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Abstract 

The analysis of whole genome DNA methylation patterns is an important first step towards 

the understanding on how DNA methylation is involved in the regulation of gene expression 

and genome stability.  

Previously, we published MethylExtract, a program for DNA methylation profiling and 

genotyping from the same sample. Over the last years we developed it further into a 

methylation analysis pipeline that allows to take full advantage of novel genome assembly 

models. The result is a new pipeline termed MethFlow which permits both, profiling of 

methylation levels and differential methylation analysis.  

Frequently DNA methylation research is carried out in the biomedical field, where privacy 

issues play an important role. Therefore we implemented the pipeline into a virtual machine 

termed MethFlow
VM

 which shares with a web-server its user-friendliness however, the 

decisive advantage is that the sequencing data does not leave the user desktop or server and 

therefore no privacy issues do exist. 

The virtual machine is available at: http://bioinfo2.ugr.es:8080/MethFlow/  

 

Introduction 

Next generation sequencing techniques triggered substantial changes in many research 

fields of molecular biology. Specific protocols allow now the fast and cheap expression 

profiling of whole transcriptomes, the detection of transcription factor binding sites, histone 

modifications and whole genome methylation maps among many other analysis types [1]. 

Especially research on DNA methylation was boosted as before whole genome studies were 

hampered by the fact the PCR does not copy the methyl group and hybridization is 

insensitive to the methylation state of the cytosine [2]. DNA methylation is an essential 

epigenetic mark involved in the regulation of gene expression and genome stability [3–5]. 

The analysis of whole genome DNA methylation patterns has become an important first step 
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towards the understanding on how DNA methylation exerts its functions in the development 

of an organism and why dysregulation is frequently linked to pathologies like cancer [6].  

Currently, most high-throughput sequencing protocols for DNA methylation profiling rely on 

the pre-treatment of the denaturalized DNA with sodium bisulfite which coverts un-

methylated Cytosine first into Uracil and finally into Thymine. After sequencing and 

alignment against a reference genome, the methylation states can be read out of the read 

alignments. Many different algorithms have been developed for this task like BSseeker [7] 

Bismark [8], NGSmethPipe [9] or MethylCoder [10]. Furthermore, some of the available 

programs allow additionally the detection of sequence variants from the same sample like 

Bis-SNP [11] or MethylExtract [12].  

Many DNA methylation research is currently carried out in biomedical and clinical research 

fields. This implies that frequently the sequencing data underlies privacy issues what rules 

out the usage of web-servers and probably even web-based platforms like Galaxy [13]. As a 

consequence, the data needs to be analysed locally what requires some infrastructure and 

system administrators. The asset costs and administration of Linux machines together with 

the need for personal trained in HTS-data analysis raises the cost for HTS-based research 

enormously bringing especially smaller groups or laboratories into difficulties. One possible 

solution are preconfigured virtual machines, which can be run on any operating system, and 

no system administration and maintenance is needed.  

We present MethFlow
VM

, a virtual machine for DNA methylation profiling, genotyping and 

differential methylation analysis. The virtual machine is based on an extended version of our 

MethylExtract algorithm [12], Bismark [8] /Bowtie2 [14] for read alignment and methylKit 

[15] for differential methylation analysis. The virtual machine can be easily used by users 

without bioinformatics background.  

 

Scope of MethFlow
VM

 

Virtual machines can be executed on all common operating systems through virtualization 

software like VirtualBox (https://www.virtualbox.org/), VMware 

(http://www.vmware.com/), Vagrant (https://www.vagrantup.com/) or XenServer 

(http://xenserver.org/). MethFlow
VM

 is the implementation into a virtual machine of two 

basic analysis types: i) profiling of cytosine methylation values through the analysis of 

bisulfite sequencing data and ii) detection of differential methylation either at a cytosine or 

region level. The download size of the virtual machine is currently 1.6 Gb (without desktop) 

and we recommend at least 4 CPUs and 8 Gb free memory for the host computer. A 64-bit 

processor is required. In the tutorial we explain in detail how the virtual machine can be 

obtained and started. MethFlow
VM

 implements several small tools that help the user to 

automatically set up, maintain and update the virtual machine.  

DNA methylation workflow 

The workflow of DNA methylation profiling can be seen in Figure 1. The data analysis can be 

started at different levels depending on the kind of input data. Briefly, the pipeline performs 

the following steps: 
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• Format conversion: Conversion of SRA data format into FASTQ by means of the SRA 

Toolkit. This only applies if the input data comes from the Sequence Read Archive 

(SRA) public repository [16] which is in ‘sra’ format and needs to be converted first.  

• Adapter Trimming and low quality reads: if the input data is in fastq format, the user 

can either chose to trim the adapter sequences or to omit this step. The adapter 

trimming is performed by means of Trimmomatic [17]. Furthermore, Trimmomatic is 

used to remove low quality 3’ ends with ‘trailing’ mode applying by default a 

PhredScore threshold of 28 (Q <= 28). Reads shorter than half of the original read 

length are eliminated (MINLEN option). All parameters can be changed by the user.  

• Alignment to the genome: Adapter trimmed input reads in fastq format (either 

provided by the user or generated in the previous step) are aligned to a three letter 

genome by means of Bismark [8] which uses Bowtie2 [14] as aligner. The output of 

this step is a standard BAM file.  

• Elimination of known technical artefacts: different technical artefacts can bias the 

methylation profiling results like overhang end-repair, 5'- bisulfite conversion failure, 

undetected adapter sequences and sequencing errors. BSeQC [18] detects 

automatically regions at the 5’ and 3’ end whose DNA methylation values might be 

biased by any technical artefact. BSeQC trims each read at the 5’ end by a given 

number of nucleotides – those putatively affected by technical artefacts. In ‘normal’ 

samples, not more than 10 nt should be trimmed of.  

• Detection of DNA methylation and genotype: the DNA methylation profiling and 

genotyping is performed by means of MethylExtract [12]. The program takes into 

account several important error sources like sequencing errors, bisulfite failure, 

clonal reads, and single nucleotide variants in order to generate high quality whole 

genome methylation maps.  

• Graphical representation: The obtained results can be visualized in several ways. For 

basic summary graphics like the distribution of the methylation values or read 

coverage, MethFlow
VM 

implements methylKit [15]. The workflow converts 

automatically MethylExtract format into methylKit format and generates the 

mentioned plots. Note that the automatic conversion of MethylExtract into methylKit 

format is the first step into the differential methylation analysis which can be 

performed as well with methylKit.  

• Downstream analysis: MethFlow
VM

 provides several useful auxiliary programs for 

downstream analysis. First, the cystosine methylation data can be easily visualized by 

means of the UCSC genome browser[19] or IGV [20]. MethFlow implements the 

required programs that convert MethyExtract format into BedGraph, BED6, BED6+6, 

bigBed or bigwig. Second, MethFlow
VM

 provides a program for the automatic upload 

of methylation results to Galaxy [21] which can then be used for further downstream 

analysis. Note that those programs are not part of the methylation workflow as they 

are not launched automatically. We explain in the manual step by step how those 

programs can be used.  
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New features in MethFlow 

The reference assembly is crucial for the analysis of sequencing data in general. However, 

constructing a reference assembly by collapsing sequences from several individuals into a 

single consensus haplotype representation of each chromosome as done normally has 

several drawbacks [22]. To overcome the limitations of such a sequence model, the GRC 

(Genome Reference Consortium) started with the inclusion of ‘alternative sequence paths’ in 

the GRCh37 (hg19) assembly [23]. Those new ‘sequence paths’ are introduced to reflect the 

existing sequence and structural variation within a given population. It can be expected that 

the inclusion of these alternative sequences increases the number of correctly mapped 

reads. One important consequence of those new assembly models is that they are neither 

haploid nor diploid, but they contain additional sequences for regions with a high degree of 

diversity in the population. Normally programs expect a haploid representation and 

therefore those new models pose additional challenges to the programs used for the 

analysis of sequencing data. Especially in DNA methylation profiling those issues are 

important as only uniquely mapping reads are used and multiple-mapping reads are 

discarded. Furthermore, incorrectly mapped reads will lead to incorrect methylation 

profiling and sequence variation between the reference sequence and the sample 

haplotype, which pose additional challenges in bisulfite sequencing analysis. Therefore, 

especially in the analysis of WGBS data analysis the inclusion of alternative sequences will 

improve the mapping quality and therefore the quality of the methylation maps. However, 

when using only one assembly that incorporates those additional sequences (decoy 

sequences), very likely many reads will map multiple times within the variable regions – and 

those reads are lost for the analysis.  

In order to i) exploit the advantages of the new assembly models and ii) recover the useful 

information of multiple-mapped reads for the analysis, we incorporated a twostep mapping 

process. First, the reads are mapped against a decoy assembly (canonical chromosomes + 

decoy sequences). This increases the number of correctly mapped reads but also the number 

of multiple-mapped reads. A certain percentage of those ambiguous reads can be recovered 

in a second mapping step against the canonical chromosomes (see bottom inlay of Figure 1).  

Note that this two-step mapping procedure can be applied in different scenarios. For 

example, if a population specific assembly exists whose haplotype structure is closer to the 

analysed sample, but of lower quality than the reference assembly. In such cases the 

population specific assembly can be used in the first step and the reference assembly in the 

second.  

 

Protocol and working example  

To show the usefulness of MethFlow
VM

 we generated 9 small test datasets which can be 

downloaded easily from within the virtual machine. The manual 

http://bioinfo2.ugr.es:8080/MethFlow/manual/ contains a step-by-step protocol on how to 

obtain the data and how to analyse it by means of the virtual machine. The test data set was 

obtained from the ROADMAP Epigenomics Project [24]. In concrete we used data from three 

different tissues (adipose, psoas muscle and small intestine) and from three different 
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individuals (STL001, STL002 and STL003). From these datasets we extracted the reads for 

two genome regions: i) chr12:7,600,000-7,700,000 (APOBEC1) and chr19:2,200,000-

2,300,000 (AMH).  

MethFlow can be launched in three different ways. The easiest is an interactive way by 

means of dialogs (see figure 2a), but it accepts also a direct input of parameters in the 

command line or through a configuration file. Furthermore, several arguments like the ‘base 

output directory’ or the indexes of the genome assemblies can be provided in a setting file 

(.methflowrc) and therefore they don’t need to be specified on every run. MethFlow
VM

 helps 

the user through the configuration when the VM is used for the first time. Especially we 

want to stress the importance of using shared folders between the host and the virtual 

machine which accelerates some steps of the analysis up to 4 times. All recommended 

configuration steps are explained step-by-step in the manual.  

By typing ‘MethFlow run --use_assembly2’ in a terminal, a dialog pops-up which guides the 

user through the selection of the mandatory parameters. The ‘--use_assembly2’ parameter 

will launch the workflow with two assemblies (see section ‘New features in MethFlow’). 

Depending on the input data, up to 14 output folders are generated by the different 

components of the pipeline. Furthermore, MethFlow writes a file with the references of all 

used tools. Depending on the input data format, MethFlow launches sequentially a certain 

number of programs. The CITE.txt file contains the references to be cited if the results are 

used in a scientific publication.  

Figure 2b-f show several results of MethFlow. Figure 2b shows the distribution of 

methylation levels of CpG cytosines in adipose of the STL001 individual. The typical U shaped 

distribution can be seen with 18.9% of CpGs having methylation levels lower than 0.1 

(unmethylated CpGs) and 38.4% of CpGs show methylation levels higher than 0.9 

(methylated CpGs). Figure 2c shows a sub-region of chr19:2,249,421-2,257,733 including the 

gene AMH (Anti-Müllerian hormone) and JSRP1, a tissue specific muscle gene involved in 

excitation-contraction coupling at the sarcoplasmic reticulum. Both genes are located ‘tail-

to-tail’ having a very prominent CpG island overlapping the 3’ UTR’s of both genes. 

Interestingly, the CpG island is completely unmethylated (grey shaded bars) in adipose (ad) 

and small intestine (si) in all three individuals but strongly methylated (black bars) in psoas 

muscle (pm) in all three individuals. This might indicate that the methylation pattern of the 

muscle specific JSRP1 gene is involved in the regulation of the expression of this gene in an 

atypical way as the canonical regulation pathways are expected to act in the promoter 

region. CpG islands overlapping the 3’ end of genes were not extensively investigated so far 

but seemingly they are associated to cancer development [25]. Furthermore they are and 

characterized by an increased number of sites recognized by the Sp1 protein [26] and might 

therefore indeed play roles in the regulation of the corresponding genes.  

Figure 2d shows part of an intron of the gene APOBEC1 (from the genomic region 

chr12:7,666,300-7,666,500). This gene encodes the protein Apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide 1 also known as C->U-editing enzyme APOBEC-1. This enzyme 

is essential for the intestine to produce APOB48 instead of APOB100. APOB48 is produced 

exclusively in the intestine and is responsible for transporting chylomicrons. APOB100 is an 

apolipoprotein transporting cholesterol. The dysfunctionality of APOBEC1 can cause the 
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development of hypercholesterolemia and atherosclerosis. Figure 2d shows a different 

methylation pattern of single CpGs between small intestine (si) and the other two tissues 

(ad: adipose; pm: psoas muscle), being less methylated in the former. 

Finally we used the methylKit formatted methylation output files generated by MethFlow to 

perform a cluster analysis. Figure 2e shows the clustering tree and figure 2f the principal 

component analysis of the 9 samples. Both analyses confirm the tissue-specificity of the DNA 

methylation patterns as the samples are grouped by tissue type and not by genotype. 

MethylKit can be used also for a full differential methylation analysis, including single 

cytosines and regions. In the manual we discuss how the MethFlow output can be used 

directly as methylKit input to carry out those analysis.  

Conclusions and Future work 

We present here a virtual machine, MethFlow
VM

 for the analysis of bisulfite sequencing data, 

including DNA methylation profiling, SNV calling and differential methylation analysis. A 

virtual machine shares with a web-server its user-friendliness as they can be used on any 

operating system without the need for system administration or maintenance. However, the 

decisive advantage is that the sequencing data does not leave the user desktop or server and 

therefore no privacy issues do exist.  

Several new features are planned for the future or are already under development. 

Currently we are finishing a new version of our single cytosine resolution methylation 

database NGSmethDB [27,28] which will include a collection of pairwise differentially 

methylation cytosines (DMC). The DMCs are calculated as the consensus of MOABS [29] 

methods and methylKit [15] and the incorporation of the consensus differential methylation 

method is scheduled for the next update of MethFlow
VM

. Furthermore we are already 

working in the full integration of NGSmethDB into MethFlow. The goal is to allow the user to 

profile the bisulfite sequencing data locally and compare it to all tissues and/or 

pathophysiological conditions stored in NGSmethDB without the necessity to upload the 

user data to any public servers. It will be possible to carry out the comparison by means of 

several programs providing differentially methylation at single cytosine and regional level. 

Specially for the differential methylation at a regional level we will incorporate several 

improvements like a novel segmentation algorithm adapted to the special requirement of 

DNA methylation derived from an existing method [30] and the detection of differentially 

methylation clusters applying WordCluster [31] and GenomeCluster [32] methods to 

differentially methylated cytosines.  

 

Figure legends 

Figure 1: Workflow of the methylation pipeline. On the left side, the accepted user input 

formats are depicted and on the right side the intermediate formats produced by the 

different components in the workflow. Depending on the input data, the workflow starts at a 

different level. The last step of the pipeline consists in the conversion of MethylExtract 

format into methylKit format which can be directly used for differential methylation analysis. 

The inlay on the bottom depicts the novel two-step mapping strategy against two different 
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assemblies. As shown, in the second mapping the user can chose either to map ambiguous 

read, unmapped reads or both to the second assembly. For example, the first assembly 

could be the reference assembly plus all decoy sequences while the second assembly 

represents only the canonical reference sequences (see ‘New features in MethFlow’).  

Figure 2: a) Dialog window guiding the user through the required input data. In this case, the 

user is asked if only multiple-mapped reads should be used for the alignment against the 

second assembly or if multiple and unmapped reads should be used instead. b) The 

distribution of methylation levels in adipose of the STL001 individual, c) The methylation 

levels of all CpGs within a region containing the AMH (Anti-Müllerian hormone) and JSRP1 

genes. Apart from the visualization of the genes, the methylation level of each CpG within 

this region is shown (9 tracks at the bottom). Unmethylated CpGs are depicted by grey-

shaded bars while methylated CpGs are painted in black. The differentially methylated CpG 

island overlapping both 3’UTRs can clearly be distinguished. d) Differential methylation of 

single CpGs can be seen in the small intestine (especially in STL003) in an intronic region of 

the gene APOBEC1. e) Cluster tree and f) PCA analysis generated by means of methylKit 

showing the tissue specificity of methylation patterns.  
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