that the DFE
will differ between species with different levels of organismal complexity and long-term
population size (Fig. 1). Here we leverage this prediction to test which theoretical model best
explains the evolution of the DFE by comparing the DFE in natural population of humans and
Drosophila. To do this, we utilized polymorphism data of a sample of 112 individuals from
Yoruba in Ibadan, Nigeria (YRI) from the 1000 Genomes project'' and 197 African Drosophila
melanogaster lines from the Drosophila Population Genomics Project'?. We summarize the
polymorphism data by the folded site frequency spectrum (SFS), which represents the number of
variants at different minor allele frequencies in the sample (Supplementary Fig. 1A). Because
population history can also affect patterns of polymorphism, we first use the synonymous SFS to
estimate demographic models separately in each species. We infer that the population size of
YRI and Drosophila expanded 2.3-fold 5,500 generations ago and 2.7-fold 500,000 generations
ago, respectively (Supplementary Table 1). Note that demographic estimates from synonymous
sites are biased by selection on linked sites'”, but that this bias does not affect performance of the
DFE estimation'* (see Methods).
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83  Figure 1. Overview of main predictions of five theoretical models regarding DFE differences

84  between two species. Here, P is the proportion of slightly beneficial mutations, E[s] is the average

85 selection coefficient, and NV, is the effective population size. Note that more negative (i.e. lower) E[s]

86  implies more strongly deleterious mutations. Subscript A refers to species A, subscript B refers to species
87  B. See Supplementary Note 2 for more details.

88 Conditional on the estimated demographic parameters, we estimate the DFE for new

89  nonsynonymous mutations in both species using the nonsynonymous SFS. In short, our approach

90 utilizes the fact that more deleterious mutations segregate in lower numbers and at lower

91 frequencies than less deleterious or neutral mutations. Thus, we do not directly quantify the

92  deleteriousness of any specific mutation, but indirectly summarize the fitness effects over many

93  sites by estimating the parameters of a DFE that fits the SFS. It was shown that as long as the

94  demographic parameters estimated from the synonymous data can fit the synonymous SFS, then

95 the inference of the DFE for the nonsynonymous sites remains unbiased, even when the true data

96  include background selection, population growth, and non-modeled population structure'* '°.

97  Here, we compare the estimates of the DFE from the two species in a novel likelihood ratio test

98 framework that accounts for differences in recent demographic history between the two species

99  (see Methods). Briefly, we assume that the DFE follows a gamma distribution, and find that a
100  model where each species has its own shape and scale parameters fits the SFSs for the two
101  species significantly better than a model where the parameters are constrained to be the same
102  across both species (Likelihood Ratio Test (LRT) statistic A=920; df=2, P<10'®). This result
103  holds even when making different assumptions about the mutation rate, selection on synonymous
104  sites, as well as when omitting singleton variants (Supplementary Note 1; Supplementary Table
105  2; Supplementary Table 3). Examination of the maximum likelihood gamma distribution shows
106 that Drosophila has a much higher proportion of weakly deleterious and nearly neutral mutations
107  with selection coefficient s (a measure of the relative fitness effect of a mutation) > -10 than do
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humans (Fig. 2D). The proportion of strongly deleterious mutations with s < -107 is significantly
larger in humans (55%) than in Drosophila (5%). Thus, our results provide statistical support for
humans and Drosophila having different DFEs (of s) that cannot be explained by differences in
population size or demography between the species. To evaluate the robustness of our finding to
the assumed functional form of the DFE, we tested a range of different distributions other than
the gamma or log-normal, as well as a nonparametric discretized distribution. We consistently
find that mutations are on average more deleterious in humans than in Drosophila
(Supplementary Note 1, Supplementary Fig. 8, Supplementary Fig. 14, and Supplementary Table
4).
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Figure 2. Testing the null hypothesis of the same distribution of s in both species. The log-likelihood
surface for the shape and scale parameters of a gamma-distributed DFE(s) for (A) humans, (B)
Drosophila, and (C) both datasets combined (constrained model). Colors from yellow to red indicate the
difference in log-likelihood of that set of parameter values compared to the MLE (see color scale). E.g.
orange indicates parameters ~ 100 log-likelihood units below the MLE. Proportions of mutations for
various ranges of |s| are computed from the estimated (D) gamma distribution, (E) mixture of gamma
distribution with neutral point mass, and (F) log-normal distribution. The grey bars indicate the
proportions under the null hypothesis of the same distribution of s in both species (constrained model).
Darker colors in (E) reflect the estimated proportions of neutral mutations.

Because a variety of demographic, statistical, and numerical biases can confound LRTs
using the SFS, we evaluated the performance of our statistical approach by analyzing simulated
datasets. Specifically, we performed forward-in-time simulations that include realistic levels of
linkage disequilibrium and background selection (Supplementary Note 1). When we estimated
the DFE from the simulations of the full model, the estimates were unbiased (Fig. 3A,B). This
suggests that the size change model fit to synonymous polymorphisms successfully controls for
the effects of background selection (Supplementary Fig. 3; see also ref."?). As expected, the null
distribution of A derived from simulations under the constrained model is broader than the chi-
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138  square distribution with two degrees of freedom (Fig. 3C). However, all of the 300 A values that
139  we simulated were smaller than 34, suggesting the probability of seeing a A value bigger than
140 920 is substantially less than 0.33% under the null. Since selective sweeps were suggested to be a
141  major determinant of genetic diversity in Drosophila'’, we also examined the effect of recurrent
142 selective sweeps on our inference. In line with other studies'?, we found that selective sweeps do
143  not significantly bias our DFE estimates when correcting for the effect of demography using the
144  observed SFS at neutral sites (Supplementary Fig. 9 and Supplementary Note 1). In summary, a
145  combination of confounding factors cannot account for our findings of different DFEs between
146  human and Drosophila (see also Supplementary Note 1).
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150  Figure 3. Estimates of the shape and scale parameters of a gamma DFE from 300 simulations of
151  human (blue) and Drosophila (red) data. (A) Estimates from simulations under the alternative

152 hypothesis (H1), i.e. assuming maximum likelihood parameters in both species (dashed lines). Results
153  show that we can retrieve the right parameters. (B) Estimates from simulations under the null hypothesis
154  (HO), i.e. assuming a single set of parameters in both species (dashed lines). In grey are the estimation
155 results using data from both species simultaneously, assuming HO is correct. Results show that, under HO,
156  we correctly retrieve the same set of parameters for both species. (C) The expected (grey) and simulated
157 (dark red) null distribution of the test statistic A = —2*10g(Lconstrained.max’/ Lruiimax) for testing the null

158  hypothesis of no difference in shape and scale parameters between humans and Drosophila.

159

160 Next we tested whether differences in the DFE between species vary across functional
161  categories of genes. First, when restricting our analysis to a strict ortholog set, the significant
162  difference in the DFE between humans and Drosophila remained (A = 7,369, p < 10'16). Further,
163  the parameter estimates were very similar between the two sets of genes (Supplementary Fig.
164  5SA, Supplementary Table 2, Supplementary Table 3). To examine the effect of gene expression
165 on the DFE, we classify genes into sets with different gene expression profiles (Supplementary
166  Fig. 1B; Supplementary Fig. 2; see Methods). Overall, we found that, though the shape

167  parameter varies between tissue specific and broadly expressed genes, the average selection

168  coefficient E[s] is about 50-80 fold more negative for humans than for Drosophila, regardless of
169 the overall expression level or tissue specificity of the genes (Supplementary Fig. 12A). These
170  results suggest that although the DFE may vary across genes with distinct expression profiles,
171  differences in expression alone are insufficient to account for the observed differences in the
172 DFE between the two species.

173 Having established that common confounders and differences in gene expression cannot
174  account for the differences in the DFE between species, we next examined which of the four
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175  theoretical models can explain the differences. The first model, the protein stability model,

176  predicts that much of the selection pressure involves maintaining the thermodynamic stability of
177  proteins. This model predicts that the distribution of N,s is gamma distributed'® and independent
178  of the effective population size (N,) when at equilibrium® (see Supplementary Note 2 for specific
179  assumptions). Thus, this model predicts that N,s is the same across taxa. However, in contrast to
180 this prediction, we found that a model with different N,s distributions in each species fit the data
181  significantly better than a model where N.s was constrained to be the same in both species (A =
182 22,000, p < 10™'%; Supplementary Fig. 4; Supplementary Fig. 6), consistent with previous

183  results'®. Comparing this LRT statistic to the null distribution obtained from forward simulations
184  similar to those discussed above suggests that such a large LRT statistic is highly incompatible
185  with a model that assumes the same gamma (or lognormal) N,s distribution in both species (p <
186  0.0033). Thus, our data do not support protein stability models as the driving force in the

187  evolution of the DFE between species.

188 The second model, the back-mutation model, predicts that there is a category of weakly
189  advantageous mutations that restore fitness after deleterious mutations become fixed'®. The back-
190  mutation model predicts that in small populations, the proportion of slightly beneficial mutations
191  is greater than in large populations, because more slightly deleterious mutations can become

192 fixed in small populations, leading to more opportunities for new beneficial back mutations

193  (Supplementary Note 2). Using this logic, Piganeau and Eyre-Walker *° (see also Rice et al.”)
194  derived a formula for the equilibrium DFE as a function of population size. When we estimate
195  the parameters in the model from our data in our framework, we found an unrealistically large
196  effective population size in Drosophila (5.2x10'"?). Further, we inferred distinct parameters of the
197  effect size distribution (the distribution of |s|) in the two species (Supplementary Table 4) such
198 that the average effect size E[|s|] of a mutation in humans is about 80 fold larger than in

199  Drosophila, which is inconsistent with the predictions of the back-mutation model (see also

200  Supplementary Fig. 8B). Although the Piganeau and Eyre-Walker model fits well within both
201  species, it falls short in providing an evolutionary or mechanistic explanation for a large

202  difference in E[|s|] between species.

203 The third model, the mutational robustness model, postulates that more robust, or

204  complex, organisms have, on average, less deleterious mutations®®. Here, more complex

205 organisms have a greater ability to compensate and buffer the effects of deleterious mutations
206  (Supplementary Note 2). Note that complexity can be hard to define and quantify in a

207  biologically and evolutionarily meaningful way. However, a number of biological factors

208  suggest humans are more complex than Drosophila. Such factors include a larger number of
209  genes, a larger number of proteins and protein-protein interactions”', and likely also a larger

210  number of cell types™ in humans than in Drosophila. Mutational robustness model predict

211  greater mutational robustness in humans than in Drosophila because of the higher complexity
212 and the smaller effective population size of humans compared to Drosophila. However,

213  inconsistent with this prediction, we have shown that humans have a 50-80 fold more negative
214  value of E[s] than Drosophila, and a larger proportion of strongly deleterious mutations with s <
215  -0.001 (Fig. 2D-F). Further, robustness models predict that less pleiotropic mutations are more
216  deleterious, since the smaller effective complexity of such mutations impedes the evolution of
217  robustness®. Assuming that broadly expressed genes are more pleotropic than tissue-specific
218  genes, we observe that tissue-specific genes have less negative estimates of E[s] than broadly
219  expressed genes (Supplementary Fig. 12A). In other words, more pleiotropic mutations tend to
220  be more deleterious. This finding is inconsistent with predictions from the robustness models.
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However, while our results suggest that mutational robustness mechanisms are not the main
driver of differences in the DFE across species, this finding is not necessarily at odds with
previous work on these models. The clearest empirical evidence for an increase of mutational
robustness by selection comes from experimental evolution studies of viruses and bacteria®**’.
Viruses and bacteria have large mutation rates and population sizes. The specific mechanism that
promotes robustness in such organisms may not be applicable to higher organisms with smaller
population mutation rates*. Our results suggest that if mutational robustness mechanisms play a
role in shaping the DFE of higher organisms, they do not compensate for other factors that
increase the deleteriousness of mutations in humans compared to Drosophila.

The fourth model, Fisher’s Geometric Model (FGM) represents phenotypes as points in a
multidimensional phenotype space and fitness is a decreasing function of the distance to the
optimal phenotype’. The dimensionality of the phenotype space is termed “complexity”. FGM
makes three predictions that we test with our data (Supplementary Note 2). The first prediction is
that more complex organisms, like humans, have more deleterious mutations than Drosophila,
since mutations are more likely to disrupt something important in a complex organism than in a
simple one®’ (see Supplementary Note 3 for assumptions that go into this prediction). Indeed,
this prediction is well supported by our data because the average selection coefficient E[s] is
estimated to be 50-80 times more negative in humans than in Drosophila. To further validate this
finding in a larger phylogenetic context, we analyzed polymorphism data from mouse (Mus
musculus castaneus) and yeast (Saccharomyces paradoxus). Although sample size is one order
of magnitude smaller, we replicate the pattern of increasing deleteriousness of mutations with
increasing complexity (Fig. 4A, Supplementary Table 5). Second, smaller populations are
predicted to have a larger proportion of beneficial mutations due to increased fixation of
deleterious mutations in smaller populations when populations are in equilibrium (drift load*®).
Note that population size here refers to long-term effective population size, thus it could be
affected by background selection and selective sweeps as well as demographic processes. To test
this prediction, we estimated the parameters for the DFE based on FGM. Formulas have been
derived for the DFE assuming the population is at an arbitrary distance from the optimal
phenotype (eq. 8 of Lourengo et al.*® and eq. 5 in Martin and Lenormand’), or assuming
mutation-selection-drift equilibrium (eq. 15 of Lourengo et al.**). We found that the equilibrium
DFE fits just as well or better than the non-equilibrium versions (Supplementary Table 4),
suggesting that in both populations, most genes are close to equilibrium and that the DFE is a
function of N jong-rerm. Further, in humans, the equilibrium Lourengo DFE shows a significantly
better fit over the plain gamma DFE (Supplementary Table 4), with a N jong-rerm 0f 2100 (95%
CI: 1653 - 2546). Note that this value of N, jong-rerm 15 Of the same order of magnitude as the
ancestral population size estimated from synonymous sites (6,600). This is surprising since the
estimate of N, jong-rerm 15 NOt based on neutral diversity, but on the degree of maladaptation due to
drift load that results in some proportion of beneficial compensatory mutations in the DFE. Thus,
it is estimated from the predicted effect of drift load on the nonsynonymous SFS and likely
reflects a much larger time-span than the estimate from the synonymous SFS. In Drosophila,
fitting the equilibrium Lourengo model led to a similar fit as the plain gamma DFE
(Supplementary Table 4). Further, the large Ne iong-rerm (8.4x107) estimated here is also similar to
that estimated from the neutral synonymous sites (2.8x10°). The fact that long-term population
sizes inferred under FGM are consistent with previous estimates from genetic variation data
suggests that this prediction of FGM is satisfied by our data. Third, FGM predicts that more
pleotropic mutations will show smaller variation in s. As before, we use gene expression breath
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267  asa proxy for pleiotropy. We found that the shape parameter (o) of the gamma distribution is
268  smaller for tissue-specific genes than for broadly expressed genes (Fig. 4B). The shape

269  parameter is inversely related to the coefficient of variation (CV) of the selection coefficient:
270  CV(s)=1/sqrt(a). Thus, the smaller shape parameter indicates a larger CV(s) and is consistent
271  with the idea that mutations in tissue-specific genes are less pleiotropic than in broadly expressed
272  genes. Similar conclusions were derived by explicitly estimating pleiotropy from fitting the

273  Lourenco DFE to the data (Supplementary Fig. 13).
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276  Figure 4. Empirical support for FGM. (A) Both under the gamma DFE and the Lourenco et al.*® DFE,
277  estimated average deleteriousness of mutations increases as a function of organismal complexity. (B) The
278  shape parameter of the gamma DFE depends on the breadth of gene expression. Tissue-specific genes
279  have a smaller shape parameter (o) than broadly expressed genes, indicating less pleiotropy in tissue-
280  specific genes. (C,D) By fitting the DFE of Lourengo et al. we can model slightly beneficial mutations in
281  the DFE (green) that are thought to compensate for fixed deleterious mutations in small population size
282  species. We find support for a larger proportion of slightly beneficial mutations in the DFE of (A) humans
283  thanin (B) Drosophila.

284

285 In sum, all three predictions made by FGM are supported by our data. We conclude that
286  FGM is a viable model to explain differences in the DFE between species and genes. Under this
287  model, species complexity as well as distance of the population to the fitness optimum,

288  modulated by long-term population size, are the key drivers of the DFE of new amino-acid
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mutations. Note that many essential elements of protein evolution are captured by FGM*’, where
many molecular phenotypes (not just protein stability) are under stabilizing selection®. Thus,
although we reject a simple protein stability model determining the DFE, this should not be taken
to mean that general principles of protein evolution do not play a role in determining the DFE.

Our findings have implications for important aspects of evolutionary genetics. First,
FGM allows us to estimate the proportion of new mutations that are adaptive. When assuming
FGM, we estimate that 15% of new nonsynonymous mutations in humans are beneficial. The
majority (96%) of these beneficial mutations have small selection coefficients, with s < 0.0005
(Fig. 4C). In Drosophila, however, the model including positive selection had a similar fit as the
plain gamma DFE (Supplementary Table 4), and only 1.5% of new mutations are beneficial (Fig.
4D). This finding appears to be at odds with previous studies of adaptive evolution in these two
species. The proportion of amino acid substitutions that fixed due to positive selection was
estimated to be larger in Drosophila (50%) than in humans (10-20%), using a McDonald-
Kreitman (MK) approach™'. More generally, our results suggest that inferences of the amount of
adaptive evolution considering fixed substitutions may be fundamentally and qualitatively
different from those considering new mutations. Additionally, the amount of positive selection in
the human genome has been recently debated’>**. After controlling for background selection,
Enard et al.” found that, in humans, estimates of the amount of adaptive evolution from MK
approaches may be severe underestimates. Their results instead argue that there may be many
small-scale adaptive steps in humans, i.e. many weak selective sweeps that are only detectable
when averaging across many instances. Such a mode of adaptation is in fact predicted by FGM
for organisms with high complexity®*, but see ref.”.

Second, a varying DFE over phylogenetic timescales has implications for understanding
the overdispersed molecular clock®®. The substitution rate of deleterious mutations relative to the
rate of neutral evolution is a function of the compound parameter N,s*’. Thus, not only
phylogenetic changes in N, but also changes in s may contribute to overdispersion. Our results
suggest that changes in the distribution of s are coupled with changes in population size and
complexity. For example, the larger complexity of humans is supposed to reduce the
nonsynonymous divergence along the human lineage to lower values than what would be
expected from the two orders of magnitude population size difference to Drosophila. Accurate
characterization of the DFE from many species across the tree of life will enable a direct test of
the contribution of changing DFEs to the dispersion of the molecular clock.

Lastly, our results have implications for assessing the biological function of sequences
using evolutionary information. The comparative genomics paradigm postulates that biologically
important regions of the genome are constrained across long evolutionary times*®. This implies
that s for a particular sequence is determined by the biological importance of the sequence and
that s remains constant over time. If, as our work suggests, selection coefficients change over
time as a consequence of species complexity and long-term population size, this could result in
important sequences not showing the prototypical signatures of conservation, leading to such
sequences being missed by comparative approaches. Further, it suggests that complexity and
population size are important factors to consider when deciding which species to utilize in future
comparative genomic studies.
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Online Methods

Data

We used published next generation sequencing data sets to extract the synonymous and
nonsynonymous SFS. For humans, we used the sample of 112 individuals from Yoruba in
Ibadan, Nigeria (YRI) from the 1000 Genomes Project''. We downloaded the 1000 Genomes
phase 3 dataset from the 1000 Genomes ftp site
(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/, accessed Sept 2014). Using information in the
sample information PED file, related individuals were removed and for each trio or family group
only the mother and father were used. The SNPs were also filtered for whether they were within
the exome capture array region and in the strict mask part of the human genome, as defined by
the 1000 Genomes Project. The genotypes of YRI individuals were extracted and annotated
using the SeattleSeq annotation pipeline
(http://snp.gs.washington.edu/SeattleSeqAnnotation138/). For Drosophila melanogaster, we
used the DPGP phase 3 data of a sample of 197 lines originating from Zambia, Africa'®. We
accessed whole genome genotype data for the 197 genomes from the Pool lab
(http://johnpool.net/genomes.html). These data were provided in non-standard vcf format (vef
sites file, downloaded August 2014), therefore we first converted these to a standard vcf format
with the BDGPS5.75 genome as the reference using a custom python script. We then merged all
the individual vcf files and removed any sites with evidence of identity by descent or admixture
using the masking package provided by the Pool lab. Only the 2L, 2R, 3L and 3R chromosome
arms were used in our analyses. We then conducted variant annotation using SnpEeff v3.6 using
the BDGPS5.75 database.

We filtered both datasets for sites with sample size > 99 and down-sampled all sites with
larger sample size than 100 to a sample size of 100 using the hypergeometric probability
distribution. Further, we selected only sites that were in exons and computed an exon length
Lexoni for each gene i. The nonsynonymous and synonymous sequence length (Lys, Ls) depends
on the transition/transversion ratio and CpG mutational bias. We assumed a
transition:transversion ratio of 2:1 in Drosophila®*** and 3:1 for human exons*"***. Further, we
assumed a 10x mutational bias at CpG sites in humans, but no such effect in Drosophila®. This
leads to multipliers of Lys = 2.85 x Lg in Drosophila, and Lys=2.31 x Ls in humans. We
calculated the synonymous and nonsynonymous SFS, and the respective sequence lengths (Lys,
Lg;), for each gene i. For all further inference, we used the folded SFS to avoid correcting for

41,42
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470  misidentification of the ancestral state. Ancestral misidentification could lead to unwanted and
471  difficult to control biases**.

472 To study the effect of gene expression on the DFE, we used two recent gene expression
473  datasets from humans* and Drosophila® that provide mRNA expression level estimates in 27
474  and 29 different tissues, respectively. For both datasets, we transformed the ‘fragments per
475  kilobase of exon per million fragments’ (FPKMs) by computing log(FPKM+1) and quantile
476  normalizing this value over all tissues using ‘normalize.quantiles’ of the R package

477  ‘preprocessCore’, resulting in an expression level S. We computed t as a measure of tissue

n _ log(sj)

J=17 log(Sman)(n-1)’
479  expression level in tissue j and Spay s the largest expression level over all tissues. We used 1 to
480  classify genes as tissue specific (t > 0.6) or broadly expressed (t < 0.4). We further classified
481  genes as low (S < 2), intermediate (2 < S < 3) and highly expressed (S > 3), where S =

482 X S; /n. This classification leads to strongly different gene expression profiles between classes
483  (Supplementary Fig. 2), but still enough data in every class to be able to reliably estimate the
484  DFE (8s > 100 in humans and 0s > 900 in Drosophila).

485 To infer the DFE in Mus musculus castaneus (mouse) and Saccharomyces paradoxus
486  (yeast), we used the synonymous and nonsynonymous SFS data from Gossmann et al.*’. Our
487  estimates of proportions of mutations in different N.s bins (Supplementary Fig. 10) are

488  concordant with what has been preported previously*’*. We then used mutation rate estimates
489  for yeast’’ and mouse’’, respectively, to estimate N, and transform the DFE from N,s to s.

490

491  Estimating demography and DFE

492  We used the software 3adi’” to infer the parameters of a single size change model using the

493  synonymous site frequency spectrum (SFS) under the Poisson Random Field framework™. In
494  this framework, the multinomial likelihood quantifies how well the empirical SFS fits to an

495  expected SFS that is derived from specific demographic parameters>>. Assume that @p is a vector
496  of demographic parameters (i.e., time and strength of a population size change), X is the count
497  of SNPs with frequency i, P; is the proportion of SNPs at frequency 1, 0 is the population

498  mutation rate, and n is the sample size. The distribution of allele frequency q in the population
499  (g[q|®p]) can be computed by numerically solving the diffusion approximation to the Wright-
500  Fisher model, and can also incorporate selection®>>*. We used 3adi’* to numerically

501 approximate g[q|®p]. Further, the expected number of SNPs at frequency i in a sample of size n

502 is E[X;]|60p,0] =0 fol (Tll) q'(1 — @)™ *g(q|@p)dq. The relative proportion of SNPs at
E[Xil6p.0]
Y7o ElXjl6p,67
504  multinomial likelihood is L(0,) = [T IJiXi. To derive the maximum likelihood estimate of ©p,

505 (©p) we maximized L(0)p).

506 We used the Poisson likelihood instead of the multinomial likelihood to estimate the
507  vector of parameters of the DFE (®prr). We found that this strongly improves the precision of
508 the scale parameter of the gamma distribution compared to using the multinomial likelihood
509 since the Poisson likelihood uses information from both the absolute number of SNPs as well as
510  the curvature of the SFS*"*. Note however that we do not make use of fixed differences to an
511  outgroup. Including information from fixed differences hardly improves inferring the DFE of
512  deleterious mutations™, which are the main focus of our paper. The likelihood of @pgg was thus

478  specificity for each gene: 7 = Here, n is the number of tissues, S; is the

503 frequency i can then be calculated as P;(0p) = and the formula for the
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_ i10p,0prE.)Xi  _pcx.
calculated as L(@ppz|0p, 8) = 1ot X TR ). o ~E(Xil®p.0pFE0) We set @, here to the
;|

maximum likelihood estimates of the demographic parameters 0, and 6 to the nonsynonymous
population mutation rate Oy = 4N, uLys. We estimated 0y from 65 by accounting for the
difference in synonymous and nonsynonymous sequence length.

The formula of the Poisson likelihood depends on E (X;|®p, Oprg, 6), i.€. on the expected
SES given the demography, 8ys and some distribution of N,s with parameters O ;. However,
dadi only allows computing the expected SFS E'(X;|0p, N.s, 8) for a single selection coefficient
N,s (and some arbitrary demography). Thus, we extend dadi’s functionality by computing the
expected SFS for a grid of 1000 N,s values on an exponentially distributed grid between -15000
and -10. This set of site frequency spectra is further used to calculate the expected SFS for an
arbitrary distribution of N¢s values. This is done by numerically integrating over the respective
spectra weighted by the gamma distribution. The numerical integration was done using the
‘numpy.trapz’ function as implemented in dadi. Due to numerical instabilities for strongly
skewed distributions, we did not integrate all the way towards 0, but computed the weight of N.s
values between -10* and 0 and added the product of this weight with the neutral SFS to the
expected SFS. Mutations with N.s <-15000 are expected not to contribute to the SFS since they
are strongly selected against. Our approach allows us to estimate the parameters of any arbitrary
distribution of N,s values. We implemented the gamma distribution, log-normal distribution, the
formula of Piganeau and Eyre-Walker *°, eq. 7, assuming gamma distributed effect sizes, and the
formula of Lourengo et al.”, eq. 15. The formula of Lourengo et al.*® provides an explicit
solution to the DFE for Fisher’s geometrical model under fitness equilibrium. It is a function of
three parameters: population size, effect size, and the average number of phenotypes affected by
a mutation (pleiotropy). The DFE of Lourenco et al.*® and Piganeau and Eyre-Walker™ are
distributions with some proportion of slightly beneficial mutations. In models with some
proportion of beneficial mutations, those mutations are expected to segregate in the population
and thus influence both the shape of the SFS and the absolute number of SNPs. We use this
expectation to infer the full DFE (beneficial plus deleterious mutations) from the SFS, similar to
Tataru et al.". To do this, we also integrate over beneficial mutations with N,s from 0 to 15000.
Numerical optimization is used to find the parameters of the DFE distribution that maximize the
poisson likelihood. For this optimization step, we use the BFGS algorithm as implemented in the
‘optimize.fmin_bfgs’ function of scipy. To avoid finding local optima, we repeated every
estimation approach (for both the simulations and the real data) from 50 uniformly distributed
random starting parameters. Standard errors were based on the Hessian matrix of the log-
likelihood function, numerically computed at the maximum likelihood estimates using the
‘Hessian.hessian’ function of 8adi’>. They were computed as the square root of the diagonal
elements of the inverse of the negative Hessian matrix™®. Confidence intervals were
approximated as plus/minus two times the standard errors, except where specified otherwise.

Note that population genetic methods for estimating the DFE from the SFS can only
estimate the composite parameter of selection coefficient s with effective population size N,
since the effect of selection on the SFS depends on N.s and not s alone. However, the distribution
of s can be derived from the distribution of N,s by scaling it by 1/N, (e.g. multiplying the scale
parameter of a gamma distribution of N,s by 1/N,). Fitting the demographic model to the
synonymous SFS provided an estimate of 0s = 4N, uLg for synonymous sites, where p is the
neutral per base-pair mutation rate and Ly is the synonymous sequence length. Using this
formula, we estimated N, by setting the neutral mutation rate to either 2.5x10® for humans and
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558  1.5x10” for Drosophila (phylogenetic estimates® ") or to 1.5x10™ for humans and 3x10” for

559  Drosophila (current estimates >>°°"). Note that when partitioning our data into different gene
560 categories and estimating the DFE for each category separately, we also allow for a different
561 ancestral N, and demography estimates in those categories to control for different levels of

562  background selection in different genomic regions®>®.

563

564  Statistical test for different DFEs between two species

565  We used the SFS from polymorphism data from two species, A (X; 4) and B (Xj p), to test

566  whether the DSE differs between those two species. First, we estimated the demographic model
567  parameters of both species (Op 4, Op ) as outlined above. Second, we assumed that the DFE in
568  Dboth species follows a gamma distribution with the shape parameter a and scale parameter f3.
569  We used a Poisson composite likelihood function, where the SFS at nonsynonymous SNPs in
570  species A is treated as being independent of that from species B, which is reasonable for

571 distantly related species with little incomplete lineage sorting®. Then, the likelihood function for
572  the parameters is:

L(aA, ﬁA: apg, IBB |®D,AJ G)D.B)

n-1 m-1
HE X; alaa, Ba, Op 4,0,)%i4 E(X;gla Op g, 05) /B
( L,AI A» PA» VYDA A) e_E(Xi,A|aAu3A'@D,A'9A) (],Bl B:ﬁB: D,B» B) e_E(Xj,BmB:BBr@D,B'eB)
Xi 4! X!
=1 1,A j=1 j,B

573

574  Here, n and m are the sample size of species A and species B, respectively. We will test whether
575  the shape (a) and scale () parameters in species A differ from those in species B. To do this, we
576  propose the following likelihood ratio test (LRT):

_ L(ag=ag,Bs = B5l®p 4, 0p5)

L(ays, @g, Ba, Bpl®p,a Op p)

577

578  The null hypothesis (constrained model) is that @y = ag and 4 = 5. The full model allows for
579 ay # ag and B, # f5. We optimized the likelihood function under both the null and full models
580 as outlined above. Importantly, in all cases, we conditioned on the demographic parameters in
581  each population, thus accounting for differences in population history. Asymptotically, A

582  follows a chi-square distribution with 2 degrees of freedom, due to the two additional free

583  parameters in the full model compared to the constrained model. Simulations were used to test
584  how well the usual asymptotic theory applies in this situation. The test is not limited to

585  comparing the parameters of a gamma distribution of two species, but can be extended to any
586  DFE distribution (e.g. log-normal), and any number of species, in a straightforward way. The
587  degree of freedom of the chi-square null distribution is p*k-p, where p is the number of

588  parameters of the distribution, and £ is the number of species.

589

590 Forward simulations

591 To compute the null distribution of the likelihood ratio test statistic, A, we performed forward
592  simulations under the estimated demographic models for humans and Drosophila. Selection
593  coefficients for nonsynonymous mutations were drawn from a gamma distribution with shape
594  and scale parameters estimated from the constrained model (i.e., og= op and By = Pp). We

595 assume a spatial distribution of selected elements that reflects the empirical distribution of

596 coding and conserved non-coding (CNC) sequence in the genome. Further, we simulate varying
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recombination across the genomes that is based on empirical high-resolution recombination
maps**®°. Mutations in CNC regions are assumed to be selected with gamma distributed
selection coefficients taken from Torgerson et al.®® for humans and Casillas et al.®” for
Drosophila. The exon element ranges where taken from GENCODE v14°® for humans and
BDGP 6.79 FlyBase gene annotation® for Drosophila. To define CNC ranges in both species,
we used predicted conserved elements by phastCons’’, downloaded from the UCSC genome
browser. All forward simulations were carried out using the simulation software ‘SLiM’"". For
both species, we simulated under a single size change model with the empirically estimated
parameters (Supplementary Table 1). Since Drosophila has a prohibitively large population size
for forward simulations, we simulated both species with an ancestral effective population size of
10,000 and scaled mutation rate, recombination rate, selection coefficients and demographic
parameters accordingly’”. To assess power, we performed a different set of simulations assuming
the gamma DFE parameter estimates from the full model (Supplementary Table 2).

Further, to allow quasi genome-wide simulations, we followed a bootstrapping approach
by first simulating 1000 x 7 Mb large regions that were selected randomly from the respective
genome. We then selected a centered 3 Mb window from the simulated 7 Mb region and
discharged the rest of the sequence to remove edge effects, notably the lower strength of
background selection at the edges’”. From those 1000 x 3 Mb regions, we resampled until we
arrive at a full genome data set, i.e. synonymous and nonsynonymous SFS that are similar in size
to the actual data. That way, we simulated data of 300 independent genomes. In both species, the
simulations resulted in considerable amounts of background selection, with average reduction in
neutral diversity in the 7Mb region of 10% in humans and 12% in Drosophila. For each
simulated genome data we first estimated the demographic model from the synonymous SFS and
then the DFE parameters from the nonsynonymous SFS conditional on the estimated
demographic parameters.
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