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Cross-disorder analysis of schizophrenia and 19 immune diseases reveals
genetic correlation
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Abstract

Epidemiological studies indicate that many immune diseases occur at different rates
among people with schizophrenia compared to the general population. Here, we evaluated
whether this phenotypic correlation between immune diseases and schizophrenia might be
explained by shared genetic risk factors (genetic correlation). We used data from a large
genome-wide association study (GWAS) of schizophrenia (N=35,476 cases and 46,839
controls) to compare the genetic architecture of schizophrenia to 19 immune diseases. First, we
evaluated the association with schizophrenia of 581 variants previously reported to be
associated with immune diseases at genome-wide significance. We identified three variants with
pleiotropic effects, located in regions associated with both schizophrenia and immune disease.
Our analyses provided the strongest evidence of pleiotropy at rs1734907 (~85kb upstream of
EPHB4), a variant which was associated with increased risk of both Crohn’s disease (OR =
1.16, P = 1.67x10™") and schizophrenia (OR = 1.07, P = 7.55x10°®). Next, we investigated
genome-wide sharing of common variants between schizophrenia and immune diseases using
polygenic risk scores (PRS) and cross-trait LD Score regression (LDSC). PRS revealed
significant genetic overlap with schizophrenia for narcolepsy (p=4.1x10), primary biliary
cirrhosis (p=1.4x10®), psoriasis (p=3.6x10"), systemic lupus erythematosus (p=2.2x10®), and
ulcerative colitis (p=4.3x10™). Genetic correlations between these immune diseases and
schizophrenia, estimated using LDSC, ranged from 0.10 to 0.18 and were consistent with the
expected phenotypic correlation based on epidemiological data. We also observed suggestive
evidence of sex-dependent genetic correlation between schizophrenia and multiple sclerosis
(interaction p=0.02), with genetic risk scores for multiple sclerosis associated with greater risk of
schizophrenia among males but not females. Our findings suggest that shared genetic risk
factors contribute to the epidemiological co-occurrence of schizophrenia and certain immune

diseases, and suggest that in some cases this genetic correlation is sex-dependent.
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Author Summary

Immune diseases occur at different rates among patients with schizophrenia compared to
the general population. While the reasons for this phenotypic correlation are unclear, shared
genetic risk (genetic correlation) has been proposed as a contributing factor. Prior studies
have estimated the genetic correlation between schizophrenia and a handful of immune
diseases, with conflicting results. Here, we performed a comprehensive cross-disorder
investigation of schizophrenia and 19 immune diseases. We identified three individual genetic
variants associated with both schizophrenia and immune diseases, including a variant near
EPHB4 — a gene whose protein product guides the migration of lymphocytes towards infected
cells in the immune system and the migration of neuronal axons in the brain. We demonstrated
significant genome-wide genetic correlation between schizophrenia and narcolepsy, primary
biliary cirrhosis, psoriasis, systemic lupus erythematosus, and ulcerative colitis. Finally, we
identified a potential sex-dependent pleiotropic effect between schizophrenia and multiple
sclerosis. Our findings point to shared genetic risk for schizophrenia and at least a subset of
immune diseases, which likely contributes to their epidemiological co-occurrence. These results
raise the possibility that the same genetic variants may exert their effects on neurons or immune

cells to influence the development of psychiatric and immune disorders, respectively.
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Introduction

Despite recent advances in identifying key biomarkers and genetic loci for
schizophrenia, its pathophysiology remains poorly understood [1, 2]. One interesting

epidemiological observation is that the risk of developing many immune-mediated diseases is
increased among patients with schizophrenia [3-5], and vice versa [6, 7]. Here, we use the term
immune disease to broadly encompass both autoimmune and inflammatory disorders. While
there are discrepancies among studies regarding which immune diseases are most strongly
correlated with schizophrenia, there is converging evidence that these diseases co-occur at a
greater rate than is expected by chance [3-7]. A notable exception is rheumatoid arthritis (RA),
where a consistent inverse association with schizophrenia has been observed [5, 8].

Genetic factors have long been proposed as an explanation for the differing prevalence
of immune diseases among patients with schizophrenia compared to the general population [5,
6]. The recently reported role of complement component 4 (C4) variation in schizophrenia [9]
illustrates a potential shared genetic mechanism in the development of immune and psychiatric
disorders. Genetic variants conferring increased C4 expression protect against developing
systemic lupus erythematosus (SLE), possibly by increased tagging of apoptotic cells — which
are the trigger for autoantibody development in SLE — leading to more effective clearance by
macrophages [10]. The same genetic mechanism may increase the risk of developing
schizophrenia, by increased tagging of neuronal synapses for elimination by microglia leading to
excessive synaptic pruning [9]. We hypothesize that similar shared genetic mechanisms may
occur throughout the genome, with cellular manifestations in immune cells and neurons
influencing the development of immune and psychiatric disorders, respectively. Previously, we
found that susceptibility to schizophrenia does not appear to be driven by the broad set of loci

harboring immune genes [11]. However, not all genetic variants conferring risk of immune
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disease fall within immune loci. Here, we evaluated whether common genetic variants
influencing the risk of 19 different immune diseases may also be involved in schizophrenia.

Our cross-disorder genetic approach is supported by recent successes in identifying
shared genetic risk variants (pleiotropy) across a variety of human diseases [12—18]. Pleiotropy
is emerging as a pervasive phenomenon in the human genome [19-21], and cross-disorder
studies characterizing the nature of genotype-phenotype relationships have the potential to yield
significant insights into disease etiology. For instance, cross-trait genetic analyses have shed
new light on cardiovascular disease and lipid biology — and shifted attention away from HDL as
a potential treatment target — by demonstrating that increased HDL cholesterol levels do not
reduce the risk of myocardial infarction [14]. In psychiatry, cross-disorder analyses have
identified significant pleiotropy between schizophrenia, bipolar disorder, and major depressive
disorder, indicating that these diseases are not as distinct at a pathophysiological level as
current diagnostic criteria suggest [12, 13, 22].

While previous studies have investigated genome-wide pleiotropy between
schizophrenia and immune disorders, results have been inconsistent (S1 Table). Genetic
correlation has been reported between schizophrenia and Crohn’s disease [23-27], multiple
sclerosis [28], primary biliary cirrhosis [25], psoriasis [29], rheumatoid arthritis [23, 24], systemic
lupus erythematosus [24, 25], and type 1 diabetes [23, 24, 26, 27] in some studies, but not in
others [8, 13, 16, 24, 30]. Interestingly, negative genetic correlation (whereby genetic risk
protects against developing schizophrenia) has also been reported for RA [31], in keeping with
the inverse epidemiological association [5, 8].

Additional studies are needed to reconcile the inconsistencies in existing cross-trait
analyses of schizophrenia and immune disorders, with careful attention towards potential
confounding variables (e.g. population stratification, linkage disequilibrium, non-independence
of genome-wide association study (GWAS) samples, and sex-specific effects). To this end we

have performed a comprehensive cross-disorder analysis of schizophrenia and 19 immune
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diseases, using data from the largest available genetic studies. Our findings add to a growing
body of literature supporting pervasive pleiotropy between schizophrenia and immune diseases.
We extend existing literature by including 10 immune diseases that have not previously been
compared with schizophrenia, prioritizing pleiotropic genes through integrative analyses of multi-
omics data, estimating how much of the phenotypic correlation between schizophrenia and
immune diseases was explained by the genetic correlations we observed, and providing novel

evidence for potential sex-specific pleiotropy between schizophrenia and immune disease.

Results

Defining immune risk variants

We identified immune-mediated diseases with robust GWAS findings using
ImmunoBase (http://www.immunobase.org; accessed 7 June 2015), an online resource
providing curated GWAS data for immune-related human diseases. These included the
following 19 diseases: alopecia areata (AA), ankylosing spondylitis (AS), autoimmune thyroid
disease (ATD), celiac disease (CEL), Crohn’s disease (CRO), inflammatory bowel disease
(IBD), juvenile idiopathic arthritis (JIA), multiple sclerosis (MS), narcolepsy (NAR), primary
biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), psoriasis (PSO), rheumatoid
arthritis (RA), Sjogren’s syndrome (SJO), systemic lupus erythematosus (SLE), systemic
sclerosis (SSC), type 1 diabetes (T1D), ulcerative colitis (UC), and vitiligo (VIT). Notably, the
majority of IBD risk variants were also risk variants for CRO and/or UC. For 14 of these immune
diseases (see Table 1), we also obtained full GWAS or Immunochip summary statistics allowing
us to conduct additional polygenic risk scoring (PRS) [30, 32] and cross-trait Linkage
Disequilibrium Score regression (LDSC) analyses [16].

Given that human leukocyte antigen (HLA) alleles within the major histocompatibility
complex (MHC) region (chromosome 6: 25-34 Mb) account for a significant proportion of

heritability of immune and inflammatory disorders [33], we considered HLA and non-HLA risk
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variants separately in our analyses. Within the MHC region we considered only the most
strongly associated HLA variant (including SNPs, imputed HLA amino acid sites, and classical
alleles) for each disease based on univariate analysis in previously published studies (see
Table 2), because multivariate conditional analyses reporting adjusted effect sizes of
independent HLA variants were not available for all immune diseases. Outside of the MHC
region, we considered all non-HLA variants curated in ImmunoBase for each of the 19 immune
diseases.

The number of genome-wide significant non-HLA risk loci for each of the 19 immune
diseases varied from three (NAR) to 144 (IBD). Several variants were associated with more
than one immune disease. In total we identified 581 unique variants (563 non-HLA variants and
18 HLA variants) associated with any immune disease at genome-wide significance. We refer to

these variants as immune risk variants.

Identifying pleiotropic variants implicated in both immune disease and schizophrenia

First, we evaluated whether there was any evidence of overall risk allele sharing
between each of the 19 immune diseases and schizophrenia using a binomial sign test. To do
this, we used previously published findings from a GWAS conducted by the Schizophrenia
Working Group of the Psychiatric Genomics Consortium [1, 11]. This GWAS represented a
meta-analysis of 52 cohorts, comprising a total of 35,476 cases and 46,839 controls, and the full
dataset is referred to here as the PGC2 study. Overall, the direction of effect for the sets of
non-HLA SNPs associated with each of the 19 immune diseases at genome-wide significance
was not shared with schizophrenia more than expected by chance (all binomial sign test p>0.05,
S1 Fig). Thus, we did not observe evidence of risk allele sharing between any immune disease
and schizophrenia when using a stringent genome-wide significance threshold to define immune
risk variants. We also evaluated the collective association of 261 LD-independent, non-HLA

immune risk variants associated with at least one of the 19 immune-mediated diseases, for
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which linkage disequilibrium (LD) Score and minor allele frequency (MAF) information were
available in the European LD Score database [16]. We found significant deviation from the
theoretical null in schizophrenia for immune risk SNPs (A=1.46). However, when we compared
the association of immune risk SNPs to that of similar randomly selected SNP sets
(Supplementary Methods) we observed no evidence of enrichment (S2 Fig, p=0.66),
indicating that immune risk SNPs were not associated with schizophrenia more than expected
by chance given the polygenic nature of schizophrenia.

Next, we identified potential pleiotropic variants by evaluating the association of
individual immune risk variants with schizophrenia. We considered SNPs associated with
schizophrenia at p<8.6x10°® (Bonferroni correction for 581 tests, 563 non-HLA and 18 HLA
variants) to have pleiotropic effects. Given the size of the schizophrenia GWAS, we had over
80% power to detect pleiotropic SNPs assuming an OR=1.12 in schizophrenia.

Within the MHC region, we observed four HLA risk alleles associated with both immune
disease and schizophrenia, particularly in the class Il HLA region (Table 2, S3 Fig). These HLA
risk alleles were the strongest MHC region associations for AA (HLA-DRB1 #37 Asn), CEL
(HLA-DQB1 #74 Ala), PSC (HLA-B*08:01), and SJO (HLA-DQB1*02:01). The presence of HLA-
DRB1 #37 Asn conferred a protective association in both AA and schizophrenia, but the
remaining HLA variants showed the opposite direction of effect in schizophrenia compared to
immune disease (Table 2, S3 Fig). Notably, none of these four HLA variants were significantly
associated with schizophrenia in previous conditional analyses [9, 11], suggesting that their
association with schizophrenia may be driven by LD with other causal variants in the region
rather than true pleiotropy. Thus, we did not focus additional analyses on these variants.

Outside of the MHC region, five immune risk variants showed potential pleiotropic
effects, with the risk allele for immune disease also conferring risk for schizophrenia. These
variants have been previously implicated in CRO (rs6738825, rs13126505, rs1734907 [34, 35]),

MS (rs7132277 [36]), and CEL (rs296547 [37]). To evaluate the pleiotropic potential of these
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209  non-HLA variants, we used conditional and joint analysis (COJO) [38] to perform association
210 analyses in the PGC2 schizophrenia GWAS conditioning on each of the five immune risk

211 variants (S4 Fig). In the setting of true pleiotropy, no significant associations should remain after
212  conditioning on the immune risk variants (statistically, all p>8.6x10°®). Consistent with pleiotropy,
213  we observed no remaining associations with schizophrenia after conditioning on rs296547 (top
214  SNP after conditioning: rs111530734, p=1.19x10"), rs1734907 (top SNP after conditioning:
215 rs11768688, p=9.79x10™), and rs13126505 (top SNP after conditioning: rs112786981,

216  p=4.58x10™). Significant associations with schizophrenia remained after conditioning on

217  rs6738825 (top SNP after conditioning: rs111744017, p=8.03x10°) and rs7132277 (top SNP
218  after conditioning: rs74240770, p=1.37x107®), suggesting there were independent causal

219 variants driving the associations in these regions for schizophrenia and immune disorders.

220 In order to prioritize genes underlying the identified pleiotropic SNPs (rs296547,

221 rs1734907, rs13126505), we performed an integrative analysis of GWAS summary statistics
222  with methylation quantitative trait loci (mQTL) and expression quantitative trait loci (eQTL)

223  studies using SMR and HEIDI [39, 40] (Materials and Methods). Notably, rs296547 was not
224  genotyped in the eQTL dataset, and we used rs404339 as a proxy SNP (r?=0.85 in 1000

225 Genomes Phase 3 CEU Population [41]) in SMR analyses of gene expression analyses for
226  rs296547. We observed that rs1734907 was an mQTL (B = 0.47, P = 2.13x10%) and eQTL (B =
227  -0.24, P = 3.54x10™°) for EPHB4 in peripheral blood (S2 Table, Fig 1). Furthermore, we

228 observed consistent pleiotropic associations for rs1734907 with schizophrenia and EPHB4
229  DNAM (Bsur = -0.14, Psyr = 3.58x107°, Pygp = 0.12), schizophrenia and EPHB4 expression
230  (Bswr=-0.28, Psur = 2.63x10™, Pyep = 0.17), and EPHB4 DNAm and EPHB4 expression (Bswr
231 =1.98, Pgyr= 6.56x10®, Pygp = 0.011). Thus, there was consistent association across

232  molecular phenotypes and schizophrenia at the EPHB4 locus, suggesting this gene may be

233  driving the association of rs1734907 in schizophrenia (Fig 1). Notably, TRIP6 is also a candidate
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functional gene underlying the association of rs1734907 with schizophrenia. We observed
pleiotropic association for rs1734907 with schizophrenia and TRIP6 DNAmM with inconsistent
direction of effect (Bswr = 0.15, Psmur = 5.00x10°°, Pygip = 0.17 for probe cg18683606; Bsur = -
0.12, Psyr = 2.32x10°, Pygip = 0.18 for probe cg27396824), a trend for association with
schizophrenia and TRIP6 expression (Bsur = -0.33, Psyr = 6.38x10™, Pugip = 0.14), but no
significant association with TRIP6 DNAm and TRIP6 expression. The other pleiotropic SNPs
(rs296547, rs13126505) did not demonstrate consistent localization to a particular gene across
traits and molecular phenotypes (Table 3, S2 Table). We observed that rs296547 was an
mQTL for C10rf106 (B = -1.04, P < 10°), and found pleiotropic associations for rs296547 with
schizophrenia and C1orf106 DNAm but no other phenotypes (Table 3, S2 Table). Similarly, we
observed that rs13126505 was an mQTL (B = 0.49, P = 4.03x10*°) and eQTL (B=-0.27, P =
3.54x10'°) for SLC39A8, and found pleiotropic associations for rs13126505 with schizophrenia
and SLC39A8 DNAmM along with schizophrenia and SLC39A8 expression, but not SLC39A8

DNAm and expression (Table 3, S2 Table).

Detecting genetic correlations between immune disease and schizophrenia

Our immune risk variant set captured only those variants associated with immune
diseases at genome-wide significance in current GWASSs. Given the polygenicity of immune-
related diseases, there are 100s to 1,000s of additional variants associated with each disease
which have not yet been identified [42]. To evaluate sharing of risk alleles between immune
diseases and schizophrenia using a broader set of variants, we used PRS [30, 32] and LDSC
[16].

For each of the 14 immune diseases with available genome-wide summary statistics, we
constructed genetic risk scores (GRSs) at a range of p-value thresholds (pr) as in previous

studies [12], and tested for the association of these GRSs with schizophrenia in a refined subset

Pouget, JG etal. 10


https://doi.org/10.1101/068684
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068684; this version posted January 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

aCC-BY-NC-ND 4.0 International license.

of the PGC2 study (17,000 cases and 20,655 controls) which excluded samples shared with the
immune disease GWASs. To benchmark our findings in immune diseases, we also analyzed
human height [43] and included previously published PRS results for bipolar disorder [12]. We
considered immune diseases with PRS p<0.002 at any pr to show significant genetic overlap
with schizophrenia (Bonferroni correction for 14 immune diseases tested in both sexes,
0.05/(14*2)=0.002). Commonly used goodness-of-fit estimates obtained from PRS (such as
Bors and Nagelkerke’s pseudo-R?) lack meaningful interpretation, which makes it difficult to
compare these estimates across studies [44]. For these reasons we chose to interpret the
direction of effect (i.e. positive or negative correlation) obtained from Ssrs, but not to interpret or
compare the degree of genetic sharing between immune diseases and schizophrenia. For
further details of our PRS approach, see Materials and Methods. Using PRS, we had over
80% power to detect genetic covariance with schizophrenia ranging from 0.02 to 0.03 for most
of the immune diseases, although some showed less than 80% power in this range (PSO, SLE,
VIT; S5 Fig).

As previously described, bipolar disorder PRSs were significantly associated with
schizophrenia (p<1x10™*° at pr<1) [12]. Surprisingly, human height PRSs were also significantly
associated with schizophrenia (p=1x10"" at pr<1, S3 Table). Height was analyzed as a
negative control based on its previously reported lack of genetic correlation with schizophrenia
using LDSC [16]. Using PRS, we observed that genetic liability for increased height protected
against schizophrenia (Bers=-0.11 at pr<1). The significant inverse association of height PRSs
with schizophrenia case-status we observed may reflect the greater sensitivity of this approach
to subtle population stratification, sample sharing, and/or true genetic overlap.

Genetic scores including the HLA region were significant for CEL, NAR, PBC, PSO, RA,
SLE, SSC, T1D, and UC (p<0.002 at multiple pr, S4 Table). Height was not included in these

analyses, given that HLA variants have not been associated with height in previous GWAS [43].
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With the exception of CEL (Bers=-0.04 at pr<5x107®, 1x10™, and 1x107®), all immune diseases
exhibited a positively associated PRS with schizophrenia case-status (all Bers>0, S4 Table). For
CEL, RA, SLE, and SSC only those PRSs constructed using the most stringent p-value cutoffs
(5x108, 1x10*, 1x10%) were significantly associated with schizophrenia. To evaluate whether
the HLA region alone was driving the observed genetic sharing, we constructed PRSs excluding
this region. After excluding HLA variants, genetic scores for NAR, PBC, PSO, SLE, T1D, and
UC remained significantly associated with schizophrenia (Table 4, S6 Fig). Because the genetic
overlap between these six immune diseases and schizophrenia was not driven by a single HLA
variant of large effect, we focused on these findings for the remainder of our analyses.

Given the potential sensitivity of PRS to artificial genetic overlap highlighted in our
analysis of height, we wanted to assess whether cryptic sample sharing between the immune
and schizophrenia GWASSs could be driving the shared genetic liability that we observed. To do
this, we conducted leave-half-out analyses. If the observed genetic overlap was driven by
samples shared between certain schizophrenia cohorts and the immune disease GWASS, the
GRS association should not be consistently observed across subsamples leaving out half of the
schizophrenia cohorts. Across 1,000 subsamples (Ncases ranging from 3,985-13,074) leaving out
a randomly selected 14 cohorts, we observed a high proportion of subsamples with GRSs
significantly associated with schizophrenia (p<0.05 at pr<1) for height (0.99), NAR (0.72), PBC
(0.95), PSO (0.84), SLE (0.97), T1D (0.95), and UC (0.70) suggesting our findings were not
driven by sample sharing.

To further validate our finding of genetic overlap between schizophrenia and these six
immune-mediated diseases using PRS, we applied an independent method (LDSC) for
estimating genome-wide genetic correlation between traits that is robust to sample sharing [16].
For LDSC analyses, we used summary statistics from the 49 European-ancestry cohorts in the

PGC2 study (31,335 cases and 38,765 controls) [1]. Unlike PRS, LDSC provides an
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309 interpretable and comparable estimation of genetic sharing between two traits in the form of
310 genetic correlation (rg) values. Notably, LDSC is less sensitive than PRS and is not robust when
311 applied to genetic data obtained from specialty chips (e.g. Immunochip) [16]. We did not carry
312  T1D forward for LDSC analysis, due to failure of this dataset on quality control measures

313 (liability scale h? >1, likely secondary to inflated effective sample size due to genotyping on

314  Immunochip). Given that this was a secondary analysis, we considered immune diseases with rq
315 p<0.05to show significant genetic overlap with schizophrenia.

316 As previously reported [16], our positive control (bipolar disorder) showed significant
317  genetic overlap with schizophrenia (r,=0.75+0.05, p=8.5x10"%; Fig 2, Table 4). In contrast to our
318 PRSresults, but in agreement with previous findings [16], our negative control (height) showed
319  no such overlap using LDSC (ry;=-0.004+0.02, p=0.84; Fig 2, Table 4). With respect to immune
320 diseases, LDSC confirmed significant genetic overlap with schizophrenia for PBC, PSO, SLE,
321 and UC (r;=0.10-0.18, Fig 2, Table 4) indicating the association of GRSs for these diseases
322  was not driven by shared samples. Notably, genetic correlations for PSO and SLE did not

323  survive correction for the 14 tests performed (Table 4). We also observed significant genetic
324  overlap with schizophrenia for NAR using LDSC, with the caveat that this dataset was

325  genotyped using Immunochip and did not survive multiple testing correction (Fig 2, Table 4).
326  Overall, LDSC provided consistent results for the immune diseases showing significant genetic
327  sharing with schizophrenia by PRS.

328

329 Benchmarking genetic correlations between immune disease and schizophrenia with
330 epidemiological data

331 To determine how much of the phenotypic correlation between schizophrenia and

332 immune-mediated diseases was explained by the genetic correlations we observed, we

333  benchmarked significant genetic correlations between schizophrenia and immune-mediated

Pouget, JG etal. 13


https://doi.org/10.1101/068684
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068684; this version posted January 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

aCC-BY-NC-ND 4.0 International license.

disorders relative to the expected phenotypic correlations from epidemiological data (Materials
and Methods). Using incidence of immune diseases in schizophrenia reported in a large
population-based study [3], we estimated phenotypic correlations between schizophrenia and
PBC, PSO, SLE, and UC. We were unable to estimate phenotypic correlation for NAR and
schizophrenia, given that there were no estimates in the literature of the incidence of NAR in
schizophrenia. For PBC, PSO, and SLE we observed small positive genetic correlations with
schizophrenia that were consistent with the epidemiological data (PBC: ry = 0.131 + 0.05, r, =
0.112; PSO: rg = 0.182 £ 0.07, r, = 0.130; SLE: ry = 0.130 + 0.05, r, = 0.048). For UC we
observed a small positive estimate of genetic correlation (r; = 0.106 + 0.04) while there was no
strong evidence for any correlation between UC and schizophrenia in the epidemiological data
(r, =-0.001). Importantly, while the MHC region contains risk factors for both schizophrenia and
immune-mediated diseases, our genetic correlation estimates were obtained considering only

SNPs outside of the MHC region due to unusual LD in this region [45].

Exploring sex-dependent genetic correlations between immune disease and
schizophrenia

Given the significant sex bias of autoimmune diseases, with women at greater risk
overall [46], we hypothesized that there may be sex-dependent genetic overlap between
schizophrenia and some immune-mediated diseases. We therefore performed sex-stratified
PRS, testing the association of height and immune disease GRSs with schizophrenia separately
in males and females of the PGC2 study. Genetic scores for height showed significant
association with schizophrenia in both males and females. Three of the immune diseases (PBC,
PSO, T1D) with significant main effects showed sex-dependent effects, with greater signal

among males (S5 Table). Additionally, although genetic scores for MS were not significantly
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associated with schizophrenia in the total sample there was significant association among
males (R%=0.03, p=1.26x10"° at pr<1; S5 Table).

Given the greater statistical power for the male subset of the schizophrenia GWAS, we
performed simulations by selecting random subsamples of male cases and controls equal in
size to the female sample (5,321 cases and 9,094 controls). If the stronger genetic overlap
between schizophrenia and MS, PBC, PSO, and T1D among males was driven by the larger
sample size rather than a true sex-dependent effect, there should be no consistent association
of GRSs with schizophrenia in these subsamples. Across 1,000 subsamples, the proportion with
significant GRSs (p<0.002 at pr<1) was high for PBC (0.94) and T1D (0.87), suggesting our
finding of a greater pleiotropic effect among males for these diseases was not driven solely by
lower statistical power among females; this was not the case for PSO (0.59) or MS (0.21).

Next, we performed formal statistical tests for an interaction between sex and genetic
scores for these four immune diseases. We observed a nominally significant interaction for MS
(p<0.05 at several pr; S5 Table), noting that this finding did not survive correction for multiple
testing. The remaining immune diseases did not show significant sex interactions, although the

direction of effect was consistent with a greater pleiotropic effect in males (S5 Table).

Discussion

Using a variety of statistical approaches, we provide evidence of shared genetic risk for
schizophrenia and several immune diseases. Within the MHC region, we identified four HLA
variants showing statistically significant association with schizophrenia. An important caveat is
that these four variants were not the top variants in their respective regions of association with
schizophrenia, and were not primary drivers of the MHC association in schizophrenia in
stepwise conditional analyses [9]. Therefore, the biological significance of these particular HLA

variants in schizophrenia is likely limited.

Pouget, JG etal. 15


https://doi.org/10.1101/068684
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068684; this version posted January 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

aCC-BY-NC-ND 4.0 International license.

Outside of the MHC region, we identified three SNPs with pleiotropic effects - influencing
risk for both celiac disease (CEL) (rs296547) or Crohn’s disease (CRO) (rs1734907,
rs13126505) and schizophrenia. Integration of GWAS, mQTL, and eQTL data implicated
Clorfl06, SLC39A8, and EPHB4 orTRIP6 as functional candidates driving the pleiotropic
association of rs296547, rs13126505, and rs1734907, respectively. Overall, our findings provide
the strongest evidence for a model in which genetic variation at rs1734907 (~85kb upstream of
EPHB4) increases DNA methylation, upregulates EPHB4 expression, and decreases the risk of
schizophrenia. While DNA methylation is classically associated with gene silencing, the effect of
methylation on transcription depends on the genomic context [47]; for instance, methylation of
silencers or insulators eliminates transcription-blocking activity thereby promoting gene
expression [48, 49]. EPHBA4 is a transmembrane tyrosine kinase receptor that coordinates cell
movement via bidirectional intercellular signaling at sites of direct cell-to-cell contact [50]. In the
brain, ephrin signaling mediates synaptic plasticity by initiating and stabilizing neuronal synapse
formation (reviewed by [51]). An analogous role has not yet been discovered in the immune
system, possibly due to the much shorter lifespan of immunological synapses between
lymphocytes and antigen presenting cells (minutes) as compared to neuronal synapses (years)
[52, 53]. Interestingly, ephrin signaling attenuates the migration responses of both neurons and
immune cells toward chemoattractants in vitro [54, 55]. Thus, disrupted pathfinding may be a
shared risk mechanism by which EPHB4 contributes to immune disease and schizophrenia. The
hypotheses raised by our findings require further validation. If the association of rs1734907 with
CRO and schizophrenia is robustly replicated in future GWASSs, functional studies will be
needed to investigate both the genetic mechanism by which rs1734907 (or a causal variant in
LD with this SNP) influences EPHB4 transcription, and the biological mechanism by which
increased EPHB4 expression influences susceptibility to CRO and schizophrenia. With the

multi-kinase inhibitor dasatinib already on the market for treatment of chronic myeloid leukemia
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[56] and other EphB4 inhibitors currently in Phase Il trials [57—60], the potential for future drug
repurposing makes EPHB4 an attractive candidate for further investigation.

We observed genome-wide sharing of risk variants for schizophrenia and six immune
diseases (narcolepsy (NAR), primary biliary cirrhosis (PBC), psoriasis (PSO), systemic lupus
erythematosus (SLE), type 1 diabetes (T1D), and ulcerative colitis (UC)) using PRS, all of which
have been previously reported to co-occur with schizophrenia in epidemiological studies [3, 5,
61]. The strongest evidence of shared genetic risk emerged for PBC, PSO, SLE, and UC, which
also showed robust genetic correlation with schizophrenia using LDSC. With the exception of
UC, the small positive genetic correlations observed between these immune diseases and
schizophrenia (ry ~ 0.1) were consistent with phenotypic correlations observed in
epidemiological data. Thus, currently available genetic data suggest that shared genetic risk
contributes to the co-occurrence of PBC, PSO, and SLE in schizophrenia. Possible explanations
for this sharing of genetic risk include the presence of a subgroup of “autoimmune-like”
schizophrenia cases and/or sharing of specific biological pathways between schizophrenia and
these particular immune diseases.

To our knowledge, this is the first time that sex-dependent genetic correlation with
immune diseases has been investigated in schizophrenia. We found nominal evidence of male-
specific genetic correlation for multiple sclerosis (MS), and a stronger pleiotropic effect among
males for PBC, PSO, and T1D although the latter were not statistically significant. Interestingly,
animal studies indicate that sex hormones have opposing effects on predisposition to
schizophrenia and autoimmunity; estrogen has been reported to protect against the
development of schizophrenia [62], while androgens appear to protect against the development
autoimmune diseases [63, 64]. We emphasize that our sex-dependent findings require
validation in independent samples. If replicated, one possibility is that sex hormones modulate
pathogenesis among genetically vulnerable individuals, making males more likely to develop

schizophrenia and females more likely to develop autoimmune diseases.
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Our work was subiject to several important limitations. Firstly, genome-wide summary
statistics were not available for all of the immune diseases, resulting in a more limited analysis
of 14 diseases. For five of these diseases (CEL, juvenile idiopathic arthritis (JIA), MS, NAR,
T1D) summary statistics were obtained from Immunochip rather than GWAS, providing
incomplete coverage of the genome for comparison with schizophrenia and biasing the genetic
correlation estimates obtained by LDSC. Secondly, GRSs for human height — analyzed as a
negative control — showed stronger association with schizophrenia than any of the immune
diseases. An inverse epidemiological relationship between height and schizophrenia has been
reported [65, 66], consistent with our PRS findings. The reasons for the discrepancy between
PRS and LDSC, which showed no genetic correlation between height and schizophrenia (as
previously reported [16]) are unclear. One explanation is that PRS, which uses individual-level
genotype data as opposed to summary statistics, is a more sensitive method to detect true
genome-wide sharing of risk alleles. If this is the case, it raises a broader question regarding
how much genetic overlap is expected across complex traits in general using the PRS
approach. Recent work suggests that pleiotropy is pervasive across human diseases, and that
this phenomenon is driven at least in part by the polygenic nature of complex traits [21]. If this is
the case, the extreme polygenicity of human height (more than 100,000 common variants
estimated to exert independent causal effects [67]) may be driving the pleiotropy we observed
between height and schizophrenia using PRS. An alternative explanation that must be
considered is that PRS may be more vulnerable to confounding by cryptic population
stratification, LD, or sample sharing.

Despite these limitations, our work adds to a growing body of evidence suggesting that
schizophrenia and immune diseases share genetic risk factors. There are conflicting reports in
the literature with respect to the specific immune diseases demonstrating genetic overlap with
schizophrenia, and the direction of effect (positive or negative genetic correlation). Genetic

overlap with schizophrenia has been previously investigated for nine of the 19 immune diseases
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studied here. Genome-wide genetic correlation with schizophrenia has been previously reported
for CRO [23-25, 27], MS [28], PBC [25], PSO [25, 29], rheumatoid arthritis (RA, both positive
[23, 24] and negative [31] genetic correlations), SLE [24, 25], T1D [23], and UC [24-27] (see S1
Table for a summary of previous studies). Our results are consistent with previously reported
genetic overlap between schizophrenia and PBC [25], PSO [25], SLE [24, 25], T1D [23], and UC
[24, 25]. While we did not observe genetic correlation between schizophrenia and MS in the
total sample, there was a significant sex-dependent effect with genetic correlation observed
among males. We provide new evidence of genetic correlation with NAR (not previously
investigated). Notably, we did not find any significant genetic correlation between schizophrenia
and RA. Despite the robust inverse epidemiological association between schizophrenia and RA
[8], the genetic association is less consistent. Using methods based on summary statistics
(including PRS and LDSC), four previous studies reported no evidence of pleiotropy between
schizophrenia and RA [8, 16, 25, 30], while two studies reported positive genetic correlation [23,
24]. Notably, Lee et al. reported an inverse genetic correlation — in keeping with the observed
epidemiological effect — using restricted maximum likelihood (GREML), a method utilizing full
genotype data which has greater statistical power to detect small pleiotropic effects than PRS or
LDSC [31]. Given the modest and potentially sex-dependent genetic correlations observed in
the present study, subtle differences in statistical power across studies using different statistical
methods and GWAS datasets may explain these discrepant findings. As genetic samples
continue to grow, and our understanding of the degree of genetic overlap expected among
complex traits evolves, it will be worthwhile to revisit these analyses.

Overall, our analyses provide statistical evidence supporting extensive pleiotropy
between immune diseases and schizophrenia. Our results highlight EPHB4, a transmembrane
receptor that coordinates cell migration and has dual roles in immune cell and neuronal
pathfinding, as a promising candidate for future functional studies. More broadly, our findings

indicate that common genetic variants influencing the risk of immune diseases — in particular
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NAR, PBC, PSO, SLE, and UC — are also involved in schizophrenia. Studies identifying the cell
types and biological pathways that may be driving this genetic overlap are needed, and will
hopefully provide further insights into the pathophysiology of schizophrenia. In the meantime,
our work supports the emerging hypothesis that pathogenic mechanisms are shared across

immune and central nervous system disorders.

Materials and Methods

Samples and quality control

We used either imputed genotype data or summary statistics generated as described in

the original GWASSs. For sample details, see Table 1.

Schizophrenia dataset

We used data from the PGC2 study [1]. For analyses of nhon-HLA genome-wide
significant risk variants for immune diseases we used publicly available summary statistics from
the total dataset (52 cohorts; 35,476 cases and 46,839 controls) [1]. For PRS analyses we used
all 36 European ancestry case-control cohorts with available individual-level genotype data
(25,629 cases and 30,976 controls). For analyses including HLA variants we used a further
refined 31 European ancestry case-control cohorts (20,253 cases and 25,011 controls) with

high-quality coverage of the MHC region, as previously described [11].

Immune disease datasets

To estimate the extent of genetic overlap between schizophrenia and immune diseases,
we obtained full GWAS or Immunochip summary statistics for 14 of the 19 immune diseases
(five immune diseases were not included in PRS analyses due to lack of available summary

statistics). We obtained publicly available summary statistics for ten immune diseases (see
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URLs): CEL [68], CRO [69], IBD [69], JIA [70], MS [36], NAR [71], RA [72], SLE [73], T1D
[74], and UC [69]. For the following four immune diseases, we obtained summary statistics with

permission from the authors: PBC [75], PSO [76], SSC [77], and VIT [78].

Testing the association of genome-wide significant risk alleles for 19 immune
diseases in schizophrenia

For each of the 19 immune diseases, we defined risk loci outside of the MHC region
(chromosome 6: 25-34 Mb) using curated GWAS results from ImmunoBase
(http://www.immunobase.org; accessed 7 June 2015. For details, see Supplementary
Methods). Notably, the majority of IBD risk variants were also risk variants for CRO and/or UC.
Within the MHC region we considered only the most strongly associated HLA variant (including
SNPs, imputed HLA amino acid sites, and classical alleles) for each disease based on
univariate analysis in previously published studies (see Table 2), because multivariate
conditional analyses reporting adjusted effect sizes of independent HLA variants were not
available for all immune diseases. In total there were 581 unique variants (563 non-HLA
variants and 18 HLA variants) associated with any immune disease at genome-wide
significance.

First, we tested for shared direction of effect with schizophrenia among SNPs associated
with each of the 19 immune diseases using the binomial sign test. Because some immune risk
SNPs were associated with multiple diseases with inconsistent direction of effect, we could not
evaluate shared direction of effect among the collective set of immune risk SNPs in
schizophrenia.

Next, we evaluated the collective association of SNPs associated with any immune
disease. First we extracted the p-values for a pruned set of 261 LD-independent, non-HLA

immune risk SNPs with linkage disequilibrium (LD) Score and minor allele frequency (MAF)
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information were available in the European LD Score database [16] from the schizophrenia
PGC2 GWAS. We then quantified enrichment of these immune risk SNP associations in
schizophrenia using the genomic inflation value L. We obtained an empirical enrichment p-value
by comparing this to A values from 1,000 equal-sized sets of SNPs drawn from the
schizophrenia GWAS summary data, and matched to the immune SNP set for MAF and LD
score as these parameters are correlated with GWAS test statistics (see Supplementary
Methods for details).

Finally, we evaluated the association of each of the 581 variants with schizophrenia
using previously published association results for non-HLA [1] and HLA variants [11]. We
considered SNPs associated with schizophrenia at p<8.6x10° (Bonferroni correction for 581
tests, 563 non-HLA and 18 HLA variants) to have pleiotropic effects.

To evaluate the pleiotropic potential of immune risk variants significantly associated with
schizophrenia, we performed conditional and joint analysis (COJO) using GCTA [79].
Specifically, we used COJO to perform association analyses in the PGC2 schizophrenia GWAS
conditioning on the immune risk variants of interest (i.e. SNPs that were significantly associated
with both an immune disease and schizophrenia). In the setting of true pleiotropy, no significant
associations with schizophrenia should remain after conditioning on these immune risk variants
(statistically, all p>8.6x107°). We used the 1000 Genomes Phase 3 European dataset as a
reference panel to calculate LD between SNPs.

To prioritize genes and regulatory elements driving the pleiotropic GWAS loci we
identified (associated with both immune disease and schizophrenia, see Table 3), we followed
the analytic approach described by Wu et al. [40] . This approach integrates summary statistics
from independent -omics methylation quantitative trait loci (mQTL) studies, expression
quantitative trait loci (eQTL) studies, and GWAS to identify SNPs associated with gene

expression, DNA methylation, and disease through shared genetic effects.
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We obtained mQTL and eQTL data used in Wu et al. [40] for genetic regions within a
2Mb window of each pleiotropic SNP. These data and the quality control measures applied have
been described in detail elsewhere [40]. Briefly, mQTL summary-level SNP data were from a
meta-analysis of the Brisbane Systems Genetics Study [80] and Lothian Birth Cohorts of 1921
and 1936 [81], which comprised 1,980 individuals with DNA methylation measured in peripheral
blood. eQTL summary-level SNP data were from the Consortium for the Architecture of Gene
Expression (CAGE) study [82], which comprised 2,765 individuals with gene expression levels
measured in peripheral blood. GWAS summary-level SNP data for schizophrenia was from the
PGC2 study [1].

We applied summary data-based Mendelian randomization (SMR) using GCTA [79] to
test for shared associations between the pleiotropic SNPs with DNAm probes and gene
expression probes, DNAm probes and schizophrenia, and gene expression probes and
schizophrenia. We included DNAmM and gene expression probes within 2Mb of the pleiotropic
SNPs. We considered significant associations as those with Psyr < 1.30x10™ (0.05/385 tagged
genes) for mQTLs and Psyr < 4.31x10™ for eQTLs (0.05/116 tagged genes). Next, we applied
the heterogeneity in dependent instruments (HEIDI) test [39] using GCTA [79] to evaluate
whether significant shared associations between DNAmM, gene expression and schizophrenia
were driven by linkage (i.e. separate causal variants in LD exerting genetic effects on DNAm,
gene expression, and schizophrenia) or a shared pleiotropic causal variant. We considered
genetic effects that passed the HEIDI test (Pyegip > 0.01) to be driven by a single causal variant.
We looked for consistent SMR and HEIDI results across GWAS, mQTL, and eQTL studies to

prioritize genes for future functional studies.

Testing the association of polygenic risk scores for 14 immune diseases in

schizophrenia

Pouget, JG etal. 23


https://doi.org/10.1101/068684
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068684; this version posted January 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

586 To evaluate whether common variants influencing risk of immune diseases collectively
587  contribute to schizophrenia, we used PRS [30, 32]. To benchmark the amount of genetic

588 overlap between schizophrenia and immune disease, we included previously published results
589 for bipolar disorder as a positive control [12]. We used human height [43] as a negative control
590 because — despite the inverse epidemiological relationship between height and schizophrenia
591  previously reported [65, 66] — a prior study using cross-trait LDSC reported no genetic

592  correlation with schizophrenia [16].

593 For 14 immune diseases with available genome-wide summary statistics we performed
594  PRS at a range of p-value thresholds (pr) as in previous studies [12]: 5x107%, 1x10*, 1x107,
595 0.01,0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0 (which included all LD-independent SNPs, Table 1).
596 Due to extensive LD in the HLA region, we performed analyses both including the top HLA
597 variant and excluding the HLA region. At each pr, we constructed GRSs for each individual i in
598 the schizophrenia cohort for each immune disease h by calculating the sum of risk-allele

599 dosages (g) weighted by their effect sizes (f) for that immune disease:

PRS;p = ) Punds

600 where M iterates over all known risk alleles for disease h, fun is the effect size (log odds ratio)
601 of Mindisease h, and gy, is the risk-allele dosage of M in individual i. We then performed

602 logistic regression in R [83] using the stats package [83] to evaluate the association between
603  schizophrenia case-status and GRSs for each immune disease. As in previous studies,

604 statistical significance of the GRSs was estimated based on their logistic regression coefficient
605 [12, 30]. Variance in schizophrenia case-status explained by the GRSs was estimated using the
606 deviation in liability-scale R? between a null model (including 10 ancestry-informative principal
607 components and study site) and the full model (including GRSs in addition to these covariates),
608 calculated as previously described [44] assuming a population prevalence of schizophrenia of

609  1%. We also estimated Nagelkerke’s pseudo-R? using the fmsb package [84]. We considered
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immune diseases with GRS p<0.002 at any pt to show significant genetic overlap with
schizophrenia (Bonferroni correction for 14 immune diseases tested in both sexes,
0.05/(14*2)=0.002). As in previous studies [12, 30] we did not use Bonferroni correction for the
number of p-value thresholds, as these tests are highly correlated.

We excluded eight schizophrenia cohorts using Wellcome Trust Case Control Consortium
(WTCCC) controls, due to the use of these samples in the immune disease GWASS. The total
schizophrenia sample analyzed by PRS included 37,655 subjects (28 cohorts; 17,000 cases
and 20,655 controls). Sex-stratified and formal sex-PRS interaction analyses were performed
among the subset of subjects with known sex (9,787 male cases and 9,284 male controls; 5,231
female cases and 9,094 female controls). For details of PRS, see Supplementary Methods

and Table 1.

Estimating the degree of genetic correlation between schizophrenia and 14 immune
diseases

To validate our PRS results and obtain genetic correlation (ry) estimates, we performed a
secondary analysis using cross-trait LDSC for immune-mediated diseases with significant PRS
associations with schizophrenia [16]. Cross-trait LDSC estimates the genetic correlation
between two traits using GWAS summary statistics. Similar to the PRS analyses described
above, we benchmarked the genetic correlations observed for immune diseases by analyzing
bipolar disorder [85] as a positive control and human height [43] as a negative control.

The statistical framework for cross-trait LDSC has been described in detail previously
[16]. Briefly, LDSC leverages the relationship between LD and association test statistics to
estimate heritability as the slope of the regression of z-scores against LD scores [86]. Cross-trait
LDSC is a bivariate extension of this method which estimates genetic covariance as the slope of

the regression of the products of z-scores against LD scores using the following equation [16]:
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VN1N2o4 P oNs
M 7 JNIN,

635 where z;; denotes the z score for study i and SNPj, ¢; is the LD score [86], N; is the sample size

E[Z1jzz|{)j] =

636 forstudyi, g4 is the genetic covariance, M is the number of SNPs in the reference panel with

637  MAF between 5% and 50%, N is the number of individuals included in both studies, and g is
638 the phenotypic correlation among the Ng overlapping samples. Genetic covariance 04 is

639 estimated by regressing 3z, against t’j\/Nl—N, and multiplying the resulting slope by M.

640  Statistical significance is assessed using block jackknifing over 200 equally sized blocks of
641  SNPs [16]. Importantly, the MHC region is excluded from LDSC analyses due to its unusual LD
642  structure and genetic architecture [45].

643 Because LDSC is robust to sample sharing across GWAS [16], we used summary

644  statistics from the 49 European-ancestry cohorts in the PGC2 study (31,335 cases and 38,765
645  controls) [1]. We used LD Scores from the “eur_w_Id_chr/” files available from

646  https://data.broadinstitute.org/alkesgroup/LDSCORE, computed using 1000 Genomes Project
647  [87] Europeans as a reference panel as previously described [45]. To ensure we were using
648  well-imputed SNPS we filtered all GWAS as previously described [16], including limiting the
649 analysis to HapMap 3 [88] SNPs as implemented in the LDSC script munge_sumstats.py

650 (https://github.com/bulik/ldsc). We estimated liability scale h? for each trait using previously

651 reported prevalence estimates (S6 Table), and removed datasets with h*>1. Given that this was
652  asecondary analysis, we considered traits with ry p<0.05 to have significant genetic correlation
653  with schizophrenia.

654 Benchmarking with epidemiological data

655 To determine how much of the phenotypic correlation between schizophrenia and

656 immune-mediated diseases was explained by the genetic correlations we observed, we used

657  the approach previously described by Lee et al. [31]. Briefly, we benchmarked our significant
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genetic correlation estimates between schizophrenia and NAR, PBC, PSO, SLE and UC relative
to the expected phenotypic correlations from epidemiological data. We obtained estimates of
the population risk of schizophrenia (Ksq), the population risk of each immune disease
(Kimmune), @and the probability of each immune disease among patients with schizophrenia
(Kimmune | scz) from the literature as referenced in S6 Table. We estimated the phenotypic
correlation between schizophrenia and the immune disease of interest (Rscz.imvune) Using the
following formula, as derived by Lee et al. [31] assuming that the phenotypic liabilities of
schizophrenia (Is-;) and immune disease (I;yyung) follow a bivariate normal distribution with

mean=0 and standard deviation=1:

: P2 2 2 i2 2 2
"SCZtIMMUNE - \/I'SCZtIMMUNE - (tIMMUNE | SCZ + lSCZ)(tIMMUNE - tIMMMUNE | SCZ)

Rscz—immune = £2 + i2
(CimmunE | scz iscz)

where:

tscz is the liability threshold for schizophrenia:
Z-score of the (1 — Kgcz)™ percentile

tiumune 1S the liability threshold for immune disease:
Z-score of the (1 — K;ymune)" percentile

timmune | scz 1S the liability threshold for immune disease in those with schizophrenia:
Z-score of the (1 — Kyymune | scz) " percentile

dgc7 is the “height” of the normal distribution at the schizophrenia liability threshold:
probability density function of tg.,

iscz is the mean phenotypic liability of those with schizophrenia:
dSCZ/KSCZ

Statistical power
Power to detect association of individual non-HLA and HLA immune risk variants in

schizophrenia was calculated using the Genetic Power Calculator [89] assuming a risk allele
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681 frequency (RAF) of 0.05, disease prevalence of 1%, and significance threshold (o) of 8.6x10™.
682  Power for PRS was evaluated using AVENGEME [90, 91], assuming disease and genetic

683  parameters detailed in S6 Table.
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URLs

LD Score database:

ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS

GWAS summary statistics:

CEL
https://www.immunobase.org/downloads/protected_data/iChip_Data/hg19 gwas_ic_cel _tr
ynka 4 19 1.tab.gz

CRO, IBD, UC
ftp://ftp.sanger.ac.uk/pub/consortia/ibdgenetics/iibdgc-trans-ancestry-filtered-summary-
stats.tgz

JIA
https://www.immunobase.org/downloads/protected data/iChip_Data/hg19 gwas_ic_jia_hin
ks UK 4 19 1.tab.gz

MS
https://www.immunobase.org/downloads/protected_data/GWAS_Data/hgl9 _gwas_ms_im
sgc_4 19 1.tab.gz

NAR
https://www.immunobase.org/downloads/protected data/iChip_Data/hg19 gwas_ic_nar fa
raco_4 19 1l.tab.gz

RA

http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal 2010NG/

SLE
https://www.immunobase.org/downloads/protected_data/GWAS_Data/hgl9 gwas_sle be

ntham_4 20 O.tab.gz
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709 e TI1D
710 https://www.immunobase.org/downloads/protected_data/iChip_Data/hg19 gwas_ic_tld o

711 nengut_ meta_4 19 1l.tab.gz
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1055 Fig 1. Prioritizing genes driving the pleiotropic association of rs1734907 in
1056 Crohn’s disease and schizophrenia

1057  Associations for SNP and SMR analyses across GWAS, eQTL, and mQTL datasets. Top plot
1058 gray circles illustrate SNP association (-log;o p-value) with schizophrenia in the PGC-2 GWAS,

1059  while pink diamonds and blue circles indicate results of SMR tests (-logio p-value) for
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association of gene expression and DNAm with schizophrenia, respectively, with solid shading
indicating probes passing the HEIDI test. Middle plot illustrates SNP association (-log;o p-value)
with gene expression from peripheral blood eQTL dataset. Lower plots illustrate SNP

association (-logi p-value) with gene methylation from peripheral blood mQTL dataset.
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Fig 2. Genetic correlation between schizophrenia and other traits

Genetic correlation between schizophrenia, bipolar disorder, height, and 14 immune diseases
was estimated using cross-trait LDSC [16]. Colour of square indicates strength of genetic
correlation (red, negative correlation; blue, positive correlation). Size of square indicates
statistical significance (larger, more significant p-value). Asterisks indicate genetic correlations
that are statistically significant at p < 0.05 threshold. BP, bipolar disorder; CEL, celiac disease;
CRO, Crohn’s disease; HGT, height; IBD, inflammatory bowel disease; JIA, juvenile idiopathic
arthritis; MS, multiple sclerosis; NAR, narcolepsy; PBC, primary biliary cirrhosis; PSO, psoriasis,
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SSC, systemic sclerosis; T1D,

type 1 diabetes; UC, ulcerative colitis; VIT, vitiligo.
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Tables

Table 1. Description of datasets analyzed

Total number of SNPs

'9SUa|| [euoneulslul ' AN-ON-AG-00®

Genome-wide Polygenic risk Merged
Abr  significant SNPs® scoring|D Cases Controls Full GWAS  with SCZ° Pruned®
Schizophrenia SCz - Target [1] 35,476 46,839 - - -
Height HGT - Negative control [43] 253,288 - 2,085,602 2,035,446 124,888
Alopecia areata AA 11 - - - - - -
Ankylosing spondylitis AS 23 - - - - - -
Autoimmune thyroid disease ATD 7 - - - - - -
Celiac disease CEL 38 Training [68] 12,041 12,228 133,352 90,922 19,698
Crohn’s disease CRO 119 Training [69] 5,956 14,927 12,276,506 4,990,991 114,950
Inflammatory bowel disease IBD 145 Training [69] 12,882 21,770 12,716,150 5,095,448 116,346
Juvenile idiopathic arthritis JA 22 Training [70] 772° 8,530° 122,330' 98,477 20,337
Multiple sclerosis MS 103 Training [36] 14,498 24,091 155,756' 108,118 21,818
Narcolepsy NAR 3 Training [71] 1,886 10,421 109,768 92,859 19,866
Primary biliary cirrhosis PBC 19 Training [75] 2,764 10,475 1,038,537 1,041,977 97,806
Primary sclerosing cholangitis PSC 12 - - - - - -
Psoriasis PSO 34 Training [76] 2,178 5,175 7,586,779 3,701,354 107,002
Rheumatoid arthritis RA 77 Training [72] 5,539 20,169 2,090,825 2,087,383 126,049
Sjogren’s syndrome SJO 6 - - - - - -
Systemic lupus erythematosus SLE 19 Training [73] 4,036 6,959 7,915,251 6,539,217 264,374
Systemic sclerosis SSC 4 Training [77] 1,486°  3,477° 253.179' 251,441 66,402
Type 1 diabetes T1D 56 Training [74] 9,340" 12,835 123,081 98,418 20,835
Ulcerative colitis uUc 96 Training [69] 6,968 20,464 12,255,263 5,167,266 120,720
Vitiligo VIT 16 Training [78] 1,381 14,518 8,790,155 6,223,502 257,654
1076  ®we obtained lists of genome-wide significant SNPs for each autoimmune disease from ImmunoBase, and processed them as described in
1077 Supplementary Methods; ®The following columns provide details for datasets used in the polygenic risk scoring analysis. We used effect sizes
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obtained from the height (negative control) and autoimmune disease GWASSs (training datasets) to construct polygenic risk scores in the
schizophrenia sample (target dataset). Because genome-wide summary statistics were required for this analysis, we were unable to perform
polygenic risk scoring for five autoimmune diseases for which these data were not available (AA, AS, ATD, PSC, SJO); “Prior to merging the
training dataset SNP set with the target schizophrenia dataset SNP set, the following quality control steps were performed: SNPs on non-
autosomal chromosomes (X, Y, M) were removed, SNPs with MAF<0.01 were removed if MAF was available in the training dataset, SNPs with
INFO<O. 90 were removed if INFO was available in the training dataset, SNPs Wlth missing p-value or OR were removed, symmetrical SNPs were
removed; “Pruning was performed by clumping using PLINK to retain SNPs with r’<0.1 within 1,000 kb windows, while filtering for the highest
significance levels within LD blocks (using options --clump-p1 1 --clump-p2 1 --clump-r2 0.1 --clump-kb 1000); ®only the UK cohort from this study
was avallable for analysis; 'this sample was genotyped using a specialty chip (Immunochip); %only the US cohort from this study was available for
analysis; "includes cases from 2,601 affected sibling pairs and 69 trios, which were analyzed using the Generalized Disequilibrium Test (GDT)
method and combined with case-control results by meta-analysis; Abr, abbreviation; -, not analyzed.
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1089 Table 2. Association of top HLA variants for immune diseases in schizophrenia §§

<o

03

Autoimmune Schizophrenia . 33

Disease HLA variant p OR p OR r’ with top SCZ SNP? 29

AA [92] HLA-DRB1#37Asn 499x10"° 0.42  4.85x10° 091  0.04 gz

AS [93] HLA-B*27 <1x10™% 46 0.13 1.05 0 z%

ATD [94] rs2281388 1.50x10® 1.64  0.39 1.04° 0 g S

(tags HLA-DPB1*05:01) , 59

CEL [95] HLA-DQB1#74Ala n.r. 214 2.16x10° 0.89 0.11 30

CRO [96] HLA-DRB1*01:03 3.00x10%” 251  0.61 096 0 §§

IBD [96] HLA-DRB1*01:03 1.93x10"* 3.01 0.61 096 O é%

JIA [70] rs7775055 3.14x10"" 6.01 0.12 094 0 2 :’:E

02 =

MS [97] HLA-DRB1*15:01 1.40x10%*  2.92  510x10° 106 0O o 2

NAR [98] HLA-DQB1*06:02 1.04x10™" 251 7.30x10°  1.06 O 223

[e)=3-)

PBC [99] HLA-DQA1*04:01 5.90x10" 3.06  0.20 095 O z gg

— i I3

PSC [100] HLA-B*08:01 3.70x10°* 2.82 565x10™° 0.84 0.2 558

— S,

PSO [101] HLA-C*06:02 2.10x10°" 3.26  0.55 099 0 8583

RA [102] HLA-DRB1#11Val <1x10™% 380 2.68x10° 1.07 O 2 %%
33

SJO [103] HLA-DQB1*02:01 1.38x10™ 3.36  3.84x10™ 0.85 0.11 ;:’g;

oS =

SLE [104] HLA-DRB1#13Arg 7.99x10"  1.55° 581x10° 1.07 O g2o

==

SSC [105] rs17500468 (TAP2) 5.87x10%” 2.87 6.76x10° 1.07 O oe

o Re]

T1D [106] HLA-DQB1#57Ala <1x10™™ 517  7.80x10°  0.95  0.06 §.§

2@

UC [96] rs6927022 8.00x10™* 1.49  3.37x10* 1.06 0.03 52

VIT [78] rs9271597 3.15x10% 1.77  0.01 1.04 0 3;3 %

(4.7kb upstream of HLA-DQA1) Ez

1090  ?* with rs1233578, the top HLA variant in schizophrenia, was obtained from the GAIN schizophrenia cohort (mgs2); °Effect size estimate is for ‘;%

1091 HLA-DPB1*05:01; Effect size estimate obtained from Asian sample. n.r., not reported; Disease abbreviations as defined in Table 1. Bold font i

1092 indicates statistically significant association with schizophrenia. 33

o=}

@ >

85

® =

B

&3
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Table 3. Immune disease risk SNPs showing pleiotropic effect in schizophrenia

SNP (chr:bp) Immune  Risk Immune Schizophrenia  Nearby eQTL" mQTL® Genomic
Disease  Allele/ OR (95% Cl); p* OR (95% Cl); p  Genes associations
Non- co-localizing
Risk to this gene®
Allele
rs296547° CEL[37] GIA 1.12 1.04 CAMSAP2 n.s. C1lorf106, SCZ-mQTL
(chr1:200892137) (1.09-1.16); (1.02-1.07); Clorfl06 decreased
4.11x10° 6.17x10° KIF21B methylation
CACNALS
ASCL5
rs13126505 CRO'[35] A/G 1.17 1.14 BANK1 SLC39A8, SLC39A8, SCZ-eQTL,
(chr4:102865304) (1.10-1.25); (1.10-1.19); SLC39A8 decreased increased SCZ-mQTL
2.33x10™° 1.19x10°® NFKB1 expression  methylation
rs1734907 CRO'[35] A/G 1.16 1.07 TFR2 EPHB4, EPHB4, SCZ-eQTL,
(chr7:100315517) (1.11-1.21); (1.04-1.10); ACTL6B decreased increased SCZ-mQTL,
1.67x10™" 7.55x10° GNB2 expression  methylation eQTL-mQTL
GIGYF1
POP7 TRIPS, TRIPS,
EPO decreased inconsistent
ZAN expression  effect SCZ-eQTL,
EPHB4 across eQTL-mQTL
SLC12A9 probes

“Effect sizes and p-values reported based on Immunobase curation, which reports statistics from meta-analysis of discovery and replication
datasets where available; "eQTL data was obtained from the CAGE study [82] which measured gene expression in peripheral blood. Effect on
expression (increased/decreased) corresponds to the risk allele; ‘“mQTL data was obtained from a meta-analysis of the Brisbane Systems
Genetics Study [80] and Lothian Birth Cohorts of 1921 and 1936 [81], which measured DNA methylation in peripheral blood. Effect on expression
(increased/decreased) corresponds to the risk allele; “Significant SMR and HEIDI [39, 40] results indicating co-localization of genomic associations

with the gene of interest in schizophrenia-eQTL (SCZ-eQTL), schizophrenia—m(g

TL (SCZ-mQTL), and eQTL-mQTL (eQTL-mQTL) datasets; °eQTL

data were unavailable for rs296547, and rs404339 was used as a proxy SNP (r*=0.85 in 1000 Genomes Phase 3 CEU Population [41]; "Also
associated with inflammatory bowel disease; n.s., no statistically significant findings; Disease abbreviations as defined in Table 1.
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Table 4. Estimated phenotypic and genome-wide genetic correlations between schizophrenia and other traits

PRS LDSC
Trait h®+ SE? M best pr Bors  SE R*(%) p rqy+ SE p
BPD (+)° 0.26 +0.01 1 n.a. 2.1 <10™ 0.75+0.05 4.02x10™
HGT (9 0.34+0.19 1 -0.11 + 0.02 0.064 1.22x10™ 7.47x10° +£0.02 0.99
NAR 0.31+ 0.09 n.a. 1 0.04+0.01 0017  4.07x10" 0.213 +0.10 0.03
PBC 0.46 + 0.08 0.11 0.3 0.07+0.01 0.053 8.05x10™" 0.131 + 0.05 4.00x10°
PSO 0.27 +0.09 0.13 0.3 0.04 £0.01 0.025 2.26x10°” 0.182 +0.07 7.80x10°
SLE 0.15+0.02 0.05 0.5 0.07+0.01 0.047 1.50x10” 0.127 + 0.045 4.60x10°
uc 0.23 £ 0.03 -0.001 0.4 0.04 +£0.01 0.018 3.74x10" 0.106 + 0.04 4.00x10°

R”and h” are reported on the liability scale for all diseases; *h” was estimated using LDSC; "results reported are from previously published

analyses by the Cross-Disorder Working Group of the Psychiatric Genomics Consortium [12]; (+), positive control; (-), negative control; n.a., not

available; SE, standard error; ry genetic correlation; r,, expected phenotypic correlation based on epidemiological data (see Materials and
Methods for details of r, estimation).
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