

1 **Genome-wide haplotype-based association analysis of major depressive disorder**
2 **in Generation Scotland and UK Biobank**

3

4 David M. Howard Ph.D.*¹, Lynsey S. Hall Ph.D. ¹, Jonathan D. Hafferty M.D. ¹, Yanni Zeng Ph.D. ^{1, 2},
5 Mark J. Adams Ph.D. ¹, Toni-Kim Clarke Ph.D. ¹, David J. Porteous Ph.D. ³, Reka Nagy BSc²,
6 Caroline Hayward Ph.D. ^{2, 8}, Blair H. Smith Ph.D. ^{4, 8}, Alison D. Murray Ph.D. ^{5, 8}, Niamh M. Ryan
7 Ph.D. ³, Kathryn L. Evans Ph.D. ^{3, 7}, Chris S. Haley Ph.D. ², Ian J. Deary Ph.D. ^{6, 7, 8}, Pippa A. Thomson
8 Ph.D. ^{3, 7} and Andrew M. McIntosh M.D. ^{1, 7, 8}

9

10 Running Title: Haplotype-based association analysis of depression

11

12 Affiliations:

13 ¹Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK

14 ²Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine,
15 University of Edinburgh, Edinburgh, UK

16 ³Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine,
17 University of Edinburgh, Edinburgh, UK

18 ⁴Division of Population Health Sciences, University of Dundee, Dundee, UK

19 ⁵Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK

20 ⁶Department of Psychology, The University of Edinburgh, Edinburgh, UK

21 ⁷Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh,
22 UK

23 ⁸Generation Scotland, Institute of Genetics and Molecular Medicine, University of Edinburgh,
24 Edinburgh, UK

25 *Corresponding author: David M. Howard

26 Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK

27 +44 131 537 6268

28 (e-mail: D.Howard@ed.ac.uk)

29 Keywords: Haplotype association analysis; Major Depressive Disorder; 6q21; Depression; Generation
30 Scotland; UK Biobank

31

32

33

34

35

36

37

38 **ABSTRACT**

39 Genome-wide association studies using genotype data have had limited success in the identification of
40 variants associated with major depressive disorder (MDD). Haplotype data provide an alternative
41 method for detecting associations between variants in weak linkage disequilibrium with genotyped
42 variants and a given trait of interest. A genome-wide haplotype association study for MDD was
43 undertaken utilising a family-based population cohort, Generation Scotland: Scottish Family Health
44 Study (n = 18 773), as a discovery cohort with UK Biobank used as a population-based cohort
45 replication cohort (n = 25 035). Fine mapping of haplotype boundaries was used to account for
46 overlapping haplotypes potentially tagging the same causal variant. Within the discovery cohort, two
47 haplotypes exceeded genome-wide significance ($P < 5 \times 10^{-8}$) for an association with MDD. One of
48 these haplotypes was nominally significant in the replication cohort ($P < 0.05$) and was located in
49 6q21, a region which has been previously associated with bipolar disorder, a psychiatric disorder that
50 is phenotypically and genetically correlated with MDD. Several haplotypes with $P < 10^{-7}$ in the
51 discovery cohort were located within gene coding regions associated with diseases that are comorbid
52 with MDD. Using such haplotypes to highlight regions for sequencing may lead to the identification
53 of the underlying causal variants.

54 **INTRODUCTION**

55 Major depressive disorder (MDD) is a complex and clinically heterogeneous condition with core
56 symptoms of low mood and/or anhedonia over a period of at least two weeks. MDD is frequently
57 comorbid with other clinical conditions, such as cardiovascular disease,¹ cancer² and inflammatory
58 diseases.³ This complexity and comorbidity suggests heterogeneity of aetiology and may explain why
59 there has been limited success in identifying causal genetic variants,⁴⁻⁷ despite heritability estimates
60 ranging from 28% to 37%.^{8, 9} Single nucleotide polymorphism (SNP)-based analyses are unlikely to
61 fully capture the variation in regions surrounding the genotyped markers, including untyped lower-
62 frequency variants and those that are in weak linkage disequilibrium (LD) with the common SNPs on
63 many genotyping arrays.

64 Haplotype-based analysis may help improve the detection of causal genetic variants as, unlike single
65 SNP-based analysis, it is possible to assign the strand of sequence variants and combine information
66 from multiple SNPs to identify rarer causal variants. A number of studies¹⁰⁻¹² have identified
67 haplotypes associated with MDD, albeit by focussing on particular regions of interest. In the current
68 study, a family and population-based cohort Generation Scotland: Scottish Family Health Study
69 (GS:SFHS) was utilised to ascertain genome-wide haplotypes in closely and distantly related
70 individuals.¹³ A haplotype-based association analysis was conducted using MDD as a phenotype,
71 followed by additional fine-mapping of haplotype boundaries with a replication and meta-analysis
72 performed using the UK Biobank cohort.¹⁴

73 MATERIALS AND METHODS

74 Discovery cohort

75 The discovery phase of the study used the family and population-based Generation Scotland: Scottish
76 Family Health Study (GS:SFHS) cohort,¹³ consisting of 23 960 individuals of whom 20 195 were
77 genotyped with the Illumina OmniExpress BeadChip (706 786 SNPs). Individuals with a genotype
78 call rate < 98% were removed, as well as those SNPs with a call rate < 98%, a minor allele frequency
79 (MAF) < 0.01 or those deviating from Hardy-Weinberg equilibrium ($P < 10^{-6}$). Individuals who were
80 identified as population outliers through principal component analyses of their genotypic information
81 were also removed.¹⁵

82 Following quality control there were 19 904 GS:SFHS individuals (11 731 females and 8 173 males)
83 that had genotypic information for 561 125 autosomal SNPs. These individuals ranged from 18-99
84 years of age with an average age of 47.4 years and a standard deviation of 15.0 years. There were 4
85 933 families that had at least two related individuals, this included 1 799 families with two members,
86 1 216 families with three members and 829 families with four members. The largest family group
87 consisted of 31 related individuals and there were 1 789 individuals that had no other family members
88 within GS:SFHS.

89 Replication cohort

90 The population-based UK Biobank¹⁶ (provided as part of project #4844) was used as a replication
91 cohort to assess those haplotypes within GS:SFHS with $P < 10^{-6}$. The UK Biobank data consisted of
92 152 249 individuals with genomic data for 72 355 667 imputed variants.¹⁷ The SNPs genotyped in
93 GS:SFHS were extracted from the UK Biobank data and those variants with an imputation infoscore
94 < 0.8 were removed, leaving 555 782 variants in common between the two cohorts. Those genotyped
95 individuals listed as non-white British and those that had also participated in GS:SFHS were removed
96 from within UK Biobank, leaving a total of 119 955 individuals.

97 **Genotype phasing and haplotype formation**

98 The genotype data for GS:SFHS and UK Biobank was phased using SHAPEIT v2.r837.¹⁸ Genome-
99 wide phasing was conducted on the GS:SFHS cohort, whilst the phasing of UK Biobank was
100 conducted on a 50Mb window centred on those haplotypes identified within GS:SFHS with $P < 10^{-6}$.
101 The relatedness within GS:SFHS made it suitable for the application of the duoHMM method, which
102 improves phasing accuracy by also incorporating family information.¹⁹ The default window size of
103 2Mb was used for UK Biobank and a 5Mb window was used for GS:SFHS as larger window sizes
104 have been demonstrated to be beneficial when there is increased identity by descent (IBD) in the
105 population.¹⁸ The number of conditioning states per SNP was increased from the default of 100 states
106 to 200 states to improve phasing accuracy, with the default effective population size of 15 000 used.
107 To calculate the recombination rates between SNPs during phasing the HapMap phase II b37²⁰ was
108 used. This build was also used to partition the phased data into haplotypes.

109 Three window sizes (1cM, 0.5cM and 0.25cM) were used to establish the SNPs that formed each
110 haplotype.²¹ Each window was then moved along the genome by a quarter of the respective window
111 size. There were a total of 97 333 windows with a mean number of SNPs per window of 157, 79 and
112 34 for the 1cM, 0.5cM and 0.25cM windows, respectively. Windows that were less 5 SNPs in length
113 were removed. Within each window, those haplotypes that had a minor allele frequency < 0.005 or
114 that deviating from Hardy-Weinberg equilibrium ($P < 10^{-6}$) were not tested for association. However,
115 they were included within the alternative haplotype when assessing the remaining 2 618 094

116 haplotypes. The reported haplotype positions relate to the outermost SNPs within each haplotype are
117 in base pair (bp) position according to GRCh37.

118 To approximate the number of independently segregating haplotypes the clump command within
119 Plink v1.90 ²² was applied. This provides an estimation of the Bonferroni correction required for
120 multiple testing. When applying an LD r^2 threshold of < 0.4 there were 1 070 216 independently
121 segregating haplotypes within GS:SFHS, equating to a *P*-value $< 5 \times 10^{-8}$ for genome-wide
122 significance. This threshold is also frequently applied to SNP-based and sequence-based association
123 studies to account for multiple testing.²³

124 **Phenotype ascertainment and patient linkage**

125 Discovery cohort

126 Within GS:SFHS a diagnosis of MDD was made using initial screening questions and the Structured
127 Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders (SCID).²⁴ The SCID
128 is an internationally validated approach to identifying episodes of depression and was conducted by
129 clinical nurses trained in its administration. Further details regarding this diagnostic assessment have
130 been described previously.²⁵ In this study, MDD was defined by at least one instance of a major
131 depressive episode which initially identified 2 659 cases, 17 237 controls and 98 missing (phenotype
132 unknown) individuals.

133 In addition, the psychiatric history of cases and controls was examined using record linkage to the
134 Scottish Morbidity Record.²⁶ Within the control group, 1 072 participants were found to have attended
135 at least one psychiatry outpatient clinic and were excluded from the study. In addition, 47 of the MDD
136 cases were found to have additional diagnoses of either bipolar disorder or schizophrenia in
137 psychiatric inpatient records and were also excluded from the study. These participants had given
138 prior consent for anonymised record linkage to routine administrative clinical data.

139 In total there were 2 605 MDD cases and 16 168 controls following the removal of individuals based
140 on patient records and population stratification, equating to a prevalence of 13.9% for MDD in this
141 cohort.

142 **Replication Cohort**

143 Within the UK Biobank cohort, 25 035 participants completed a touchscreen assessment of depressive
144 symptoms and previous treatment. On the basis of their responses, diagnostic status was defined as
145 either ‘probable single lifetime episode of major depression’ or ‘probable recurrent major depression
146 (moderate and severe)’ and with control status defined as ‘no mood disorder’. In total there were 8
147 508 cases and 16 527 controls, equating to a trait prevalence of 34.0% in this cohort, after the removal
148 of individuals with insufficient information or ambiguous phenotypes.¹⁴

149 **Statistical approach**

150 **Discovery cohort**

151 A mixed linear model was used to conduct an association analysis using GCTA v1.25.0²⁷:

152
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_1\mathbf{u} + \mathbf{Z}_2\mathbf{v} + \boldsymbol{\varepsilon}$$

153 where \mathbf{y} was the vector of binary observations for MDD. $\boldsymbol{\beta}$ was the matrix of fixed effects, including
154 haplotype, sex, age and age². \mathbf{u} was fitted as a random effect taking into account the genomic
155 relationships (MVN (0, $\mathbf{G}\boldsymbol{\sigma}_u^2$), where \mathbf{G} was a SNP-based genomic relationship matrix²⁸). \mathbf{v} was a
156 random effect fitting a second genomic relationship matrix \mathbf{G}_t (MVN (0, $\mathbf{G}_t\boldsymbol{\sigma}_v^2$) which modelled only
157 the more closely related individuals.²⁹ \mathbf{G}_t was equal to \mathbf{G} except that off-diagonal elements < 0.05
158 were set to 0. \mathbf{X} , \mathbf{Z}_1 and \mathbf{Z}_2 were the corresponding incidence matrices. $\boldsymbol{\varepsilon}$ was the vector of residual
159 effects and was assumed to be normally distributed, MVN (0, $\mathbf{I}\boldsymbol{\sigma}_\varepsilon^2$).

160 The inclusion of the second genomic relationship matrix, \mathbf{G}_t , was deemed desirable as the fitting of
161 the single matrix \mathbf{G} alone resulted in significant population stratification (intercept = 1.029 ± 0.003 ,
162 $\lambda\text{GC} = 1.026$) following examination with LD score regression.³⁰ The fitting of both genomic
163 relationship matrices simultaneously produced no evidence of bias due to population stratification
164 (intercept = 1.002 ± 0.003 , $\lambda\text{GC} = 1.005$).

165 Replication cohort

166 A mixed linear model was used to assess the haplotypes in UK Biobank which were identified in the
167 discovery cohort with $P < 10^{-6}$ using GCTA v1.25.0²⁷:

$$168 \quad \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_1\mathbf{u} + \boldsymbol{\varepsilon}$$

169 where \mathbf{y} was the vector of binary observations for MDD. $\boldsymbol{\beta}$ was the matrix of fixed effects, including
170 haplotype, sex, age, age², genotyping batch and recruitment centre. \mathbf{u} was fitted as a random effect
171 taking into account the SNP-based genomic relationships (MVN (0, $\mathbf{G}\boldsymbol{\sigma}_u^2$)). \mathbf{X} and \mathbf{Z}_1 were the
172 corresponding incidence matrices and $\boldsymbol{\varepsilon}$ was the vector of residual effects and was assumed to be
173 normally distributed, MVN (0, $\mathbf{I}\boldsymbol{\sigma}_\varepsilon^2$). $\boldsymbol{\sigma}_\varepsilon^2$). Replication success was judged on the statistical
174 significance of each haplotype using an inverse variance-weighted meta-analysis across both cohorts
175 conducted using Metal.³¹

176 Fine mapping

177 The method described above examines the effect of each haplotype against all other haplotypes in that
178 window. Therefore, a haplotype could be assessed against similar haplotypes containing the same
179 causal variant, limiting any observed phenotypic association. To investigate whether there were causal
180 variants located within directly overlapping haplotypes of the same window size, fine mapping of
181 haplotype boundaries was used. Where there were directly overlapping haplotypes, each with $P < 10^{-3}$
182 and with an effect in the same direction, i.e. both causal or both preventative, then any shared
183 consecutive regions formed a new haplotype that was assessed using the mixed model described

184 previously. This new haplotype was assessed using all individuals and was required to be at least 5
185 SNPs in length. A total of 47 new haplotypes were assessed from within 26 pairs of directly
186 overlapping haplotypes.

187 **RESULTS**

188 An association analysis for MDD was conducted using 2 618 094 haplotypes and 47 fine mapped
189 haplotypes within the discovery cohort, GS:SFHS. A genome-wide Manhattan plot of $-\log_{10} P$ -values
190 for these haplotypes is provided in Figure 1 with a q-q plot provided in Supplementary Figure S1.
191 Within the discovery cohort, two haplotypes exceeded genome-wide significance ($P < 5 \times 10^{-8}$) for an
192 association with MDD, one located on chromosome 6 and the other located on chromosome 10. There
193 were 12 haplotypes with $P < 10^{-6}$ in the discovery cohort with replication sought for these haplotypes
194 using UK Biobank. Summary statistics from both cohorts and the meta-analysis for these 12
195 haplotypes are provided in Table 1. The protein coding genes which overlap these 12 haplotypes
196 along with the observed haplotype frequencies within the two cohorts are provided in Table 2. The
197 SNPs and alleles that constitute these 12 haplotypes are provided in Supplementary Table S1.

198 The two haplotypes on chromosome 6 ($LD\ r^2 = 0.74$) with $P < 10^{-6}$ in the discovery cohort both
199 achieved nominal significance ($P < 0.05$) in the replication cohort, with one reaching genome-wide
200 significance ($P < 5 \times 10^{-8}$) in the meta-analysis. A regional association plot of the region surrounding
201 these haplotypes within GS:SFHS is provided in Figure 2. Fine mapping was used to form the most
202 significant haplotype within the discovery cohort. Two directly overlapping 0.5cM haplotypes
203 consisting of 28 SNPs were identified between 108 335 345 and 108 454 437 bp (rs7749081 -
204 rs212829). These two haplotypes had P -values of 3.24×10^{-5} and 5.57×10^{-5} , respectively and differed
205 at a single SNP (rs7749081). Exclusion of this single SNP defined a new 27 SNP haplotype that had a
206 genome-wide significant association with MDD ($P = 7.06 \times 10^{-9}$). Calculating the effect size at the
207 population level,³² the estimates of the contribution of the two haplotypes to the total genetic variance
208 was 2.09×10^{-4} and 2.38×10^{-4} , respectively, within GS:SFHS. None of the individual SNPs located
209 within either haplotype were associated with MDD in either cohort ($P \geq 0.05$).

210 A genome-wide significant haplotype ($P = 8.50 \times 10^{-9}$) was identified on chromosome 10 within
211 GS:SFHS using a 0.5cM window. A regional association plot of the region surrounding this haplotype
212 is provided in Figure 3. This haplotype had an odds ratio (OR) of 2.33 (95% CI: 1.83 – 2.91) in the
213 discovery cohort and an OR of 1.15 (95% CI: 0.80 - 1.59) in the replication cohort. These were the
214 highest ORs observed in the respective cohorts. The estimate of the contribution of this haplotype to
215 the total genetic variance was 2.29×10^{-4} in the discovery cohort. Association analysis of the 92 SNPs
216 on this haplotype revealed that one SNP in GS:SFHS (rs17133585) and two SNPs in UK Biobank
217 (rs12413638 and rs10904290) were nominally significant ($P < 0.05$), although none had P -values <
218 0.001.

219 All 12 of the haplotypes with a P -value for association $< 10^{-6}$ in the GS:SFHS discovery cohort were
220 risk factors for MDD (OR > 1) and within the replication cohort, 7 out of these 12 haplotypes had OR
221 > 1 . None of the 95% confidence intervals for the replication ORs overlapped the 95% confidence
222 intervals of the discovery GS:SFHS cohort.

223 **DISCUSSION**

224 Twelve haplotypes were identified in the discovery cohort with $P < 10^{-6}$ of which two were significant
225 at the genome-wide level ($P < 5 \times 10^{-8}$) in the discovery cohort and one which was genome-wide
226 significant ($P < 5 \times 10^{-8}$) in the meta-analysis. A power analysis³³ was conducted using the genotype
227 relative risks observed in the discovery cohort, the sample sizes and haplotype frequencies in the
228 replication cohort and the prevalence of MDD reported for a structured clinical diagnosis of MDD in
229 other high income counties (14.6%).³⁴ There was sufficient power (> 0.99) to detect the twelve
230 haplotypes with $P < 10^{-6}$ identified in the discovery cohort within the replication cohort at a
231 significance threshold of 0.05%.

232 A complementary approach to replication is to identify the gene coding regions within haplotypes that
233 potentially provide a biologically informative explanation for an association with MDD. Those
234 haplotypes with $P < 10^{-7}$ in the discovery cohort and the gene coding regions that they overlap are
235 discussed below.

236 The two haplotypes on chromosome 6 overlapped with the Osteopetrosis Associated Transmembrane
237 Protein 1 (*OSTM1*) coding gene. *OSTM1* is associated with neurodegeneration^{35, 36} and melanocyte
238 function,³⁷ and alpha-melanocyte stimulating hormone has been shown to have an effect on
239 depression-like symptoms.³⁸⁻⁴⁰ This haplotype lies within the 6q21 region that has been associated
240 with bipolar disorder,⁴¹⁻⁴⁵ a disease that shares symptoms with MDD and has a correlated phenotypic
241 liability of 0.64.⁴⁶ This may indicate either a pleiotropic effect or clinical heterogeneity, whereby
242 patients may be misdiagnosed, i.e. patients may have MDD and transition to bipolar disorder in the
243 future or are sub-threshold for bipolar disorder and instead given a diagnosis of MDD.

244 The haplotype identified on chromosome 8 overlapped with the Interleukin 7 (*IL7*) protein coding
245 region. *IL7* is involved in maintaining T cell homeostasis⁴⁷ and proliferation,⁴⁸ which in turn
246 contributes to the immune response to pathogens. It has been proposed that impaired T cell function
247 may be a factor in the development of MDD,⁴⁹ with depressed subjects found to have elevated⁵⁰ or
248 depressed levels⁵¹ of *IL7* serum. There is conjecture as to whether MDD causes inflammation or
249 represents a reaction to an increased inflammatory response,^{52, 53} but it is most likely to be a
250 bidirectional relationship.⁵¹

251 The haplotype on chromosome 10 overlapped with two RNA genes: long intergenic non-protein
252 coding RNA 704 (*LINC00704*) and long intergenic non-protein coding RNA 705 (*LINC00705*). The
253 function of these non-protein coding genes is unreported. However, a study of cardiac neonatal lupus
254 which is a rare autoimmune disease demonstrated an association for a SNP (rs1391511) which is 15kb
255 from *LINC00705*.

256 Two Dutch studies^{54, 55} have identified a variant (rs8023445) on chromosome 15 located within the
257 SRC (Src homology 2 domain containing) family, member 4 (*SHC4*) gene coding region that has a
258 moderate degree of association with MDD ($P = 1.64 \times 10^{-5}$ and $P = 9 \times 10^{-6}$, respectively). A variant
259 (rs10519201) within the *SHC4* coding region was also found to have an association ($P = 6.16 \times 10^{-6}$)
260 with Obsessive-Compulsive Personality Disorder in a UK-based study.⁵⁶ *SHC4* is expressed in
261 neurons⁵⁷ and regulates BDNF-induced MAPK activation,⁵⁸ which has been shown to be a key factor

262 in MDD pathophysiology.⁵⁹ The *SHC4* region overlaps with the haplotype on chromosome 15
263 identified in the discovery cohort (located at 49 206 902 – 49 260 601 bp) and therefore further
264 research to examine the association between the *SHC4* region and psychiatric disorders could be
265 warranted.

266 Haplotype-based analyses are capable of tagging variants due to the LD between the untyped variants
267 and the multiple flanking genotyped variants which make up the inherited haplotype. This approach
268 should provide greater power when there is comparatively higher IBD sharing, such as in GS:SFHS,
269 where there is a greater likelihood that a single haplotype is tagging the same causal variant across
270 that population. The UK Biobank was selected as replication cohort as it is a large population-based
271 sample that was expected to be genetically similar to the GS:SFHS discovery cohort. This was
272 confirmed by the similarity of the observed haplotype frequencies (Table 2) between the two cohorts.
273 The prevalence of MDD observed in the discovery cohort (13.7%) was comparable to that reported
274 (14.6%) within similar populations.³⁴ However, in the replication cohort, the trait prevalence was
275 notably higher (34.0%), most likely due to the differing methods of phenotypic ascertainment.
276 Additional work could seek to replicate the findings in further cohorts, as well as full meta-analysis of
277 all haplotypes within those cohorts. An additive model was used to analyse the haplotypes and
278 alternative approaches could implement a dominant model or an analysis of diplotypes (haplotype
279 pairs) for association with MDD.

280 **Conclusions**

281 This study identified two haplotypes within the discovery cohort that exceeded genome-wide
282 significance for association with a clinically diagnosed MDD phenotype. One of these haplotypes was
283 nominally significant in the replication cohort and was in LD with a haplotype that was genome-wide
284 significant in the meta-analysis. The genome-wide significant haplotype on chromosome 6 was
285 located on 6q21, which has been shown previously to be related to psychiatric disorders. There were a
286 number of haplotypes approaching genome-wide significance located within genic regions associated
287 with diseases that are comorbid with MDD and therefore these regions warrant further investigation.

288 The total genetic variance explained by the haplotypes identified was small, however these haplotypes
289 potentially represent biologically informative aetiological subtypes for MDD and merit further
290 analysis.

291 **ACKNOWLEDGEMENTS**

292 Generation Scotland received core funding from the Chief Scientist Office of the Scottish
293 Government Health Directorate CZD/16/6 and the Scottish Funding Council HR03006. Genotyping
294 of GS:SFHS was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical
295 Research Facility, Edinburgh, Scotland and was funded by the UK's Medical Research Council and
296 the Wellcome Trust (Wellcome Trust Strategic Award "Stratifying Resilience and Depression
297 Longitudinally" (STRADL) (Reference 104036/Z/14/Z).

298 We are grateful to all the families who took part, the general practitioners and the Scottish School of
299 Primary Care for their help in recruiting them, and the whole Generation Scotland team, which
300 includes interviewers, computer and laboratory technicians, clerical workers, research scientists,
301 volunteers, managers, receptionists, healthcare assistants and nurses. Ethics approval for the study
302 was given by the NHS Tayside committee on research ethics (reference 05/S1401/8)

303 This research has been conducted using the UK Biobank resource – application number 4844; we are
304 grateful to UK Biobank participants. The UK Biobank study was conducted under generic approval
305 from the NHS National Research Ethics Service (approval letter dated 17th June 2011, Ref
306 11/NW/0382).

307 YZ acknowledges support from China Scholarship Council. IJD is supported by the Centre for
308 Cognitive Ageing and Cognitive Epidemiology which is funded by the Medical Research Council and
309 the Biotechnology and Biological Sciences Research Council (MR/K026992/1). AMMcI and T-KC
310 acknowledges support from the Dr Mortimer and Theresa Sackler Foundation.

311 **CONFLICT OF INTEREST**

312 DJP and IJP are participants in UK Biobank. The authors report that no other financial interests or
313 potential conflicts of interest exist.

314 **REFERENCES**

- 315 1. Huffman JC, Celano CM, Beach SR, Motiwala SR, Januzzi JL. Depression and cardiac
316 disease: epidemiology, mechanisms, and diagnosis. *Cardiovascular Psychiatry and*
317 *Neurology* 2013; **2013**: 14.
- 318 2. Kang H-J, Kim S-Y, Bae K-Y, Kim S-W, Shin I-S, Yoon J-S, *et al.* Comorbidity of
319 depression with physical disorders: research and clinical implications. *Chonnam Medical*
320 *Journal* 2015; **51**(1): 8-18.
- 322 3. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the
323 pathogenesis of depression. *Trends in Immunology* 2006; **27**(1): 24-31.
- 325 4. Major Depressive Disorder Working Group of the Psychiatric Gwas Consortium. A mega-
326 analysis of genome-wide association studies for major depressive disorder. *Molecular*
327 *Psychiatry* 2013; **18**(4): 497-511.
- 329 5. Converge Consortium. Sparse whole-genome sequencing identifies two loci for major
330 depressive disorder. *Nature* 2015; **523**(7562): 588-591.
- 332 6. Levinson DF, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray NR, *et al.* Genetic
333 studies of major depressive disorder: why are there no genome-wide association study
334 findings and what can we do about it? *Biological Psychiatry* 2014; **76**(7): 510-512.
- 336 7. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, *et al.* Identification of 15
337 genetic loci associated with risk of major depression in individuals of European descent.
338 *Nature Genetics* 2016; **advance online publication**.
- 340 8. Lubke GH, Hottenga JJ, Walters R, Laurin C, de Geus EJC, Willemsen G, *et al.* Estimating
341 the genetic variance of major depressive disorder due to all single nucleotide polymorphisms.
342 *Biological Psychiatry* 2012; **72**(8): 707-709.
- 344 9. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and
345 meta-analysis. *American Journal of Psychiatry* 2000; **157**(10): 1552-1562.
- 347 10. Zhang Z, Ni J, Zhang J, Tang W, Li X, Wu Z, *et al.* A haplotype in the 5'-upstream region of
348 the NDUFV2 gene is associated with major depressive disorder in Han Chinese. *Journal of*
349 *Affective Disorders* 2016; **190**: 329-332.
- 351 11. Kim J-J, Mandelli L, Pae C-U, De Ronchi D, Jun T-Y, Lee C, *et al.* Is there protective
352 haplotype of dysbindin gene (DTNBP1) 3 polymorphisms for major depressive disorder.
353 *Progress in Neuro-Psychopharmacology and Biological Psychiatry* 2008; **32**(2): 375-379.

355
356 12. Klok MD, Giltay EJ, Van der Does AJW, Geleijnse JM, Antypa N, Penninx BWJH, *et al.* A
357 common and functional mineralocorticoid receptor haplotype enhances optimism and protects
358 against depression in females. *Translational Psychiatry* 2011; **1**: e62.

359
360 13. Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, *et al.* Cohort profile:
361 Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants
362 and their potential for genetic research on health and illness. *International Journal of*
363 *Epidemiology* 2013; **42**(3): 689-700.

364
365 14. Smith DJ, Nicholl BI, Cullen B, Martin D, Ul-Haq Z, Evans J, *et al.* Prevalence and
366 characteristics of probable major depression and bipolar disorder within UK Biobank: cross-
367 sectional study of 172,751 participants. *PLoS ONE* 2013; **8**(11): e75362.

368
369 15. Amador C, Huffman J, Trochet H, Campbell A, Porteous D, Wilson JF, *et al.* Recent genomic
370 heritage in Scotland. *BMC Genomics* 2015; **16**(1): 1-17.

371
372 16. Allen NE, Sudlow C, Peakman T, Collins R. UK biobank data: come and get it. *Science*
373 *Translational Medicine* 2014; **6**(224): 224ed224.

374
375 17. Marchini J (2015). UK Biobank phasing and imputation documentation. Version 1.2:
376 http://biobank.ctsu.ox.ac.uk/crystal/docs/impute_ukb_v1.pdf.

377
378 18. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and
379 population genetic studies. *Nature Methods* 2013; **10**(1): 5-6.

380
381 19. O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, *et al.* A general
382 approach for haplotype phasing across the full spectrum of relatedness. *PLoS Genetics* 2014;
383 **10**(4): e1004234.

384
385 20. The International HapMap Consortium. A second generation human haplotype map of over
386 3.1 million SNPs. *Nature* 2007; **449**(7164): 851-861.

387
388 21. Browning BL, Browning SR. Improving the accuracy and efficiency of identity-by-descent
389 detection in population data. *Genetics* 2013; **194**(2): 459-471.

390
391 22. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira Manuel A, Bender D, *et al.* PLINK: a
392 tool set for whole-genome association and population-based linkage analyses. *American*
393 *Journal of Human Genetics* 2007; **81**(3): 559-575.

394
395 23. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies.
396 *Nat Rev Genet* 2014; **15**(5): 335-346.

397
398 24. First MB, Spitzer RL, Gibbon Miriam., Williams JBW (2002). Structured Clinical Interview
399 for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P)

400

401 25. Fernandez-Pujals AM, Adams MJ, Thomson P, McKeachie AG, Blackwood DHR, Smith BH, *et al.* Epidemiology and heritability of major depressive disorder, stratified by age of onset, sex, and illness course in generation scotland: scottish family health study (GS:SFHS). *PLoS ONE* 2015; **10**(11): e0142197.

405

406 26. Information Services Division (2016). SMR Data Manual: <http://www.ndc.scot.nhs.uk/Data-Dictionary/SMR-Datasets>.

407

408

409 27. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. *Nature Genetics* 2014; **46**(2): 100-106.

410

411

412 28. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, *et al.* Common SNPs explain a large proportion of the heritability for human height. *Nature Genetics* 2010; **42**(7): 565-569.

413

414

415

416 29. Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, *et al.* Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. *PLoS Genetics* 2013; **9**(5): e1003520.

417

418

419

420 30. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, *et al.* LD score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nature Genetics* 2015; **47**(3): 291-295.

421

422

423

424

425 31. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genome-wide association scans. *Bioinformatics* 2010; **26**(17): 2190-2191.

426

427

428 32. Park J-H, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, *et al.* Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. *Nature Genetics* 2010; **42**(7): 570-575.

429

430

431

432 33. Purcell S, Cherny SS, Sham PC. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. *Bioinformatics* 2003; **19**(1): 149-150.

433

434

435 34. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, *et al.* Cross-national epidemiology of DSM-IV major depressive episode. *BMC Medicine* 2011; **9**(1): 1-16.

436

437

438

439 35. Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, *et al.* Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. *The EMBO Journal* 2005; **24**(5): 1079-1091.

440

441

442

443 36. Pandruvada SNM, Beauregard J, Benjannet S, Pata M, Lasure C, Seidah NG, *et al.* Role of ostm1 cytosolic complex with kinesin 5B in intracellular dispersion and trafficking. *Molecular and Cellular Biology* 2016; **36**(3): 507-521.

444

445

446

447 37. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, *et al.* Novel
448 MITF targets identified using a two-step DNA microarray strategy. *Pigment Cell &*
449 *Melanoma Research* 2008; **21**(6): 665-676.

450

451 38. Maes M, DeJonckheere C, Vandervorst C, Schotte C, Cosyns P, Raus J, *et al.* Abnormal
452 pituitary function during melancholia: Reduced α -melanocyte-stimulating hormone secretion
453 and increased intact ACTH non-suppression. *Journal of Affective Disorders* 1991; **22**(3): 149-
454 157.

455

456 39. Goyal SN, Kokare DM, Chopde CT, Subhedar NK. Alpha-melanocyte stimulating hormone
457 antagonizes antidepressant-like effect of neuropeptide Y in Porsolt's test in rats.
458 *Pharmacology Biochemistry and Behavior* 2006; **85**(2): 369-377.

459

460 40. Kokare DM, Singru PS, Dandekar MP, Chopde CT, Subhedar NK. Involvement of alpha-
461 melanocyte stimulating hormone (α -MSH) in differential ethanol exposure and withdrawal
462 related depression in rat: Neuroanatomical-behavioral correlates. *Brain Research* 2008; **1216**:
463 53-67.

464

465 41. Knight J, Rochberg NS, Saccone SF, Nurnberger JI, Rice JP. An investigation of candidate
466 regions for association with bipolar disorder. *American Journal of Medical Genetics Part B:*
467 *Neuropsychiatric Genetics* 2010; **153B**(7): 1292-1297.

468

469 42. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL, *et al.* Genomewide linkage
470 analyses of bipolar disorder: a new sample of 250 pedigrees from the national institute of
471 mental health genetics initiative. *American Journal of Human Genetics* 2003; **73**(1): 107-114.

472

473 43. Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B, *et al.* Linkage analysis of psychosis in
474 bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility
475 with schizophrenia. *Molecular Psychiatry* 2004; **9**(12): 1091-1099.

476

477 44. Pato CN, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C, *et al.* Genome-wide
478 scan in Portuguese Island families implicates multiple loci in bipolar disorder: Fine mapping
479 adds support on chromosomes 6 and 11. *American Journal of Medical Genetics Part B:*
480 *Neuropsychiatric Genetics* 2004; **127B**(1): 30-34.

481

482 45. Fabbri C, Serretti A. Genetics of long-term treatment outcome in bipolar disorder. *Progress in*
483 *Neuro-Psychopharmacology and Biological Psychiatry* 2016; **65**: 17-24.

484

485 46. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar
486 affective disorder and the genetic relationship to unipolar depression. *Archives of General*
487 *Psychiatry* 2003; **60**(5): 497-502.

488

489 47. Surh CD, Sprent J. Homeostasis of Naive and Memory T Cells. *Immunity* 2008; **29**(6): 848-
490 862.

491

492 48. Kittipatarin C, Khaled AR. Interlinking interleukin-7. *Cytokine* 2007; **39**(1): 75-83.

493 49. Miller AH. Depression and immunity: A role for T cells? *Brain, Behavior, and Immunity*
494 2010; **24**(1): 1-8.

496 497 50. Simon NM, McNamara K, Chow CW, Maser RS, Papakostas GI, Pollack MH, *et al.* A
498 detailed examination of cytokine abnormalities in major depressive disorder. *European*
499 *Neuropsychopharmacology* 2008; **18**(3): 230-233.

500 501 51. Lehto SM, Huotari A, Niskanen L, Herzog K-H, Tolmunen T, Viinamäki H, *et al.* Serum IL-7
502 and G-CSF in major depressive disorder. *Progress in Neuro-Psychopharmacology and*
503 *Biological Psychiatry* 2010; **34**(6): 846-851.

504 505 52. Stewart JC, Rand KL, Muldoon MF, Kamarck TW. A prospective evaluation of the
506 directionality of the depression-inflammation relationship. *Brain, Behavior, and Immunity*
507 2009; **23**(7): 936-944.

508 509 53. Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and
510 discovery. *Brain, Behavior, and Immunity* 2007; **21**(4): 374-383.

511 512 54. Aragam N, Wang K-S, Pan Y. Genome-wide association analysis of gender differences in
513 major depressive disorder in the Netherlands NESDA and NTR population-based samples.
514 *Journal of Affective Disorders* 2011; **133**(3): 516-521.

515 516 55. Sullivan PF, de Geus EJC, Willemsen G, James MR, Smit JH, Zandbelt T, *et al.* Genome-
517 wide association for major depressive disorder: a possible role for the presynaptic protein
518 piccolo. *Molecular Psychiatry* 2008; **14**(4): 359-375.

519 520 56. Boraska V, Davis OSP, Cherkas LF, Helder SG, Harris J, Krug I, *et al.* Genome-wide
521 association analysis of eating disorder-related symptoms, behaviors, and personality traits.
522 *American Journal of Medical Genetics* 2012; **159B**(7): 803-811.

523 524 57. Hawley SP, Wills MKB, Rabalski AJ, Bendall AJ, Jones N. Expression patterns of ShcD and
525 Shc family adaptor proteins during mouse embryonic development. *Developmental Dynamics*
526 2011; **240**(1): 221-231.

527 528 58. You Y, Li W, Gong Y, Yin B, Qiang B, Yuan J, *et al.* ShcD interacts with TrkB via its PTB
529 and SH2 domains and regulates BDNF-induced MAPK activation. *BMB Rep* 2010; **43**(7):
530 485-490.

531 532 59. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, *et al.* A negative
533 regulator of MAP kinase causes depressive behavior. *Nature Medicine* 2010; **16**(11): 1328-
534 1332.

535

536 **Figure 1.** Manhattan plot representing the $-\log_{10} P$ -values for an association between each assessed
537 haplotype in the Generation Scotland: Scottish Family Health Study cohort and Major Depressive
538 Disorder

539

540 **Figure 2.** Regional association plot representing the $-\log_{10} P$ -values for an association between
541 haplotypes in the Generation Scotland: Scottish Family Health Study cohort and Major Depressive
542 Disorder within the 107.4 – 107.6 Mb region on chromosome 6. The start and end position (using
543 build GRCh37) of haplotypes represent the outermost SNP positions within the windows examined.
544 The warmth of colour represents the r^2 with the genome-wide significant haplotype located between
545 108 338 267 and 108 454 437 bp.

546

547 **Figure 3.** Region association plot representing the $-\log_{10} P$ -values for an association between
548 haplotypes in the Generation Scotland: Scottish Family Health Study cohort and Major Depressive
549 Disorder within the 3.6 – 5.8 Mb region on chromosome 10. The start and end position (using build
550 GRCh37) of haplotypes represent the outermost SNP positions within the windows examined. The
551 warmth of colour represents the r^2 with the genome-wide significant haplotype located between 4 588
552 261 and 4 822 210 bp.

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589 **Table 1.** The genetic association between Major Depressive Disorder and 12 haplotypes in the
 590 Generation Scotland: Scottish Family Health Study (GS:SFHS) discovery cohort (where $P < 10^{-6}$), the
 591 replication cohort (UK Biobank) and a meta-analysis.

Haplotype		GS:SFHS		UK Biobank		Meta-analysis		
Chr.	Position (bp)	Window Size (cM)	Odds Ratio (95% CI)	P-value	Odds Ratio (95% CI)	P-value	Odds Ratio (95% CI)	P-value
{ 6 *	108338267 - 108454437	0.34	1.83 (1.53 - 2.16)	7.06×10^{-9}	1.11 (1.01 - 1.22)	3.62×10^{-2}	1.26 (1.16 - 1.37)	3.14×10^{-7}
	108407662 - 108454437	0.25	1.68 (1.42 - 1.96)	8.17×10^{-8}	1.14 (1.04 - 1.24)	4.47×10^{-3}	1.25 (1.16 - 1.35)	4.38×10^{-8}
{ 8	139682412 - 139708901	0.25	2.17 (1.67 - 2.73)	4.37×10^{-7}	0.87 (0.68 - 1.08)	2.20×10^{-1}	1.28 (1.08 - 1.49)	4.67×10^{-3}
	79700362 - 80387861	0.5	1.98 (1.56 - 2.46)	9.02×10^{-7}	1.06 (0.86 - 1.28)	5.93×10^{-1}	1.36 (1.18 - 1.56)	6.29×10^{-5}
{ 8	79759499 - 80156474	0.25	1.77 (1.47 - 2.10)	7.90×10^{-8}	1.05 (0.91 - 1.21)	5.06×10^{-1}	1.28 (1.15 - 1.42)	1.14×10^{-5}
10	4588261 - 4822210	0.5	2.33 (1.83 - 2.91)	8.50×10^{-9}	1.15 (0.80 - 1.59)	4.39×10^{-1}	1.67 (1.40 - 1.98)	7.92×10^{-8}
11 *	2260854 - 2437425	0.41	1.64 (1.38 - 1.91)	2.86×10^{-7}	1.00 (0.87 - 1.34)	9.91×10^{-1}	1.26 (1.10 - 1.34)	1.32×10^{-4}
12	48159721 - 48263828	0.25	2.00 (1.58 - 2.47)	4.78×10^{-7}	0.97 (0.79 - 1.17)	7.36×10^{-1}	1.29 (1.12 - 1.48)	6.51×10^{-4}
12	116904503 - 117062860	0.25	2.13 (1.64 - 2.69)	9.90×10^{-7}	1.04 (0.79 - 1.34)	7.79×10^{-1}	1.45 (1.22 - 1.71)	5.37×10^{-5}
15	49206902 - 49260601	0.25	2.03 (1.62 - 2.48)	9.21×10^{-8}	1.09 (0.88 - 1.32)	4.04×10^{-1}	1.41 (1.22 - 1.61)	4.39×10^{-6}
{ 15	93806447 - 93851224	0.5	1.58 (1.34 - 1.83)	4.47×10^{-7}	0.93 (0.81 - 1.05)	2.38×10^{-1}	1.16 (1.05 - 1.27)	2.50×10^{-3}
	93821340 - 93845622	0.25	1.52 (1.31 - 1.75)	8.67×10^{-7}	0.91 (0.81 - 1.03)	1.37×10^{-1}	1.13 (1.03 - 1.23)	6.97×10^{-3}

592 Bold values indicate genome-wide statistical significance ($P < 5 \times 10^{-8}$) was achieved in the GS:SFHS
 593 cohort or the meta-analysis, or that nominal statistical significance ($P < 0.05$) was achieved in the UK
 594 Biobank. Base pair (bp) positions are based on build GRCh37. * indicates haplotype boundaries
 595 defined by the fine mapping approach. { indicates linkage disequilibrium (r^2) > 0.5 between
 596 haplotypes in the GS:SFHS cohort.

597

598

599

600

601

602

603

604

605

606

607

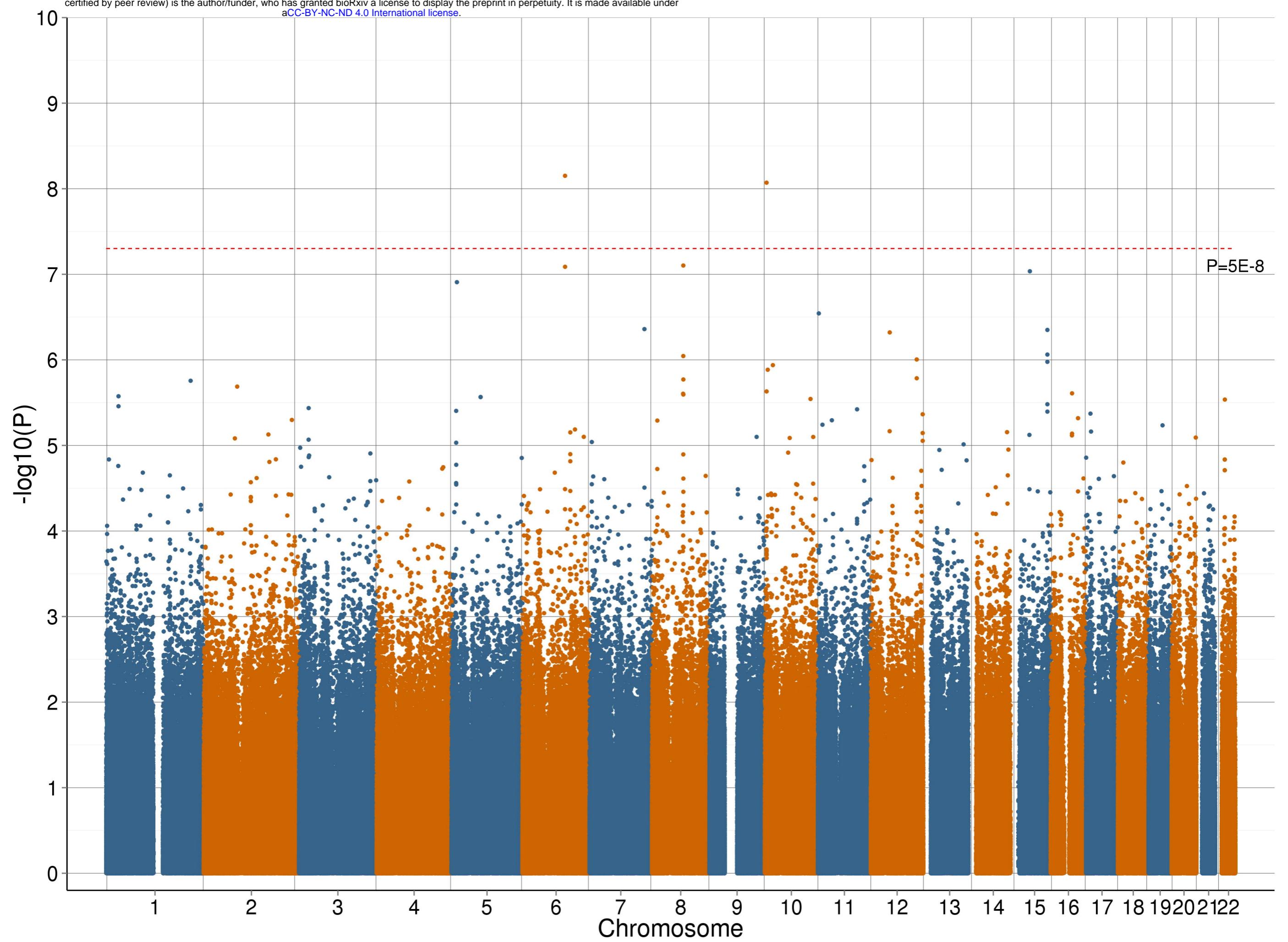
608

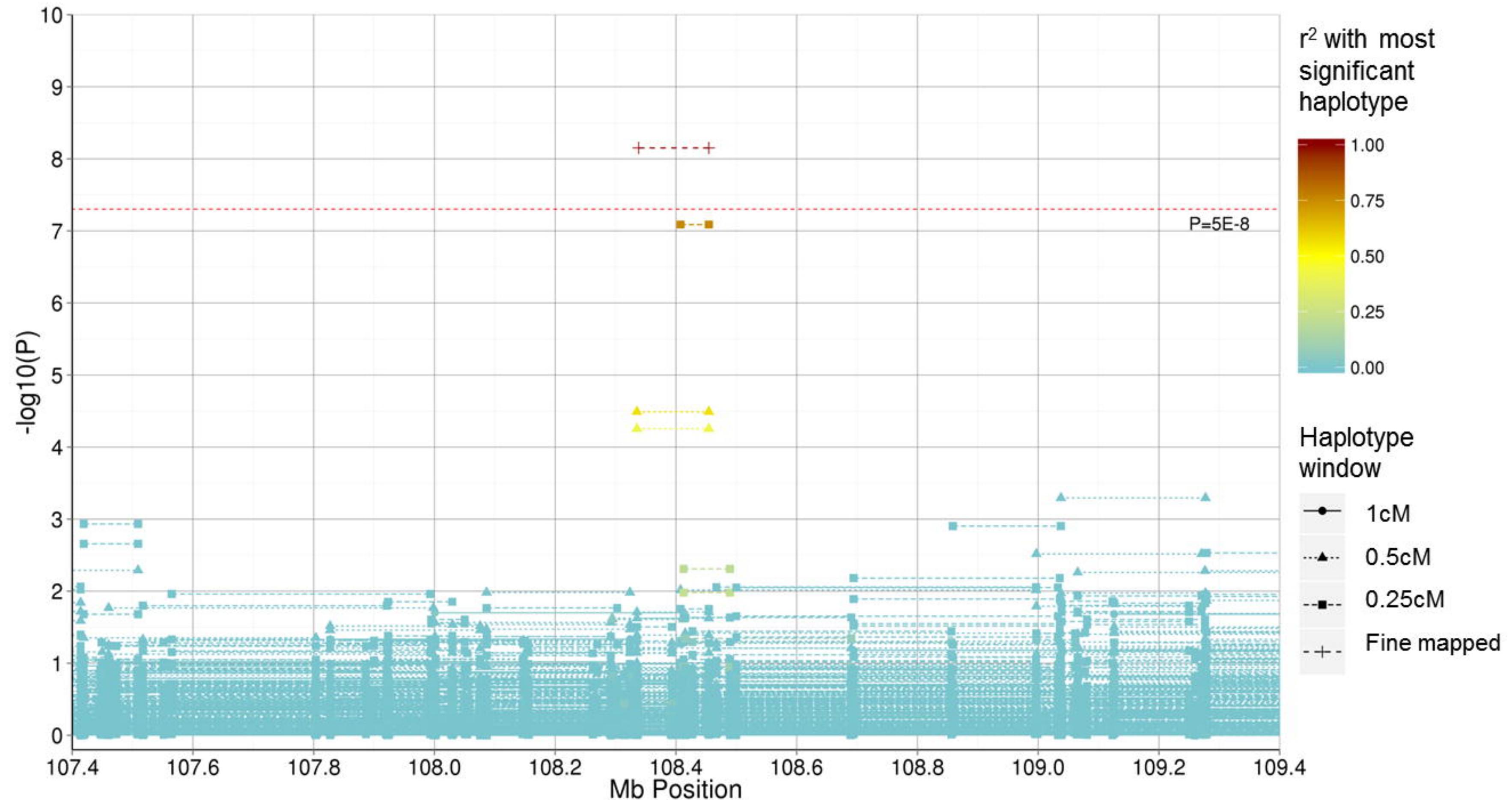
609

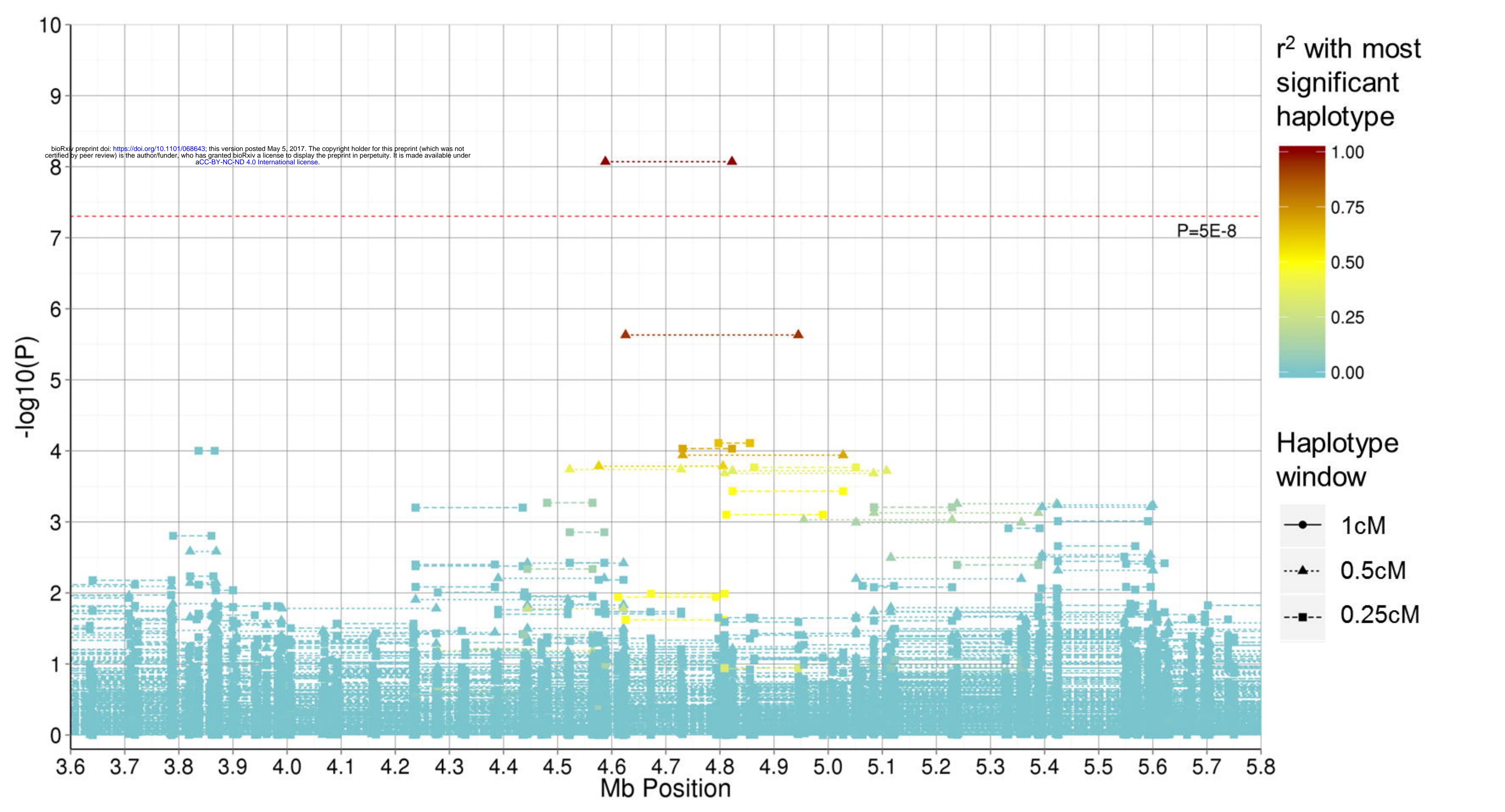
610

611

612


613


614


615 **Table 2.** Protein coding genes located overlapping with the 12 haplotypes with $P < 10^{-6}$ in the
616 Generation Scotland: Scottish Family Health Study (GS:SFHS) discovery cohort and the frequencies
617 of those haplotypes in GS:SFHS and UK Biobank.

Chr.	Position (bp)	Protein coding genes	Haplotype frequency	
			GS:SFHS	UK Biobank
{ 6	108338267 - 108454437	OSTM1	0.0152	0.0197
	108407662 - 108454437	OSTM1	0.0193	0.0241
7	139682412 - 139708901	TBXAS1	0.0066	0.0069
{ 8	79700362 - 80387861	IL7	0.0076	0.0081
	79759499 - 80156474	IL7	0.0147	0.0157
10	4588261 - 4822210		0.0064	0.0027
11	2260854 - 2437425	ASCL2, CLorf21, TSPAN32, CD81, TSSC4, TRPM5	0.0196	0.0187
12	48159721 - 48263828	SLC48A1, RAPGEF3, HDAC7, VDR	0.0078	0.0090
12	116904503 - 117062860	MAP1LC3B2	0.0057	0.0045
15	49206902 - 49260601	SHC4	0.0082	0.0080
{ 15	93806447 - 93851224		0.0224	0.0206
	93821340 - 93845622		0.0265	0.0243

618 Base pair (bp) positions are based on build GRCh37 with protein coding regions obtained from
619 Ensembl, GRCh37.p13. Haplotype frequencies were calculated using unrelated individuals and
620 excluding UK Biobank participants recruited in Glasgow or Edinburgh. { indicates a linkage
621 disequilibrium (r^2) > 0.5 between haplotypes in the GS:SFHS cohort.

