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The distribution of fitness effects (DFE) of new mutations is a fundamental parameter in 37	
  
evolutionary genetics1–3. While theoretical models have emphasized the importance of 38	
  
distinct biological factors, such as protein folding4, back mutations5, species complexity6,7, 39	
  
and mutational robustness8 at determining the DFE, it remains unclear which of these 40	
  
models can describe the DFE in natural populations. Here, we show that the theoretical 41	
  
models make distinct predictions about how the DFE will differ between species. We 42	
  
further show that humans have a higher proportion of strongly deleterious mutations than 43	
  
Drosophila melanogaster. Comparing four categories of theoretical models, only Fisher’s 44	
  
Geometrical Model (FGM) is consistent with our data. FGM assumes that multiple 45	
  
phenotypes are under stabilizing selection, with the number of phenotypes defining a 46	
  
complexity of the organism. It suggests that long-term population size and cost of 47	
  
complexity drive the evolution of the DFE, with many implications for evolutionary and 48	
  
medical genomics. 49	
  
 50	
  
Main text 51	
  
 52	
  

The distribution of fitness effects (DFE) is a fundamental parameter in evolutionary 53	
  
genetics because it quantifies the amount of deleterious, neutral, and adaptive genetic variation in 54	
  
a population3. Despite the importance and considerable study of the DFE1–3, the biological 55	
  
factors determining the DFE in different species remain elusive. Several theoretical models 56	
  
propose different mechanisms for the evolution of the DFE4–6,8,9. While each of these models has 57	
  
a reasonable theoretical basis as well as some support from experimental evolution studies or 58	
  
microbial studies, which model best explains differences in the DFE between species has not yet 59	
  
been determined. Nor have these models been tested with genetic variation data from natural 60	
  
populations in higher organisms. Although experimental evolution studies in laboratory 61	
  
organisms might more closely match the assumptions of the models being tested, natural 62	
  
populations may provide different qualitative results due to increased resolution to measure 63	
  
weakly deleterious mutations and unnatural selection pressure in the laboratory1,10.  64	
  
 Importantly, the five theoretical models for the evolution of the DFE predict that the DFE 65	
  
will differ between species with different levels of organismal complexity and long-term 66	
  
population size (Fig. 1). Here we leverage this prediction to test which theoretical model best 67	
  
explains the evolution of the DFE by comparing the DFE in natural population of humans and 68	
  
Drosophila. To do this, we utilized polymorphism data of a sample of 112 individuals from 69	
  
Yoruba in Ibadan, Nigeria (YRI) from the 1000 Genomes project11 and 197 African Drosophila 70	
  
melanogaster lines from the Drosophila Population Genomics Project12. We summarize the 71	
  
polymorphism data by the folded site frequency spectrum (SFS), which represents the number of 72	
  
variants at different minor allele frequencies in the sample (Supplementary Fig. 1A). Because 73	
  
population history can also affect patterns of polymorphism, we first use the synonymous SFS to 74	
  
estimate demographic models separately in each species. We infer that the population size of 75	
  
YRI and Drosophila expanded 2.3-fold 5,500 generations ago and 2.7-fold 500,000 generations 76	
  
ago, respectively (Supplementary Table 1). Note that demographic estimates from synonymous 77	
  
sites are biased by selection on linked sites13, but that this bias does not affect performance of the 78	
  
DFE estimation14 (see Methods). 79	
  
 80	
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 82	
  

Figure 1. Overview of main predictions of five theoretical models regarding DFE differences 83	
  
between two species. Here, P+ is the proportion of slightly beneficial mutations, E[s] is the average 84	
  
selection coefficient, and Ne is the effective population size. Note that more negative (i.e. lower) E[s] 85	
  
implies more strongly deleterious mutations. Subscript A refers to species A, subscript B refers to species 86	
  
B. See Supplementary Note 2 for more details. 87	
  

Conditional on the estimated demographic parameters, we estimate the DFE for new 88	
  
nonsynonymous mutations in both species using the nonsynonymous SFS. In short, our approach 89	
  
utilizes the fact that more deleterious mutations segregate in lower numbers and at lower 90	
  
frequencies than less deleterious or neutral mutations. Thus, we do not directly quantify the 91	
  
deleteriousness of any specific mutation, but indirectly summarize the fitness effects over many 92	
  
sites by estimating the parameters of a DFE that fits the SFS. It was shown that as long as the 93	
  
demographic parameters estimated from the synonymous data can fit the synonymous SFS, then 94	
  
the inference of the DFE for the nonsynonymous sites remains unbiased, even when the true data 95	
  
include background selection, population growth, and non-modeled population structure14–16. 96	
  
Here, we compare the estimates of the DFE from the two species in a novel likelihood ratio test 97	
  
framework that accounts for differences in recent demographic history between the two species 98	
  
(see Methods). Briefly, we assume that the DFE follows a gamma distribution, and find that a 99	
  
model where each species has its own shape and scale parameters fits the SFSs for the two 100	
  
species significantly better than a model where the parameters are constrained to be the same 101	
  
across both species (Likelihood Ratio Test (LRT) statistic Λ=920; df=2, P<10-16). This result 102	
  
holds even when making different assumptions about the mutation rate, selection on synonymous 103	
  
sites, as well as when omitting singleton variants (Supplementary Note 1; Supplementary Table 104	
  
2; Supplementary Table 3). Examination of the maximum likelihood gamma distribution shows 105	
  
that Drosophila has a much higher proportion of weakly deleterious and nearly neutral mutations 106	
  
with selection coefficient s (a measure of the relative fitness effect of a mutation) > -10-4 than do 107	
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humans (Fig. 2D). The proportion of strongly deleterious mutations with s < -10-3 is significantly 108	
  
larger in humans (55%) than in Drosophila (5%). Thus, our results provide statistical support for 109	
  
humans and Drosophila having different DFEs (of s) that cannot be explained by differences in 110	
  
population size or demography between the species. To evaluate the robustness of our finding to 111	
  
the assumed functional form of the DFE, we tested a range of different distributions other than 112	
  
the gamma or log-normal, as well as a nonparametric discretized distribution. We consistently 113	
  
find that mutations are on average more deleterious in humans than in Drosophila 114	
  
(Supplementary Note 1, Supplementary Fig. 8, Supplementary Fig. 14, and Supplementary Table 115	
  
4). 116	
  

 117	
  

 118	
  
 119	
  

Figure 2. Testing the null hypothesis of the same distribution of s in both species. The log-likelihood 120	
  
surface for the shape and scale parameters of a gamma-distributed DFE(s) for (A) humans, (B) 121	
  
Drosophila, and (C) both datasets combined (constrained model). Colors from yellow to red indicate the 122	
  
difference in log-likelihood of that set of parameter values compared to the MLE (see color scale). E.g. 123	
  
orange indicates parameters ~ 100 log-likelihood units below the MLE. Proportions of mutations for 124	
  
various ranges of |s| are computed from the estimated (D) gamma distribution, (E) mixture of gamma 125	
  
distribution with neutral point mass, and (F) log-normal distribution. The grey bars indicate the 126	
  
proportions under the null hypothesis of the same distribution of s in both species (constrained model). 127	
  
Darker colors in (E) reflect the estimated proportions of neutral mutations. 128	
  
 129	
  

Because a variety of demographic, statistical, and numerical biases can confound LRTs 130	
  
using the SFS, we evaluated the performance of our statistical approach by analyzing simulated 131	
  
datasets. Specifically, we performed forward-in-time simulations that include realistic levels of 132	
  
linkage disequilibrium and background selection (Supplementary Note 1). When we estimated 133	
  
the DFE from the simulations of the full model, the estimates were unbiased (Fig. 3A,B). This 134	
  
suggests that the size change model fit to synonymous polymorphisms successfully controls for 135	
  
the effects of background selection (Supplementary Fig. 3; see also ref.13). As expected, the null 136	
  
distribution of Λ derived from simulations under the constrained model is broader than the chi-137	
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square distribution with two degrees of freedom (Fig. 3C). However, all of the 300 Λ values that 138	
  
we simulated were smaller than 34, suggesting the probability of seeing a Λ value bigger than 139	
  
920 is substantially less than 0.33% under the null. Since selective sweeps were suggested to be a 140	
  
major determinant of genetic diversity in Drosophila17, we also examined the effect of recurrent 141	
  
selective sweeps on our inference. In line with other studies14, we found that selective sweeps do 142	
  
not significantly bias our DFE estimates when correcting for the effect of demography using the 143	
  
observed SFS at neutral sites (Supplementary Fig. 9 and Supplementary Note 1). In summary, a 144	
  
combination of confounding factors cannot account for our findings of different DFEs between 145	
  
human and Drosophila (see also Supplementary Note 1). 146	
  

 147	
  

 148	
  
 149	
  

Figure 3. Estimates of the shape and scale parameters of a gamma DFE from 300 simulations of 150	
  
human (blue) and Drosophila (red) data. (A) Estimates from simulations under the alternative 151	
  
hypothesis (H1), i.e. assuming maximum likelihood parameters in both species (dashed lines). Results 152	
  
show that we can retrieve the right parameters. (B) Estimates from simulations under the null hypothesis 153	
  
(H0), i.e. assuming a single set of parameters in both species (dashed lines). In grey are the estimation 154	
  
results using data from both species simultaneously, assuming H0 is correct. Results show that, under H0, 155	
  
we correctly retrieve the same set of parameters for both species. (C) The expected (grey) and simulated 156	
  
(dark red) null distribution of the test statistic Λ = –2*log(LConstrained,max/LFull,max) for testing the null 157	
  
hypothesis of no difference in shape and scale parameters between humans and Drosophila. 158	
  

 159	
  
Next we tested whether differences in the DFE between species vary across functional 160	
  

categories of genes. First, when restricting our analysis to a strict ortholog set, the significant 161	
  
difference in the DFE between humans and Drosophila remained (Λ = 7,369, p < 10-16). Further, 162	
  
the parameter estimates were very similar between the two sets of genes (Supplementary Fig. 163	
  
5A, Supplementary Table 2, Supplementary Table 3). To examine the effect of gene expression 164	
  
on the DFE, we classify genes into sets with different gene expression profiles (Supplementary 165	
  
Fig. 1B; Supplementary Fig. 2; see Methods). Overall, we found that, though the shape 166	
  
parameter varies between tissue specific and broadly expressed genes, the average selection 167	
  
coefficient E[s] is about 50-80 fold more negative for humans than for Drosophila, regardless of 168	
  
the overall expression level or tissue specificity of the genes (Supplementary Fig. 12A). These 169	
  
results suggest that although the DFE may vary across genes with distinct expression profiles, 170	
  
differences in expression alone are insufficient to account for the observed differences in the 171	
  
DFE between the two species. 172	
  
 Having established that common confounders and differences in gene expression cannot 173	
  
account for the differences in the DFE between species, we next examined which of the four 174	
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theoretical models can explain the differences. The first model, the protein stability model, 175	
  
predicts that much of the selection pressure involves maintaining the thermodynamic stability of 176	
  
proteins. This model predicts that the distribution of Nes is gamma distributed18 and independent 177	
  
of the effective population size (Ne) when at equilibrium4 (see Supplementary Note 2 for specific 178	
  
assumptions). Thus, this model predicts that Nes is the same across taxa. However, in contrast to 179	
  
this prediction, we found that a model with different Nes distributions in each species fit the data 180	
  
significantly better than a model where Nes was constrained to be the same in both species (Λ = 181	
  
22,000, p < 10-16; Supplementary Fig. 4; Supplementary Fig. 6), consistent with previous 182	
  
results16. Comparing this LRT statistic to the null distribution obtained from forward simulations 183	
  
similar to those discussed above suggests that such a large LRT statistic is highly incompatible 184	
  
with a model that assumes the same gamma (or lognormal) Nes distribution in both species (p < 185	
  
0.0033). Thus, our data do not support protein stability models as the driving force in the 186	
  
evolution of the DFE between species.  187	
  
 The second model, the back-mutation model, predicts that there is a category of weakly 188	
  
advantageous mutations that restore fitness after deleterious mutations become fixed19. The back-189	
  
mutation model predicts that in small populations, the proportion of slightly beneficial mutations 190	
  
is greater than in large populations, because more slightly deleterious mutations can become 191	
  
fixed in small populations, leading to more opportunities for new beneficial back mutations 192	
  
(Supplementary Note 2). Using this logic, Piganeau and Eyre-Walker	
  20 (see also Rice et al.5) 193	
  
derived a formula for the equilibrium DFE as a function of population size. When we estimate 194	
  
the parameters in the model from our data in our framework, we found an unrealistically large 195	
  
effective population size in Drosophila (5.2x1019). Further, we inferred distinct parameters of the 196	
  
effect size distribution (the distribution of |s|) in the two species (Supplementary Table 4) such 197	
  
that the average effect size E[|s|] of a mutation in humans is about 80 fold larger than in 198	
  
Drosophila, which is inconsistent with the predictions of the back-mutation model (see also 199	
  
Supplementary Fig. 8B). Although the Piganeau and Eyre-Walker model fits well within both 200	
  
species, it falls short in providing an evolutionary or mechanistic explanation for a large 201	
  
difference in E[|s|] between species.  202	
  
 The third model, the mutational robustness model, postulates that more robust, or 203	
  
complex, organisms have, on average, less deleterious mutations6,8. Here, more complex 204	
  
organisms have a greater ability to compensate and buffer the effects of deleterious mutations 205	
  
(Supplementary Note 2). Note that complexity can be hard to define and quantify in a 206	
  
biologically and evolutionarily meaningful way. However, a number of biological factors 207	
  
suggest humans are more complex than Drosophila. Such factors include a larger number of 208	
  
genes, a larger number of proteins and protein-protein interactions21, and likely also a larger 209	
  
number of cell types22 in humans than in Drosophila. Mutational robustness model predict 210	
  
greater mutational robustness in humans than in Drosophila because of the higher complexity 211	
  
and the smaller effective population size of humans compared to Drosophila. However, 212	
  
inconsistent with this prediction, we have shown that humans have a 50-80 fold more negative 213	
  
value of E[s] than Drosophila, and a larger proportion of strongly deleterious mutations with s < 214	
  
-0.001 (Fig. 2D-F). Further, robustness models predict that less pleiotropic mutations are more 215	
  
deleterious, since the smaller effective complexity of such mutations impedes the evolution of 216	
  
robustness23. Assuming that broadly expressed genes are more pleotropic than tissue-specific 217	
  
genes, we observe that tissue-specific genes have less negative estimates of E[s] than broadly 218	
  
expressed genes (Supplementary Fig. 12A). In other words, more pleiotropic mutations tend to 219	
  
be more deleterious. This finding is inconsistent with predictions from the robustness models. 220	
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However, while our results suggest that mutational robustness mechanisms are not the main 221	
  
driver of differences in the DFE across species, this finding is not necessarily at odds with 222	
  
previous work on these models. The clearest empirical evidence for an increase of mutational 223	
  
robustness by selection comes from experimental evolution studies of viruses and bacteria24,25. 224	
  
Viruses and bacteria have large mutation rates and population sizes. The specific mechanism that 225	
  
promotes robustness in such organisms may not be applicable to higher organisms with smaller 226	
  
population mutation rates26. Our results suggest that if mutational robustness mechanisms play a 227	
  
role in shaping the DFE of higher organisms, they do not compensate for other factors that 228	
  
increase the deleteriousness of mutations in humans compared to Drosophila. 229	
  
 The fourth model, Fisher’s Geometric Model (FGM) represents phenotypes as points in a 230	
  
multidimensional phenotype space and fitness is a decreasing function of the distance to the 231	
  
optimal phenotype6. The dimensionality of the phenotype space is termed “complexity”. FGM 232	
  
makes three predictions that we test with our data (Supplementary Note 2). The first prediction is 233	
  
that more complex organisms, like humans, have more deleterious mutations than Drosophila, 234	
  
since mutations are more likely to disrupt something important in a complex organism than in a 235	
  
simple one27 (see Supplementary Note 3 for assumptions that go into this prediction). Indeed, 236	
  
this prediction is well supported by our data because the average selection coefficient E[s] is 237	
  
estimated to be 50-80 times more negative in humans than in Drosophila. To further validate this 238	
  
finding in a larger phylogenetic context, we analyzed polymorphism data from mouse (Mus 239	
  
musculus castaneus) and yeast (Saccharomyces paradoxus). Although sample size is one order 240	
  
of magnitude smaller, we replicate the pattern of increasing deleteriousness of mutations with 241	
  
increasing complexity (Fig. 4A, Supplementary Table 5). Second, smaller populations are 242	
  
predicted to have a larger proportion of beneficial mutations due to increased fixation of 243	
  
deleterious mutations in smaller populations when populations are in equilibrium (drift load28). 244	
  
Note that population size here refers to long-term effective population size, thus it could be 245	
  
affected by background selection and selective sweeps as well as demographic processes. To test 246	
  
this prediction, we estimated the parameters for the DFE based on FGM. Formulas have been 247	
  
derived for the DFE assuming the population is at an arbitrary distance from the optimal 248	
  
phenotype (eq. 8 of Lourenço et al.28 and eq. 5 in Martin and Lenormand7), or assuming 249	
  
mutation-selection-drift equilibrium (eq. 15 of Lourenço et al.28). We found that the equilibrium 250	
  
DFE fits just as well or better than the non-equilibrium versions (Supplementary Table 4), 251	
  
suggesting that in both populations, most genes are close to equilibrium and that the DFE is a 252	
  
function of Ne,long-term. Further, in humans, the equilibrium Lourenço DFE shows a significantly 253	
  
better fit over the plain gamma DFE (Supplementary Table 4), with a Ne,long-term of 2100 (95% 254	
  
CI: 1653 - 2546). Note that this value of Ne,long-term is of the same order of magnitude as the 255	
  
ancestral population size estimated from synonymous sites (6,600). This is surprising since the 256	
  
estimate of Ne,long-term is not based on neutral diversity, but on the degree of maladaptation due to 257	
  
drift load that results in some proportion of beneficial compensatory mutations in the DFE. Thus, 258	
  
it is estimated from the predicted effect of drift load on the nonsynonymous SFS and likely 259	
  
reflects a much larger time-span than the estimate from the synonymous SFS. In Drosophila, 260	
  
fitting the equilibrium Lourenço model led to a similar fit as the plain gamma DFE 261	
  
(Supplementary Table 4). Further, the large Ne,long-term (8.4x107) estimated here is also similar to 262	
  
that estimated from the neutral synonymous sites (2.8x106). The fact that long-term population 263	
  
sizes inferred under FGM are consistent with previous estimates from genetic variation data 264	
  
suggests that this prediction of FGM is satisfied by our data. Third, FGM predicts that more 265	
  
pleotropic mutations will show smaller variation in s. As before, we use gene expression breath 266	
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as a proxy for pleiotropy. We found that the shape parameter (α) of the gamma distribution is 267	
  
smaller for tissue-specific genes than for broadly expressed genes (Fig. 4B). The shape 268	
  
parameter is inversely related to the coefficient of variation (CV) of the selection coefficient: 269	
  
CV(s)=1/sqrt(α). Thus, the smaller shape parameter indicates a larger CV(s) and is consistent 270	
  
with the idea that mutations in tissue-specific genes are less pleiotropic than in broadly expressed 271	
  
genes. Similar conclusions were derived by explicitly estimating pleiotropy from fitting the 272	
  
Lourenço DFE to the data (Supplementary Fig. 13). 273	
  
 274	
  

 275	
  
Figure 4. Empirical support for FGM. (A) Both under the gamma DFE and the Lourenço et al.28 DFE, 276	
  
estimated average deleteriousness of mutations increases as a function of organismal complexity. (B) The 277	
  
shape parameter of the gamma DFE depends on the breadth of gene expression. Tissue-specific genes 278	
  
have a smaller shape parameter (α) than broadly expressed genes, indicating less pleiotropy in tissue-279	
  
specific genes. (C,D) By fitting the DFE of Lourenço et al. we can model slightly beneficial mutations in 280	
  
the DFE (green) that are thought to compensate for fixed deleterious mutations in small population size 281	
  
species. We find support for a larger proportion of slightly beneficial mutations in the DFE of (A) humans 282	
  
than in (B) Drosophila. 283	
  
 284	
  

In sum, all three predictions made by FGM are supported by our data. We conclude that 285	
  
FGM is a viable model to explain differences in the DFE between species and genes. Under this 286	
  
model, species complexity as well as distance of the population to the fitness optimum, 287	
  
modulated by long-term population size, are the key drivers of the DFE of new amino-acid 288	
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mutations. Note that many essential elements of protein evolution are captured by FGM29, where 289	
  
many molecular phenotypes (not just protein stability) are under stabilizing selection30. Thus, 290	
  
although we reject a simple protein stability model determining the DFE, this should not be taken 291	
  
to mean that general principles of protein evolution do not play a role in determining the DFE.	
  	
  292	
  

Our findings have implications for important aspects of evolutionary genetics. First, 293	
  
FGM allows us to estimate the proportion of new mutations that are adaptive. When assuming 294	
  
FGM, we estimate that 15% of new nonsynonymous mutations in humans are beneficial. The 295	
  
majority (96%) of these beneficial mutations have small selection coefficients, with s < 0.0005 296	
  
(Fig. 4C). In Drosophila, however, the model including positive selection had a similar fit as the 297	
  
plain gamma DFE (Supplementary Table 4), and only 1.5% of new mutations are beneficial (Fig. 298	
  
4D). This finding appears to be at odds with previous studies of adaptive evolution in these two 299	
  
species. The proportion of amino acid substitutions that fixed due to positive selection was 300	
  
estimated to be larger in Drosophila (50%) than in humans (10-20%), using a McDonald-301	
  
Kreitman (MK) approach2,31. More generally, our results suggest that inferences of the amount of 302	
  
adaptive evolution considering fixed substitutions may be fundamentally and qualitatively 303	
  
different from those considering new mutations. Additionally, the amount of positive selection in 304	
  
the human genome has been recently debated32,33. After controlling for background selection, 305	
  
Enard et al.32 found that, in humans, estimates of the amount of adaptive evolution from MK 306	
  
approaches may be severe underestimates. Their results instead argue that there may be many 307	
  
small-scale adaptive steps in humans, i.e. many weak selective sweeps that are only detectable 308	
  
when averaging across many instances. Such a mode of adaptation is in fact predicted by FGM 309	
  
for organisms with high complexity34, but see ref.35. 310	
  

Second, a varying DFE over phylogenetic timescales has implications for understanding 311	
  
the overdispersed molecular clock36. The substitution rate of deleterious mutations relative to the 312	
  
rate of neutral evolution is a function of the compound parameter Nes37. Thus, not only 313	
  
phylogenetic changes in Ne but also changes in s may contribute to overdispersion. Our results 314	
  
suggest that changes in the distribution of s are coupled with changes in population size and 315	
  
complexity. For example, the larger complexity of humans is supposed to reduce the 316	
  
nonsynonymous divergence along the human lineage to lower values than what would be 317	
  
expected from the two orders of magnitude population size difference to Drosophila. Accurate 318	
  
characterization of the DFE from many species across the tree of life will enable a direct test of 319	
  
the contribution of changing DFEs to the dispersion of the molecular clock. 320	
  

Lastly, our results have implications for assessing the biological function of sequences 321	
  
using evolutionary information. The comparative genomics paradigm postulates that biologically 322	
  
important regions of the genome are constrained across long evolutionary times38. This implies 323	
  
that s for a particular sequence is determined by the biological importance of the sequence and 324	
  
that s remains constant over time. If, as our work suggests, selection coefficients change over 325	
  
time as a consequence of species complexity and long-term population size, this could result in 326	
  
important sequences not showing the prototypical signatures of conservation, leading to such 327	
  
sequences being missed by comparative approaches. Further, it suggests that complexity and 328	
  
population size are important factors to consider when deciding which species to utilize in future 329	
  
comparative genomic studies. 330	
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 437	
  
Online	
  Methods	
  438	
  

Data	
  439	
  
We used published next generation sequencing data sets to extract the synonymous and 440	
  
nonsynonymous SFS. For humans, we used the sample of 112 individuals from Yoruba in 441	
  
Ibadan, Nigeria (YRI) from the 1000 Genomes Project11. We downloaded the 1000 Genomes 442	
  
phase 3 dataset from the 1000 Genomes ftp site 443	
  
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/, accessed Sept 2014). Using information in the 444	
  
sample information PED file, related individuals were removed and for each trio or family group 445	
  
only the mother and father were used. The SNPs were also filtered for whether they were within 446	
  
the exome capture array region and in the strict mask part of the human genome, as defined by 447	
  
the 1000 Genomes Project. The genotypes of YRI individuals were extracted and annotated 448	
  
using the SeattleSeq annotation pipeline 449	
  
(http://snp.gs.washington.edu/SeattleSeqAnnotation138/). For Drosophila melanogaster, we 450	
  
used the DPGP phase 3 data of a sample of 197 lines originating from Zambia, Africa12. We 451	
  
accessed whole genome genotype data for the 197 genomes from the Pool lab 452	
  
(http://johnpool.net/genomes.html). These data were provided in non-standard vcf format (vcf 453	
  
sites file, downloaded August 2014), therefore we first converted these to a standard vcf format 454	
  
with the BDGP5.75 genome as the reference using a custom python script. We then merged all 455	
  
the individual vcf files and removed any sites with evidence of identity by descent or admixture 456	
  
using the masking package provided by the Pool lab. Only the 2L, 2R, 3L and 3R chromosome 457	
  
arms were used in our analyses. We then conducted variant annotation using SnpEeff v3.6 using 458	
  
the BDGP5.75 database. 459	
  
 We filtered both datasets for sites with sample size > 99 and down-sampled all sites with 460	
  
larger sample size than 100 to a sample size of 100 using the hypergeometric probability 461	
  
distribution. Further, we selected only sites that were in exons and computed an exon length 462	
  
Lexon,i for each gene i. The nonsynonymous and synonymous sequence length (LNS, LS) depends 463	
  
on the transition/transversion ratio and CpG mutational bias. We assumed a 464	
  
transition:transversion ratio of 2:1 in Drosophila39,40 and 3:1 for human exons41,42. Further, we 465	
  
assumed a 10x mutational bias at CpG sites in humans, but no such effect in Drosophila43. This 466	
  
leads to multipliers of LNS = 2.85 x LS in Drosophila, and LNS = 2.31 x LS in humans. We 467	
  
calculated the synonymous and nonsynonymous SFS, and the respective sequence lengths (LNS,i, 468	
  
LS,i), for each gene i. For all further inference, we used the folded SFS to avoid correcting for 469	
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misidentification of the ancestral state. Ancestral misidentification could lead to unwanted and 470	
  
difficult to control biases44. 471	
  
 To study the effect of gene expression on the DFE, we used two recent gene expression 472	
  
datasets from humans45 and Drosophila46 that provide mRNA expression level estimates in 27 473	
  
and 29 different tissues, respectively. For both datasets, we transformed the ‘fragments per 474	
  
kilobase of exon per million fragments’ (FPKMs) by computing log(FPKM+1) and quantile 475	
  
normalizing this value over all tissues using ‘normalize.quantiles’ of the R package 476	
  
‘preprocessCore’, resulting in an expression level S. We computed τ as a measure of tissue 477	
  
specificity for each gene: 𝜏 = 1−!

!!!
!"# !!

!"# !!"# (!!!)
. Here, n is the number of tissues, Sj is the 478	
  

expression level in tissue j and Smax is the largest expression level over all tissues. We used τ to 479	
  
classify genes as tissue specific (τ > 0.6) or broadly expressed (τ < 0.4). We further classified 480	
  
genes as low (𝑆 < 2), intermediate (2 < 𝑆 < 3) and highly expressed (𝑆 > 3), where 𝑆 =481	
  
𝑆! /𝑛. This classification leads to strongly different gene expression profiles between classes 482	
  

(Supplementary Fig. 2), but still enough data in every class to be able to reliably estimate the 483	
  
DFE (θS > 100 in humans and θS > 900 in Drosophila). 484	
  
 To infer the DFE in Mus musculus castaneus (mouse) and Saccharomyces paradoxus 485	
  
(yeast), we used the synonymous and nonsynonymous SFS data from Gossmann et al.47. Our 486	
  
estimates of proportions of mutations in different Nes bins (Supplementary Fig. 10) are 487	
  
concordant with what has been preported previously47–49. We then used mutation rate estimates 488	
  
for yeast50 and mouse51, respectively, to estimate Ne and transform the DFE from Nes to s.  489	
  
 490	
  
Estimating demography and DFE 491	
  
We used the software δaδi52 to infer the parameters of a single size change model using the 492	
  
synonymous site frequency spectrum (SFS) under the Poisson Random Field framework53. In 493	
  
this framework, the multinomial likelihood quantifies how well the empirical SFS fits to an 494	
  
expected SFS that is derived from specific demographic parameters52. Assume that ΘD is a vector 495	
  
of demographic parameters (i.e., time and strength of a population size change), Xi is the count 496	
  
of SNPs with frequency i, Pi is the proportion of SNPs at frequency i, θ is the population 497	
  
mutation rate, and n is the sample size. The distribution of allele frequency q in the population 498	
  
(g[q|ΘD]) can be computed by numerically solving the diffusion approximation to the Wright-499	
  
Fisher model, and can also incorporate selection2,52,54. We used δaδi52 to numerically 500	
  
approximate g[q|ΘD]. Further, the expected number of SNPs at frequency i in a sample of size n 501	
  
is 𝐸 𝑋!|𝛩! ,𝜃 = 𝜃 𝑛

𝑖
!
! 𝑞! 1− 𝑞 !!!𝑔(𝑞|𝛩!)𝑑𝑞. The relative proportion of SNPs at 502	
  

frequency i can then be calculated as 𝑃! 𝛩! = ![!!|!!,!]
![!!|!!,!]!!!

!!!
, and the formula for the 503	
  

multinomial likelihood is 𝐿 Θ! = 𝑃!
!!!!!

!!! . To derive the maximum likelihood estimate of Θ! 504	
  
(Θ!) we maximized 𝐿 Θ! . 505	
  
 We used the Poisson likelihood instead of the multinomial likelihood to estimate the 506	
  
vector of parameters of the DFE (ΘDFE). We found that this strongly improves the precision of 507	
  
the scale parameter of the gamma distribution compared to using the multinomial likelihood 508	
  
since the Poisson likelihood uses information from both the absolute number of SNPs as well as 509	
  
the curvature of the SFS2,15. Note however that we do not make use of fixed differences to an 510	
  
outgroup. Including information from fixed differences hardly improves inferring the DFE of 511	
  
deleterious mutations55, which are the main focus of our paper. The likelihood of ΘDFE was thus 512	
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calculated as 𝐿 Θ!"# Θ! ,𝜃 = !(!!|!!,!!"#,!)!!

!!!
!!!
!!! 𝑒!!(!!|!!,!!"#,!). We set Θ! here to the 513	
  

maximum likelihood estimates of the demographic parameters Θ!, and 𝜃 to the nonsynonymous 514	
  
population mutation rate 𝜃!" = 4𝑁!𝜇𝐿!". We estimated 𝜃!" from 𝜃! by accounting for the 515	
  
difference in synonymous and nonsynonymous sequence length. 516	
  
 The formula of the Poisson likelihood depends on 𝐸(𝑋!|Θ! ,Θ!"# ,𝜃), i.e. on the expected 517	
  
SFS given the demography, 𝜃!" and some distribution of 𝑁!𝑠 with parameters Θ!"#. However, 518	
  
δaδi only allows computing the expected SFS  𝐸(𝑋!|Θ! ,N!𝑠,𝜃) for a single selection coefficient 519	
  
𝑁!𝑠 (and some arbitrary demography). Thus, we extend δaδi’s functionality by computing the 520	
  
expected SFS for a grid of 1000 Nes values on an exponentially distributed grid between -15000 521	
  
and -10-4. This set of site frequency spectra is further used to calculate the expected SFS for an 522	
  
arbitrary distribution of Nes values. This is done by numerically integrating over the respective 523	
  
spectra weighted by the gamma distribution. The numerical integration was done using the 524	
  
‘numpy.trapz’ function as implemented in δaδi. Due to numerical instabilities for strongly 525	
  
skewed distributions, we did not integrate all the way towards 0, but computed the weight of Nes 526	
  
values between -10-4 and 0 and added the product of this weight with the neutral SFS to the 527	
  
expected SFS. Mutations with Nes < -15000 are expected not to contribute to the SFS since they 528	
  
are strongly selected against. Our approach allows us to estimate the parameters of any arbitrary 529	
  
distribution of Nes values. We implemented the gamma distribution, log-normal distribution, the 530	
  
formula of Piganeau and Eyre-Walker 20, eq. 7, assuming gamma distributed effect sizes, and the 531	
  
formula of Lourenço et al.28, eq. 15. The formula of Lourenço et al.28 provides an explicit 532	
  
solution to the DFE for Fisher’s geometrical model under fitness equilibrium. It is a function of 533	
  
three parameters: population size, effect size, and the average number of phenotypes affected by 534	
  
a mutation (pleiotropy). The DFE of Lourenço et al.28 and Piganeau and Eyre-Walker20 are 535	
  
distributions with some proportion of slightly beneficial mutations. In models with some 536	
  
proportion of beneficial mutations, those mutations are expected to segregate in the population 537	
  
and thus influence both the shape of the SFS and the absolute number of SNPs. We use this 538	
  
expectation to infer the full DFE (beneficial plus deleterious mutations) from the SFS, similar to 539	
  
Tataru et al.14. To do this, we also integrate over beneficial mutations with Nes from 0 to 15000. 540	
  
Numerical optimization is used to find the parameters of the DFE distribution that maximize the 541	
  
poisson likelihood. For this optimization step, we use the BFGS algorithm as implemented in the 542	
  
‘optimize.fmin_bfgs’ function of scipy. To avoid finding local optima, we repeated every 543	
  
estimation approach (for both the simulations and the real data) from 50 uniformly distributed 544	
  
random starting parameters. Standard errors were based on the Hessian matrix of the log-545	
  
likelihood function, numerically computed at the maximum likelihood estimates using the 546	
  
‘Hessian.hessian’ function of δaδi52. They were computed as the square root of the diagonal 547	
  
elements of the inverse of the negative Hessian matrix56. Confidence intervals were 548	
  
approximated as plus/minus two times the standard errors, except where specified otherwise. 549	
  
 Note that population genetic methods for estimating the DFE from the SFS can only 550	
  
estimate the composite parameter of selection coefficient s with effective population size Ne, 551	
  
since the effect of selection on the SFS depends on Nes and not s alone. However, the distribution 552	
  
of s can be derived from the distribution of Nes by scaling it by 1/Ne (e.g. multiplying the scale 553	
  
parameter of a gamma distribution of Nes by 1/Ne). Fitting the demographic model to the 554	
  
synonymous SFS provided an estimate of θS = 4NeµLS for synonymous sites, where µ is the 555	
  
neutral per base-pair mutation rate and LS is the synonymous sequence length. Using this 556	
  
formula, we estimated Ne by setting the neutral mutation rate to either 2.5x10-8 for humans and 557	
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1.5x10-9 for Drosophila (phylogenetic estimates57–59) or to 1.5x10-8 for humans and 3x10-9 for 558	
  
Drosophila (current estimates 58,60,61). Note that when partitioning our data into different gene 559	
  
categories and estimating the DFE for each category separately, we also allow for a different 560	
  
ancestral Ne and demography estimates in those categories to control for different levels of 561	
  
background selection in different genomic regions62,63. 562	
  
 563	
  
Statistical test for different DFEs between two species 564	
  
We used the SFS from polymorphism data from two species, A (𝑋!,!) and B (𝑋!,!), to test 565	
  
whether the DSE differs between those two species. First, we estimated the demographic model 566	
  
parameters of both species (Θ!,!,Θ!,!) as outlined above. Second, we assumed that the DFE in 567	
  
both species follows a gamma distribution with the shape parameter 𝛼 and scale parameter 𝛽. 568	
  
We used a Poisson composite likelihood function, where the SFS at nonsynonymous SNPs in 569	
  
species A is treated as being independent of that from species B, which is reasonable for 570	
  
distantly related species with little incomplete lineage sorting55. Then, the likelihood function for 571	
  
the parameters is:  572	
  
𝐿 𝛼!,𝛽!,𝛼! ,𝛽! Θ!,!,Θ!,!

=
𝐸(𝑋!,!|𝛼!,𝛽!,Θ!,!,𝜃!)!!,!

𝑋!,!!

!!!

!!!

𝑒!!(!!,!|!!,!!,!!,!,!!)
𝐸(𝑋!,!|𝛼! ,𝛽! ,Θ!,! ,𝜃!)!!,!

𝑋!,!!

!!!

!!!

𝑒!!(!!,!|!!,!!,!!,!,!!) 

 573	
  
Here, n and m are the sample size of species A and species B, respectively. We will test whether 574	
  
the shape (𝛼) and scale (𝛽) parameters in species A differ from those in species B. To do this, we 575	
  
propose the following likelihood ratio test (LRT): 576	
  

Λ =
𝐿(𝛼! = 𝛼! ,𝛽! = 𝛽!|Θ!,!,Θ!,!)
𝐿(𝛼!,𝛼! ,𝛽!,𝛽!|Θ!,!,Θ!,!)

 

 577	
  
The null hypothesis (constrained model) is that 𝛼! = 𝛼! and 𝛽! = 𝛽!. The full model allows for 578	
  
𝛼! ≠ 𝛼! and 𝛽! ≠ 𝛽!. We optimized the likelihood function under both the null and full models 579	
  
as outlined above. Importantly, in all cases, we conditioned on the demographic parameters in 580	
  
each population, thus accounting for differences in population history. Asymptotically,  581	
  
follows a chi-square distribution with 2 degrees of freedom, due to the two additional free 582	
  
parameters in the full model compared to the constrained model. Simulations were used to test 583	
  
how well the usual asymptotic theory applies in this situation. The test is not limited to 584	
  
comparing the parameters of a gamma distribution of two species, but can be extended to any 585	
  
DFE distribution (e.g. log-normal), and any number of species, in a straightforward way. The 586	
  
degree of freedom of the chi-square null distribution is p*k-p, where p is the number of 587	
  
parameters of the distribution, and k is the number of species.  588	
  
 589	
  
Forward simulations 590	
  
To compute the null distribution of the likelihood ratio test statistic, Λ,  we performed forward 591	
  
simulations under the estimated demographic models for humans and Drosophila. Selection 592	
  
coefficients for nonsynonymous mutations were drawn from a gamma distribution with shape 593	
  
and scale parameters estimated from the constrained model (i.e., αH = αD and βH = βD). We 594	
  
assume a spatial distribution of selected elements that reflects the empirical distribution of 595	
  
coding and conserved non-coding (CNC) sequence in the genome. Further, we simulate varying 596	
  

Λ
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recombination across the genomes that is based on empirical high-resolution recombination 597	
  
maps64,65. Mutations in CNC regions are assumed to be selected with gamma distributed 598	
  
selection coefficients taken from Torgerson et al.66 for humans and Casillas et al.67 for 599	
  
Drosophila. The exon element ranges where taken from GENCODE v1468 for humans and 600	
  
BDGP 6.79 FlyBase gene annotation69 for Drosophila. To define CNC ranges in both species, 601	
  
we used predicted conserved elements by phastCons70, downloaded from the UCSC genome 602	
  
browser. All forward simulations were carried out using the simulation software ‘SLiM’71. For 603	
  
both species, we simulated under a single size change model with the empirically estimated 604	
  
parameters (Supplementary Table 1). Since Drosophila has a prohibitively large population size 605	
  
for forward simulations, we simulated both species with an ancestral effective population size of 606	
  
10,000 and scaled mutation rate, recombination rate, selection coefficients and demographic 607	
  
parameters accordingly72. To assess power, we performed a different set of simulations assuming 608	
  
the gamma DFE parameter estimates from the full model (Supplementary Table 2). 609	
  
 Further, to allow quasi genome-wide simulations, we followed a bootstrapping approach 610	
  
by first simulating 1000 x 7 Mb large regions that were selected randomly from the respective 611	
  
genome. We then selected a centered 3 Mb window from the simulated 7 Mb region and 612	
  
discharged the rest of the sequence to remove edge effects, notably the lower strength of 613	
  
background selection at the edges73. From those 1000 x 3 Mb regions, we resampled until we 614	
  
arrive at a full genome data set, i.e. synonymous and nonsynonymous SFS that are similar in size 615	
  
to the actual data. That way, we simulated data of 300 independent genomes. In both species, the 616	
  
simulations resulted in considerable amounts of background selection, with average reduction in 617	
  
neutral diversity in the 7Mb region of 10% in humans and 12% in Drosophila. For each 618	
  
simulated genome data we first estimated the demographic model from the synonymous SFS and 619	
  
then the DFE parameters from the nonsynonymous SFS conditional on the estimated 620	
  
demographic parameters. 621	
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